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Collective Learning: Motivation

Distributed Learning [13]: Cloud Intelligence

+ Local workers: upload local statistics
+ Central server: broadcast intelligence

Limitations:

+ Choke point of operation failure
+ Communication bottlenecks on server
+ High latency due to centralized communication

Cloud Intelligence Architecture

Cloud Intelligence: Centralized risk of operational failure + communication &
computational bottlenecks imposed by the central server



Collective Learning: Motivation

Collective Learning: Edge Intelligence

+ Edge devices engineer local intelligence
no choke point

+ Intelligence fusion via local communication
reduced latency

+ Collective computation via mass productivity
and local message exchanges
preserved predictive quality

Edge Intelligence Architecture

Edge Intelligence: Mass productivity of edge devices for computation and
preserved predictive quality through on-demand fusion of knowledge



Collective Learning: Issues

A
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Model representation scale poorly D, = (X..y
with increasing data (expensive
. . 2
communications) .'I.

Merging model requires sharing
data & re-training on shared data

(inefficient computations) Do = (Xa,y X ..I. 4
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Agents collect and process data to Agents exchange information via Exchange
generate local model independently message passing for model fusion W iteration

Incomplete information: Agents only communicate with local neighbors
(vulnerable to system changes)

Agents collect local data of different behaviors (cross-domain communications)



I
Collective Learning: Research Objectives

Objectives: Develop collective learning framework that

* Generates local models independently
* Encodes these models into effective representations for model fusion
* Assembles global models accurately via distributed communication

Challenges:

* Limited computation: Inefficient to re-train model when new data arrives
* Limited communication: Exchanging data directly is undesirable
* Distributed communication: No central server to coordinate

Research goals — Develop:

* Representation amenable to online update with streaming data
* Communication-efficient operator for model fusion
* Peer-to-peer message passing algorithm for decentralized fusion



Gaussian Process

f(.) is distributed by a Gaussian process (GP) if its evaluations at any finite
subset of inputs are distributed by a multivariate Gaussian distribution

GP allows analytic inference ©
but incurs cubic processing cost ®



Local Model via Gaussian Process

Objective: Develop efficient local model representation for online
update with data D = (X, y)

Gaussian process (GP) — expressive  Input Latent ~ Prediction
representation with “streaming” prior

However, not efficient

 Computation: cubic

* Representation: quadratic

 Update: cubic

« Communication: not possible
across different domains

p(f.|D) incurs O(|D|?) computation
O(|D|?) memory

Idea: Exploit sparse encodings of GP representation [2-5, 16]



Local Model via Sparse Gaussian Process

Objective: Develop efficient local model representation for online
update with streaming data D = {D;} with D; = {X;, y;}

Encoding Sparse Prediction

Solution: Exploit sparse encoding u = %(Z)  vocabulary ~Encoding  Model
where u(.) is distributed by a parameter-free .__,@_,@
GP [16] - the resulting model can:

Encode local model into a common structure f ) Latent
by learning a transformation from u(.) to f(.) S/ ourut

Input

Separate effect of each data block on Noisy
predictive model: D;’s are independent given u output

Data Block D, = (X;.y;)

Generate additive model summary that p(u|D) incurs O(|D,||Z[?) update
allows online update — unlike GPs [1-5, 16] O(|Z[?) memory



Local Model via Sparse Gaussian Process

Objective: Develop efficient local model representation for online
update with streaming data D = {D,} with D, = {X,,y;}

Advantages over eXiSting GPS [1 _5, 16] Encoding Sparse Prediction

vocabulary  Encoding Model

Online update cost scales linearly in size
of data block |D;

Latent
output

Novel communication mechanism using

p(u|D) across agents operating in different

(but correlated) domains Noisy

output

Data Block D; = (X, y;)

p(u|D) incurs O(|D;||Z|?) update
()(\Zlg) memory



Local Model via Sparse Gaussian Process

Vocabulary: Sparse encoding:
Inducing inputs Inducing variable

Embedding Domain Knowledge:
Prior Belief

u~ N (mo,Vo)

Local learning
fi Latent output

u

Local Model:
Posterior Belief Input
u v N (mn, Vn) i—=1.. .n Observations

Data block



Cost-Efficient Model Fusion

Objective: Develop cost-efficient operator that enables agents to
share models without communicating raw data (costly)




Cost-Efficient Model Fusion

Common vocabulary

I'op =g T Ty — I

fused agent a’s and b’s prior, common
representation local representation representation

Benefit: Fusion cost does not depend on data size —
computation- & communication-efficient



Collective Model Fusion via
Decentralized Message Passing

Objective: Develop peer-to-peer message passing algorithm to
achieve global fusion without communicating via central server

Solution: Exploit additive structure of fusion operator to construct
global representation from distributed, local messages combining

local representations from different agents’ neighborhoods
Message content: m,f_fj ) sent from agentitojattimet + 1

encapsulates local representations in i’s local neighborhood A(z) \ {j}

z(t—J;Jl) ( Z mlSlz) + Iq, — I

keA()\{s}



Collective Model Fusion via
Decentralized Message Passing

Objective: Develop peer-to-peer message passing algorithm to
achieve global fusion without communicating via central server

Solution: Exploit additive structure of fusion operator to construct
global representation from distributed, local messages combining
local representations from different agents’ neighborhoods

Key result: Global model representation r can be constructed after
convergence at t > d (d denotes network diameter)




Empirical Studies: Performance Gain

Traffic dataset (5D input) [13] features a traffic phenomenon over an urban
road network with 775 road segments. 10K batches/blocks of data are
streamed in random order to 100 agents. Each agent is evaluated on a
separate set of 2K data points.
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Observations: (l) Post-fusion prediction shows significant performance gain,
and (ll) performance gap reduces with more data (diminishing gain)




Empirical Studies: Stability
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(a) Individual performance profiles (pre- vs. post-fusion RMSE) of a 1000-agent
system evaluated in the data-intensive AIRLINE domain [6, 7]

Observations: (l) Clusters of performance profiles shift towards regions with better
pre- and post-fusion accuracy with more data, (ll) shift slows down with more data,
() high variance for pre-fusion and low variance for post-fusion

—> stability: post-fusion consensus with small variation



Empirical Studies: Resiliency
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(b) Pre- and post-fusion performance of 2 agents with different learning capabilities:
A1 with fixed amount of data & A2 with continuous supply of data

Observations: () Without fusion, A1 cannot improve its performance, (ll) with fusion:
A1 performs similar to A2 and far exceeds its original accuracy, (lll) A2 marginally
improves upon fusion with A1 —> fusion benefits agents with lesser capabilities & is
resilient to information disparity



Empirical Studies: Robustness

| Data per agent | . 19 ' ’ 20
461 % 05 batches . _ COOL-GP
_ ¥ 10 balches . * IDTC
= 15 batches . 18 X"X"X"X“'X"X ’
20 batches = & = 18 [ [XPITC_ |
= 25 batches — \X S —
A 30 batches =17 Post-Fusion (A1) =
5 Z__{i Post-Fusion (A2) ——5
= 3 [ & Pre-Fusion (Al) . 16 |
S © 16 Pre-Fusion (A2) |1
2 -~ '“ | A
Lt 151 , =14
z\.
40
14+ : : : ‘ ‘ ’ 12 - : : ' ‘ ' ‘
39 - . . . . . )
38 38.2 384 386 38.8 39 39.2 39.4 39.6 i 5 i 1 O 1 5 . 20 25 30 O 0 1 02 03 0'4 05
Post-Fusion RMSE (min) No. N of streaming data batches Rate of Transmission Loss

(a) (b) ()

(c) Post-fusion performance of our COOL-GP compared to existing distributed GPs
(dDTC [9] & APITC [13]) vs. rate of transmission loss in traffic domain

Observations: With higher transmission loss, post-fusion performance of our COOL-GP
degrades more gracefully. Reason: dDTC & dPITC require all agents to transmit messages
to a master server & failing to achieve this leads to irrecoverable information loss, while
COOL-GP allows agents to propagate messages to multiple neighbors & lower risk of
losing information -- more robust -- for more detail: https://arxiv.org/abs/1805.09266




Model Fusion with Black Boxes

Do

W\ Challenge:
Private, heterogeneous model architecture

Prev. works assume white-box architecture

@ ® @ InputLayer Hidden Layers Output Layer




Model Fusion with Black Boxes

Black-Box Setting: Pre-trained model
API to query probabilistic prediction




Model Fusion via Gradient Aggregation

API
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Model Fusion via Gradient Aggregation

Guarantee: Disagreement rate is
upper-bounded by a constant
given sufficient training data
minimize
w;

Dxr(qi || pily|z; w;))

API

Gradient
Aggregation
A

#4 Persistent Fusion
* Robust Imitation

For more details:

http://proceedings.mlr.press/v97/hoang19a/hoang19a.pdf
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Model Fusion (via Gradient) Improves Performance

More accurate prediction
with more fusion iterations
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Model Fusion (via Imitation) Improves Performance

More accurate prediction High prediction Low prediction
with more fusion iterations variance PRE-FUSION =—————=p variance POST-FUSION
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Our Preliminary Work

[1] Collective Online Learning of Gaussian Processes in Massive Multi-Agent Systems.
Nghia Hoang, Minh Hoang, Bryan K. H. Low & Jonathan How.
In Proc. AAAI, 2019,

- Model fusion for Gaussian processes (for probabilistic regression)

[2] Collective Model Fusion with Multiple Black-Box Experts.
Minh Hoang, Nghia Hoang, Bryan K. H. Low & Carleton Kingsford.
In Proc. ICML, 2019.

- Model fusion for black-box Al (but restricted to probabilistic regression/classification)




Conclusion and Future Works

Contribution: Collective (Black-Box) Model Fusion Framework

* Advocate edge intelligence instead of cloud intelligence architecture (intelligence
distributed on edge devices, not centralized on the cloud)

 Communication-efficient pairwise fusion operator between two agents, also
amenable to cross-domain fusion and online learning

« Effective decentralized message-passing algorithm: resilient to system changes,
while maintaining consistent global intelligence assimilation

Future Challenges:

* Agent might learn different concepts (each corresponds to a black box) concurrently
(component identification: align concepts between two agents)

* Automatically grow encoding/surrogate model complexity to match that of streaming
data (durable implementation for lifelong missions)

* Extension to incorporate decentralized decision making (completing the loop
between inference & planning/decision making)



Thank You
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