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Abstract
Data valuation in machine learning (ML) is an
emerging research area that studies the worth of
data in ML. Data valuation is used in collabora-
tive ML to determine a fair compensation for ev-
ery data owner and in interpretable ML to identify
the most responsible, noisy, or misleading training
examples. This paper presents a comprehensive
technical survey that provides a new formal study
of data valuation in ML through its “ingredients”
and the corresponding properties, grounds the dis-
cussion of common desiderata satisfied by existing
data valuation strategies on our proposed ingredi-
ents, and identifies open research challenges for de-
signing new ingredients, data valuation strategies,
and cost reduction techniques.

1 Introduction
As machine learning (ML) and data sharing become more
ubiquitous, there is greater interest by data owners in how
much their data is worth and by model owners in how to
explain model predictions and what data to add or remove
to improve model performance. The former is evidenced
by the emergence of data marketplaces (e.g., Ocean Proto-
col) for users to buy and sell data and initiatives such as the
Data Dividend Project where consumers are banding together
to demand property rights to their data under the California
Consumer Privacy Act and receive payments from big tech
companies [Rozemberczki and Sarkar, 2021]. The latter is
evidenced by the popularity of interpretable ML methods in
various fields, including healthcare.

The above concerns can be addressed via data valuation. In
data valuation, the value of data contributed by a data owner is
influenced by the data from other owners. Data valuation can
be used in collaborative ML (CML) to determine a fair com-
pensation (or share of a fixed monetary sum) for every data
owner to incentivize them to share data [Sim et al., 2020; Tay
et al., 2022]. The fair compensation is usually some affine or
monotonic transformation of the contributed data value [Jia
et al., 2019a; Sim et al., 2020]. Data valuation can also be
used in interpretable ML to attribute the model predictions
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and accuracy to the most responsible training examples from
the data. Often, only the ranking of data values (instead of
their absolute values) is needed. Model owners can improve
their models by actively collecting data similar to the high-
value training examples or removing noisy and misleading
training examples with low values [Ghorbani and Zou, 2019;
Yoon et al., 2020]. Lastly, data valuation is useful for domain
adaptation by assigning higher value to data with an underly-
ing distribution similar to the target one [Yoon et al., 2020].

It is thus timely to introduce a technical survey that (a) pro-
vides a new formal study of data valuation in ML through its
“ingredients” and the corresponding properties (e.g., perfor-
mance metric and its design principles) (Sec. 2), (b) grounds
the discussion of common desiderata satisfied by existing
data valuation strategies (e.g., Shapley value) on our proposed
ingredients (Sec. 3), and (c) identifies open research chal-
lenges for designing new ingredients, data valuation strate-
gies, and cost reduction techniques with specific examples
(Sec. 4). All these distinguish the novel contributions of our
survey from that of Cong et al. [2021] and Pei [2020]. Other
surveys have either focused on the economics perspective
(e.g., nature of data as a merchandise, costs for data acqui-
sition, government regulation) [Fricker and Maksimov, 2017;
Liang et al., 2018; Muschalle et al., 2013; Raskar et al., 2019;
Zhang and Beltrán, 2020] or the cooperative game theory
(CGT) based valuation strategies [Bax, 2019].

2 “Ingredients” of Data Valuation
Suppose that there is a set of n data owners denoted as
N ≜ {1, . . . , n}. The objective of data valuation is to deter-
mine the value (or contribution/payoff) {ϕk}k∈N of dataset
Dk for data owner k. The valuation function ϕ is a function of
several “ingredients”: the family of datasets D ≜ {Dk}k∈N

from all data owners, the learning algorithm A, and the per-
formance metric U . Formally, ϕk ≜ ϕ(k,D,A, U), as shown
in Fig. 1. The learning algorithm A is a function that takes
in an arbitrary training dataset D and outputs a model. The
performance metric U takes in any model A(D) or dataset
D to output a real-valued performance score. For any subset
C ⊆ N of data owners, DC ≜

⋃
k∈C Dk, so, DN denotes the

aggregated dataset of all owners. Before giving examples of
the data valuation strategy ϕ, we will discuss how the choices
of the ingredients can affect the choice and computation of ϕ.



Figure 1: Overview of the data valuation problem with n data own-
ers. The learning algorithm A (e.g., logistic regression) takes in data
and produces a model. The performance metric U (e.g., validation
accuracy) used to evaluate the value of data/model is selected to fol-
low certain principles. The data valuation strategy ϕ (e.g., Shapley
value [Sec. 3.2]) is selected to satisfy certain desiderata. We may
consider the performance metric for multiple subsets of data owners
and techniques to reduce the computational cost.

2.1 Data, D
Both the number n of data owners and the maximum dataset
size maxk∈N |Dk| affect the cost of computing or approxi-
mating ϕ. The presence of noisy data affects the choice of
the performance metric U [Ghorbani and Zou, 2019]. Lastly,
whether Dk is a fixed dataset or a random/biased sample from
an underlying distribution may also affect the choice of ϕ
[Abay et al., 2019; Koenecke and Varian, 2020].

2.2 Learning Algorithm, A
The value of data may vary across learning algorithm A, and
the choice of A affects the choice of performance metric U .
When A is undecided, U would solely be designed based on
data-driven principles. As another example, when the model
has no parameters or the parameters are not directly compa-
rable across models (e.g., neural networks), the performance
metric cannot be directly based on the parameters. Further-
more, the choice of A (and U ) affects the cost of computing ϕ
and its approximations. We will outline several learning algo-
rithms that are important to our discussion of data valuation.

The k-nearest neighbours (k-NN) is a commonly used
learning algorithm that predicts the label for a datum based
on the known values of several similar data/nearest neigh-
bours [Jia et al., 2019a]. Another class of learning algorithms
involves empirical risk minimization (ERM) using gradient-
based techniques such as logistic regression and deep neu-
ral networks (DNNs) [Ghorbani and Zou, 2019]. Bayesian
models such as Bayesian linear regression offer the distinct
advantage of providing an uncertainty measure in the predic-
tions; intuitively, a lower uncertainty is more desirable [Sim
et al., 2020]. Generative models [Goodfellow et al., 2014;
Kingma and Welling, 2014] are typically used to learn an ef-
fective representation of the data and can be used to generate
synthetic data that can be operationally easier to share than
real data due to privacy regulation [Tay et al., 2022].

2.3 Performance Metric, U
The performance score UA(D) ≜ U(A(D)) or U(D) for
more desirable models or datasets should be higher. We have

identified a few design principles which are model- or data-
driven. Table 1 summarizes how different performance met-
rics in existing work satisfy multiple design principles.

Model-driven Principles
P1 Validation performance (VP). Intuitively, a model with

better performance on a validation set is more valuable.
Possible choices of VP include accuracy [Ghorbani and
Zou, 2019; Jia et al., 2019b] and negated loss functions.
VP also depends on the task, such as whether we are pre-
dicting the likelihood vs. severity of illness (in a medi-
cal use case). VP can distinguish between data that im-
prove model performance from data that worsen model
performance (e.g., noisy/adversarial data or from a dif-
ferent domain). Thus, VP is suitable for use cases that
involve model interpretability, domain adaptation, and
noisy/adversarial data. However, it may be practically
difficult to obtain a validation set that all data owners
agree on [Sim et al., 2020].

P2 Uncertainty. A model with a lower uncertainty in its
model parameters and predictions is more valuable. This
principle is theoretically ensured by using information
gain (IG) on the model parameters/function from observ-
ing the data outputs as the performance metric [Sim et
al., 2020]. IG measures the expected reduction in en-
tropy capturing uncertainty across all possible data out-
puts. Moreover, IG can be used as a surrogate measure
of the predictive accuracy of a trained model [Krause and
Guestrin, 2007; Kruschke, 2008] when the test queries are
not known a priori. Hence, it is especially useful when a
validation set is not available.

P3 Order of data arrival. For certain A and optimiza-
tion techniques (e.g., deep neural networks (DNNs) and
gradient-based optimization), sharing the same data ear-
lier is more valuable. The rationale is that model per-
formance is less likely to be improved or influenced by
new data if the model (e.g., DNN) is closer to conver-
gence at the later stages in a gradient-based optimization.
Thus, data owners should be more highly valued for shar-
ing data in the early stage of such optimization, like in
federated learning [Song et al., 2019].

Data-driven Principles
These principles are defined based on D instead of the model
(i.e., U(D) directly instead of U(A(D))).
P4 Monotonicity. Having more data is more (or at least

equally) valuable [Sim et al., 2020; Tay et al., 2022;
Xu et al., 2021b].

P5 Submodularity. The same data is less valuable when
added to a larger dataset (i.e., law of diminishing returns).
The IG on Bayesian model parameters as U satisfies sub-
modularity [Sim et al., 2020].

P6 Similarity to reference distribution. Dataset D is more
valuable when it is similar and representative of the ag-
gregated data DN (or the target task’s distribution). Tay et
al. [2022] measured similarity using the translated nega-
tive maximum mean discrepancy (MMD) between the un-
derlying distributions P and P∗ for the respective datasets



D and DN , i.e., −MMD(P,P∗). As this quantity is in-
tractable, Tay et al. [2022] have resorted to its (biased)
estimate −M̂MDb(D,DN ∪ G), where G is a synthetic
dataset generated by a generative model trained on DN .
Separately, Xu et al. [2021a] have considered the cosine
similarity (vector alignment) between (i) the model pa-
rameter update from using data from each owner k only
and (ii) the aggregated model parameter update across all
owners (which uses data from every owner).

P7 Intra-diversity. Dataset Dk is more valuable and will
improve the model’s predictive performance if it contains
more diverse data points covering a larger region of the
input space. Xu et al. [2021b] have measured diversity
using the volume (i.e., square root of the determinant) of
the left m × m Gram matrix as U (of data with m fea-
tures). The volume is theoretically shown to positively
correlate with the regression performance: A high vol-
ume suggests a low mean squared error.

P8 Replication robustness. Replicated data should not be
highly valuable as adding the same data repeatedly to
an ML model does not improve its performance signifi-
cantly. Xu et al. [2021b] have provided an upper bound
on their diversity-based performance metric from direct
(up to infinite) replication, which does not increase the di-
versity in data. This principle prevents dishonest owners
from gaming the data valuation [Ohrimenko et al., 2019].

P9 Cost. Data that is costly (to obtain/maintain) should be
more valuable to incentivize the data owners’ participa-
tion [Heckman et al., 2015]. The costs include that of data
acquisition, storage, and transport [Agarwal et al., 2019;
Devereaux et al., 2016].

P10 Timeliness. Data that is timely (i.e., up-to-date) is more
valuable [Stahl and Vossen, 2016]. Service providers can
adjust their market operation strategies using real-time
data to provide customized services, for example, to users
of the bicycle-sharing services [Zhao et al., 2020]. This
strategy is ineffective with outdated data.

3 Data Valuation Strategies, ϕ
We will discuss various data valuation strategies ϕ. ϕ is a
more general concept than the performance metric U as ϕ can
additionally depend on the datasets DC of others. In other
words, ϕk ≜ U(Dk) or UA(Dk) is only one possible specifi-
cation of ϕ. We will describe several desiderata from existing
works and cooperative game theory (CGT) literature for de-
signing ϕ. Importantly, the suitable desiderata to a certain
application scenario of data valuation (and the properties of
its ingredients) can guide the specific choice of ϕ. For ex-
ample, fairness is related to how well each owner’s value ϕk

reflects his contribution and is captured by D4-D6 [Chalki-
adakis et al., 2011]. To ensure fairness, we look for a ϕ that
satisfies D4-D6 in Table 2. We adopt the notation convention
from CGT and let v be the characteristic function that maps

1A possible use case is when the data owners cannot agree on the
downstream model/task.

Principles Performance Metric U(·)

Model-driven
Validation
performance (P1)

• Classification accuracy [Jia et al., 2019a; Jia et al., 2019b; Jia et al.,
2019c; Ghorbani and Zou, 2019; Ghorbani et al., 2020; Yoon et al.,
2020]

Uncertainty (P2) • Information gain on Bayesian models’ parameters [Sim et al., 2020]
• Uncertainty in predictions

Order of data
arrival (P3)

• Higher weight in earlier iterations of federated learning [Song et al.,
2019]

• Other ML applications such as reinforcement learning

Data-driven
Monotonicity (P4)
Submodularity (P5)

• [Sim et al., 2020]
• Volume of the left Gram matrix [Xu et al., 2021b]

Similarity (P6) • Translated negated MMD divergence between data and gener-
ative models’ learned data distribution [Tay et al., 2022]1

• Gradient alignment [Xu et al., 2021a]

Diversity (P7), Repli-
cation robustness (P8)

• [Xu et al., 2021b]

Cost (P9) • [Heckman et al., 2015]
Timeliness (P10) • [Stahl and Vossen, 2016]

Table 1: Summary of design principles of performance metrics. Ital-
ics indicates work yet to be done.

each subset of owners/coalition to a value, i.e., v : 2N 7→ R.
For data valuation, we define v(C) ≜ UA(DC) or U(DC).
D1 Low computational cost. The total cost of computing

ϕ, which depends on the number of evaluations of A and
the cost of each evaluation, should be low enough to be
tractable/efficient. The number of evaluations may de-
pend on the number n of data owners. When A is expen-
sive and n is large, we will prefer ϕ that can be computed
without or with fewer (e.g., O(log n)) evaluations of A.
As an example, when millions of data owners [Singhal et
al., 2021] contribute their data for the training of a DNN
that minimises the empirical risk, we want to avoid re-
training on multiple data subsets from scratch.

D2 Dependence on D. The value ϕk of Dk should de-
pend on other datasets in D [Agarwal et al., 2019].
Formally, owner k’s relative valuations to j, (i) ϕk −
ϕj and (ii) ϕk/ϕj cannot be simplified into a function
g(Dk, Dj ,A, U) which is independent of the others’
datasets. To illustrate, suppose that the dataset Di of
owner i ̸= k, j is updated to include a duplicate of Dj .
We expect owner k’s relative valuations to increase as
j’s data is made redundant by Di. (i) may affect the
ranking of owners k and j in interpretable ML while (ii)
will alter their compensation in CML [Sim et al., 2020;
Xu et al., 2021a]. One possible dependency is that more
unique data should be more valuable.2 Formally, if Dj is
similar to others’ data and Dk is exclusive to owner k, it
is possible for ϕk > ϕj even if U(Dk) ≤ U(Dj).

D3 Clone robustness. If an owner k additionally joins the
collaboration as a clone k′ (i.e., Dk′ = Dk), then the
value assigned to k (and k′) should not increase. For-
mally, let ϕ′

k denote the value of owner k in the clone col-
laboration setting. We require ϕk > ϕ′

k + ϕ′
k′ . This will

ensure that the owners cannot unfairly obtain a higher

2Technical whitepaper: Guide To Data Valuation For Data Shar-
ing (link).

https://www.imda.gov.sg/-/media/Imda/Files/Programme/AI-Data-Innovation/Guide-to-Data-Valuation-for-Data-Sharing.pdf


valuation [Ohrimenko et al., 2019].3

D4 Uselessness. If including Dk does not improve the per-
formance score for any coalition C with aggregated data
DC , then owner k should be valueless: For all k ∈ N ,
(∀C ⊆ N \ {k} v(C ∪ {k}) = v(C)) ⇒ ϕk = 0.

D5 Symmetry. If including Dk yields the same im-
provement as including Dj in the performance score
for any coalition C (e.g., Dk = Dj), then their
values are equal: For all k, j ∈ N s.t. k ̸= j,
(∀C ⊆ N \ {k, j}, v(C ∪ {k}) = v(C ∪ {j})) ⇒ ϕk = ϕj .

D6 Strict Desirability.4 Ensuring fairness may extend be-
yond symmetry to require owner k to have a higher value
than owner j if including Dk yields a greater improve-
ment than including Dj to some coalition, but the reverse
is not true. For all k, j ∈ N s.t. k ̸= j,

(∃B ⊆ N \ {k, j} v(B ∪ {k}) > v(B ∪ {j})) ∧
(∀C ⊆ N \ {k, j} v(C ∪ {k}) ≥ v(C ∪ {j}))
⇒ ϕk > ϕj .

For weak desirability, > is replaced by ≥. Intuitively,
strict and weak desirability enforces whom a data owner
k must outvalue or cannot be outvalued.

D7 Group Rationality.5 The value v(N) of the aggregated
dataset equals the total value distributed to the N data
owners, ϕN =

∑
k∈N ϕk, i.e, v(N) = ϕN . This is

important when the absolute value of ϕk is used, e.g.,
v(N) denotes the revenue (from the collaboration) to
be distributed among the data owners according to ϕk
[Richardson et al., 2020]. Note v(N) > ϕN implies
wastage while v(N) < ϕN is not feasible without ex-
ternal resources. On the other hand, this desideratum
may be unnecessary when only the ranking of data points
is used (e.g., in interpretable ML applications) or when
ϕk is rescaled (e.g., in CML applications where owners
share a fixed sum).

D8 Additivity. The data value computed using the perfor-
mance metric U = U1 + U2 is the sum of the data value
computed using each performance metric independently.
Formally, for all k, ϕ(k,D,A, U) = ϕ(k,D,A, U1) +
ϕ(k,D,A, U2). As an example, U1 and U2 can be the
validation accuracy on two separate validation sets stored
on separate servers. Thus, decentralized valuation be-
comes feasible. This desideratum may be unnecessary
when centralized valuation is feasible.

D9 Lipschitzness. The value of ϕk should not change sig-
nificantly when Dk changes slightly (e.g., slight pertur-
bation to data point) or when A changes slightly (e.g.,
change in neural network architecture).

We classify the data valuation strategies ϕ into three cate-
gories: leave-one-out (LOO), CGT, and desiderata-based ac-
cording to (the motivation of) the desiderata that ϕ satisfies.

3D3 addresses cloning of an owner k and his dataset while P8 ad-
dresses replication of data points within any dataset, including Dk.

4[Maschler and Peleg, 1966].
5[Jia et al., 2019b]. If U(∅) = 0, then this definition is the

efficiency assumption in CGT [Chalkiadakis et al., 2011].

3.1 Leave-one-out (LOO) Based
The LOO based strategy evaluates the value of k’s dataset Dk

as the change in the performance metric of the output model
(or dataset) after leaving out Dk from the overall aggregated
data DN . Formally, ϕk ≜ v(N) − v(N \ {k}). LOO sat-
isfies D2–D5 and can be adapted to satisfy D1 and D7. To
compute the LOO value [Cook and Weisberg, 1980] for every
owner k ∈ N , we need to evaluate v(N \ {k}) an additional
n times. This is potentially (computationally) expensive due
to the training of A(DN \Dk) in each v(N \ {k}).

Two fundamental drawbacks of LOO based strategies are
that ϕk may be inaccurate and the violation of D6, especially
when multiple owners have similar datasets. To illustrate,
consider the k-nearest neighbours algorithm as A and the val-
idation accuracy as U . If owner k has a clone j s.t. Dk = Dj ,
their LOO values ϕk = ϕj = 0 regardless of the validation set
as the predictions do not change [Ghorbani and Zou, 2019].
As another example, consider Bayesian linear regression as
A and IG (on the regression parameters) as U . For any owner
k, when |DN \Dk| is large, ϕk ≈ 0 as IG is submodular and
the increase in IG due to Dk diminishes with more data [Sim
et al., 2020]. These drawbacks of LOO prompt the investi-
gation of more principled ways to leave out m > 1 owners’
datasets from DN instead, as in CGT based strategies.

3.2 Cooperative Game Theory (CGT) Based
Several data valuation works adopt well-known CGT solu-
tion concepts including (but not limited to) Shapley value
(SV) [Shapley, 1953], least core, and Banzhaf index (BI)
as ϕk. In these solution concepts, ϕk explicitly depends on
k’s marginal contribution (MC) to every coalition (subset of
owners) C ⊆ N \ {k} or the value of the coalition C ∪ {k}.
The MC of k to C is ∆C

k ≜ v(C ∪{k})−v(C) and the value
of a coalition including k is v(C ∪ {k}).

Both SV and BI set ϕk =
∑

C⊆N\{k} wC∆
C
k . In BI, every

coalition C ⊆ N \ {k} has an equal weight wC while in SV,
the weight wC is the lowest when |C| = n/2 and increases
as |C| tends to 1 or n. SV is the unique solution concept to
satisfy D4, D5, D7, and D8 simultaneously. This has led to its
popularity in existing works (e.g., [Ghorbani and Zou, 2019;
Jia et al., 2019b]). SV and BI assume all owners are commit-
ted to forming the grand coalition N for collaboration.

In contrast, (egalitarian) least core sets (ϕk)k∈N to the
vector with the least l2-norm that minimises the greatest
deficit between the characteristic function value and the to-
tal payoff to any coalition C, i.e, maxC v(C) −

∑
k∈C ϕk

[Chalkiadakis et al., 2011]. It is a group notion of fairness
and ensures that each C gets its dues and hence would not
deviate from the grand coalition [Yan and Procaccia, 2021].

3.3 Desiderata Based
We will group a few Shapley variants to discuss the desider-
ata they address, and then describe two other strategies with
different motivations.

Data Shapley [Ghorbani and Zou, 2019] values are sen-
sitive to the exact choice of DN and do not satisfy stability

6The techniques that target ∆C
k can be used for BI and LOO

based strategies.



Choice of ϕ Satisfied desiderata

LOO D1∗, D2–D5, and D7 (after normalization)
Shapley value (SV) D1∗, D2, and D4–D8
Banzhaf index (BI) D1∗, D2–D6, D7 (after normalization), and D8 (without normaliza-

tion)
Egalitarian least
core

D1∗, D2, D4, D5, D6 (weak desirability), and D7

Desiderata based • D9 by D-Shapley [Ghorbani et al., 2020]
• D2, D3, D4, D5, D8 by Robust Shapley [Ohrimenko et al., 2019]
• D1∗, D2, and D4–D6, D8 by Beta Shapley [Kwon and Zou, 2021]
• D1∗, D2, D4, and D5 by Variational Value [Bian et al., 2021]
• D1 and D2 by data value from DVE [Yoon et al., 2020]

Table 2: Summary of the satisfied desiderata of different valuation
strategies ϕ. Note that ∗ means that approximation is required, while
D means that the strategy is designed to satisfy the desideratum.

Quantity of interest Assumptions

Application-agnostic
Shapley value (SV) • Bounded v: Permutation Sampling [Maleki et al., 2013] and

Group Testing [Jia et al., 2019b]
• Monotonic v and sparse (ϕk)k∈N [Jia et al., 2019b]
• Weighted majority game [Fatima et al., 2008]

Least core • δ-probable least core and (δ, ϵ)-probably approximate least core
[Yan and Procaccia, 2021]

Data-valuation specific with Shapley value as ϕk
6

ϕk • k-NN algorithms [Jia et al., 2019a]

Approximate ϕ̂k • Stable A [Jia et al., 2019b]

∆C
k • Incrementally trainable A [Jia et al., 2019b]

Approximate ∆̂C
k

(hence approximate
ϕ̂k)

• DNN training can be approximated with only one epoch: Gradi-
ent Shapley [Ghorbani and Zou, 2019]

• Value ∆C
k ≈ 0 when UA(DC) ≈ UA(DN ): TMC-Shapley

[Ghorbani and Zou, 2019]
• Ensemble games [Rozemberczki and Sarkar, 2021]
• |Dk| = 1, A outputs a model that minimizes a strictly convex

loss with computable gradients and Hessian: Influence functions
[Jia et al., 2019b]

Table 3: Summary of cost reduction techniques. Gradient Shapley,
TMC-Shapley, and influence function do not have theoretical guar-
antees on their approximation quality.

(D9). When a data owner is added or removed, all the data
Shapley values must be recomputed. To satisfy D9, Ghor-
bani et al. [2020] have proposed Distributional Shapley (D-
Shapley) which depends on the underlying distribution in-
stead of the fixed dataset DN . D-Shapley values are sta-
ble under slight perturbations to the data points themselves
and the underlying data distribution. As similar data will
have similar D-Shapley, Ghorbani et al. [2020] have pro-
posed learning a separate regression model to interpolate and
predict D-Shapley for unseen data. As a positive result, the
cost of predicting the D-Shapley for unseen data does not de-
pend on |DN | or the learning algorithm A but only on the
regression model (D1). Moreover, Ohrimenko et al. [2019]
have argued that SV does not satisfy D3 and proposed Robust
Shapley to satisfy it, but loses D7. Interestingly, Kwon and
Zou [2021] have suggested that SV is suboptimal for quanti-
fying the impact of individual datum and proposed losing D7
to assign larger weights for MC to smaller coalitions C.7 The
proposed Beta Shapley is shown to be effective for noisy data

7Beta Shapley satisfies all the other desiderata of Data Shapley
if the weight of every MC is positive.

identification in interpretable ML applications.
Bian et al. [2021] have modelled the probability of any

coalition C forming out of the power set 2N as an energy-
based model, and defined ϕk as the optimal decoupled prob-
ability that an owner k is in the formed coalition C. They
have then approximated ϕk with the m-step Variational Value
which satisfies D2, D4, and D5, but not D7 or D8. Inter-
estingly, they have shown that a one-step gradient ascent for
maximizing the mean-field objective can recover SV or BI.

Yoon et al. [2020] (DVRL) have used reinforcement learn-
ing to automatically learn data values ϕk and improve A dur-
ing training. They have simultaneously learned a regression
model/data valuation estimator (DVE) to pick the ‘valuable’
data to train A (i.e., trained over randomly sampled batches
of data iteratively). Consequently, they have viewed the prob-
abilities that the DVE assigned to k-th datum as its value ϕk.
DVRL is scalable to large datasets and complex models (D1)
since the computational cost (for data valuation) does not di-
rectly depend on |DN | or that of A. It also satisfies D2 but
is not guaranteed to satisfy the other desiderata (D4–D9). A
practical limitation is that it is w.r.t. individual datum (or sin-
gleton datasets |Dk| = 1) and requires n to be large.

4 Open Challenges
4.1 New Ingredients
In Sec. 2, we have seen how the properties of the data and
learning algorithm determine the performance metric and
steps in the computation of ϕ. Hence, new data and learn-
ing algorithm settings should be examined in future work. A
few examples are given as open challenges.

Open Challenges. Firstly, if a data owner k contributes
noisy and adversarial data, then we may want him to get a
lower performance score and data value. However, this new
principle may not be satisfied by the current options for U .
It can be practically challenging to obtain a clean, noiseless
validation set for P1 based metrics. P6 and P7 based per-
formance metrics may contrarily value noisy and adversarial
data highly. Future work may propose new performance met-
rics U that will satisfy the principle and allow CML applica-
tions to remove the assumption for high-quality data used in
[Tay et al., 2022; Xu et al., 2021b].

Next, data owners (e.g., patients) may require privacy guar-
antees on their data. If weak guarantees are acceptable, then
future work can consider using synthetic data [Tay et al.,
2022]. If differential privacy (DP) is needed, then there are
a few issues and questions to consider. Firstly, the need to
compute the value of multiple coalitions C ⊂ N in ϕ may in-
crease the privacy leakage. This is observed when we directly
use DP gradient descent [Abadi et al., 2016] in each train-
ing. Next, as DP would reduce the sensitivity of a model’s
output to data, how would DP affect the MC and its estima-
tion? Finally, what DP learning algorithm Ap and other per-
formance metrics U can provably guarantee the principle that
data/model become less valuable when the privacy require-
ments are higher?

Future work can also propose performance metrics U for
existing principles. For example, for P6 similarity-based met-
rics, the similarity of model parameters or predictions to a ref-



erence model (i.e., trained on everyone’s data) can be used.
Furthermore, other unexplored learning algorithms A (e.g.,
multi-agent reinforcement learning and meta-learning) may
need new performance metrics U and principles.

4.2 New Data Valuation Strategies, ϕ
In Sec. 3, we suggest that in data valuation applications, D7
and D8 may be unnecessary, and their removal will make
more strategies satisfactory.

Open challenges. For CGT based strategies, future work
should further explore the research direction of Kwon and
Zou [2021] to generalize and unify existing strategies, includ-
ing SV and BI. To guide data valuation users on the right ϕ to
use, future work can outline the differences, advantages, and
disadvantages of using different CGT solution concepts and
the impact on the relative ϕk values of owners.

Moreover, for lower computational cost (D1) and to satisfy
other desiderata, future work can explore the research direc-
tions of Ghorbani et al. [2020], Wang et al. [2021], and Yoon
et al. [2020] and outline how to learn and predict ϕ on datasets
with more than one datum.

4.3 New Cost Reduction Techniques
Achieving low computational cost (satisfying D1) is a practi-
cal challenge shared by both the LOO and CGT based strate-
gies. We need to compute ∆

N\{k}
k or v(N \ {k}) (∆C

k or
v(C)) for n and 2n times in total to compute ϕk for LOO and
CGT based strategies, respectively. We will first outline ex-
isting techniques to reduce the computational cost (i.e., sum-
marized in Table 3) and follow up with some open challenges.

Application-agnostic approximations can be used beyond
data valuation and often come with theoretical guarantees.
SV approximations can reduce the cost of computing ϕk from
exponential to polynomial time in n [Fatima et al., 2008;
Jia et al., 2019b; Maleki et al., 2013; Mitchell et al., 2022].
Least core relaxations can be computed with (sub)linear time
in n [Yan and Procaccia, 2021]. However, these improve-
ments may be insufficient due to the costly training of A such
as training DNN on large datasets. Hence, this motivates the
need for data valuation-specific techniques to exploit prop-
erties of A and U . The techniques may target two different
quantities of interest: (i) the value ϕk of owner k, or (ii) his
marginal contribution ∆C

k to any coalition C.
For (i), Jia et al. [2019a] have shown that for k-NN learn-

ing algorithms, every owner k’s SV can be computed exactly
in polynomial time. Separately, Jia et al. [2019b] have proven
that for uniformly stable learning algorithms, every datum’s
SV can be approximated by v(N)/n (with theoretical guaran-
tee) and thus, no retraining is needed. Differently, Ghorbani
and Zou [2019] have proven that for Lipschitz-stable UA, any
datum’s D-Shapley value [Ghorbani et al., 2020] can be es-
timated using a regression model trained only on a fraction
of data and their computed D-Shapley.8 Fatima et al. [2008]
and Rozemberczki and Sarkar [2021] have specifically cho-
sen v(·) to give rise to weighted voting games where both ϕk

and ∆C
k can be approximated efficiently with theoretical error

8D-Shapley satisfies stability (D9) due to the formulation of ϕ
and may hold for a non-stable learning algorithm A.

guarantees. Specifically, they define MC ∆C
k to be 1 iff k is

the swing player (i.e., C makes an incorrect classification but
C ∪ {k} makes a correct classification), and 0 otherwise.

On the other hand, for (ii), Jia et al. [2019a] have suggested
that for incrementally trainable A,9 we can exactly compute
an MC for each of the n owners in the time taken for one
evaluation of A. Thus, we can shave off a linear factor of n
further from the permutation sampling approximation. TMC-
Shapley [Ghorbani and Zou, 2019] eliminates the cost of re-
training A in the later steps of every permutation in permu-
tation sampling by approximating MC ∆C

k with 0 when the
performance metric v(S) evaluated on data from S ⊆ C is
close to v(N). Jia et al. [2019b] have suggested using the in-
fluence function heuristic [Koh and Liang, 2017] to approx-
imate ∆C

k for singleton datasets (i.e., |Dk| = 1) and save
a factor of n from the avoided retraining. Lastly, Gradient
Shapley [Ghorbani and Zou, 2019] approximates the model
trained on multiple passes of the training data with another
trained on a single pass and different hyperparameters. This
replaces A with another incrementally trainable A′.

Open Challenges. The challenges focus on data valuation-
specific techniques. For (i), by studying CGT literature or
analysing UA, future work can identify new properties of A
and U that will enable efficient approximation of ϕk with
theoretical error guarantees. Existing solutions for (ii) may
be unsuitable for some learning algorithms and models (e.g.,
complex DNNs) as they are not incrementally trainable and
do not have convex loss functions. Basu et al. [2021] have
pointed out that the influence function heuristics deteriorate
significantly for complex DNNs. Also, Koh et al. [2019]
have suggested that influence functions are less accurate at
measuring group effects, such as of Dk when its size is large.
Moreover, TMC-Shapley and Gradient Shapley do not come
with theoretical error guarantees. Hence, improvements and
new techniques should be proposed, and their approximation
errors should be studied theoretically and empirically.

5 Conclusion
This paper presents a technical survey to provide a formal
study of data valuation in ML through its ingredients and
the corresponding properties (e.g., performance metric and
its design principles). We ground the discussion of common
desiderata satisfied by existing data valuation strategies on
our proposed ingredients and group existing works into LOO,
CGT, and desiderata based strategies. Moreover, we outline
open research challenges in data valuation. An interesting
direction is to use ML to define ϕ and learn and predict the
value of data. This survey serves as a technical guide for re-
searchers in this field and a guideline for practitioners of data
valuation.

9A is incrementally trainable if we can obtain A(D ∪Dk) from
A(D) with a significantly lower computation cost than retraining
from scratch. An example is logistic regression optimized with gra-
dient descent over one epoch only [Ghorbani and Zou, 2019].



Ethical Statement
This technical survey primarily focuses on the algorithmic as-
pect of data valuation in machine learning and not the regu-
latory considerations governing the usage of data (e.g., data
privacy issues). Hence, practitioners and researchers should
keep in mind and closely observe such regulations since the
protection of data privacy (especially personal data) is crucial.
Furthermore, as briefly described in Sec. 4.1, one possibil-
ity is to adopt differential privacy to provide rigorous privacy
guarantees. Therefore, future works are encouraged to incor-
porate formal treatments of data privacy (not limited to differ-
ential privacy) into valuation to ensure the proposed methods
can be adopted in practice while observing the regulations.
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