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Abstract

Recent years have witnessed a surge of interest
in developing trustworthy methods to evaluate
the value of data in many real-world applications
(e.g., collaborative machine learning, data mar-
ketplaces). Existing data valuation methods typ-
ically valuate data using the generalization per-
formance of converged machine learning models
after their long-term model training, hence mak-
ing data valuation on large complex deep neural
networks (DNNs) unaffordable. To this end, we
theoretically derive a domain-aware generaliza-
tion bound to estimate the generalization perfor-
mance of DNNs without model training. We then
exploit this theoretically derived generalization
bound to develop a novel training-free data valua-
tion method named data valuation at initialization
(DAVINZ) on DNNs, which consistently achieves
remarkable effectiveness and efficiency in prac-
tice. Moreover, our training-free DAVINZ, sur-
prisingly, can even theoretically and empirically
enjoy the desirable properties that training-based
data valuation methods usually attain, thus mak-
ing it more trustworthy in practice.

1. Introduction
Data has been widely recognized as one of the most vi-
tal ingredients of learning high-performing machine learn-
ing (ML) models. Meanwhile, data with different qualities
typically lead to diverse model performances in practice.
Developing trustworthy data valuation methods that are ex-
plainable, fair, and robust is therefore extensively required
to measure the value of data and also decide how to use
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them in real-world applications. For example, data valu-
ation is essential to compensating the participants in data
collection (Lo & DeMets, 2016), designing fair rewards
in collaborative ML (Sim et al., 2020), developing a trust-
worthy data market for buyers and sellers (Agarwal et al.,
2019; Han et al., 2021), among others. To meet these de-
mands, a number of data valuation methods have been pro-
posed (Ghorbani & Zou, 2019; Koh & Liang, 2017).

Unfortunately, it is prohibitively costly to deploy these
conventional data valuation methods in real-world appli-
cations using large complex models. For example, both data
Shapley value (SV) (Ghorbani & Zou, 2019) and leave-one-
out (LOO) (Cook, 1977; Koh & Liang, 2017) are calculated
using the validation performances of converged models.
However, obtaining fully converged models is computa-
tionally costly for large complex models (e.g., deep neural
networks (DNNs)) due to their inevitable long-term model
training. As a result, developing efficient techniques to es-
timate the fully converged performances of large complex
models is essential to making data valuation more applica-
ble in practice. To the best of our knowledge, only a few
efforts have been devoted to this direction (Jia et al., 2019a;
Xu et al., 2021b). Nevertheless, these works impose strict
restrictions on the choice of ML models or may introduce
bias into data valuation when evaluating the value of learned
data embedding rather than the value of original data.

While statistical learning theory (SLT) makes it possible to
estimate the fully converged performances of DNNs without
model training (Arora et al., 2019b; Cao & Gu, 2019), these
works typically assume that the training and the validation
datasets follow the same underlying distribution. Nonethe-
less, this assumption does not necessarily hold in the realm
of data valuation. For instance, in the case of collaborative
disease diagnosis among hospitals, data contributors (e.g.,
children’s hospitals) usually collect data without any knowl-
edge about the validation dataset (e.g., a dataset including
the disease data across all age groups). In data markets, it
is also difficult for data consumers to purchase datasets that
can perfectly align with their validation tasks. As a result,
the discrepancy between the training and validation datasets
(i.e., domain discrepancy) also needs to be considered when
applying SLT to estimate the performances of DNNs.

To this end, we theoretically derive a domain-aware gener-
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alization bound to estimate the performances of DNNs in
a principled way. Utilizing this bound, we develop a novel
data valuation method named data valuation at initialization
(DAVINZ) that completely avoids model training in data
valuation. Specifically, our domain-aware generalization
bound is derived by introducing domain discrepancy into
the recent neural tangent kernel (NTK) theory (Jacot et al.,
2018) (Sec. 4.1). While conventional data valuation meth-
ods typically use validation performance as their scoring
function, in DAVINZ, we novelly employ our theoretically
derived domain-aware generalization bound (i.e., an esti-
mate of validation performance) as the scoring function (Sec.
4.2), followed by the widely adopted data valuation meth-
ods (e.g., LOO) as the valuation function (Sec. 4.3). Our
training-free DAVINZ, surprisingly, is able to theoretically
enjoy the properties that a trustworthy data valuation method
should attain, such as the awareness of data preference, the
awareness of data quantity, the stability to noise, and the
robustness to model (Sec. 5). Finally, we perform extensive
comparisons with both training-based and training-free data
valuation baselines to justify the effectiveness and efficiency
of our DAVINZ as well as the desirable properties it enjoys
(Sec. 6).

2. Related Work
Valuation in latent space. Jia et al. (2019a) have proposed
to use K-nearest-neighbor (KNN) models to estimate the
exact SV of a KNN-specific performance metric in linear
time. Though this method is shown to be efficient, it can
only evaluate the value of learned data embedding in a latent
space rather than the value of original data (Ghorbani et al.,
2021), which may introduce the bias in the latent space into
data valuation and thus would reduce the reliability of this
method. In contrast, our data valuation method in this paper
assesses the value of the original dataset directly while
achieving improved effectiveness and efficiency.

Influence function. An influence function (IF), which is
a method to estimate the variation of model performances
when datasets are removed from the training set (Koh et al.,
2019), has been considered by Jia et al. (2019b) to approxi-
mate the marginal contributions of datasets. Unfortunately,
IF is only guaranteed to perform well on strongly convex
and twice-differentiable models. In practice (e.g., in widely
applied DNNs), these requirements are often violated. As
a result, IF typically suffers a drastic performance degrada-
tion when it is applied to deep non-convex models (Basu
et al., 2021). On the contrary, our method in this paper is
able to achieve both effective and efficient data valuation on
complex DNNs.

Volume-based valuation. Recently, Xu et al. (2021b) have
proposed to use robust volume (RV) as a measure of dataset
diversity to quantify data value. Though this method evalu-

ates data value in a training-free manner, it not only suffers
from exploding volumes in high-dimensional inputs but
also entirely ignores the useful information in the validation
dataset. In practice, data consumers usually have their pref-
erences for datasets; for example, they prefer a dataset that
is able to achieve better performance (measured on valida-
tion dataset) in their tasks. It is therefore more reasonable
to correlate data value with validation performance (Ghor-
bani & Zou, 2019; Jia et al., 2019b), as followed by our
validation-based training-free data valuation method.

3. Backgrounds and Notations
3.1. Data Valuation

This paper focuses on the data valuation problem in a su-
pervised collaborative ML setting where multiple data con-
tributors contribute their datasets to learn a single predic-
tive model f from a predefined hypothesis set F . We
denote SA = {Si}Ki=1 as an aggregated dataset from K
contributors where Si denotes the dataset from contribu-
tor i. To measure the contribution (i.e., value) of different
datasets to the final predictive function f , a scoring function
ν : P(SA) → R and a valuation function φ(S, SA, ν) are
conventionally defined where P(SA) denotes the power set
of SA. In practice, the validation performance (on the vali-
dation set T ) of a predictive model f trained on dataset S is
usually employed as the scoring function, while LOO and
SV are adopted as the valuation function (Ghorbani & Zou,
2019; Koh et al., 2019).

In the literature, there are some empirically validated prop-
erties in existing data valuations (Agussurja et al., 2022;
Ghorbani et al., 2020; Sim et al., 2022; Tay et al., 2022;
Wang et al., 2021b; Xu et al., 2021a;b), which are shown to
be essential to making data valuation methods more precise
and practical. We summarize them below:

(i) Awareness of Data Preference: As outlined by IMDA
(2019), the value of data should mainly depend on its
usefulness in attaining the purpose of the data con-
sumer. Datasets sharing different similarities to the
validation dataset (i.e., a preferred dataset of the data
consumer) hence should obtain distinguishable values.

(ii) Awareness of Data Quantity: Without considering any
abnormal data (e.g., adversarial examples (Goodfellow
et al., 2015)), ML models obtained using more data
will typically achieve better performance in practice.
Hence, datasets of varying sample quantities should
enjoy different values in data valuation.

(iii) Stability to Noise: Random noise is commonly used to
reduce overfitting in ML models (Bishop, 1995), which
typically leads to their stable model performances,
even in the presence of small-scale noises in a dataset.
Data valuation using these ML models should thus pro-
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duce stable values for datasets with small-scale noises.

(iv) Robustness to Model: As we have justified above, the
value of data should mainly rely on its functionality
in realizing the purpose of the data consumer. In prac-
tice, such a purpose sometimes can be irrelevant to
the choice of ML models and instead data-driven (Sim
et al., 2022). In this case, the value of datasets should
be generally admitted by different ML models.

3.2. Neural Tangent Kernel

Following (Jacot et al., 2018), let g(l)(x,θ) and g̃(l)(x,θ)
denote the nl-dimensional pre-activations and activations of
the l-th layer in an L-layer DNN model, respectively. Let
σ(·) denote an activation function and W(l) ∈ Rnl+1×nl

denote the parameters of the l-th layer. Then, the L-layer
DNN model can be represented recursively as

g(l+1)(x,θ) =
√

1/nlW
(l)g̃(l)(x,θ)

g̃(l+1)(x,θ) = σ(g(l+1)(x,θ))
(1)

for l = 0, . . . , L − 1 where g̃(0)(x,θ) = x, nL = 1, and
f(x,θ) = g(L)(x,θ) denotes the DNN output. The nonlin-
earity σ is applied entry-wise and model parameter θ is a
concatenation of all the DNN parameters. Besides, each ele-
ment in W(l) is initialized independently using the standard
normal distribution. Following (Lee et al., 2019), we further
set n1 = . . . = nL−1 = n to simplify our analyses.

Based on the formulation above, Jacot et al. (2018) show
that the training dynamics of DNNs with gradient descent
can be characterized using a neural tangent kernel (NTK).
Specifically, the NTK matrix Θ ∈ Rm×m of a DNN model
f(x,θ) on the dataset S of size m is defined as

Θ(x,x′;θ) = ∇θf(x,θ)>∇θf(x′,θ) (2)

where x (or x′) denotes any data point in dataset S. In-
terestingly, as n1, . . . , nL−1 → ∞, the NTK matrix Θ0

based on the initialized model parameters θ0 will finally
converge to a deterministic form Θ∞ (Jacot et al., 2018).
More recently, Yang & Littwin (2021) further reveal that
these conclusions hold for DNNs of any reasonable architec-
ture. Moreover, Arora et al. (2019b) and Cao & Gu (2019)
even prove that the generalization performance of DNNs
can be theoretically bounded using Θ∞.

4. Data Valuation at Initialization (DAVINZ)
4.1. Domain-Aware Generalization Bound for DNNs

Recently, Arora et al. (2019b) and Cao & Gu (2019) have
proven that the generalization errors of DNNs can be theoret-
ically bounded using the NTK matrix with initialized model
parameters, hence making the performance estimation of

DNNs without model training possible in data valuation.
These generalization bounds typically rely on the assump-
tion that training dataset S and validation dataset T follow
the same underlying distribution, which may not necessarily
hold in practice. To overcome this limitation, we propose
a novel domain-aware generalization bound based on the
formulation of DNNs in Sec. 3.2 to estimate the general-
ization performance of DNNs more precisely, especially
when S and T follow different underlying distributions. Let
S = {(xi, yi)}mS

i=1 of size mS be randomly sampled from
a source domain DS and T = {(x′i, y′i)}mT

i=1 of size mT

be randomly sampled from a target domain DT . We firstly
define domain discrepancy (as a measure of distribution
divergence) between DT and DS in Definition 1, which will
be used to derive our domain-aware generalization bound.

Definition 1 (Domain Discrepancy (Gretton et al., 2012a)).
Given any function space H, the domain discrepancy be-
tween DT and DS is defined as

dH(DT ,DS) , sup
h∈H

∣∣∣Ex′∼DT
[h(x′)]− Ex∼DS

[h(x)]
∣∣∣

which can be empirically estimated using samples S and T
from the respective DS and DT :

dH(T, S) , sup
h∈H

∣∣∣∣∣
1

mT

mT∑

i=1

h(x′i)−
1

mS

mS∑

i=1

h(xi)

∣∣∣∣∣ .

Let the generalization error of function f on domain D be
LD(f) and f∗= arg minf (LDT

(f) + LDS
(f)) for a DNN

model f . We assume that f(x,θ) ∈ [0, 1] and there ex-
ists a h ∈ H with h(x) ≤ 1 s.t. for any data point x,∣∣f(x,θ)− f∗(x,θ)

∣∣ ≤ h(x). Let λmin(·) and λmax(·)
denote the minimum and maximum eigenvalue of a ma-
trix, respectively. When `(f, y)=(f − y)2/2, the following
domain-aware generalization bound can then be derived
with Θ0 and Θ∞ being evaluated on S:

Theorem 1 (Domain-aware Generalization Bound). As-
sume λmin(Θ0) > 0 and ‖∇θf(x,θ0)‖2 ≤ ρ for any
(x, y) ∈ S with ‖x‖2 , y ∈ [0, 1]. There exist constants c >
0 and N ∈ N s.t. for every n > N , when applying gradient
descent with learning rate η < min{2n−1(λmin(Θ∞) +
λmax(Θ∞))−1,mS/λmax(Θ0)}, for any ft obtained at
time t > 0, with probability at least 1− 2δ,

LDT
(ft) ≤ LS(ft) + 2ρ

√
ŷ>Θ−1

0 ŷ/mS + dH(T, S) + ε

where each element in ŷ is defined as ŷ , y− f(x,θ0) and
ε , 2c/

√
n+4

√
log(4/δ)/(2mS)+

√
log(4/δ)/(2mT )+

LDT
(f∗) + LDS

(f∗).

Its proof is in Appendix A.1. As shown in Theorem 1, there
exist two sources of generalization error: (a) in-domain
generalization error characterized by 2ρ(ŷ>Θ−1

0 ŷ/mS)1/2
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and (b) out-of-domain generalization error characterized by
dH(T, S). Similar to (Arora et al., 2019b), the in-domain
generalization error can be interpreted as a complexity mea-
sure of dataset S which is usually highly related to the value
of a dataset (Mangalam & Prabhu, 2019). On the other hand,
the out-of-domain generalization error measured by the do-
main discrepancy will become zero when S approaches
T . Interestingly, when T is a preferred dataset of data
consumers, this result aligns with the desirable awareness
of data preference in data valuation, suggesting that the
domain-aware generalization bound in Theorem 1 can be a
good choice as the scoring function in data valuation.

4.2. Generalization Bound as Scoring Function

In conventional data valuation, validation performance (i.e.,
an estimate of generalization performance) is widely used
as the scoring function, but is known to be computationally
costly. Fortunately, our domain-aware generalization bound
in Theorem 1 is able to estimate the generalization perfor-
mance of DNNs without expensive model training. So, we
propose to utilize it as the scoring function to achieve supe-
rior efficiency in data valuation. Specifically, by ignoring
LS(ft) and ε in Theorem 1,1 we set our scoring function as

ν(S) = −κ
√
ŷ>Θ−1

0 ŷ/mS − dH(T, S) (3)

where ŷ is evaluated on dataset S following its definition in
Theorem 1 and κ = 2ρ. To evaluate (3) in a practical way,
we need to choose a proper function spaceH and decide κ.

Choice ofH in dH(T, S). Note thatH of a large capacity
is required to meet the assumptions for Theorem 1. Mean-
while, the evaluation of any function h ∈ H should be
computationally costly to preserve the efficiency of our
training-free scoring function (3). As kernel methods based
on reproducing kernel Hilbert space (RKHS) have been
widely shown to be able to measure domain discrepancy ef-
fectively and efficiently (Sejdinovic et al., 2013; Long et al.,
2015), we also choose to obtain ourH from RKHS. More-
over, we further use a multiple kernel variant of MMD (i.e.,
MK-MMD) (Gretton et al., 2012b) in our scoring function
to ensure a large capacity ofH.

Determination of κ. Notably, κ can be regarded as a
hyper-parameter to trade off between in-domain and out-
of-domain generalization errors to better characterize the
generalization performance of DNNs. We usually decide κ
by realizing similar averaged scales of the in-domain and

1In practice, training error LS(ft) usually approaches zero for
fully converged DNNs and can thus be ignored. Moreover, in
data valuation, we are more interested in comparing the relative
performances of ML models (Jia et al., 2019a; Xu et al., 2021b),
i.e., the value of my data in the presence of others’ data. So, the
constant ε in Theorem 1 can be omitted from our data valuation.

Algorithm 1 Data Valuation at Initialization (DAVINZ)

1: Input: Datasets {Si}Ki=1 from K data contributors, val-
idation dataset T , DNN model f with initialized param-
eters θ0, kernel k for dH, weighting factors αC

2: for contributor i = 1, . . . ,K do
3: for coalition C ⊆ A \ {i} do
4: Evaluate the scores ν(SC∪{i}) and ν(SC) by (3)
5: Evaluate the marginal ∆i,C = ν(SC∪{i})− ν(SC)
6: end for
7: φi =

∑
C⊆A\{i} αC ×∆i,C

8: end for

out-of-domain generalization errors to balance their effects
in practice. Let ŷSi

and Θ0,Si
be evaluated on dataset Si

using the initialized model parameters θ0. We set

κ =

∑K
i=1 dH(T, Si)

∑K
i=1

(
ŷ>Si

Θ−1
0,Si
ŷSi

/mSi

)1/2
(4)

which can be further refined by averaging across different
random initializations θ0, if available. Our empirical exper-
iments in Sec. 6 will validate that our scoring function (3)
based on (4) can indeed perform well in practice.

4.3. Training-free Data Valuation Algorithm

Our scoring function (3) can then be applied to the marginal
contribution calculations commonly seen in data Shap-
ley (Ghorbani & Zou, 2019) or LOO (Koh & Liang, 2017):

∆i,C , ν(SC∪{i})− ν(SC) (5)

where SC = {Si}i∈C denotes the aggregated dataset from
the coalition of parties C ⊆ A , {1, . . . ,K}. Finally, the
value of any dataset Si provided by contributor i can be
evaluated as a weighted average of marginal contributions
of Si to all possible coalitions excluding i, as in the Shap-
ley value (Shapley, 1953), Banzhaf value (Banzhaf, 1964;
Dubey & Shapley, 1979), or leave-one-out (Cook, 1977):

φi ,
∑
C⊆A\{i} αC ×∆i,C (6)

where αC ≥ 0 ∀C are the weighting factors. In particular,
for the commonly adopted Shapley value, αC = |C|!(K −
|C| − 1)!/K!. For Banzhaf value, αC = 1/2K−1. For
LOO, αC = 1C=A\{i}. Our Data Valuation at Initialization
(DAVINZ) algorithm (Algorithm 1) is therefore completed.

5. Properties of DAVINZ

As summarized in Sec. 3.1, data valuation methods should
enjoy the awareness of data preference and data quantity,
the stability to noise, and the robustness to model in prac-
tice. Sec. 4.1 has already shown that the domain-aware



DAVINZ: Data Valuation using Deep Neural Networks at Initialization

generalization bound in Theorem 1 is aware of data prefer-
ence (i.e., validation dataset). Hence, DAVINZ using this
generalization bound as the scoring function should also
enjoy its awareness of data preference. In this section, we
further show that our DAVINZ can also attain the other three
properties theoretically.

5.1. Awareness of Data Quantity

We prove that our scoring function (3) is aware of data
quantity in Proposition 1 by showing that it would distribute
a higher score to the dataset with more data samples:

Proposition 1 (Awareness of Data Quantity). Follow-
ing (Nguyen et al., 2021), suppose that DS with zero
mean satisfies Assumptions A.1 and A.2, and ∃α > 0
s.t. d = Θ(mα) ∀m ∈ N+. Then, there is a constant
β > 0 s.t. with a high probability,

ν(S) ≥ −κβm−α/2S − dH(T, S) . (7)

Its proof is in Appendix A.2. Proposition 1 suggests that
when the size mS of dataset S increases and dH(T, S) only
admits a minor change, our scoring function (3) would prob-
ably give a higher score to S. Notably, dH(T, S) indeed
only undergoes a minor change when sampling more data
from the same source domain DS for the dataset S that
already achieves a large mS . This is because the empirical
expectation in dH(T, S) (see Definition 1) would be approx-
imately the same in this case according to the law of large
numbers. These results imply that our scoring function and
DAVINZ based on it indeed enjoy the awareness of data
quantity property.

5.2. Stability to Noise

We prove that our scoring function (3) can also enjoy valua-
tion stability to noise by showing that it gives similar scores
to the original dataset and its counterpart with a small-scale
noise. Given ε ∈ [0, 1], let Θ0 and Θ0,ε be the NTK matri-
ces of DNN model f evaluated on S = {(xi, yi)}mS

i=1 and
its noisy counterpart Sε = {(xi,ε, yi)}mS

i=1, respectively. Let
‖xi − xi,ε‖2 ≤ ε for any i, each element in ŷε be ŷε ,
y − f(xε,θ0), and ∆(S, Sε) , |dH(T, S)− dH(T, Sε)|.
Then, the following result can be derived:

Proposition 2 (Stability to Noise). Assume |f(x,θ0)| ≤ τ
for any xi or xi,ε, min(λmin(Θ0), λmin(Θ0,ε)) > λ, and
min(ŷ>Θ−1

0 ŷ, ŷ>ε Θ−1
0,ε ŷε) ≥ γ for any ε ∈ [0, 1]. Then,

there exists a constant β > 0 s.t. with a high probability,

|ν(Sε)− ν(S)| ≤ κ

2
√
γ

(
O(τ) + βm

3/2
S ε/λ2

)
+∆(S, Sε).

Its proof is in Appendix A.3 and the definition of O(·) is
in Appendix A.2. Proposition 2 suggests that our scoring

function (3) would probably give comparable scores to the
original dataset and also its counterpart with a small-scale
noise (i.e., small ε) when ∆(S, Sε) is also small. Though
it is non-trivial to show that ∆(S, Sε) is small theoretically,
our empirical results in Sec. 6.5 validate that a small di-
vergence between ν(S) and ν(Sε) can indeed be achieved
when ε is small. Our scoring function and DAVINZ based
on it can thus also enjoy the stability to noise property.

5.3. Robustness to Model

We prove that our scoring function (3) is robust to model
choices by showing that it would distribute similar scores
to a dataset even when distinct DNN models are used under
certain conditions. Specifically, let Θ0,f and Θ0,f

′ be the
NTK matrices of DNN models f and f ′ that are evaluated
on the same dataset S of size mS , respectively. Let each
element in ŷf be ŷf , y − f(x,θ0) with (x, y) ∈ S; ŷf ′
enjoys a similar form. We derive the following result:

Proposition 3 (Robustness to Model). Suppose that
|f(x,θ0)| ≤ τ and

∣∣f ′(x,θ0)
∣∣ ≤ τ for any

x in S, min(λmin(Θ0,f ), λmin(Θ0,f
′)) > λ, and

min(ŷ>f Θ−1
0,f ŷf , ŷ

>
f
′Θ−1

0,f
′ ŷf ′) ≥ γ. With a high proba-

bility, if ‖Θ0,f −Θ0,f
′‖2 ≤ ε, then

∣∣ν(S; f ′)− ν(S; f)
∣∣ ≤ κ

2
√
γ

(
O(τ) +

√
mSε/λ

2
)
.

Its proof is in Appendix A.4. Proposition 3 suggests that
‖Θ0,f−Θ0,f

′‖2 can be interpreted as a measure to evaluate
the robustness to model property of our scoring function (3).
Specifically, when applying two different DNN models to
evaluate the value of the same dataset, our scoring function
would probably deliver comparable scores to this dataset if
these two models share similar NTK matrices (i.e., small ε
in Proposition 3). Surprisingly, even in the case of a large
ε, our DAVINZ still produces a consistent data valuation
when DNNs achieve large λmin(Θ0), as implied in Propo-
sition 3. Therefore, under any one of the conditions above,
our scoring function and DAVINZ based on it can enjoy the
robustness to model property.

6. Experiments
6.1. Valid Scoring Function in Practice

To justify the validity of our scoring function (3) in practice,
we examine the empirical gap and the Pearson correlation
between the estimated score and the corresponding ground
truth (i.e., validation accuracy of converged DNNs) of differ-
ent datasets. In particular, we construct 200 datasets in this
experiment and each dataset consists of up to 10K randomly
bootstrapped MNIST images (Lecun et al., 1998). A DNN
with two convolutional layers followed by a fully connected
layer is employed to evaluate (3) on these datasets.
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Figure 1. Empirical values of the generalization error and the esti-
mated bound in Theorem 1. The constant 2c/

√
n in ε is ignored.

Fig. 1 illustrates the empirical values of the generalization
gap (orange) and the theoretical upper bound (blue) in Theo-
rem 1. The two values show strong correlations, thus imply-
ing that the bound can be useful for data valuation. Fig. 2
further demonstrates the strong correlation under the same
experimental setting. The estimated scores provided by (3),
surprisingly, achieve a nearly linear correlation with a coeffi-
cient of 0.954 to the ground truth, as shown in Fig. 2, which
strongly confirms the validity of (3) in practice. Our scoring
function (3) can thus be used as a promising alternative to
the validation performance in marginal contribution-based
data valuation methods (e.g., data Shapley (Ghorbani & Zou,
2019)). More interestingly, as shown in the zoomed-in plot
of Fig. 2, our scoring function may slightly underestimate
the true validation accuracy of DNNs. This observation
can be well-explained by our Theorem 1, which provides
an upper bound to the generalization error of DNNs and
hence a lower bound to the true validation accuracy. Despite
this marginal underestimation, it is still promising to apply
our training-free scoring function to improve the efficiency
of conventional data valuation pipelines (Ghorbani & Zou,
2019; Ghorbani et al., 2020; 2021; Jia et al., 2019b; Koh
et al., 2019) and preserve compelling effectiveness, which
we will demonstrate in the next section.

6.2. Effective and Efficient DAVINZ

We then compare our DAVINZ against other data valuation
baselines (e.g., validation performance (VP), influence func-
tion (IF) (Koh et al., 2019), and robust volume (RV) (Xu
et al., 2021b)) to demonstrate the effectiveness and effi-
ciency of our DAVINZ. In VP, the validation performance
after a model training of 300 epochs on a given training
dataset is employed as the scoring function. For IF and
RV, refer to Appendices D.4 and D.5 for more details. The
ground truth is averaged over 5 independent evaluations
using fully converged DNN models (i.e., a model training
of� 300 epochs). To measure the effectiveness of different
data valuation methods, we evaluate the Pearson and Spear-
man correlation between their estimated data values and the
corresponding ground truth based on LOO. Meanwhile, the
efficiency of these methods is measured by the wall-clock
computational cost. The comparison is performed on both
classification and regression tasks. For classification tasks,
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Figure 2. Correlation between the estimated score using (3) and
the ground truth of 200 randomly bootstrapped MNIST datasets.
The orange dotted line has a slope of 1.

we use a particularly difficult dataset split on MNIST and
CIFAR-10 (Krizhevsky et al., 2009) datasets by simulating
10 data contributors with each having a different number of
images from a single class label (e.g., only digit 0 or only
airplanes). For the regression task, we use the ising physical
model dataset (Mills & Tamblyn, 2019), which is split via
varying the number of samples more, as compared with that
on the classification task. Refer to Appendix D.1 for more
details about these two experiments.

Tables 1 and 2 summarize the results on the classification
and regression tasks, respectively. Notably, our DAVINZ
consistently achieves better correlations and lower evalu-
ation costs than other training-free baselines (i.e., IF and
RV).2 Even when compared with the training-based VP
method, our DAVINZ can achieve comparable correlations
to the ground truth while incurring more than 30× lower
computational costs. Different from the compelling per-
formance achieved by IF in (Jia et al., 2019b), IF gener-
ally performs poorly in our experiments, which may result
from the highly non-convex nature of DNNs that violate
the assumptions in IF. Moreover, the essential interdepen-
dence among samples in a dataset from a contributor in
these two experiments may be ignored by IF since it evalu-
ates the influence with a simple arithmetic summation over
individual data samples. Surprisingly, VP achieves poor
correlations on the ising physical model dataset when us-
ing CNN8. This may result from the difficulty in deciding
proper hyper-parameters (e.g., number of epochs, learning
rates) for the model training in VP. Fortunately, our training-
free DAVINZ is independent of these hyper-parameters and
can consequently circumvent the uncertainties introduced
by these handcrafted design choices in model training, thus
leading to more consistent results.

6.3. Awareness of Data Preference

Our training-free data valuation algorithm DAVINZ novelly
uses a domain discrepancy between the training and valida-

2Though IF and RV require a one-shot model training on the
grand coalition of datasets, they are regarded as training-free data
valuation baselines in this paper since any further model re-training
after the one-shot model training can be avoided in IF and RV.
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Table 1. Comparison among DAVINZ and other baselines on classification tasks. Each correlation coefficient is reported with the mean
and standard error over 5 independent evaluations. Each cost includes the evaluation of 11 scores for LOO over 10 different datasets.

Method Model MNIST CIFAR-10

Pearson Spearman Cost (Min.) Pearson Spearman Cost (Min.)

VP VGG13 1.00±0.00 0.98±0.01 88.6 0.53±0.28 0.77±0.09 88.4
ResNet18 0.99±0.00 0.97±0.01 185.9 0.63±0.17 0.70±0.09 211.8

IF VGG13 0.17±0.04 0.30±0.07 11.0 0.55±0.04 0.57±0.03 11.0
ResNet18 0.42±0.05 0.55±0.07 22.6 0.08±0.07 0.07±0.10 26.3

RV VGG13 −0.01±0.05 −0.14±0.08 9.7 0.17±0.03 0.32±0.06 9.6
ResNet18 −0.36±0.11 −0.30±0.05 18.8 0.18±0.05 0.22±0.07 21.6

DAVINZ
VGG13 0.84±0.01 0.52±0.02 2.5 0.46±0.10 0.44±0.12 2.0

ResNet18 0.85±0.00 0.62±0.00 3.3 0.55±0.03 0.67±0.03 3.2

Table 2. Comparison among DAVINZ and other baselines on a
regression task. Similarly, each correlation coefficient is reported
with the mean and standard error over 5 independent evaluations.

Method Model Ising Physical Model Dataset

Pearson Spearman Cost (Min.)

VP MLP10 0.998±0.001 0.978±0.007 17.1
CNN8 0.317±0.169 0.273±0.137 34.4

IF MLP10 0.095±0.250 −0.006±0.072 1.9
CNN8 0.189±0.142 0.001±0.124 4.1

RV MLP10 0.727±0.231 0.699±0.182 2.0
CNN8 0.805±0.009 0.818±0.041 4.1

DAVINZ
MLP10 0.994±0.001 0.905±0.018 1.7
CNN8 0.823±0.003 0.702±0.063 2.0

tion datasets to realize its awareness of data preference, as
justified in Sec. 4.1. To verify this property, we compare
DAVINZ with other data valuation baselines on MNIST and
MNISTM (Ganin et al., 2016) datasets using the same DNN
model in Sec. 6.1.3 Specifically, we construct 10 training
datasets of size 10K and each training dataset consists of a
different mixture of MNISTM and MNIST images. For ex-
ample, dataset S1 contains 10% MNISTM images and 90%
MNIST images, dataset S2 contains 20% MNISTM images
and 80% MNIST images, and so on. However, the valida-
tion dataset only contains MNISTM images to indicate the
preference of the data consumer in practice. Thus, from
dataset S1 to dataset S10, the domain discrepancy between
the training and validation datasets becomes smaller.

As shown in Fig. 3a, the dataset scores provided by our
scoring function (3) with a sufficiently large κ (i.e., with
only the term related to the in-domain generalization error
in Theorem 1) shows an inconsistent trend to the ground
truth. This observation indicates that the in-domain gener-
alization error term in (3) alone is not capable of capturing

3We do not discuss IF here and in the following experiments
about the behavior of ν(S) because IF requires defining an extra
grand coalition dependent ν(SA) term to evaluate individual ν(S).
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Figure 3. (a) Awareness of data preference achieved by different
methods. Results (re-scaled to [0, 1] using min-max normalization)
are reported with the mean and standard error over 10 indepen-
dent evaluations. (b) Examples of MNISTM and MNIST images.
MNISTM is created by translating and adding randomly selected
backgrounds to MNIST images, as detailed in (Ganin et al., 2016).

any potential divergence between the training and validation
datasets. Fortunately, our scoring function (3) is able to mit-
igate this undesirable phenomenon by applying the domain
discrepancy term within it (i.e., with an appropriate κ ac-
cording to (4)) to capture the potential divergence between
the training and validation datasets. Specifically, in Fig. 3a,
our DAVINZ is shown to achieve a similar trend of dataset
scores as the ground truth (with a strong Pearson correlation
of 0.960) and VP. In contrast, RV shows an inconsistent
trend to the ground truth in this scenario because RV is
validation-free and may score datasets incorrectly especially
when there exists significant domain divergence between
the training and validation datasets.

Overall, our method has shown its awareness of data prefer-
ence. We recognize this awareness of data preference as an
important property in validation-based data valuation since
it helps data consumers decide which dataset is more use-
ful based on their application preferences and allows them
to make more informed procurement decisions. Moreover,
our DAVINZ advances other baselines by achieving higher
flexibility in data valuation when data consumers have their
preferences for κ. For example, data consumers can use κ
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Figure 4. (a) Awareness of data quantity and (b) stability to noise
achieved by different data valuation methods. Results of each
method (re-scaled to [0, 1] using min-max normalization) are re-
ported with the mean and standard error over 10 evaluations.

to represent their trust in the data contributors in providing
useful datasets close to their interested application (i.e., the
validation set): Use a large κ in the collaboration among
government agencies when there exists unflinching trust and
a small κ among self-interested data sellers.

6.4. Awareness of Data Quantity

To justify that DAVINZ is aware of data quantity (Sec. 5.1),
we compare it with other baselines using a 10-layer MLP
model on the ising model dataset. The results are illustrated
in Fig. 4a. Notably, both ground truth and VP demonstrate
that a dataset of a larger sample quantity typically enjoys a
higher score. This increasing sample quantity would even-
tually achieve a diminished marginal effect on the score of
datasets in both ground truth and VP. Remarkably, nearly
the same results can be achieved by DAVINZ, which con-
forms to our theoretical analysis in Sec. 5.1. On the other
hand, RV has a distinct behavior compared to ground truth
and VP. Overall, our DAVINZ is able to be aware of data
quantity in practice. As an implication, data contributors can
usually contribute more valuable datasets to data consumers
by collecting more data samples.

6.5. Stability to Noise

We then investigate the effect of noises on data valuation
across baselines (Sec. 5.2). A 10-layer MLP model and the
ising model dataset are used. In particular, we construct 10
different datasets of size 500 by adding Gaussian noise of
different scales into the original dataset. Specifically, the
σ in the Gaussian noise N (0, σ2) is increased uniformly
from 0 to 0.45 for these 10 datasets. The results are illus-
trated in Fig. 4b. Notably, relatively stable dataset scores
are achieved by ground truth, VP, and our DAVINZ, even
after adding small-scale Gaussian noises (i.e., σ < 0.1 in
this case) into the original datasets. This can be explained
by the robustness of DNNs after their model training with
random noise. Meanwhile, our DAVINZ can also enjoy a
similar decreasing trend of dataset scores to ground truth
and VP when noise increases to a large scale (i.e., σ > 0.1).
Interestingly, this phenomenon can also be explained by

Table 3. Data valuation using different DNNs (i.e., from f to f ′).
Each result is averaged over 10 datasets and 5 initializations.

Model f → f ′
ε% λmin,f , λmin,f

′ ∆DAVINZ
ν(S) ∆VP

ν(S)

(%) (×10−5) (%) (%)

VGG 11→13 97.0±0.0 56, 1.6 4.8±0.8 2.0±0.2
11→16 99.8±0.0 56, 0.10 8.3±0.4 8.1±0.4

ResNet 18→21 38.8±2.6 1300, 1600 5.0±0.3 9.9±0.3
18→34 101.6±3.5 1300, 2100 4.2±0.3 7.2±0.9

Proposition 2. According to Proposition 2, the scores of the
noisy and original datasets should experience a larger diver-
gence given a larger-scale noise. Since large-scale noises
would typically hurt the performances of ML models, the
noisy dataset should receive a much lower score than the
original dataset when ε is large in our Proposition 2. For
RV, it produces the most unstable and imprecise results in
Fig. 4b, which further implies that our DAVINZ is superior
to it. Overall, DAVINZ has shown its stability to small-scale
noises and also its consistency with training-based methods
(e.g., VP) when large noises are present in datasets. As
an implication, data contributors need to clean their noisy
datasets to achieve their desirable higher dataset values.

6.6. Robustness to Model

We finally examine the provable model-robust property of
our data valuation method DAVINZ. We apply VGG and
ResNet on 10 randomly sampled datasets containing 1000
CIFAR-10 images each to compare the DAVINZ scores
under different DNNs. The results are summarized in
Table 3 where ε%=‖Θ0,f − Θ0,f

′‖2/‖Θ0,f‖2 measures
the relative difference of NTK matrices, λmin,f denotes
the minimum eigenvalue of the NTK matrix on f , and
∆ν(S)=|(ν(S; f) − ν(S; f ′))/ν(S; f)|. Surprisingly, al-
though the NTK matrix (i.e., ε%) has considerable varia-
tions when the depth of VGG or ResNet increases, DAVINZ
using these models is still able to give consistent dataset val-
ues, which aligns with the results of training-based method
VP. Moreover, similar to the training-based method VP, we
also observe a more consistent data valuation when using
a DNN with a larger λmin (e.g., the results of ResNet21
vs. ResNet34 in Table 3), which conforms to the conclu-
sion in Proposition 3. More results about the model-robust
property of our DAVINZ are provided in Appendix E.1.
Overall, our DAVINZ enjoys robustness to models, which
perfectly aligns with training-based methods. Therefore,
our DAVINZ can be an efficient alternative to training-based
data valuation methods, even when consistent data valuation
on different DNNs is required.

6.7. Application: Large-scale Shapley Value

We showcase that DAVINZ makes Shapley value calculation
of large-scale collaboration (Jia et al., 2019a) on complex
deep neural networks feasible in practice. We construct 100
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Figure 5. DAVINZ Shapley value of 100 data contributors with
ascending size of CIFAR-10 images. Values are re-scaled to [0, 1]
using min-max normalization. The model used is ResNet18.

data contributors containing ascending numbers of CIFAR-
10 images s.t. S1 has 5 data samples and S100 has 500
samples. DAVINZ significantly reduces the computation
time for each contribution evaluation to a matter of seconds.
Using the truncated Monte Carlo Shapley algorithm (Ghor-
bani & Zou, 2019) for 1K permutations of 100 contributors’
orderings (i.e., approximately equivalent to 20K model train-
ing in VP), we obtain the results in Fig. 5 in a few hours.
The ascending trend of the Shapley value in Fig. 5 confirms
our construction of ascending dataset sizes and thus the
effectiveness of DAVINZ.

6.8. Application: Data Summarization

Data summarization (Ghorbani & Zou, 2019; Wang et al.,
2021b) is another application in the age of big data that an
efficient data valuation algorithm like DAVINZ can enable.
Specifically, we often have plenty of datasets collected in
various means, but it can be too computationally costly to
train a model using all of them. Which datasets should be
removed first without significantly degrading the model’s
performance? On the contrary, we can also use data valua-
tion to advise a data buyer under budget to choose a small
yet representative subset of datasets for model training. We
show promising results of DAVINZ’s data summarization
over a large number of datasets.

We propose a modified training-free data valuation algo-
rithm suitable for large-scale data summarization. To im-
prove the runtime efficiency, we change line 3 of Algo-
rithm 1 to C = ∅ s.t. we only consider the marginal contri-
bution of a dataset w.r.t. the empty set.

With the modification proposed above, the time complexity
of DAVINZ only scales linearly with the number of datasets.
Thus, it has the ability to perform summarization over a
large number of datasets. As an illustration, we experi-
ment with 2 MNIST images randomly split into 10 datasets
and investigate the effect on true validation accuracy when
datasets are sequentially added or removed from the training
set. As shown in Fig. 6a, we can still achieve a validation
accuracy comparable to that achieved using the full train-
ing set after removing 7 out of 10 datasets of the lowest
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Figure 6. Effect on true validation accuracy when (a) removing or
(b) adding datasets in the order of dataset values. The plots show
average and standard error over 10 random initializations.

values. Therefore, we suggest that resource-constrained
practitioners remove datasets with the lowest value first to
save computational cost. Similarly, in Fig. 6b, we obtain a
relatively high validation performance after adding only 3
datasets of the highest values. Thus, we suggest that bud-
geted data consumers buy datasets with the highest values
first.

7. Conclusion & Discussion
In this paper, we have introduced the DAVINZ algorithm
which is a novel training-free method for efficient and trust-
worthy data valuation in applications using large complex
DNNs. In particular, we have novelly derived a domain-
aware generalization bound for DNNs using the recent NTK
theory to characterize the performances of DNNs without
model training. By exploiting this generalization bound as
the scoring function and using conventional data valuation
techniques (e.g., SV and LOO) as the valuation function,
DAVINZ is capable of valuating data effectively and effi-
ciently. Interestingly, our training-free DAVINZ is able to
enjoy the desirable properties that training-based data valua-
tion methods usually attain (e.g., awareness of data prefer-
ence and data quantity, stability to noise, and robustness to
model). This further implies the reliability of our DAVINZ
in practice. Moreover, since DAVINZ significantly reduces
the computational costs of practical data valuation with
DNNs, it even makes the calculation of Shapley value on
large-scale collaborations and also data summarization over
a large number of datasets affordable. Overall, thanks to
the remarkable effectiveness and efficiency of our DAVINZ,
it should be able to enjoy a wider applicability than conven-
tional training-based methods.

Acknowledgements
This research/project is supported by the National Research
Foundation Singapore and DSO National Laboratories under
the AI Singapore Programme (AISG Award No: AISG2-
RP-2020-018).



DAVINZ: Data Valuation using Deep Neural Networks at Initialization

References
Agarwal, A., Dahleh, M., and Sarkar, T. A marketplace

for data: An algorithmic solution. In Proc. ACM EC, pp.
701–726, 2019.

Agussurja, L., Xu, X., and Low, B. K. H. On the con-
vergence of the Shapley value in parametric Bayesian
learning games. In Proc. ICML, 2022.

Arora, S., Du, S. S., Hu, W., Li, Z., Salakhutdinov, R., and
Wang, R. On exact computation with an infinitely wide
neural net. In Proc. NeurIPS, pp. 8139–8148, 2019a.

Arora, S., Du, S. S., Hu, W., Li, Z., and Wang, R. Fine-
grained analysis of optimization and generalization for
overparameterized two-layer neural networks. In Proc.
ICML, pp. 322–332, 2019b.

Asif, A. and Moura, J. Block matrices with l-block-banded
inverse: inversion algorithms. IEEE Transactions on
Signal Processing, 53(2):630–642, 2005.

Banzhaf, J. F. I. Weighted voting doesn’t work: A mathe-
matical analysis. Rutgers Law Review, 19:317, 1964.

Basu, S., Pope, P., and Feizi, S. Influence functions in deep
learning are fragile. In Proc. ICLR, 2021.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. W. A theory of learning from
different domains. Machine Learning, 79(1-2):151–175,
2010.

Bishop, C. M. Training with noise is equivalent to Tikhonov
regularization. Neural Computation, 7(1):108–116, 1995.

Cao, Y. and Gu, Q. Generalization bounds of stochastic
gradient descent for wide and deep neural networks. In
Proc. NeurIPS, pp. 10836–10846, 2019.

Cook, R. D. Detection of influential observation in linear
regression. Technometrics, 19(1):15–18, 1977.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. ImageNet: A large-scale hierarchical image database.
In Proc. CVPR, pp. 248–255, 2009.

Dubey, P. and Shapley, L. S. Mathematical properties of
the Banzhaf power index. Mathematics of Operations
Research, 4(2):99–131, 1979.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., March, M., and Lempitsky, V. Domain-
adversarial training of neural networks. JMLR, 17(1):
2096–2030, 2016.

Ghorbani, A. and Zou, J. Data Shapley: Equitable valuation
of data for machine learning. In Proc. ICML, pp. 2242–
2251, 2019.

Ghorbani, A., Kim, M., and Zou, J. A distributional frame-
work for data valuation. In Proc. ICML, pp. 3535–3544,
2020.

Ghorbani, A., Zou, J., and Esteva, A. Data Shapley valuation
for efficient batch active learning. arXiv:2104.08312,
2021.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and
harnessing adversarial examples. In Proc. ICLR, 2015.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B.,
and Smola, A. A kernel two-sample test. JMLR, 13(25):
723–773, 2012a.

Gretton, A., Sriperumbudur, B. K., Sejdinovic, D., Strath-
mann, H., Balakrishnan, S., Pontil, M., and Fukumizu, K.
Optimal kernel choice for large-scale two-sample tests.
In Proc. NeurIPS, pp. 1205–1213, 2012b.

Han, D., Wooldridge, M., Rogers, A., Tople, S., Ohri-
menko, O., and Tschiatschek, S. Replication-robust
payoff-allocation for machine learning data markets.
arXiv:2006.14583, 2021.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In Proc. CVPR, pp. 770–
778, 2016.

IMDA. Guide to data valuation for data sharing. Technical
report, The Infocomm Media Development Authority
Singapore, 2019.

Jacot, A., Gabriel, F., and Hongler, C. Neural Tangent Ker-
nel: Convergence and generalization in neural networks.
In Proc. NeurIPS, pp. 8580–8589, 2018.

Jia, R., Dao, D., Wang, B., Hubis, F. A., Gurel, N. M., Li,
B., Zhang, C., Spanos, C., and Song, D. Efficient task-
specific data valuation for nearest neighbor algorithms.
Proc. VLDB Endowment, 12(11):1610–1623, 2019a.

Jia, R., Dao, D., Wang, B., Hubis, F. A., Hynes, N., Gürel,
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A. Proofs
A.1. Proof of Theorem 1

We firstly introduce the following lemma, which is adapted from (34) based on ‖∇θf(x,θ0)‖2 ≤ ρ and `(·, ·) being
1-Lipschitz continuous in the proof of Theorem 2 in (Shu et al., 2022).
Lemma A.1 (In-domain Generalization Bound using NTK). Assume that λmin(Θ0) > 0 and ‖∇θf(x,θ0)‖2 ≤ ρ for
any (x, y) ∈ S sampled from D with ‖x‖2 ≤ 1 and y ∈ [0, 1]. Given the loss function `(f, y) , (f − y)2/2 and define
ŷ , y − f(x), there exist constants c > 0 and N ∈ N such that for every n > N , when applying gradient descent with
learning rate η < min{2n−1(λmin(Θ∞) + λmax(Θ∞))−1,mλ−1

max(Θ0)}, for all the functions ft obtained during the
optimization, with a high probability (1− δ) over the dataset S of size m, we have

LD(ft) ≤ LS(ft) + 2ρ

√
ŷ>Θ−1

0 ŷ/m+ ε

where ŷ = [ŷ1 · · · ŷm]>, ε , 2c/
√
n + 3

√
log(4/δ)/(2m) and λmin(·), λmax(·) denotes the minimum and maximum

eigenvalue of a matrix, respectively.
Remark. Note that the assumption of ‖∇θf(x,θ0)‖2 ≤ ρ can be well-satisfied as shown in Lemma 1 of (Lee et al., 2019).
Besides, as justified by Shu et al. (2022), λmin(Θ0) > 0 can be satisfied by introducing zero-mean noise into the gradient of
model parameters and this lemma will still hold with high probability in this case.

Define εDT
, LDT

(f∗) and εDS
, LDS

(f∗), we naturally have εD = εDT
+ εDS

since εD , LDT
(f∗) + LDS

(f∗).
Let φS and φT be the probability density function for data distribution DS and DT , respectively. Since dH(DT ,DS) ,
suph∈H

∣∣EDS
[h(·)]− EDT

[h(·)]
∣∣, inspired by Ben-David et al. (2010), we have the following inequalities by assuming that

loss function `(·, ·) is α-Lipschitz continuous in the first argument.

LDT
(f)− LDT

(f∗)
(a)

≤ E(x,y)∼DT

∣∣`(f(x), y)− `(f∗(x), y)
∣∣

(b)

≤ E(x,y)∼DS

∣∣`(f(x), y)− `(f∗(x), y)
∣∣+

∣∣∣E(x,y)∼DS

∣∣`(f(x), y)− `(f∗(x), y)
∣∣− E(x,y)∼DT

∣∣`(f(x), y)− `(f∗(x), y)
∣∣
∣∣∣

(c)

≤ E(x,y)∼DS

∣∣`(f(x), y)− `(f∗(x), y)
∣∣+

∣∣∣∣
∫

(φS(x)− φT (x))
∣∣`(f(x), y)− `(f∗(x), y)

∣∣ dx
∣∣∣∣

(d)

≤ E(x,y)∼DS

(
`(f(x), y) + `(f∗(x), y)

)
+ α

∣∣∣∣
∫

(φS(x)− φT (x))
∣∣f(x)− f∗(x)

∣∣dx
∣∣∣∣

(e)

≤ E(x,y)∼DS
`(f(x), y) + E(x,y)∼DS

`(f∗(x), y) + α

∣∣∣∣
∫

(φS(x)− φT (x))h(x)dx
∣∣∣∣

(f)

≤ εDS
+ LDS

(f) + α sup
h∈H

∣∣EDS
[h(x)]− EDT

[h(x)]
∣∣

(g)

≤ εDS
+ LDS

(f) + αdH(DT ,DS)
(8)

where (a) and (b) derive from the triangle inequality. Besides, (d) is based on the assumption that loss function `(·, ·) is
α-Lipschitz continuous in the first argument and (e) relies on the assumption in Theorem 1 that there exists at least one
h ∈ H such that for any x,

∣∣f(x,θ)− f∗(x,θ)
∣∣ ≤ h(x). Finally, (g) derives from the definition of dH(DT ,DS). The

generalization performance on target domain DT therefore can be bounded using the generalization performance on source
domain DS as below,

LDT
(f) ≤ LDS

(f) + αdH(DT ,DS) + LDT
(f∗) + εDS

≤ LDS
(f) + αdH(DT ,DS) + εDT

+ εDS

≤ LDS
(f) + αdH(DT ,DS) + εD .

(9)

In practice, dH(DT ,DS) is non-trial to evaluate. We therefore approximate dH(DT ,DS) using dH(T, S) where T and S
denote the datasets of size mT and mS that are randomly sampled from DT and DS , respectively. Particularly, following
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the Hoeffding inequality and the assumption that h(x) ≤ 1, we have that

Pr

(∣∣∣∣∣ED[h(x)]− 1

m

m∑

i=1

h(xi)

∣∣∣∣∣ > t

)
≤ 2 exp(−2mt2) . (10)

Let δ = 2 exp(−2mt2), with probability at least 1− δ, the following inequality holds.

∣∣∣∣∣ED[h(x)]− 1

m

m∑

i=1

h(xi)

∣∣∣∣∣ ≤
√

log(2/δ)

2m
. (11)

Similarly, the following inequality holds with probability at least 1− δ.

∣∣|EDS
[h(x)]− EDT

[h(x)]
∣∣−
∣∣∣∣∣

1

mT

mT∑

i=1

h(x′i)−
1

mS

mS∑

i=1

h(xi)

∣∣∣∣∣

=

∣∣∣∣∣

(
EDS

[h(x)]− 1

mS

mS∑

i=1

h(xi)

)
−
(
EDT

[h(x)]− 1

mT

mT∑

i=1

h(x′i)

)∣∣∣∣∣

≤
∣∣∣∣∣EDS

[h(x)]− 1

mS

mS∑

i=1

h(xi)

∣∣∣∣∣+

∣∣∣∣∣EDT
[h(x)]− 1

mT

mT∑

i=1

h(x′i)

∣∣∣∣∣

≤
√

log(4/δ)

2mS

+

√
log(4/δ)

2mT

.

(12)

Based on the inequality above, we can approximate dH(DT ,DS) using dH(T, S) as below with probability at least 1− δ.

dH(DT ,DS) = sup
h∈H

∣∣EDS
[h(x)]− EDT

[h(x)]
∣∣

≤ sup
h∈H

∣∣∣∣∣
1

mS

mS∑

i=1

h(xi)−
1

mT

mT∑

i=1

h(x′i)

∣∣∣∣∣+

√
log(4/δ)

2mS

+

√
log(4/δ)

2mT

≤ dH(T, S) +

√
log(4/δ)

2mS

+

√
log(4/δ)

2mT

.

(13)

Combining the results above, with probability at least 1− δ, we have

LDT
(f) ≤ LDS

(f) + αdH(DT ,DS) + εD

≤ LDS
(f) + αdH(T, S) + α

√
log(4/δ)

2mS

+ α

√
log(4/δ)

2mT

+ εD .
(14)

Note that α = 1 for loss function `(f, y)=(f − y)2/2 when f, y ∈ [0, 1]. Therefore, by integrating the conclusion in
Lemma A.1 with the results above, the following inequality holds with probability at least 1− 2δ.

LDT
(f) ≤ LDS

(f) + αdH(T, S) + α

√
log(4/δ)

2mS

+ α

√
log(4/δ)

2mT

+ εD

≤ LS(f) + 2ρ

√
ŷ>Θ−1

0 ŷ

mS

+ dH(T, S) + ε

(15)

where ε , 2c/
√
n+ 4

√
log(4/δ)/(2mS) +

√
log(4/δ)/(2mT ) + εD. The proof hence is concluded.
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A.2. Proof of Proposition 1

We firstly give definitions for symbol O(·), Ω(·) and Θ(·).

Definition A.1 (Definition of O(·)). If there exists constants c, δ > 0 such that for all x with 0 < |x− a| < δ,

|f(x)| ≤ c · g(x) ,

we can say

f(x) = O(g(x)) as x→ a .

Definition A.2 (Definition of Ω(·)). If there exists constants c, δ > 0 such that for all x with 0 < |x− a| < δ,

c · g(x) ≤ |f(x)| ,

we can say

f(x) = Ω(g(x)) as x→ a .

Definition A.3 (Definition of Θ(·)). If there exists constant c1, c2, δ > 0 such that for all x with 0 < |x− a| < δ,

c1 · g(x) ≤ |f(x)| ≤ c2 · g(x) ,

we can say

f(x) = Θ(g(x)) as x→ a .

To prove our Proposition 1, we then introduce Lemma A.2 based on the following assumptions. We refer to Nguyen et al.
(2021) for more details.

Assumption A.1 (Data Scaling (Nguyen et al., 2021)). The data distribution D(x) with x ∈ Rd satisfies the following
properties: ∫

‖x‖2dD(x) = Θ(
√
d) ,

∫
‖x‖22dD(x) = Θ(d) ,

∫ ∥∥∥∥x−
∫
x′dD

(
x′
)∥∥∥∥

2

2

dD(x) = Ω(d) .

Assumption A.2 (Lipschitz Concentration (Nguyen et al., 2021)). The data distribution D(x) satisfies the Lipschitz
concentration property. Namely, for every Lipschitz continuous function f : Rd → R, there exists an absolute constant
c > 0 such that, for all t > 0,

P
(∣∣∣∣f(x)−

∫
f
(
x′
)
dD
(
x′
)∣∣∣∣ > t

)
≤ 2e−ct

2
/‖f‖2Lip

Lemma A.2 (Corollary of Theorem 3.2 in (Nguyen et al., 2021)). Let {xi}mi=1 be a set of data points randomly sampled
from D, where D has zero mean and satisfies the assumptions above. Let Θ0 be the NTK matrix. Then, for any even integer

constant r ≥ 2, with probability 1−me−Ω(d) −m2e−Ω(dm
−2/(r−0.5)

), we have

λmin(Θ0) = Θ(d)

where λmin(Θ0) denotes the minimum eigenvalue of Θ0.

For Lemma A.2 to hold with high probability, m cannot grow super-polynomially in d. We introduce an additional
assumption.

Assumption A.3. Assume that ∃α > 0 such that d = Θ(mα),∀m ∈ N+.
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Then, by introducing the conclusion in Lemma A.2 into our utility function ν(·), there exists a constant β > 0 such that the
following holds with high probability.

ν(S) = −κ
√
ŷ>Θ−1

0 ŷ/mS − dH(T, S)

≥ −κ
√
‖ŷ‖2

∥∥∥Θ−1
0

∥∥∥
2
‖ŷ‖2 /mS − dH(T, S)

≥ −κ
√
λmin(Θ0)−1 − dH(T, S)

= −κΘ(d−1/2)− dH(T, S)

≥ −κβm−α/2S − dH(T, S)

(16)

where the second inequality derives from ‖ŷ‖22 ≤ mS with ŷ ∈ [−1, 1]mS based on the assumption in Theorem 1. Our proof
hence is concluded.

Remark. Note that a zero-mean data distribution can typically be satisfied by subtracting the original data distribution
with its expectation. Meanwhile, as justified in (Nguyen et al., 2021), Assumption A.1 are scaling conditions on the data
vector x, which can be easily satisfied by normalizing the whole data distribution with a certain constant. Moreover, Nguyen
et al. (2021) show that many real-world distributions are able to satisfy Assumption A.2, such as the standard Gaussian
distribution, the uniform distribution on the sphere, etc. The Assumption A.3 is satisfied in the high-dimentional regime.
Nevertheless, we provide empirical validations in Section 6.4.

A.3. Proof of Proposition 2

We introduce the following lemma, where the first result in Lemma A.4 is adapted from (Lee et al., 2019).

Lemma A.3 (Lemma 1 of (Laurent & Massart, 2000)). If x1, · · · , xk are independent standard normal random variables,
for y =

∑k
i=1 x2

i and any ε,
Pr(y− k ≥ 2

√
kε+ 2ε) ≤ exp(−ε) .

Lemma A.4. Assume ‖x‖2, ‖x′‖2 ≤ 1 and σ is 1-Lipschitz continuous and β-Lipschitz smooth with σ(0) = 0, there is a
ρ1, ρ2 > 0 such that with a high probability, we have

‖∇θf(x,θ0)‖2 ≤ ρ1∥∥∇θf(x,θ0)−∇θf(x′,θ0)
∥∥

2
≤ ρ2

∥∥x− x′
∥∥

2
.

Proof. Note that ‖∇θf(x,θ0)‖2 ≤ ρ1 can be adapted from the Lemma 1 in (Lee et al., 2019). We therefore only provide
the proof of our second result. To ease notations, we hide the model parameter θ0 in the following proofs and use ∇gf(x)
to denote the gradient w.r.t the output of g if g is a function. Specifically, based on the formulation of DNNs in Sec. 3.2,

∥∥∇θf(x)−∇θf(x′)
∥∥2

2

=

L−1∑

l=0

∥∥∇
W

(l)f(x)−∇
W

(l)f(x′)
∥∥2

F

=
1√
n

L−1∑

l=0

∥∥∥∇
g
(l+1)f(x)g̃(l)(x)> −∇

g
(l+1)f(x′)g̃(l)(x′)>

∥∥∥
2

F

=
1√
n

L−1∑

l=0

∥∥∥∇
g
(l+1)f(x)g̃(l)(x)> −∇

g
(l+1)f(x′)g̃(l)(x)>+

(
∇
g
(l+1)f(x′)g̃(l)(x)> −∇

g
(l+1)f(x′)g̃(l)(x′)>

)∥∥∥
2

F

≤ 1√
n

L−1∑

l=0

∥∥∥∇
g
(l+1)f(x)g̃(l)(x)> −∇

g
(l+1)f(x′)g̃(l)(x)>

∥∥∥
2

F
+



DAVINZ: Data Valuation using Deep Neural Networks at Initialization

∥∥∥
(
∇
g
(l+1)f(x′)g̃(l)(x)> −∇

g
(l+1)f(x′)g̃(l)(x′)>

)∥∥∥
2

F
+

2
∥∥∥∇

g
(l+1)f(x)g̃(l)(x)> −∇

g
(l+1)f(x′)g̃(l)(x)>

∥∥∥
F

∥∥∥
(
∇
g
(l+1)f(x′)g̃(l)(x)> −∇

g
(l+1)f(x′)g̃(l)(x′)>

)∥∥∥
F

≤ √n
L−1∑

l=0

∥∥∥
(
∇
g
(l+1)f(x)−∇

g
(l+1)f(x′)

)
g̃(l)(x)>

∥∥∥
2

2
+

∥∥∥∥∇g(l+1)f(x′)
(
g̃(l)(x)− g̃(l)(x′)

)>∥∥∥∥
2

2

+

2
∥∥∥
(
∇
g
(l+1)f(x)−∇

g
(l+1)f(x′)

)
g̃(l)(x)>

∥∥∥
2

∥∥∥∥∇g(l+1)f(x′)
(
g̃(l)(x)− g̃(l)(x′)

)>∥∥∥∥
2

≤ √n
L−1∑

l=0

∥∥∥∇
g
(l+1)f(x)−∇

g
(l+1)f(x′)

∥∥∥
2

2

∥∥∥g̃(l)(x)
∥∥∥

2

2
+
∥∥∥∇

g
(l+1)f(x′)

∥∥∥
2

2

∥∥∥g̃(l)(x)− g̃(l)(x′)
∥∥∥

2

2
+

2
∥∥∥∇

g
(l+1)f(x)−∇

g
(l+1)f(x′)

∥∥∥
2

2

∥∥∥g̃(l)(x)
∥∥∥

2

∥∥∥∇
g
(l+1)f(x′)

∥∥∥
2

2

∥∥∥g̃(l)(x)− g̃(l)(x′)
∥∥∥

2
(17)

where the second inequality derives from ‖ · ‖F ≤
√
n‖ · ‖2 and triangle inequality of matrix norm. Consequently, we only

need to bound each term in the last inequality above.

Based on Lemma A.3, with probability at least 1− Lδ, for all l ∈ [0, L− 1], the following inequality holds.

∥∥∥g̃(l)(x)
∥∥∥

2
=
∥∥∥σ(g(l)(x))

∥∥∥
2
≤
∥∥∥g(l)(x)

∥∥∥
2
≤ 1√

n

∥∥∥W(l−1)
∥∥∥

F

∥∥∥g̃(l−1)(x)
∥∥∥

2

≤ 1√
n

√
n2 + 2

√
n2 log(1/δ) + 2 log(1/δ)

∥∥∥g̃(l−1)(x)
∥∥∥

2

=
√
n+ 2 log(1/δ) + 2 log(1/δ)/n

∥∥∥g̃(l−1)(x)
∥∥∥

2

≤
(√

n+ 2 log(1/δ) + 2 log(1/δ)/n
)l
‖x‖2

≤
(√

n+ 2 log(1/δ) + 2 log(1/δ)/n
)l

(18)

Similarly, with probability at least 1− Lδ, for all l ∈ [0, L− 1], the following inequality holds.

∥∥∥g̃(l)(x)− g̃(l)(x′)
∥∥∥

2
=
∥∥∥σ(g(l)(x))− σ(g(l)(x′))

∥∥∥
2

≤
∥∥∥g(l)(x)− g(l)(x′)

∥∥∥
2

=
1√
n

∥∥∥W(l−1)
(
g̃(l−1)(x)− g̃(l−1)(x′)

)∥∥∥
2

≤ 1√
n

∥∥∥W(l−1)
∥∥∥

F

∥∥∥g̃(l−1)(x)− g̃(l−1)(x′)
∥∥∥

2

≤
(√

n+ 2 log(1/δ) + 2 log(1/δ)/n
)l ∥∥x− x′

∥∥
2

(19)

Let � denote the element-wise multiplication of two vectors and σ̇(·) denote the derivative of activation function σ(·). With
probability at least 1− Lδ, for all l ∈ [0, L− 1], the following inequalities hold.

∥∥∥∇
g
(l+1)f(x)

∥∥∥
2

=

∥∥∥∥
1√
n

(
W(l+1)

)> (
∇
g
(l+2)f(x)� σ̇(g(l+2)(x))

)∥∥∥∥
2

≤
(√

n+ 2 log(1/δ) + 2 log(1/δ)/n
)L−l−1

(20)
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∥∥∥∇
g
(l+1)f(x)−∇

g
(l+1)f(x′)

∥∥∥
2

=

∥∥∥∥
1√
n

(
W(l+1)

)> (
∇
g
(l+2)f(x)� σ̇(g(l+2)(x))−∇

g
(l+2)f(x′)� σ̇(g(l+2)(x′))

)∥∥∥∥
2

=

∥∥∥∥
1√
n

(
W(l+1)

)> (
∇
g
(l+2)f(x)� σ̇(g(l+2)(x))−∇

g
(l+2)f(x′)� σ̇(g(l+2)(x))

)
+

1√
n

(
W(l+1)

)> (
∇
g
(l+2)f(x′)� σ̇(g(l+2)(x))−∇

g
(l+2)f(x′)� σ̇(g(l+2)(x′))

)∥∥∥
2

≤ 1√
n

∥∥∥W(l+1)
∥∥∥

F

∥∥∥∇
g
(l+2)f(x)� σ̇(g(l+2)(x))−∇

g
(l+2)f(x′)� σ̇(g(l+2)(x))

∥∥∥
2

+

1√
n

∥∥∥W(l+1)
∥∥∥

F

∥∥∥∇
g
(l+2)f(x′)� σ̇(g(l+2)(x))−∇

g
(l+2)f(x′)� σ̇(g(l+2)(x′)

∥∥∥
2

≤ 1√
n

∥∥∥W(l+1)
∥∥∥

F

(∥∥∥∇
g
(l+2)f(x)−∇

g
(l+2)f(x′)

∥∥∥
2

+ β
∥∥∥∇

g
(l+2)f(x′)

∥∥∥
2

∥∥∥g(l+2)(x)− g(l+2)(x′)
∥∥∥

2

)

= O(
∥∥x− x′

∥∥)

(21)

where the last inequality can be derived by using (18), (19) and (20).

Finally, by introducing (18), (19), (20) and (21) into (17), there exist a constant ρ2, with a high probability, we have

∥∥∇θf(x,θ0)−∇θ0f(x′)
∥∥

2
≤ ρ2

∥∥x− x′
∥∥

2
. (22)

We can now prove our Proposition 2. To ease notations, we also hide the model parameter θ0 in the following proofs.
Specifically, in the case of noisy data xε (or x′ε) based on x (or x), we have ‖x− xε‖2 ≤ ε (or

∥∥x′ − x′ε
∥∥

2
≤ ε). Let Θ0,ε

be the NTK matrix induced by dataset with noise ε and ŷε = y − f(xε,θ0), we hence have

∣∣∣ŷ>Θ−1
0 ŷ − ŷ>ε Θ−1

0,ε ŷε

∣∣∣ =
∣∣∣ŷ>Θ−1

0 ŷ − y>Θ−1
0 y + y>Θ−1

0 y − y>Θ−1
0,εy + y>Θ−1

0,εy − ŷ>ε Θ−1
0,ε ŷε

∣∣∣

≤
∣∣∣ŷ>Θ−1

0 ŷ − y>Θ−1
0 y

∣∣∣+
∣∣∣y>Θ−1

0 y − y>Θ−1
0,εy

∣∣∣+
∣∣∣y>Θ−1

0,εy − ŷ>ε Θ−1
0,ε ŷε

∣∣∣ .
(23)

With Lemma A.4, we have

∣∣Θ0(x,x′)−Θ0(xε,x
′
ε)
∣∣ =

∣∣Θ0(x,x′)−Θ0(x,x′ε) + Θ0(x,x′ε)−Θ0(xε,x
′
ε)
∣∣

≤
∣∣Θ0(x,x′)−Θ0(x,x′ε)

∣∣+
∣∣Θ0(x,x′ε)−Θ0(xε,x

′
ε)
∣∣
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2

)

= 2ρ1ρ2ε .
(24)

Let λmin and λmin,ε be the smallest eigenvalues of Θ0 and Θ0,ε, respectively. Consequently, for dataset S of size mS with
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y ∈ [0, 1]mS ,

‖Θ0 −Θ0,ε‖2 ≤ ‖Θ0 −Θ0,ε‖F ≤ 2ρ1ρ2mSε∣∣∣y>Θ−1
0 y − y>Θ−1
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2
‖y‖22

≤ 2ρ1ρ2mS‖y‖22ε/(λminλmin,ε)

≤ 2ρ1ρ2m
2
Sε/(λminλmin,ε) .

(25)

Since Θ0 is symmetric, we can also represent Θ0 as Θ0 = VΛV> using principal component analysis (PCA), where V
and Λ denotes the matrix of eigenvectors {vi}mi=1 and eigenvalues {λi}mi=1, respectively. Based on the assumption that
|f(x,θ0)| ≤ τ for any x and λi > 0 we have the following inequality:

∣∣∣y>Θ−1
0 y − ŷ>Θ−1

0 ŷ
∣∣∣ =

∣∣∣∣∣

mS∑
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∣∣∣(v>i y)2 − (v>i ŷ)2
∣∣∣
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∥∥∥
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∥∥∥yy> − ŷŷ>
∥∥∥

tr

≤ mS

∥∥∥Θ−1
0

∥∥∥
tr
τ(2 + τ)

(26)

where the last inequality can be derived by exploiting the fact that
∥∥∥Θ−1

0

∥∥∥
tr

=
∑m
i=1 λ

−1
i and

∣∣∣y2 − ŷ2
∣∣∣ =

∣∣∣y2 − (y − f(x,θ0))2
∣∣∣ ≤ |f(x,θ0)| |2y − f(x,θ0)| ≤ τ(2 + τ) . (27)

Similarly, we also have
∣∣∣y>Θ−1

0,εy − ŷ>ε Θ−1
0,ε ŷε

∣∣∣ ≤ mS

∥∥∥Θ−1
0,ε

∥∥∥
tr
τ(2 + τ) . (28)

By introduce the results above into (23), we have
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(29)

Since min(ŷ>Θ−1
0 ŷ, ŷ>ε Θ−1

0,ε ŷε) ≥ γ and ∆(S, Sε) , |dH(T, S)− dH(T, Sε)|, let β = 2ρ1ρ2, we then have the following
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inequalities:

|ν(S)− ν(Sε)| ≤ κ
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(30)

where the second inequality derives from the Lipschitz continuity of function
√
x when x > γ. The last equality is based on

the definition of O(·) since τ is small and the assumption that λmin, λmin,ε > λ. The proof hence is finally concluded.

Remark. Note that τ indeed will be small in practice as validated in Appendix E.2.

A.4. Proof of Proposition 3

Let Θ0,f be the NTK matrix induced by the dataset on model f and ŷf = y − f(xε,θ0). Following the same principle
shown in the proof of Proposition 2, we have
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Based on the assumption that min
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0,f ŷf/mS −
√
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−1

0,f
′ ŷf ′

∣∣∣

≤ κ

2
√
γ

(√
mS

(∥∥∥Θ−1
0,f

∥∥∥
tr

+
∥∥∥Θ−1

0,f
′

∥∥∥
tr

)
τ(2 + τ) +

√
mSε/(λminλmin,ε)

)

≤ κ

2
√
γ

(
O(τ) +

√
mSε/λ

2
)
,

(32)

which concludes our proof.

B. Efficient Approximations of Θ0

The NTK matrix Θ0 ∈ Rm×m enjoys an elegant definition of Θ(x,x′) = ∇θf(x)∇θf(x′)> (Equation 2). However, we
face several difficulties in implementing it in practice. In this section, we mainly address the empirical approximations of
the NTK due to memory and time constraints. The invertibility guarantee of Θ0 is given in Appendix B.4.

Generally, computing Θ0 for a dataset S requires pairwise products for the set of gradients∇θf(x) for allx ∈ {xi, . . . ,xm}
data samples in the dataset S. Each gradient term∇θf(x) with respect to the parameters θ ∈ Rp is a vector of length p.

A straightforward implementation involves on-the-fly evaluations of ∇θf(x) and ∇θf(x′) for each NTK entry Θ(x,x′).
This requires 2m2 gradient evaluations naively, which reduces to m2 evaluations by calculating in a row-wise manner. Since
Θ0 is symmetric, we effectively require 1

2m
2 evaluations. However, this method still contains repeated evaluations and yet
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could not make use of potential efficient parallelism implementations in popular machine learning platforms like PyTorch
and TensorFlow. In practice, each gradient evaluation takes a fraction of seconds, even computing the NTK for a dataset
with 1K samples could easily take up to 1 GPU day and thus become clearly infeasible.

A potential solution would be calculating each gradient once and storing the gradients in memory to avoid repeated
evaluations. This potentially reduces the computational requirement to m gradient evaluations. However, video RAM of an
ordinary GPU could pose constraints for time-efficient exact NTK evaluation because it requires storing an m× p gradients
matrix. In our baselines experiments, for example, SA has size m = 10750 and ResNet18 has p ≈ 11.2× 106 parameters,
such a gradients matrix easily exceeds the limit of commercial GPUs.

One workaround would be using a fast Solid-State Drive (SSD) for storage. However, we usually consider I/O operations
like reading from and writing to disks as slow operations unless specialized hardware is used. We do not use this method in
our implementation. We instead consider a batched evaluation technique that circumvents the memory constraint.

B.1. Diagonal Block Approximation

We approximate Θ0 with a matrix containing only the diagonal l × l-sized blocks, where each block only involves a batch
of l data samples. For simplicity, we assume l is a factor of m. We first define such block matrices,

B
(l)
i,i =




Θ(x(i−1)l+1,x(i−1)l+1) . . . Θ(x(i−1)l+1,xil)
...

. . .
...

Θ(xil,x(i−1)l+1) . . . Θ(xil,xil)


 ∈ Rl×l.

Then, filling the off-diagonal blocks with zeros, the diagonal block approximation of Θ0 is defined as follows,

Θ
(l),blocked
0 =




B
(l)
1,1 0

B
(l)
2,2

. . .
0 B

(l)
m/l,m/l



.

For example, by setting the batch size to 2, the diagonal block approximation of Θ0 is

Θ
(2),blocked
0 =




Θ(x1,x1) Θ(x1,x2)
Θ(x2,x1) Θ(x2,x2)
︸ ︷︷ ︸

block size l=2

0

Θ(x3,x3) Θ(x3,x4)
Θ(x4,x3) Θ(x4,x4)

. . .

0
Θ(xm−1,xm−1) Θ(xm−1,xm)
Θ(xm,xm−1) Θ(xm,xm)




.

Evaluation of each block now only requires storing a total of l sample gradients. Also, inverting a block diagonal matrix can
be easily performed by inverting each block separately,

[
Θ

(l),blocked
0

]−1

=




[
B

(l)
1,1

]−1

0
[
B

(l)
2,2

]−1

. . .

0
[
B

(l)
m/l,m/l

]−1



.

Therefore, the inverse of the analytic NTK matrix in Equation 3 can be efficiently computed even when the dataset size m is
large.
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Remark. Fully parallelizing the batch in computing the gradients could gain us significant speedups. It is possible because
there is no data dependency between the gradients of each sample. PyTorch autograd hacks library offers such efficient per-
sample gradient implementation for networks containing only linear and convolutional layers. PyTorch recently introduced
vmap that officially supports per-sample gradient computation, which can potentially further improve our results shown in
Table 1. Tensorflow vectorized map method also provides us with similar features. We adopt the PyTorch autograd hacks
implementation in this paper.

Empirical investigation. We show the effectiveness and efficiency of diagonal block approximations. Using the ising
model regression baseline dataset in Section 6, we vary the number of blocks used in the method and find that this method
gives very good approximations. As seen in Table 4, increasing the number of blocks does not degrade the overall correlation
with the ground truth much. As for efficiency, using a moderate batch size that fits into the GPU memory better utilizes
the parallel computations of samples in a batch while reducing the number of batch evaluations required. Therefore, we
recommend using a large batch size that fits into the GPU memory when using diagonal block approximations.

Table 4. Correlation with ground truth and efficiency of DAVINZ approximated using the diagonal block approximation. Each correlation
coefficient is reported with the mean and standard error over 5 independent evaluations. Each cost includes the evaluation of 11 scores for
LOO over 10 different datasets.

No. of Blocks Ising Physical Model Dataset

Pearson Spearman Comp. Cost
m/l r ρ (Min.)

1 0.996±0.001 0.905±0.015 1.7
50 0.994±0.001 0.908±0.014 0.5
500 0.992±0.001 0.901±0.019 1.1

B.2. Diagonal Block Approximation with Permutations

Diagonal block approximation preserves sample correlations within a batch but disregards any inter-batch sample correlations.
We propose to permute the data sample orders in a dataset before performing diagonal block approximations and average
the results over several trials. In doing so, we incorporate sample correlations at the expense of computational cost. The
total computational cost scales linearly with the number of permutations we consider.

Empirical investigation. We again use the ising model regression baseline dataset in Section 6 and vary the number of
permutations. As shown in Table 5, the computational cost scales linearly with the number of permutations as expected and
both the Pearson’s and Spearman’s correlation stay relatively unchanged with permutations. This suggests that diagonal
block approximation without permutations is sufficient for our purpose of data valuation using the NTK generalization lower
bound.

Table 5. Correlation with ground truth and efficiency of DAVINZ approximated using the diagonal block approximation with permutations.
Each correlation coefficient is reported with the mean and standard error over 5 independent evaluations. Each cost includes the evaluation
of 11 scores for LOO over 10 different datasets.

No. of Permutations No. of Blocks Ising Physical Model Dataset

Pearson Spearman Comp. Cost
m/l r ρ (Min.)

1 50 0.994±0.001 0.908±0.014 0.5
10 50 0.995±0.001 0.925±0.015 1.9
50 50 0.994±0.001 0.922±0.020 15.6

B.3. L-block-banded Block Matrix Approximation

A natural extension of the diagonal block approximation is to include off-diagonal blocks. With more exactly evaluated
blocks in the matrix, we hope to better approximate Θ0 when computational resources allow. We define the L-block-banded
matrix as
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,

where Mij is a square block matrix on the i-th row and j-th column. However, assuming a positive definite matrix P and an
L-block-banded matrix M such that all L-block-banded entries Mij = Pij : |i− j| ≤ L, then this L-block-banded matrix
M is not necessarily still positive definite. Therefore, naively using an L-block-banded version of Θ0 in the data valuation
score calculation is not appropriate.

As a resolution, Asif & Moura (2005) study the properties of a positive definite L-block-banded matrix and proves recursive
structures in its dense inverse. Specifically, in Theorem 3 of (Asif & Moura, 2005), the blocks outside the L-block band
are fully specified by blocks within the L-block band if the matrix inverse is a positive definite L-block-banded matrix.
Therefore, assuming a positive definite Θ̄−1

0 , we are only required to evaluate the entries in the L-block band of Θ̄0 such
that [Θ̄0]ij = [Θ0]ij . Then, a dense Θ̄0 can be fully specified and positive definiteness is preserved. Additionally, getting
the inverse Θ̄−1

0 does not require inverting the whole matrix even when the dataset size m is large. The details of the fast
inversion algorithm could be found in Algorithm 1 of (Asif & Moura, 2005). This method also potentially provides an
accuracy and computation trade-off in specifying the length of the band L to evaluate. We leave this method as a future
exploration direction for finer approximations because the diagonal block approximation we used in the implementation of
this paper is accurate enough for our purposes.

B.4. Invertibility of Θ0

To ensure an invertible NTK matrix Θ0, we replace it with the expectation of its noisy counterpart in practice. In particular,
given a sufficiently small constant ζ > 0 and a DNN model f , for each sample (x, y) ∈ S, we apply an independent
Gaussian noise z ∼ N (0, ζI) to the gradient ∇θf(x,θ0) and then obtain a corresponding noisy NTK matrix based on
these noisy gradients. Interestingly, such a noise usually will be introduced into the model training of DNNs by the widely
adopted stochastic gradient descent (SGD) algorithm in practice. Finally, denote Z as our introduced noise to NTK and
define Θ̂0 , EZ[Θ0 + Z], we have that

Θ̂0 = EZ[Θ0 + Z] = Θ0 + ζI , (33)

which is therefore guaranteed to be invertible. Moreover, as ζ → 0, we have Θ̂0 → Θ0. Consequently, Θ̂0 is reasonably
good to be applied to approximate the true generalization error in (3) as long as ζ is sufficiently small.

C. Additional Literature
There have been attempts to directly model the scoring function using advances in deep learning and reinforcement learning.
We outline these approaches and describe the difference between them and our work below.

Data valuation using reinforcement learning (DVRL). DVRL (Yoon et al., 2020) integrates data valuation with the
training process of the target predictive model and utilizes reinforcement signals to train a network for data valuation. DVRL
is relatively efficient as it only requires one training of the valuation network. However, the data value outputted by the
network now measures how likely a datum will be used in training the predictive model, which is not directly related to
the contributions of data points in achieving a high-performing predictive model. As a result, the paper only conducted
experiments using the data values in the form of ranks, instead of relative dataset values. Methods to be discussed in this
paper should produce more informative real value scores that make relative-contribution-based value comparisons.

Learning the scoring function. Two concurrent works (Wang et al., 2021b;a) propose to directly learn the scoring function
using a utility ML model, often implemented using a 3-layer MLP for individual data samples or the DeepSets (Zaheer
et al., 2017) for groups of data samples. However, learning the utility ML model itself requires abundant utility (i.e., score)
samples obtained through multiple complete re-trainings of the predictive model, which is prohibitively costly for complex
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models like deep neural networks. Consequently, the authors use a small proxy model (usually a logistic regression classifier)
in place of the neural networks as the predictive model. Therefore, these works learn the scoring function on the logistic
regression proxy and compare the relative contributions of data to learning a logistic regression model. Our method instead
focuses on estimating the dataset values using relative contributions of data in learning the original deep neural network
predictive model. We focus on comparing with training-free data valuation methods in this paper.

D. Experimental Setup
D.1. Dataset, Model and Ground Truth

We offer a comprehensive comparison between our method and the existing training-based and training-free baselines using
common benchmark datasets. All experiments have been run on a server with Intel(R) Xeon(R)@ 2.20GHz processors and
512GB RAM. One Tesla V100 GPU is used for the experiments. We use MNIST and CIFAR-10 for classification tasks and
the ising physical model dataset (Mills & Tamblyn, 2019) for regression tasks.

All MNIST and CIFAR-10 images are pre-processed by re-scaling the pixel value to the [0, 1] range. We split the images into
10 datasets each containing images of a single label class. The number of data samples in each dataset also varies from 1000
to 1250. The validation dataset contains 10K images from all class labels. This baseline setup mimics the practical scenario
where a particular agent only have access to a specific type of data (e.g., bank credit records from a single geographic region
or MRI medical scan images from a machine of a specific brand) and each agent’s dataset size varies slightly to further
increase the difficulty of this data valuation baseline task. The validation objective is, however, learning a grand model
performs well on all label classes of this classification problem (e.g., a model that works for banks in different regions and
MRI scans from machines of different brands included in the training data). Details of the data split can be found in Table 6.

Table 6. Dataset split details for classification baseline comparisons.

Dataset S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

No. Samples 1000 1000 1000 1000 1000 1050 1100 1150 1200 1250
Labels Class 0 1 2 3 4 5 6 7 8 9

The ising physical model dataset aims to predict system energy based on an ising array of atomic spin states. The labels are
also pre-processed by re-scaling the energy values to the [0, 1] range. We split the input data into 10 datasets to simulate
another practical scenario where agents of varying capability collaborate on a machine learning task (e.g., large companies
could provide more data samples whereas the smaller companies contribute less). All agents have a similar data distribution.
Details of the data split can be found in Table 7.

Table 7. Dataset split details for regression baseline comparisons.

Dataset S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

No. Samples 12 25 50 100 200 400 800 1600 3200 6400

To facilitate reproducible baseline comparisons, we select commonly used model architecture to evaluate. For classification
tasks, we choose (1) the ResNet18 (He et al., 2016) and (2) the VGG13 (Simonyan & Zisserman, 2015). For regression
tasks, we choose (1) an MLP with 10 layers and (2) a CNN with 6 convolutional layers and 2 fully connected layers. We
remove the bias term for all layers. For DAVINZ calculations, we additionally turn off the Batch Normalization layer to
remove its effect on NTK evaluations.

For ground truth, we use leave-one-out validation performance as the metric. In practice, we experience problems finding
the true validation performance given a model architecture and a dataset, since the choice of hyperparameters (e.g., batch
sizes, number of training epochs, learning rates) and randomness in the training procedure (e.g., random initializations)
could all affect the final results. In our experiments, we fix batch size to 128 throughout and train all models with a learning
rate of 0.01 until convergence for both MNIST and CIFAR-10 classification tasks. We train all models with a learning
rate of 0.1 until convergence for the ising model regression task. Convergence is assumed when the training loss over two
consecutive epochs is below a very small threshold of 10−8. The only exception is for training the MLP10 model on the
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Table 8. Computation time for the ground truth and DAVINZ, in GPU minutes.

Method MNIST CIFAR-10

VGG13 ResNet18 VGG13 ResNet18

Ground Truth 189.5 464.4 227.5 620.8
DAVINZ 2.5 3.3 2.0 3.2

ising physical model dataset, we use a smaller threshold of 10−10 to ensure convergence. The ground truth is then obtained
using the average over 5 randomized trials. Overall, DAVINZ is able to achieve high correlations with the ground truth.

D.2. Validation Performance

Computing the ground truth for validation performances upon model convergence as described in Appendix D.1 is usually
too computationally expensive to carry out in practice. We show Table 8 that ground truth baselines typically require 3 to 10
hours to evaluate while DAVINZ only takes 2 minutes. For practical considerations, we train all the models for 300 epochs
and assume that convergence is achieved thereafter. We call this method validation performance (VP) in Sec. 6.2. The model
details and hyperparameters are stated in Appendix D.1.

D.3. DAVINZ Setups

When the number of parameters in a network is small, such as the case in MLP10, we could afford exact computations of the
NTK matrix Θ0. For larger models such as VGG13 and ResNet18, the GPU VRAM could not hold the parameter gradients
of the whole training dataset and thus the diagonal block NTK approximation is used, detailed in Appendix B. The number
of diagonal blocks is set to 100. The balancing hyper-parameter κ is tuned following (4), as detailed in Sec.4.2.

D.4. Influence Functions

Originally designed for identifying influential training data, influence functions (IF) (Koh & Liang, 2017; Koh et al., 2019)
can also be applied to data valuation problems by drawing this analogy: the training data that increase the validation loss the
most has the least value. IF provides us with a way to quantify the change of validation loss when a data subset is removed
without retraining the model. This fits the LOO setting and requires a fully-trained model on the complete dataset. The
literature has also been discussed as a related work in Sec. 2.

Despite a training-free method, its evaluation comprises inverting a Hessian on the training loss of size p× p, where p is
the number of parameters of the model. This operations times time O(np2 + p3) which is infeasible for complex neural
networks with millions of parameters. Even after approximations such as Hessian vector products (HVP) and Conjugate
Gradient (CG) techniques are adopted, the computation complexity is still O(np).

For our baseline comparison purposes, we set batch size to 128, the recursion depth to 100 and the number of evaluations
to average to 10 for the HVP calculation. This setup follows the original paper’s suggestion that stochastic samples of a
size similar to the training set size should be used for HVP calculation and we average over 10 evaluation for a stable HVP
estimate.

A more important shortcoming is that IF requires convex and twice-differentiable models to produce accurate influence
estimates. Although excellent results are shown in logistic regression, it fails on deep complex networks (Basu et al., 2021).
Our results in Table 1 also show such evidence.

D.5. Robust Volume

Robust Volume (RV) is a diversity-based data valuation method proposed by Xu et al. (2021b). It has many appealing
characteristics such as being training-free, replication robust, model- and task-agnostic. Its theoretical guarantee is, however,
only proven for regression problems.

In this baseline comparison, we use an extension of the method mentioned in the original paper: We train a neural network
as the feature extractor and use the learned features to calculate RV. This aligns with the approach of evaluating the value of
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data (Jia et al., 2019a; Ghorbani et al., 2021) described in Sec. 2. In all experiments, we use a standardized 10-dimensional
feature embedding and set the discretization coefficient ω = 0.1, as recommended by the original paper.

E. More Results
E.1. Robustness to Different Initializations

Our data valuation is computed on a specific initialization θ0 of the DNN. We show in this section that the valuation is
robust under random initializations. As shown in Proposition 3, a smaller ‖Θ0,f −Θ0,f

′‖2 (i.e., ε) provides a tighter bound
on the variations of the valuations. We show in Proposition E.1 that we can theoretically guarantee a small ‖Θ0,f −Θ0,f

′‖2
for a DNN model with two different random initializations and hence robustness under initializations.

Proposition E.1. Choose ε > 0 and δ ∈ (0, 1). If the width of a L-layer DNN model satisfies n = Ω(L6/ε4 log
(
m2
SL/δ

)
),

then for Θ0 and Θ′0 using two different initialization θ0 and θ′0, the following holds with probability at least 1 − δ on
dataset S of size mS with ‖x‖2 ≤ 1 for any x in S,

∥∥Θ0 −Θ′0
∥∥

2
≤ 2m2

SLε .

Proof. We firstly introduce the following lemmas, where θ≤l0 and Θ(l) denote the model parameters from the first layer to
l-th layer and the corresponding NTK matrix.

Lemma E.1 (An extension of Theorem 3.1 in (Arora et al., 2019a)). Choose ε > 0 and δ ∈ (0, 1). If the width of every

layer satisfied n = Ω
(
L

6

ε
4 log (L/δ)

)
, then ∀x,x′ in dataset S with ‖x‖2, ‖x′‖2 ≤ 1 and ∀l ∈ [L], with probability at

least 1− δ, we have that
∣∣∣
〈
∇
θ
≤lf(x,θ0),∇

θ
≤lf(x′,θ0)

〉
−Θ(l)

∞ (x,x′)
∣∣∣ ≤ lε .

Consequently, for any two different θ0 and θ′0 initialized using the standard normal distribution, the following inequality
holds based on the result in Lemma E.1 and the definition of NTK matrix.

∥∥Θ0 −Θ′0
∥∥

2
=
∥∥Θ0 −Θ∞ + Θ∞ −Θ′0

∥∥
2

≤ ‖Θ0 −Θ∞‖2 +
∥∥Θ∞ −Θ′0

∥∥
2

≤ ‖Θ0 −Θ∞‖F +
∥∥Θ∞ −Θ′0

∥∥
F

≤ 2m2
SLε ,

(34)

which concludes our proof.

Based on the proposition above, the conditional model-robust bound in Proposition 3 can be well-satisfied under different
initializations. We next perform empirical investigations of such robustness. Similar to our observations in Section 6.6
and Table 3, ResNet with higher λ’s typically demonstrate a higher consistency in data value over random initializations
as compared to VGG. The relative changes in the valuations across initializations also agree with those obtained using
the training-based VP method. Furthermore, we are able to compute the coefficient of variance (CV) under different
initializations here and demonstrate that the CV of DAVINZ and VP are similar to the same order of magnitude. Therefore,
our valuation method has similar robustness to retraining under different network initializations.
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Table 9. The tables shows the change in ν(S) as model initialization changes from θ0 to θ′0, averaged over 10 datasets S and all
combinations of 5 initializations. λmin,θ0

is minimum eigenvalue of the NTK matrix when the model f is initialized with θ0 and
∆ν(S) = |(ν(S;θ0)− ν(S;θ

′
0))/(ν(S;θ0)|.

Model Params λmin,θ0
, λmin,θ

′
0

∆DAVINZ
ν(S) ∆VP

ν(S) DAVINZ’s CV VP’s CV
(M) (×10−5) (%) (%) (Coef. of Variance) (Coef. of Variance)

VGG11 9.2 56.4, 56.4 8.25±0.43 1.57±0.10 0.077±0.000 0.017±0.003
VGG13 9.4 1.58, 1.58 11.50±0.60 1.72±0.10 0.103±0.000 0.016±0.001
VGG16 14.7 0.104, 0.104 6.29±0.35 2.17±0.14 0.058±0.000 0.022±0.003

ResNet18 11.2 1310, 1310 5.11±0.26 2.72±0.18 0.046±0.000 0.024±0.003
ResNet21 17.4 1590, 1590 7.53±0.37 7.44±1.39 0.067±0.001 0.078±0.042
ResNet34 21.3 2140, 2140 3.44±0.23 5.23±0.51 0.036±0.000 0.049±0.014

E.2. |f(x,θ0)| at Initialization

The proof of Proposition 2 is based on the assumption that |f(x,θ0)| ≤ τ for any x. We empirically verify that τ usually
small, which approaches zero. Using the MLP10 network (in baseline comparisons for regression), we compute the absolute
value of the network outputs for 10K data points on a randomly initialized network and find that the assumption is well
satisfied. We obtain a mean output value of 0.000187 and a maximum output value of 0.000679. The details for all outputs
are shown as a heat map in Fig. 7.
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Figure 7. Function outputs |f(x,θ0)| of 10K data points on an initialized MLP10 network. The length 10K output vector is reshaped into
a 100× 100 matrix for the convenience of viewing.

E.3. DAVINZ on Large-scale Datasets

With efficient approximations of ν(S) computation (detailed in Appendix B), our method does not suffer scalability problems
with the size of dataset mS . The inversion of the NTK matrix Θ can be performed in a batch-wise manner. In this section,
we demonstrate the effectiveness of DAVINZ on Tiny ImageNet (Deng et al., 2009), which includes 100K downsized 64×64
colored images for a 200-way classification task.

Fig. 1(b) shows ν(S) on differently sized datasets from Tiny Imagenet using ResNet-18. We follow the setting in Section 6.4
and the data split in Table 7. DAVINZ closely resembles the trend of VP when the quantity of data samples in the dataset
increases. Note that we omit groud truth due to the model’s long convergence time on Tiny ImageNet. We also follow the
experimental setting of Table 2 and achieve a Pearson’s correlation of 0.900 with VP.
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Figure 8. Scores achieved by differently sized datasets sampled from the Tiny Imagenet for a 200-way classification task using ResNet-18.
We compare DAVINZ and VP, the results are re-scaled to [0, 1] using min-max normalization.


