

Collective Learning and Model Fusion in Large Multi-Agent Systems

Bryan Kian Hsiang Low³ *in collaboration with* Trong Nghia Hoang¹, Quang Minh Hoang², Carl Kingsford², and Jonathan How⁴

¹MIT-IBM Watson AI Lab, IBM Research ²Department of Computer Science, Carnegie Mellon University (CMU) ³Department of Computer Science, National University of Singapore (NUS) ⁴Laboratory for Information and Decision Systems, MIT

Collective Learning: Motivation

Distributed Learning [13]: Cloud Intelligence

- + Local workers: upload local statistics
- + Central server: broadcast intelligence

Limitations:

- + Choke point of operation failure
- + Communication bottlenecks on server
- + High latency due to centralized communication

Cloud Intelligence Architecture

Cloud Intelligence: Centralized risk of **operational failure** + communication & computational **bottlenecks** imposed by the central server

Collective Learning: Motivation

Collective Learning: Edge Intelligence

- + Edge devices engineer local intelligence no choke point
- + Intelligence fusion via local communication reduced latency
- + Collective computation via mass productivity and local message exchanges preserved predictive quality

Edge Intelligence Architecture

Edge Intelligence: Mass productivity of edge devices for computation and preserved predictive quality through on-demand fusion of knowledge

Collective Learning: Issues

Model representation scale poorly with increasing data (expensive communications)

Merging model requires sharing data & re-training on shared data (inefficient computations)

Incomplete information: Agents only communicate with local neighbors (vulnerable to **system changes**)

Agents collect local data of different behaviors (cross-domain communications)

Collective Learning: Research Objectives

Objectives: Develop collective learning framework that

- Generates **local** models independently
- Encodes these models into **effective representations** for model fusion
- Assembles global models accurately via distributed communication

Challenges:

- Limited **computation**: Inefficient to re-train model when new data arrives
- Limited **communication**: Exchanging data directly is undesirable
- **Distributed** communication: **No central server** to coordinate

Research goals – Develop:

- Representation amenable to **online update** with streaming data
- Communication-efficient operator for model fusion
- Peer-to-peer message passing algorithm for decentralized fusion

Gaussian Process

f(.) is distributed by a **Gaussian process (GP)** if its evaluations at **any finite subset of inputs** are distributed by a **multivariate Gaussian distribution**

7

GP allows analytic inference ©

but incurs cubic processing cost ©

Local Model via Gaussian Process

Objective: Develop efficient local model representation for online update with data $\mathbf{D} = (\mathbf{X}, \mathbf{y})$

Gaussian process (GP) – expressive representation with **"streaming" prior**

However, not efficient

- Computation: cubic
- Representation: quadratic
- Update: cubic
- Communication: not possible
 across different domains

Idea: Exploit sparse encodings of GP representation [2-5, 16]

Local Model via Sparse Gaussian Process

Objective: Develop efficient local model representation for online update with **streaming** data $\mathbf{D} = {\mathbf{D}_i}$ with $\mathbf{D}_i = {\mathbf{X}_i, \mathbf{y}_i}$

Solution: Exploit sparse encoding $\mathbf{u} = u(\mathbf{Z})$ where u(.) is distributed by a **parameter-free** GP [16] – the resulting model can:

Encode local model into a **common** structure by learning a transformation from u(.) to f(.)

Separate effect of each data block on predictive model: D_i 's are independent given **u**

Generate additive model summary that allows **online update** – unlike GPs [1-5, 16]

 $p(\mathbf{u}|\mathbf{D})$ incurs $O(|\mathbf{D}_i||\mathbf{Z}|^2)$ update $O(|\mathbf{Z}|^2) \text{ memory}$

Local Model via Sparse Gaussian Process

Objective: Develop efficient local model representation for online update with **streaming** data $\mathbf{D} = {\mathbf{D}_i}$ with $\mathbf{D}_i = {\mathbf{X}_i, \mathbf{y}_i}$

Advantages over existing GPs [1-5, 16]:

Online update cost scales **linearly** in size of data block $|\mathbf{D}_i|$

Novel communication mechanism using $p(\mathbf{u}|\mathbf{D})$ across agents operating in different (but correlated) domains

 $p(\mathbf{u}|\mathbf{D})$ incurs $O(|\mathbf{D}_i||\mathbf{Z}|^2)$ update $O(|\mathbf{Z}|^2)$ memory

Local Model via Sparse Gaussian Process

Cost-Efficient Model Fusion

Objective: Develop **cost-efficient** operator that enables agents to share models without communicating raw data (costly)

Cost-Efficient Model Fusion

Benefit: Fusion cost does not depend on data size → computation- & communication-efficient

Collective Model Fusion via Decentralized Message Passing

Objective: Develop **peer-to-peer** message passing algorithm to achieve global fusion **without** communicating via **central server**

Solution: Exploit additive structure of fusion operator to construct global representation from distributed, local messages combining local representations from different agents' neighborhoods

Message content: $\mathbf{m}_{i \to j}^{(t+1)}$ sent from agent i to j at time t + 1 encapsulates local representations in i's local neighborhood $\mathbb{A}(i) \setminus \{j\}$

$$\mathbf{m}_{i \to j}^{(t+1)} = \left(\sum_{k \in \mathbb{A}(i) \setminus \{j\}} \mathbf{m}_{k \to i}^{(t)}\right) + \mathbf{r}_{a_i} - \mathbf{r}_0$$

Collective Model Fusion via Decentralized Message Passing

Objective: Develop **peer-to-peer** message passing algorithm to achieve global fusion **without** communicating via **central server**

Solution: Exploit additive structure of fusion operator to construct global representation from distributed, local messages combining local representations from different agents' neighborhoods

Key result: Global model representation \mathbf{r} can be constructed after convergence at $t \ge d$ (d denotes network diameter)

$$\mathbf{r} = \left(\sum_{k \in \mathbb{A}(i)} \mathbf{m}_{k \to i}^{(d)}
ight) + \mathbf{r}_0$$

Empirical Studies: Performance Gain

Traffic dataset (5D input) [13] features a traffic phenomenon over an urban road network with 775 road segments. 10K batches/blocks of data are streamed in random order to 100 agents. Each agent is evaluated on a separate set of 2K data points.

Observations: (I) Post-fusion prediction shows significant performance gain, and (II) performance gap reduces with more data (diminishing gain)

Empirical Studies: Stability

(a) Individual performance profiles (pre-vs. post-fusion RMSE) of a 1000-agent system evaluated in the data-intensive AIRLINE domain [6, 7]

Observations: (I) Clusters of performance profiles shift towards regions with better pre- and post-fusion accuracy with more data, (II) shift slows down with more data, (III) high variance for pre-fusion and low variance for post-fusion

-> stability: post-fusion consensus with small variation

Empirical Studies: Resiliency

(b) Pre- and post-fusion performance of 2 agents with different learning capabilities: A1 with fixed amount of data & A2 with continuous supply of data

Observations: (I) Without fusion, A1 cannot improve its performance, (II) with fusion: A1 performs similar to A2 and far exceeds its original accuracy, (III) A2 marginally improves upon fusion with A1 \rightarrow fusion benefits agents with lesser capabilities & is **resilient** to information disparity

Empirical Studies: Robustness

(c) Post-fusion performance of our COOL-GP compared to existing distributed GPs (dDTC [9] & dPITC [13]) vs. rate of transmission loss in traffic domain

Observations: With higher transmission loss, post-fusion performance of our COOL-GP degrades more gracefully. **Reason:** dDTC & dPITC require all agents to transmit messages to a master server & failing to achieve this leads to irrecoverable information loss, while COOL-GP allows agents to propagate messages to multiple neighbors & lower risk of losing information -- more **robust** -- for more detail: <u>https://arxiv.org/abs/1805.09266</u>

Model Fusion with Black Boxes

Model Fusion with Black Boxes

Model Fusion via Gradient Aggregation

Model Fusion via Gradient Aggregation

Model Fusion (via Gradient) Improves Performance

Model Fusion (via Imitation) Improves Performance

Our Preliminary Work

[1] Collective Online Learning of Gaussian Processes in Massive Multi-Agent Systems. Nghia Hoang, Minh Hoang, <u>Bryan K. H. Low</u> & Jonathan How. In Proc. AAAI, 2019.

- Model fusion for Gaussian processes (for probabilistic regression)

[2] Collective Model Fusion with Multiple Black-Box Experts. Minh Hoang, Nghia Hoang, <u>Bryan K. H. Low</u> & Carleton Kingsford. In Proc. ICML, 2019.

- Model fusion for black-box AI (but restricted to probabilistic regression/classification)

Conclusion and Future Works

Contribution: Collective (Black-Box) Model Fusion Framework

- Advocate edge intelligence instead of cloud intelligence architecture (intelligence distributed on edge devices, not centralized on the cloud)
- **Communication-efficient** pairwise fusion operator between two agents, also amenable to cross-domain fusion and online learning
- Effective decentralized **message-passing** algorithm: resilient to system changes, while maintaining **consistent** global intelligence assimilation

Future Challenges:

- Agent might learn different concepts (each corresponds to a black box) concurrently (component identification: align concepts between two agents)
- Automatically grow encoding/surrogate model complexity to match that of streaming data (durable implementation for lifelong missions)
- **Extension** to incorporate decentralized **decision making** (completing the loop between inference & planning/decision making)

Thank You

References

- [1] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.
- [2] J. Quiñonero-Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6:1939–1959, 2005.
- [3] E. L. Snelson. Flexible and efficient Gaussian process models for machine learning. Ph.D. Thesis, University College London, London, UK, 2007.
- [4] M. K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Proc. AISTATS, pages 567-574, 2009.
- [5] M. Lázaro-Gredilla, J. Quiñonero-Candela, C. E. Rasmussen, and A. R. Figueiras-Vidal. Sparse spectrum Gaussian process regression. Journal of Machine Learning Research, pages 1865–1881, 2010.
- [6] J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Proc. UAI, pages 282-290, 2013.
- [7] T. N. Hoang, Q. M. Hoang, and K. H. Low. A unifying framework of anytime sparse Gaussian process regression models with stochastic variational inference for big data. In *Proc. ICML*, pages 569–578, 2015.
- [8] J. Chen, N. Cao, K. H. Low, R. Ouyang, C. K.-Y. Tan, and P. Jaillet. Parallel Gaussian process regression with low-rank covariance matrix approximations. In *Proc. UAI*, pages 152–161, 2013.
- [9] Y. Gal, M. van der Wilk, and C. Rasmussen. Distributed variational inference in sparse Gaussian process regression and latent variable models. In Proc. NIPS, pages 3257–3265, 2014.
- [10] K. H. Low, J. Yu, J. Chen, and P. Jaillet. Parallel Gaussian process regression for big data: Low-rank representation meets Markov approximation. In Proc. AAAI, pages 2821–2827, 2015.
- [11] T. Campbell, J. Straub, J. W. Fisher III, and J. P. How. Streaming, distributed variational inference for Bayesian nonparametrics. In *Proc. NIPS*, pages 280–288, 2015.
- [12] M. P. Deisenroth and J. W. Ng. Distributed Gaussian processes. In Proc. ICML, 2015.
- [13] T. N. Hoang, Q. M. Hoang, and K. H. Low. A distributed variational inference framework for unifying parallel sparse Gaussian process regression models. In Proc. ICML, pages 382–391, 2016.
- [14] J. Chen, K. H. Low, and C. K.-Y. Tan. Gaussian process-based decentralized data fusion and active sensing for mobility-on-demand system. In Proc. RSS, 2013.
- [15] R. Allamraju and G. Chowdhary. Communication efficient decentralized Gaussian process fusion for Multi-UAS path planning. In Proc. ACC, 2017.
- [16] M. K. Titsias and M. Lázaro-Gredilla. Variational inference for Mahalanobis distance metrics in Gaussian process regression. In Proc. NIPS, 2013.