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Abstract— This paper describes a reactive, distributed layered
architecture for cooperation of multiple resource-bounded robots,
which is utilized in mobile sensor network coverage. In the upper
layer, a dynamic task allocation scheme self-organizes the robot
coalitions to track efficiently in separate regions. It uses the
concepts of ant behavior to self-regulate the regional distributions
of robots in proportion to that of the targets to be tracked
in the changing environment. As a result, the adverse effects
of task interference between robots are minimized and sensor
network coverage is improved. In the lower layer, the robots
use self-organizing neural networks to coordinate their target
tracking within a region. Quantitative comparisons with other
tracking strategies such as static sensor placements, potential
fields, and auction-based negotiation show that our approach
can provide better coverage and greater flexibility in responding
to environmental changes.

I. INTRODUCTION

Sensor network has recently received significant attention

in networking, embedded systems, and multi-agent systems

[1] due to its wide array of real-world applications (e.g.,

disaster relief, environment monitoring). In these applications,

the distributed sensing task is achieved by the collaboration

of a large number of static sensors, each of which has limited

sensing, computational, and communication capabilities.

One of the fundamental issues that arises in a sensor

network application is coverage. Traditionally, network cov-

erage is maximized by determining the optimal placements

of static sensors in a centralized manner, which can be

related to the class of art gallery problems [2]. However,

recent investigations in sensor network mobility reveal that

mobile sensors can self-organize to provide better coverage

than static placement [3]. Existing applications have only

utilized uninformed mobility (i.e., random motion or patrol)

[1]. In contrast, our work here focuses on informed, intelligent

mobility to further improve coverage.

Our coverage problem is motivated by the following con-

straints that discourage static sensor placement or uninformed

mobility: a) no prior information on the exact target locations,

population densities or motion pattern, b) limited sensory

range, and c) very large area to be observed. All these

conditions may cause the sensors to be unable to cover the

entire region of interest. Hence, fixed sensor locations or un-

informed mobility will not be adequate in general. Rather, the

sensors have to move dynamically in response to the motion

and distributions of targets and other sensors to maximize

coverage. We will now refer to mobile sensors as robots since

they are the same in this paper’s context.

This paper presents a reactive layered multi-robot archi-

tecture (Fig. 1a) for distributed sensor network coverage in

complex, unpredictable environments. In the upper layer, the

workspace is segmented into regions (Fig. 1b) in which

the lower-layer method operates. In the lower layer, each

robot uses a coordinated motion control strategy based on

self-organizing neural networks to cooperatively track the

moving targets within a region (Section II). This strategy is

also responsible for obstacle avoidance, robot separation to

minimize task interference, and navigation between regions

via beacons or checkpoints plotted by a motion planner. In

the upper layer, the robots employ a dynamic ant-based task

allocation scheme to cooperatively distribute themselves in a

decentralized manner according to the distributions of targets

in the regions (Section III). This scheme enables the robots

to track the changing environment on a regional scale and

continually self-organizes the regional distributions of robots

to the distributions of targets. This paper focuses on the upper-

layer task allocation problem, and will describe the lower-layer

motion control briefly.

Our framework addresses the following issues, which dis-

tinguish it from the other multi-robot architectures:

1) Resource-bounded multi-robot cooperation: Robots with

limited communication and sensing capabilities can only ex-

tract local, uncertain information of the environment. As such,

distributed methodologies are required to process and integrate

the noisy, heterogeneous information to improve its quality so

that it can be effectively utilized to boost the task performance.

Furthermore, if the robots have limited computational power,

their cooperative strategies cannot involve complex planning

or negotiations. Existing multi-robot architectures have either

assumed perfect communications, high computational power
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Fig. 1. (a) Reactive distributed layered architecture for multi-robot cooperation (MRTA = Multi-Robot Task Allocation, EKM = Extended Kohonen Map).
(b) A 4 m × 3 m environment that is divided into 6 regions. The circle at the bottom right represents the robot’s sensing radius of 0.3 m (drawn to scale).
The environment is 42.44 times as large as the robot sensing area.

or global knowledge of the task and other robots ([4]–[6]). In

contrast, our proposed architecture caters to resource-bounded

robots.

2) Task allocation for multi-robot tasks: Existing Multi-

Robot Task Allocation (MRTA) algorithms (i.e., auction- and

utility-based) ([4], [6]) generally assume that a multi-robot

task can be partitioned into several single-robot tasks. But this

may not be always possible or the multi-robot task can be

more efficiently performed by groups or coalitions of multiple

robots. In our coverage application, each robot coalition is

assigned to a region. Our proposed task allocation scheme

self-organizes the robot coalitions to the distribution of tasks

in these regions.

3) Coalition formation for reactive robots: Existing multi-

agent coalition formation schemes ([7], [8]) require complex

planning, explicit negotiations, and precise estimation of coali-

tional cost [9]. Hence, they may not be able to operate in

real-time in a large-scale sensor network. Our task allocation

method via self-organizing swarm coalitions is reactive, dy-

namic, and can operate with uncertain coalitional cost and

resource-limited robots.

II. REACTIVE COORDINATED MOTION CONTROL

In the lower layer (Fig. 1a), a reactive motion control strat-

egy known as Cooperative Extended Kohonen Maps (EKMs)

is responsible for cooperative target tracking within a region.

EKMs have been used for goal-directed, collision-free robot

motion in complex, unpredictable environments ([10], [11]).

Our implementation extends our previous work [12] by con-

necting several EKMs to form cooperative EKMs. These self-

organizing neural networks cooperate and compete to produce

an appropriate motor action for the robot to approach targets,

negotiate unforeseen, possibly concave, obstacles, and keep

away from robot kins when it is tracking moving targets

(Fig. 2). Since its implementation is not the main emphasis

of the paper, it will only be described briefly here (see [13]

for more details).

The motion control system consists of four types of EKMs:

target localization, obstacle localization, robot kin localization,

and motor control EKMs. In the presence of a target, the

neurons in the target localization EKM, which encodes target

location in the local sensory input space U ′, are activated

(Fig. 2a). A target field with the shape of an elongated

Gaussian is produced (Fig. 2b) such that the neurons at and

near the target location have the strongest activities. The

elongated target field plays an important role in allowing

the robot to avoid small concave obstacles during obstacle

avoidance.

Similarly, the presence of an obstacle activates neurons in

the obstacle localization EKMs. The neurons in these EKMs

at and near the obstacle locations will be activated to produce

obstacle fields (Fig. 2c). These obstacle fields are stretched

along the obstacle directions such that neurons beyond the

obstacle locations are also inhibited to indicate inaccessibility.

Robot kin fields are activated in a similar way in the robot

EKMs in the presense of robot kins.

In activating the motor control EKM, the obstacle fields are

subtracted from the target field (Fig. 2d). If the target lies

within the obstacle fields, the activation of the motor control

EKM neurons close to the target location will be suppressed.

Consequently, another neuron at a location that is not inhibited

by the obstacle fields becomes most highly activated (Fig. 2d).

This neuron produces a control parameter that moves the

robot away from the obstacle. While the robot moves around

the obstacle, the target and obstacle localization EKMs are

continuously updated with the current locations and directions

of the target and obstacles. Their interactions with the motor

control EKM produce fine and smooth motion control of the

robot to negotiate the obstacle and reach the target. In the

case of multi-robot tracking of multiple targets, multiple target

fields and robot kins fields are activated. The robots act like

highly repulsive obstacles to other robots, thus separating them

from each other.

One noteworthy aspect of cooperative EKMs is that no

communication is needed for the robots to cooperate in target

tracking. They are only required to discriminate between

targets, obstacles and robot kins. Cooperative EKMs can be

used by the robots to perform tracking in a region with

simple, unpredictable obstacles. However, when it is used in a

more realistic and complex environment with several occluded

regions (Fig. 1), it needs to be integrated with our task

allocation scheme to perform the distributed sensor network

coverage task well (Section IV).
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Fig. 2. Cooperative EKMs. (a) In response to the target ⊕, the nearest neuron (black dot) in the target localization EKM (ellipse) of the robot (gray circle)
is activated. (b) The activated neuron produces a target field (dotted ellipse) in the motor control EKM. (c) Three of the robot’s sensors detect obstacles and
activate three neurons (crosses) in the obstacle localization EKMs, which produce the obstacle fields (dashed ellipses). (d) Subtraction of the obstacle fields
from the target field results in the neuron at 4 to become the winner in the motor control EKM, which moves the robot away from the obstacle.

III. ANT-BASED MULTI-ROBOT TASK ALLOCATION

Many multi-robot tasks (e.g., foraging, transportation, ma-

nipulation, sensing, and exploration) have been inspired by

social insects [14], in particular, ants. Our MRTA scheme

encapsulates three concepts of ant behavior: (a) encounter

pattern based on waiting time, (b) self-organization of social

dominance, and (c) dynamic task allocation. These features

help to self-organize the robot coalitions to the distributions

of targets in different regions.

A. Encounter Pattern Based on Waiting Time

Encounter patterns provide a simple, local cue for ants with

sensory and cognitive limitations to assess regional densities

of ants and objects of interest, which are crucial to regulating

the division of labor [15]. Instead of relying on global commu-

nication to relay target positions and density estimation [16],

our scheme uses encounter patterns to predict target density via

local sensing. Regional robot density is captured in a similar

way using local communication.

An encounter pattern can be derived from a series of waiting

time or interval between successive encounters. This simple

form of information processing has accounted for the complex

adaptive process of task allocation in ant colonies [17]. In

our distributed sensor network coverage task, the waiting time

for other robots and targets is defined in terms of encounters

with the robots and targets. A robot encounter is defined as a

reception of a message from another robot in the same region.

A target encounter is defined as an increase in the number of

targets tracked between previous and current time steps. For

a robot i in region r, the waiting time for other robots wir(k)
and targets w′

ir(k) is the time interval between the (k − 1)th
and kth encounters. Note that each waiting time is subject to

stochastic variation. Hence, multiple samplings of waiting time

have to be integrated to produce an accurate estimate of the

regional density. The average waiting time Wir(k) between

the (k − 1)th and kth robot encounters for a robot i in region

r is computed as:

Wir(k) =
1

n
wir(k) +

n − 1

n
Wir(k − 1)

n = min(k, nmax) .

(1)

W ′

ir(k) is updated in the same manner. Both waiting times

are updated according to the changing environment, and are

inversely proportional to the robot and target densities in

region r. The target density directly reflects the task demand

of the region. The robot density reflects the amount of physical

interference in the region, which is inversely proportional to

the task demand. Therefore, the task demand Sir(k) of a

region r can be determined by robot i using the average

robot waiting time Wir(k) and the average target waiting time

W ′

ir(k):

Sir(k) =
Wir(k)

W ′

ir(k)
. (2)

The task demand Sir(k) will be used in the self-organization

of social dominance (Section III-B) as well as in dynamic task

allocation (Section III-C).

B. Self-Organization of Social Dominance

The division of labor in an ant colony is strongly influenced

by its social dominance order [18], which self-organizes to

match the task demands of the colony and the changing

environment. Our scheme is inspired by this concept to move

the robots out of a region that has a lower target-to-robot

density ratio than the other regions. Rather than fixing the

dominance order [19], the social dominance of the robots in

each coalition is self-organized according to their individual

task performance. To elaborate, robots in the same coalition

engage in dominance contests at a regular interval τ if they

are within communication range. The winner increases its

tendency to stay in the current region while the loser increases

its tendency to leave the current region and join another

coalition in other regions. When robot i encounters robot j in

region r, the probability of robot i winning a contest against

robot j is defined as:

P (robot i winning) =
n2

i S
2

ir

n2

i S
2

ir + n2

jS
2

jr

(3)

where Sir and Sjr are respectively the task demand of region

r determined by robot i and robot j, and ni and nj are the

number of targets currently under observation by robot i and

robot j respectively. Equation 3 implies that robot i would

most likely win the contest if it observes more targets than



robot j. However, if both are tracking the same number of

targets, then their individual evaluation of the task demand can

be used to differentiate them. This will distinguish a robot that

has been observing the targets for a long time from another

that just encounters the same number of targets.

To inject the influence of social dominance on the self-

organization of robot coalitions, each time a robot i wins a

contest (Eq. 3), it increases its tendency of staying in the

current region, which is represented by the threshold θi(t) to

be used for dynamic task allocation (Section III-C):

θi(t) = θi(t − 1) + δ (4)

where δ is small constant. Conversely, each time the robot

loses, it decreases its tendency of staying in the region.

θi(t) = θi(t − 1) − δ . (5)

θi varies in the range [0,1] to prevent robots from being overly

submissive or dominating.

C. Dynamic Task Allocation

The distributed task allocation algorithm in ants can effi-

ciently arrange the ants in proportion to the amount of work in

the changing environment [20]. In a similar spirit, our scheme

aims to self-organize the robot coalitions to the distributions of

targets in different regions. In a cooperative multi-robot task,

the robots are bound to interfere with each other’s ongoing

activity either physically (e.g., space competition) or non-

physically (e.g, shared radio bandwidth, conflicting goals). In

the extreme case, when too many robots are involved, little

or no work gets done as they totally restrict each other’s

movement. Hence, task interference has an adverse effect on

the overall system performance [19]. Knowing that physical

interference can be implied from robot density [19], our

task allocation scheme has taken physical interference into

consideration by estimating robot density. In contrast, existing

MRTA methods ([4], [6]) generally assume that the multi-robot

task can be partitioned into independent single-robot tasks.

Thus, no interference would result. Bucket brigade algorithm

[21] can eliminate interference by assigning the robots to

separate regions. However, it cannot respond in real-time to

changing regional distributions of targets due to target motion.

Our dynamic task allocation scheme is based on the notion

of response thresholds [22]. In a threshold model, robots

with low response thresholds respond more readily to lower

levels of task demand than do robots with high response

thresholds. Performing the task reduces the demand of the

task. If robots with low thresholds perform the required tasks,

the task demand will never reach the thresholds of the high-

threshold robots. However, if the task demand increases, high-

threshold robots will engage in performing the task.

MRTA strategies that utilize fixed response thresholds ([5],

[16]) are incapable of responding effectively to dynamic

environments [22]. In contrast, the thresholds in our scheme

are continuously updated by the self-organizing process of

social dominance (Section III-B).

To be effective in task allocation, a robot must at least

have some knowledge of the task demands in its neighboring

regions in order to make rational task decisions. To do so,

robot i maintains a memory of the task demand Sir of each

region r and the amount of time Tir that it previously spent

in region r. Tir can be used as a certainty measure of Sir. In

addition to computing Sir using Equation 2, Sir can also be

updated when robot i receives a message from a neighboring

robot j with Sjr less than Sir . Then Sir and Tir are updated

to take the values Sjr and Tjr respectively. In this manner,

the task demands of the regions are kept in memory. Robot i
can then predict the region with the greatest task demand and

join that region. At every time interval of τ , if Sir receives

no update, the certainty value Tir is decreased by τ while

the task demand Sir is increased by a small amount, such

that its magnitude reflects the robot’s motivation to explore.

However, Sir will not be increased beyond the maximum of

the Sig values over all regions g.

Our distributed MRTA scheme uses a stochastic problem

solving methodology. It is performed at intervals of τ to allow

for multiple samplings of waiting time during each interval

(Section III-A). The probability of a robot i to stay in its

current region c is defined as:

P (stay) =
S2

ic

S2

ic + (1 − θi)2 + T−2

ic

. (6)

On the other hand, the probability of a robot i to leave region

c to go to region r is defined as:

P (leave) =
S2

ir

S2

ir + θ2

i + T−2

ir + d2
cr

(7)

where dcr is the pre-computed collision-free distance between

region c and region r, which can be viewed as the cost of task

switching. Note that a robot that loses in the dominance contest

in a coalition does not always leave the region. If it experiences

a higher task demand in its region than in other regions, it will

have a high tendency of remaining in its coalition.

From Equations 6 and 7, if the robot does not respond to

any regions, it will not switch task and will remain in the

current coalition. The robot may also respond to more than

one region. This conflict is resolved with a method that is

similar to Equation 3. The probability of a robot i choosing a

region r that it has responded to is:

P (choose) =
(SirlnTir)

2

∑

r

(SirlnTir)
2

. (8)

If the robot i chooses region r that is not the current region

c, then it will employ the reactive motion control strategy

in Section II to move through the checkpoints plotted by

the planner to region r. The generation of checkpoints is

performed by the approximate cell decomposition method for

motion planning [23].



IV. EXPERIMENTS AND DISCUSSION

This section presents a quantitative evaluation of the re-

active, layered multi-robot architecture for distributed mobile

sensor coverage in a complex, unpredictable environment.

The experiments were performed using Webots, an embodied

simulator for Khepera mobile robots, which incorporated 10%

white noise in its sensors and actuators. 12 directed distance

sensors were also modelled around its body of radius 3 cm.

Each sensor had a range of 17 cm, enabling the detection of

obstacles at 20 cm or nearer from the robot’s center, and a

resolution of 0.5 cm to simulate noise. Each robot could also

sense targets and kin robots at 0.3 m or nearer from its center.

A 4 m × 3 m environment (Fig. 1) was used to house the

Khepera robots and targets, which were randomly scattered

initially. The number of robots varied from 5, 10 to 15, which

corresponded to total robot sensing area of 11.8%, 23.6%,

and 35.3% of the environment size. The mobile targets were

forward-moving Braitenberg obstacle avoidance vehicles [24]

that changed their direction and speed with 5% probability.

Two performance indices were used. The first performance

index determines the overall sensor network coverage perfor-

mance of the robots [25]:

sensor network coverage =
T

∑

t=1

100
n(t)

NT
(9)

where N is the total number of targets, n is the number of

targets being tracked at time t, and the experiment lasts T
amount of time. N and T are fixed respectively as 30 targets

and 10000 time steps at intervals of 128 ms for all experiments.

Using this index, a quantitative test was conducted to

compare the sensor network coverage of the robots adopting

four fully distributed tracking strategies: (1) static, (2) poten-

tial fields, (3) cooperative EKMs only, (4) reactive, layered

architecture (ant-based MRTA with cooperative EKMs). In the

first method, static sensors are placed at least 0.6 m apart to

ensure no overlap in coverage. The potential fields method

is a well-known motion control technique utilized in [25]

for cooperative multi-robot tracking of moving targets. While

potential fields and cooperative EKMs allow the robots to

cooperate in tracking at control level, ant-based MRTA enables

them to cooperate at task level.

On the other hand, recent proposals of sensor network

organization are hierarchically structured ([3], [26]). At the

bottom of the hierarchy, the robots track with cooperative

EKMs, which is the same as the third method. In each region, a

coalition leader is elected. It regards the robots in its coalition

as resources and negotiates with coalition leaders in the other

regions to efficiently allocate them according to the regional

distributions of targets. This negotiation is conducted itera-

tively at every interval of τ using an auction-based mechanism

and attempts to balance the ratio of number of robots (re-

sources) over all regions with the ratio of targets. To do so, we

assume that each coalition leader is capable of obtaining more

information, i.e., the exact number of robots and targets in its

own region. Furthermore, it is able to communicate with all
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Fig. 3. Comparison of sensor network coverage using different tracking
strategies.

robots in its own coalition to obtain their task performance and

command them to move to other regions if they are tracking

minimal targets and observing many kin robots. Lastly, it has

to synchronize its negotiation with coalition leaders in the

other regions via long-range communication. In contrast, the

robots endowed with our reactive, layered architecture only

require local sensing information (i.e., 0.3 m range) and short-

range communication (i.e., 1.0 m range). The robot coalitions

can also be self-organized asynchronously without negotiation.

We have implemented this hierarchical approach to compare

with our distributed layered architecture.

Test results (Fig. 3) showed that our reactive, layered

architecture provided better coverage than the other strategies.

Notice that while the hierarchical approach (auction-based

negotiation with cooperative EKMs) used more information,

longer communication range and more complex negotiation, it

did not perform better than our reactive, layered architecture.

This will be explained later.

The second performance index determines the total coali-

tional cost [8] of the robots. Given a set of connected regions

where coverage tasks are to be performed, and a set A of M
robots, the task allocation algorithm assigns a robot coalition

Cr ⊆ A to the coverage task in region r such that (a)
⋃

r Cr = A, (b) ∀r 6= s, Cr

⋂

Cs = ∅, and (c) each Cr

has a positive cost |nr/N − mr/M | where mr and nr are

the number of robots and targets in region r respectively. The

objective is to minimize the total coalitional cost [8]:

total coalitional cost =
∑

r

∣

∣

∣

nr

N
−

mr

M

∣

∣

∣

. (10)

This index varies within the range [0,2]. A coalitional cost

of 0 implies that the robot distribution over all regions is

exactly proportional to the target distribution. In this manner,

interference between robots is at its minimum, which will

improve overall coverage. High costs imply the opposite.

Test results (Fig. 4) showed that if either auction-based ne-

gotiation or ant-based MRTA was integrated with cooperative

EKMs, the total coalitional cost could be reduced further.

Hence, we could conclude from Figures 3 and 4 that with

a lower cost, a higher coverage can be achieved. Coalitional

cost is higher with fewer robots because with less robots, it is
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more difficult to achieve the same proportion of robots to that

of the targets over all regions. Furthermore, with ant-based

MRTA, each robot received fewer messages from the other

robots when there were less robots. As a result, the robots

were less certain about the task demands in other regions.

This caused the scheme to be less effective in the distribution

of robots.

Interestingly, although auction-based negotiation achieved

slightly lower coalitional cost than ant-based MRTA, its cov-

erage performance was worse. The auction-based negotiation

among the coalition leaders prioritized the task of balancing

the ratio of number of robots over all regions with the ratio

of targets. As a result, a robot that performed the worst in

a region over-populated with robots would be commanded

by its coalition leader to move to another region deprived of

robots. This robot would be forced to drop the targets that it

was currently tracking and renew its search for targets in the

new region that it moved to. If this new region was large, it

might take even longer to find the targets. In contrast, since our

ant-based MRTA was stochastic, the robot had a tendency to

remain in its current region and continue tracking the targets

(Section III-C). This accounted for higher coverage of ant-

based MRTA over auction-based negotiation.

V. CONCLUSION

This paper describes a reactive, distributed layered archi-

tecture for resource-bounded multi-robot cooperation, which

is utilized in the application of mobile sensor network cov-

erage. In particular, our proposed upper-layer method for

task allocation via self-organizing swarm coalitions uses the

concepts of ant behavior to self-regulate the division of labor in

proportion to the task demands across regions in the changing

environment. Hence, our multi-robot system functions like a

complex adaptive system.
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Verlag, 1999, pp. 51–67.

[16] B. Jung and G. S. Sukhatme, “Tracking targets using multiple robots:
The effects of environment occlusion,” Autonomous Robots, vol. 13,
no. 3, pp. 191–205, 2002.

[17] A. E. Hirsh and D. M. Gordon, “Distributed problem solving in social
insects,” Annals of Mathematics and Artificial Intelligence, vol. 31, no.
1-4, pp. 199–221, 2001.

[18] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraulaz,
and E. Bonabeau, Self-Organization in Biological Systems. Princeton,
NJ: Princeton University Press, 2001.
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