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Collective Learning: Motivation

Distributed Learning [13]: Cloud Intelligence 

+ Local workers: upload local statistics 
+ Central server: broadcast intelligence 

Limitations: 

+ Choke point of operation failure 
+ Communication bottlenecks on server 
+ High latency due to centralized communication 

Cloud Intelligence: Centralized risk of operational failure + communication & 
computational bottlenecks imposed by the central server

Cloud Intelligence Architecture



Collective Learning: Motivation
Collective Learning: Edge Intelligence 

+ Edge devices engineer local intelligence  
                                     no choke point  

+ Intelligence fusion via local communication 
                                     reduced latency  

+ Collective computation via mass productivity 
   and local message exchanges 
                  preserved predictive quality 
                                             
                                               
                               

Edge Intelligence: Mass productivity of edge devices for computation and 
preserved predictive quality through on-demand fusion of knowledge

Edge Intelligence Architecture
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Collective Learning: Issues

Model representation scale poorly 
with increasing data (expensive 
communications) 

Merging model requires sharing 
data & re-training on shared data 
(inefficient computations) 

Incomplete information: Agents only communicate with local neighbors

(vulnerable to system changes)


Agents collect local data of different behaviors (cross-domain communications) 
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Collective Learning: Research Objectives
Objectives: Develop collective learning framework that 

• Generates local models independently

• Encodes these models into effective representations for model fusion

• Assembles global models accurately via distributed communication 

Challenges: 


• Limited computation: Inefficient to re-train model when new data arrives

• Limited communication: Exchanging data directly is undesirable

• Distributed communication: No central server to coordinate


Research goals – Develop:


• Representation amenable to online update with streaming data

• Communication-efficient operator for model fusion 
• Peer-to-peer message passing algorithm for decentralized fusion
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f(.) is distributed by a Gaussian process (GP) if its evaluations at any finite 
subset of inputs are distributed by a multivariate Gaussian distribution
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GP allows analytic inference ☺
but incurs cubic processing cost ☹

Gaussian Process
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Objective: Develop efficient local model representation for online 
update with data 

Local Model via Gaussian Process

Gaussian process (GP) – expressive

representation with “streaming” prior 

However, not efficient

• Computation: cubic

• Representation: quadratic

• Update: cubic

• Communication: not possible 

     across different domains


Idea: Exploit sparse encodings of GP representation [2-5, 16]
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Objective: Develop efficient local model representation for online 
update with streaming data                   with                     

Local Model via Sparse Gaussian Process

Solution: Exploit sparse encoding

where u(.) is distributed by a parameter-free 
GP [16] – the resulting model can:


Encode local model into a common structure

by learning a transformation from u(.) to f(.)


Separate effect of each data block on

predictive model:      ’s are independent given u 

Generate additive model summary that

allows online update – unlike GPs [1-5, 16]
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Objective: Develop efficient local model representation for online 
update with streaming data                   with                     

Local Model via Sparse Gaussian Process

Advantages over existing GPs [1-5, 16]:


Online update cost scales linearly in size

of data block


Novel communication mechanism using

             across agents operating in different

(but correlated) domains
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Embedding Domain Knowledge: 
Prior Belief

Local Model: 
Posterior Belief

Local learning

Observations

Latent output

Sparse encoding: 
Inducing variable

Input

Vocabulary: 
Inducing inputs

Data block

Local Model via Sparse Gaussian Process
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Common vocabulary

Cost-Efficient Model Fusion
Objective: Develop cost-efficient operator that enables agents to 
share models without communicating raw data (costly) 
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Common vocabulary

agent a’s and b’s 
local representation

prior, common  
representation

fused  
representation
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Cost-Efficient Model Fusion

Benefit: Fusion cost does not depend on data size       
computation- & communication-efficient



Objective: Develop peer-to-peer message passing algorithm to 
achieve global fusion without communicating via central server

Collective Model Fusion via  
Decentralized Message Passing

Solution: Exploit additive structure of fusion operator to construct

global representation from distributed, local messages combining 
local representations from different agents’ neighborhoods 

Message content:              sent from agent i to j at time t + 1 
encapsulates local representations in i’s local neighborhood 
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Objective: Develop peer-to-peer message passing algorithm to 
achieve global fusion without communicating via central server

Collective Model Fusion via  
Decentralized Message Passing

Solution: Exploit additive structure of fusion operator to construct

global representation from distributed, local messages combining

local representations from different agents’ neighborhoods 
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Key result: Global model representation     can be constructed after 
convergence at           (    denotes network diameter) 



Traffic dataset (5D input) [13] features a traffic phenomenon over an urban 
road network with 775 road segments. 10K batches/blocks of data are 
streamed in random order to 100 agents. Each agent is evaluated on a 
separate set of 2K data points.

Empirical Studies: Performance Gain 

(a) (b) (c)

Observations: (I) Post-fusion prediction shows significant performance gain, 

and (II) performance gap reduces with more data (diminishing gain)   
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Empirical Studies: Stability

(a) Individual performance profiles (pre- vs. post-fusion RMSE) of a 1000-agent 
system evaluated in the data-intensive AIRLINE domain [6, 7]


Observations: (I) Clusters of performance profiles shift towards regions with better 
pre- and post-fusion accuracy with more data, (II) shift slows down with more data, 
(III) high variance for pre-fusion and low variance for post-fusion        

       stability: post-fusion consensus with small variation
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(b) Pre- and post-fusion performance of 2 agents with different learning capabilities: 
A1 with fixed amount of data & A2 with continuous supply of data


Observations: (I) Without fusion, A1 cannot improve its performance, (II) with fusion: 
A1 performs similar to A2 and far exceeds its original accuracy, (III) A2 marginally 
improves upon fusion with A1       fusion benefits agents with lesser capabilities & is 
resilient to information disparity
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Empirical Studies: Resiliency



Empirical Studies: Robustness

(c) Post-fusion performance of our COOL-GP compared to existing distributed GPs

(dDTC [9] & dPITC [13]) vs. rate of transmission loss in traffic domain


Observations: With higher transmission loss, post-fusion performance of our COOL-GP 
degrades more gracefully. Reason: dDTC & dPITC require all agents to transmit messages 
to a master server & failing to achieve this leads to irrecoverable information loss, while 
COOL-GP allows agents to propagate messages to multiple neighbors & lower risk of 
losing information -- more robust -- for more detail: https://arxiv.org/abs/1805.09266
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Challenge: 
Private, heterogeneous model architecture 
Prev. works assume white-box architecture

Model Fusion with Black Boxes
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Black-Box Setting: Pre-trained model  
API to query probabilistic prediction

2021

Model Fusion with Black Boxes

API

API API

API



Random 
Gradient 

Estimation

Light-Weight Fusion
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Model Fusion via Gradient Aggregation

API

API API

API



Random 
Gradient 

Estimation
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Model Fusion via Gradient Aggregation

API

API

API

API

Gradient 
Aggregation

Guarantee: Disagreement rate is  
upper-bounded by a constant  
given sufficient training data 

For more details:   
http://proceedings.mlr.press/v97/hoang19a/hoang19a.pdf

Persistent Fusion 
Robust Imitation



More accurate prediction 
with more fusion iterations

High prediction  
variance PRE-FUSION

Low prediction  
variance POST-FUSION

Up to 10% decrease in  
error for all black-box experts

Before: Poor agreement 
After: Better consensus
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Model Fusion (via Gradient) Improves Performance



High prediction  
variance PRE-FUSION

Low prediction  
variance POST-FUSION

More accurate prediction 
with more fusion iterations

Up to 18% decrease in  
error for all black-box experts

Before: Poor agreement 
After: Better consensus
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Model Fusion (via Imitation) Improves Performance



Our Preliminary Work 

[1] Collective Online Learning of Gaussian Processes in Massive Multi-Agent Systems.  
Nghia Hoang, Minh Hoang, Bryan K. H. Low & Jonathan How. 
In Proc. AAAI, 2019. 
– Model fusion for Gaussian processes (for probabilistic regression) 

[2] Collective Model Fusion with Multiple Black-Box Experts.  
Minh Hoang, Nghia Hoang, Bryan K. H. Low & Carleton Kingsford.  
In Proc. ICML, 2019. 
– Model fusion for black-box AI (but restricted to probabilistic regression/classification) 
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Conclusion and Future Works
Contribution: Collective (Black-Box) Model Fusion Framework 
• Advocate edge intelligence instead of cloud intelligence architecture (intelligence 

distributed on edge devices, not centralized on the cloud)

• Communication-efficient pairwise fusion operator between two agents, also 

amenable to cross-domain fusion and online learning 
• Effective decentralized message-passing algorithm: resilient to system changes, 

while maintaining consistent global intelligence assimilation


Future Challenges:  
• Agent might learn different concepts (each corresponds to a black box) concurrently 

(component identification: align concepts between two agents)

• Automatically grow encoding/surrogate model complexity to match that of streaming 

data (durable implementation for lifelong missions)

• Extension to incorporate decentralized decision making (completing the loop 

between inference & planning/decision making)
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