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Abstract— Recent years have seen a significant increase in
the number of sensors and resulting event related sensor data,
allowing for a better monitoring and understanding of real-
world events and situations. Event-related data come from not
only physical sensors (e.g., CCTV cameras, webcams) but also
social or microblogging platforms (e.g., Twitter). Given the
wide-spread availability of sensors, we observe that sensors
of different modalities often independently observe the same
events. We argue that fusing multimodal data about an event
can be helpful for more accurate detection, localization and
detailed description of events of interest. However, multimodal
data often include noisy observations, varying information
densities and heterogeneous representations, which makes the
fusion a challenging task. In this paper, we propose a hybrid
fusion approach that takes the spatial and semantic charac-
teristics of sensor signals about events into account. For this,
we first adopt the concept of an image-based representation
that expresses the situation of particular visual concepts (e.g.
“crowdedness”, “people marching”) called Cmage for both
physical and social sensor data. Based on this Cmage represen-
tation, we model sparse sensor information using a Gaussian
process, fuses multimodal event signals with a Bayesian ap-
proach, and incorporates spatial relations between the sensor
and social observations. We demonstrate the effectiveness of
our approach in as a proof-of-concept over real-world data.
Our early results show that the proposed approach can reliably
reduce the sensor-related noise, localize event place, improve
event detection reliability, and add semantic context so that the
fuses data provide a better picture of the observed events or
situations.

Keywords-multimodal fusion; situation understanding; mul-
tisensor data analysis

I. INTRODUCTION

Detecting real-world events using distributed multimodal
sensors is an important research problem with application-
s in defense, civic processes, sports, entertainment, and
transportation. The exponential growth in social media (e.g.
Twitter, Weibo, Flickr) and physical sensors (e.g. CCTVs,
satellite imagery, traffic sensors) over the last few years
have created an unprecedented opportunity to leverage such
multimodal data for distributed event detection. These mul-
timodal event signals describe different aspects of emerging
situations and reflect various spatio-temporal patterns [10].

Fusing and exploring sensor streams that capture different
perspectives of an event, could be useful for better accuracy,
localization, semantic interpretation of various events [13].

However, the fusion of such multimodal data remains
a challenge due to the heterogeneous data representations,
different information densities, and the inherent noise in
each modality. Thus there is a need for not only a unified
data representation format, but also a sophisticated frame-
work that can combine and analyze such multimodal data
for better event detection. Building upon a recent effort
in multimedia research that has defined E-mages [12] as a
unified representation for spatio-temporal data, in this work,
we adopt evolving (image-like) spatial grid representation
to capture heterogeneous event data. Such representation
provides a generic way to model heterogeneous spatio-
temporal data and also allows for the use of a rich repository
of image processing algorithms (e.g. convolution) to easily
derive semantically useful event information from such data.
From a human user perspective, image, as an artifact that
depicts or records visual perception, is also an intuitive way
to visualize and understand different phenomena. Building
further along this line of work, we propose to use the E-mage
representation for designing a hybrid fusion framework for
heterogeneous event signals. While our approach is generic,
we focus on two important modalities - physical sensors (C-
CTV cameras) and social (Twitter tweets), which are utilized
to generate sensor Cmage and social Cmage respectively -
to ground the discussion.

A sensor Cmage is generated by aggregating sensor deci-
sions from multiple physical sensors based on their spatial
distribution. A sensor decision is considered the confidence
of specific visual concept extracted from the sensor. For
example, a crowded being detected from an image captured
by a camera with some confidence x (valued between 0 1);
or a semantic word “protest” detected from the social stream
as an occurring event with high frequency posted in an area.
They represent a sensor confirming some event’s occurring.
Higher sensor decision values mean higher confidence of
detecting such event. The geo-locations of the sensors define
the corresponding pixel’s positions in the image and the



intensity of each pixel is computed by extracting semantic
concepts [6] from camera snapshots. For example, Figure 1
shows how a “crowd” image is generated from Manhattan
CCTV camera readings.

Figure 1: Generating Sensor Cmage from Sensors Map. Left:
physical sensors (CCTV Cameras) detecting particular concept
(“Crowd”) with different probabilities. Middle: corresponding con-
version into sensor Cmage with sparse pixels. Right: simulating
dense sensor readings by applying Gaussian process model to
predict missing pixels in a given region.

Due to the intrinsic properties of the sensor and social
information, event images usually contain noise to differ-
ent extents. For example, the location in a social Cmage
may be incorrect if people discuss an event at locations
other than the event’s origin. In addition, the distributed
physical sensors have different sparsity compared with the
social feeds, which makes event information unavailable at
some locations (pixels). Such noise and sparsity properties
make event localization and situation understanding a hard
problem. To tackle this problem, we design a hybrid fu-
sion framework including Gaussian process model based
prediction, Bayesian method based decision fusion as well
as a spatial fusion to fuse sensor Cmage and social Cmage,
in order to eliminate noise, localize event and uncover
its semantic details. The fusion method provides insights
for several groups of stakeholders including policy makers,
tourists, citizens or city planners.

Thus, our contributions in this work include: 1) lever-
aging multimodal information for better situation under-
standing; 2) proposing an image-based hybrid fusion method
featuring sensor decision and spatial information; 3) reduc-
ing noise in sensor data for better event detection, and 4)
uncovering event details from the fused images.

II. RELATED WORK

Multimodal sensory systems are widely used to charac-
terize important patterns associated with regional situations.
Given a variety of heterogeneous features from data, issues
such as how to fuse and which to fuse [18] has drawn much
attention. Comprehensive surveys of the existing multimodal
fusion techniques for target tracking or object detection in
surveillance application can be found in [1]. Recently, large-
scale situation awareness and understanding using informa-

tion from different sources, especially incorporating social
media data, has drawn increasing attention. Leveraging data
of more diverse social media (i.e., Twitter, Flickr) as well
as open data, Kuo et al. [8] mines urban activities in New
York City across social media in both visual and seman-
tic perceptions and demonstrate a number of interesting
applications revealing patterns related to urban dynamics
(e.g., traffic pattern, sentiment, human activities and fashion
styles) of NYC. Jou et al. [7] designed a system that extracts
“who”,“what”,“when” and “where” containing a multimodal
perspective from heterogeneous multimedia news sources.
Integrating social and sensor data, Pan et al. [10] detects
and describes traffic anomalies using human mobility data
and social media data. An event is considered as bank-
of-concepts [9], fusing multiple social and sensor Cmages
for event detection and situation understanding therefore
involves exploring relations among semantic concepts. In
contrast to existing works in multimodal fusion, however,
we consider challenges related to sensor decision, the spatial
distribution of event signals.

Image fusion is well studied to combine information from
two or more images of a scene into a single composite image
so that the fused image is more informative and suitable
for either visual perception or computer processing [4]. The
objective in image fusion is to 1) reduce uncertainty and
minimize redundancy; 2) maximizing relevant information
particular to an application or task. A lot of works have been
done in image fusion involving issues of multisource [15],
multispectrum, multiresolution and multifocus [16] image
fusion, where desired properties of original images are
extracted and then combined in final fused images in an
application-oriented manner. However, different from tradi-
tional image fusion problems, event images generated from
social or physical sensor data contain pixels of semantic
meaning (e.g., concepts or terms of a particular event)
rather than photon energies striking at any particular location
through light reflection. Since both social or sensor Cmages
contain semantic information, it is worth exploring word
semantic relatedness in the fusion process. To the best our
knowledge, we are the first to address hybrid fusion of
physical and social sensors data with different modalities.

III. PROPOSED APPROACH

This section describes the formalization and techniques
proposed in our hybrid fusion pipeline, shown in Fig. 2. We
first extract event signals from both physical sensors and
social media; these signals are then mapped to “pixels” in a
Cmage based on their corresponding geo-locations and event
decisions (how confidence one signal represents a particular
concept). After that, Gaussian Process, Bayesian fusion and
spatial fusion are then applied sequentially to generate final
event Cmage which represent the a situation.



Figure 2: Cmage-based Multimodal Hybrid Fusion Pipeline.

A. From Event Signals to Event Cmages

Sensor Event Cmage: Csen can be generated from a set
of M physical sensors Ssen = {SEN1, ...SENM} in a
region bounded by upper-left corner Pul = (latul, lonul)
and lower-right corner Pdr = (latdr, londr) in terms
of geo-coordinates in the physical world. Each sensor
SENm = Gm × Rm is composed of its geo-location
Gm = (latm, lonm) and its environment reading Rm (e.g.
image captured by a camera, humidity value measured by
a weather sensor). A region is then separated into grids,
using a user-defined grid size rsen, to form the sensor event
Cmage Csen = [esenij ]H×W , where H = (latul−latdr)/rsen
and W = (lonul − londr)/rsen and sensor pixel eij =
F(SENm); F is the function that transforms the sensor
readings into numeric values, such as a concept detector [6]
for an image, a direct copy of air quality index [5], etc.,
representing the strength of event signal with particular
semantic meanings. The mapping from sensor SENm lo-
cation to corresponding Cmage coordinate is defined by
i = LAT(Gm) = |latul − latm|/rsen, j = LON(Gm) =
|lonul − lonm|/rsen.

Social Event Cmage: Csoc is generated from a set of so-
cial observations Ssoc = {SOC1, ...SOCM} in the same re-
gion as physical sensors, where each observation SOCm =
Gm ×POSTm contains its corresponding geo-location and
the content POSTm (e.g. the tweet text). We define such
posted content POST = {term1, ..., termc} as a set of
terms (or words). Different from pixels of sensor event
Cmage where the value of each pixel is derived directly from
corresponding one physical sensor, the pixel values in social
event Cmage relate to nearby social observations. We pro-
pose using two methods to represent the “social pixel” [12]:
(1) density based signals; and (2) term frequency based
signals. Density based signal method considers the density
of nearby posts that contains the particular term. Specifically,
given Csoc = [esocij ]H×W of termx and a radius r, for social
observation SOCm, eij = F(termx, SOCm, r); where
F =

∑|Ssoc|
k=1,dist(Gk,Gm)<rH(POSTk, termx) is the number

of surrounding social observations whose post POSTk
contains the term termx, indicated by H(POSTk, termx)
and dist(Gk, Gm) is the Euclidean distance of two social
observation locations. The mapping from social SOCm

location to corresponding pixel coordinate is defined similar
to that in sensors event Cmage, but with grid size rsoc. For

term frequency based method, pixel value eij is calculated as
TF-IDF values defined in [13], which generate each term’s
weight by considering history posts in the same location.
Terms with higher weight mean that they are frequently
discussed currently but seldom discussed in the past days.

B. Hybrid Event Image Fusion

1) Sensor Cmage pixel value estimation using noisy and
sparse observations: Due to the intrinsic characteristic and
sparse spatial distribution of sensors, a sensor Cmage will
be generated with many empty and noisy pixels, which
causes problem for the later fusion with social Cmages. In
particular, fusing social pixel with a false empty pixel (e.g.
the one between the two red pixels in bottom-right magnified
patch of Fig. 1) will result in an empty pixel reflecting there
is no event, which is not the truth. To solve this problem, we
assume the sensor readings over an urban area to be realized
from a Bayesian non-parametric model, Gaussian process
(GP) [14], which incorporates noise model and allows the
spatial correlation of sensor readings (sensor pixels) to be
formally characterized in terms of their locations in the
Cmage. This property enables predicting empty pixels using
observed sensor readings. Specifically, assuming a sensor
Cmage Csen

H×W is defined as {(pi, ei)|i = 1, ...,H × W},
where pi and ei are the pixel’s position (pi = [lati, loni])
and intensity respectively, we model the joint distribution
of Q observed pixel values e = [e1, ..., eQ]

> and predicted
pixel values ê = [eQ+1, ..., eW×H ]> at the test locations
under the prior as:[
e

ê

]
∼ N

(
0,

[
K(P,P) + σ2

nI K(P,P?)

K(P?,P) K(P?,P?) + σ2
nI

])
(1)

where P = [p1, ..., pQ], and P? = [pQ+1, ..., pH×W ] are the
observed and predicted feature matrix respectively; σ2

n is the
noise variance; and the elements in covariance matrix K(·, ·)
reflecting correlation between two pixels positions pm and
pn are defined by the covariance function:

k(pm, pn) = σ2
sexp(−

1

2

2∑
d=1

(
pm,d − pn,d

ld
)2) (2)

where pm,d(pn,d) is the d-th component of 2D (lat and
lon) vector pm and pn, and the hyperparameters σ2

s , l1, l2
are signal variance, and length-scales respectively that can
be learned using maximum likelihood estimation. Note that
term pm,d − pn,d measures the geographic distance of two
locations in terms of latitude or longitude.

Having this covariance matrix, values of predictive pixels
can be defined by the Gaussian process regression equations:

ê = k>? (K + σ2
nI)−1

e (3)

where k? is the Q×(W×H−Q) covariances matrix between
predicted pixels and observed pixels, and K = K(P,P) is



the Q×Q covariance matrix of observed pixels; e is Q× 1
observation vector.

2) Event decision fusion: We undertake a pixel-by-pixel
fusion between sensor and social Cmages. Specifically, we
adopt a Bayesian approach based confidence fusion based
on [2], for the sake of simplicity and computationally
efficiency. Each pixel esocij (esenij ) represents event decision’s
confidence from corresponding locations and the fused con-
fidence cij is computed as:

fij = f(esocij , e
sen
ij ) =

esocij · esenij

esocij · esenij + (1− esocij )(1− esenij )
(4)

Using this fusion method, fusing two pixels of high
confidence will result in a higher confidence. Fusing high
confidence with low confidence pixels (which means con-
flicting observation) will result in a value close to the lower
one and two low confidence pixels will result in a much
lower value than either one of them.

3) Spatial fusion: For each social observation or sensor
reading, spatial fusion considers its surrounding signals
which could contribute to the considered event signal. The
range to consider is defined by a fixed reference window
Ww size×w size. Windows size is set to be flexible so that
users can specify the size of area based on the specific type
of the events. Given a reference signal, each signal within
the window will be assigned a weight based on their distance
to the referenced signal. This is valid since a geographically
closer signal has a higher influence. Such a spatial fusion
model is then defined by the fusion function F as follows:

Figure 3: Illustration of Decision and Spatial Fusion

F (Csoc, Csen, w size) = {efusij } (5)

efusij =
∑

xy∈W ij

wxy · fij (6)

where |x− i| ≤ w size−1
2 , |y − j| ≤ w size−1

2

wxy = α · e−
√

(x−i)2+(y−i)2 (7)

wxy is the weight given to the neighbouring pixels of
referenced pixel efusij based on their distances to it. An
illustration of integrating decision and spatial fusion is
shown in Figure 3 with reference window size set to 3× 3;
the sensor Cmage is preprocessed with Gaussian process
resulting in a “Sensor Cmage Patch” similar to the one
shown in Figure 1. Note that Gaussian process is not applied
to social Cmage, because spontaneous human posts can
appear anywhere, making social signals noisy to be modelled
with a smoothing kernel as applied for physical sensors
readings.

IV. EXPERIMENTS

A. Dataset

We used the same dataset from our previous work [13],
which contains continuous image snapshots from 149 C-
CTV traffic cameras across Manhattan, New York City, and
geo-tagged tweets posted in a bounding box covers the
whole Manhattan area. Each tweet contains the text content,
posted time and geographical coordinates (in the form of
latitude and longitude). This data set contains dozens of
events in various types including protests, festivals, parades,
marathons and etc. Different concepts detectors (e.g. parade,
people marching, crowd, car etc) are applied to the images,
resulting in concept confidence value (ranging from 0 to 1)/
We demonstrate the efficacy of proposed approach on three
popular events (“ColumbusDayParade”, “MillionMarchNY-
C” and “StPatricksDayParade”) with large spatio-temporal
coverage that is examined in work [13].

B. Evaluation Metrics

1) Saliency Metric: Events shown in the image should
appear “natural” and “sharp” to a human interpreter [11].
To this point, the fused images are supposed to preserve
the salient information and enhance the contrast for visual-
ization. In order to objectively evaluate our hybrid fusion
algorithm, we would need a “saliency metric” measure
describing how events signals are concentrated in a small
dense region. Zhao et al. [17] proposed a feature based
metric (QP ) to measure how well the salient features of
source images are preserved. Extending this idea, we define a
modified “saliency metric” as a value obtained by averaging
the spatial distance of the points belonging to the same
cluster with respect to the centroid of the cluster for each
cluster. We use mean-shift clustering [3] to obtain clusters
from images. Given an image I , saliency metric S is defined
by:

S(I) =

C∑
i=1

∑
pm∈CL(ci)

wim ∗Dist(pm, ci) (8)

where ci is the cluster centroid of cluster CL(ci) given by
mean-shift clustering and wim = em∑

pn∈CL(ci)
en

is the nor-
malized weight for each pixel; for each cluster

∑
wim = 1.



Lower value of S means a more salient and concentrated
region, therefore a better image for visual analytics purposes.

2) MSE of Ground Truth: To demonstrate the efficiency
of noise removing in fusion process, we evaluate how much
the fused Cmage is close to the ground truth manually
labelled in our previous work [13].

C. Noise Removal & Saliency Enhancement

(a) sensor cmage (b) social cmage (c) fused result

Figure 4: “Million March NYC” Event Cmages : (a) Low Resolu-
tion Sensor Cmage of “Marching” Concept ; (b) High Resolution
Social Cmage of “MillionsMarchNYC”; (c) Fused Cmage

Fig. 4 shows the sensor(a), social(b) and fused(c) image
respectively for the “Million March NYC” protest event.
Figure 4a is obtained by applying the “Marching” concept
detector on the CCTV camera recordings, generating a low-
resolution sensor Cmage. Fig. 4b is obtained by calculating
the TF-IDF weight of term “MillionMarchNYC” according
to [13], resulting a high-resolution social Cmage. The word
cloud examples for three events are shown in Fig. 5 The
intensity of the pixels represent the signal strengths at
corresponding locations. Red crosses are the centroids of
clusters given by the mean-shift algorithm. Saliency metric
values are shown on top of the figures. As can be seen,
Fig. 4c effectively enhances the contrast and saliency of
event candidates than that of Fig. 4a and Fig. 4b, which
look noisy. The fused image tells exactly where this march-
ing event is happening. This demonstrates the proposed
Bayesian-based fusion in Sec. III-B2 can help enhance the
signal if both sources contribute to the confirmation of
events and meanwhile eliminates the noise caused by their
disagreement.

Figure 5: Word Clouds for Three Different Events.

D. Semantic Details Mining
The effectiveness of fusion is also demonstrated by ex-

tensive experiments with different combinations of sensor

Table I: S Values for Different Events

Events Sensor
Cmage

Social
Cmage Fused Enhancement Rate

on Average
ClumbusDayParade 1.24 0.43 0.34 0.47
MillionMarchNYC 1.24 0.47 0.40 0.41

StPatricksDayParade 1.49 0.61 0.53 0.39

concepts and social terms (sConcept-term), shown in Fig. 6.
Blue, red and green bars are the saliency metric S of sensor,
social and fused images respectively. They are ordered
by value S of fused images. Rather than presenting only
a loosely defined concept, such orderings help users to
find the best matching semantic details of ongoing events.
For example, details about the “Marching” concept is best
described by the social term “blacklivesmatter”, which is a
popular hashtag posted during the protest. This shows the
fusion will have a good performance if two concepts have
similar spatial distributions in terms of their event signal.

Figure 6: Saliency Metric Values S of Different Sensor or Social
Event Images and Fused Results

Conducting experiments for two more events, we gener-
ated Table I showing the average improvement in S values
based on the proposed fusion method for different combi-
nations in terms of best matches (e.g. “parade” with “black-
livesmatter”, “stpatricksday”,“green”,“columbus” etc). The
Enhancement Rate measures how much the fused image
enhances the saliency for sensor and social on average.

We compare the sensor, social and fused Cmage with
ground truth, which is binary picture illustrating the location
of this protest event. There are 6 locations where from the
camera feeds, we are sure about the event happening and
generate a ground truth Cmage accordingly. All Cmages are
compared with the ground truth Cmage in terms of MSE.
The result is shown in 7.

Since we have detected the events and mined the re-
lated semantic words of this situation, we specifically ex-
amine the Cmages of concepts that are closely related
to this events, including: “crowd”,“parade”,“people march-



Figure 7: MSE of Sensor, Social and Fused Cmage Compared
with Ground Truth Cmage

ing”,“blacklivesmatters”,“millionmarchnyc” and “protest”.
As can be seen from Fig. 7, the fused Cmages have less
MSE compared to non-fused Cmage, either sensor Cmage
of social Cmage. This is because the Bayesian fusion utilizes
the agreement the event signals from both sources and
the Gaussian process enhance the signal of event locations
given their nearby signals contribute to the confirmation of
occurring events.

E. Effectiveness of Gaussian process

Sensors sparsity problem is handled by Gaussian process
with σ2

s set to 0.90 and ld set to 0.89; these hyper-parameters
are learned using the observable sensor Cmage pixels via
maximum likelihood estimation [14]. The effectiveness of
the Gaussian process for the fusion process is shown in
Figure 8, where red line shows the S of fusion without
GP and the blue line is the fusion with GP. For the best
matches, the fusion will result in better performance (lower
S) if Gaussian process is incorporated in the fusion process.
However, the fusion of some combinations performs better
if no GP is applied. A plausible explanation is that the social
term (e.g. santacon) is not semantically related to the sensor
concept (describing two different events), so the prediction
could not contribute to the fusion.

Figure 8: Comparison of Fusion with GP and without GP

V. CONCLUSIONS

In this work, we present an image-based hybrid fusion
framework to fuse different modalities of physical sensor
and social data, considering both the event signal strength

and their spatial relations. Image-based representations of
different data streams provide not only a better visualization
of situations, but also the convenience of manipulation of
event-related sensor and social signals. The results demon-
strate that the fusion strategy can effectively remove noise
from the data streams, localize the event place and offer
situational semantics details. For future direction, it would
be interesting to explore the semantic relatedness between
different social terms and design fusing operators facilitating
adding more than two layers.
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