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Abstract

This paper studies the problem of approximately unlearning a Bayesian model
from a small subset of the training data to be erased. We frame this problem as one
of minimizing the Kullback-Leibler divergence between the approximate posterior
belief of model parameters after directly unlearning from erased data vs. the exact
posterior belief from retraining with remaining data. Using the variational inference
(VI) framework, we show that it is equivalent to minimizing an evidence upper
bound which trades off between fully unlearning from erased data vs. not entirely
forgetting the posterior belief given the full data (i.e., including the remaining data);
the latter prevents catastrophic unlearning that can render the model useless. In
model training with VI, only an approximate (instead of exact) posterior belief
given the full data can be obtained, which makes unlearning even more challenging.
We propose two novel tricks to tackle this challenge. We empirically demonstrate
our unlearning methods on Bayesian models such as sparse Gaussian process and
logistic regression using synthetic and real-world datasets.

1 Introduction

Our interactions with machine learning (ML) applications have surged in recent years such that
large quantities of users’ data are now deeply ingrained into the ML models being trained for these
applications. This greatly complicates the regulation of access to each user’s data or implementation
of personal data ownership, which are enforced by the General Data Protection Regulation in the
European Union [24]. In particular, if a user would like to exercise her right to be forgotten [24] (e.g.,
when quitting an ML application), then it would be desirable to have the trained ML model “unlearn”
from her data. Such a problem of machine unlearning [4] extends to the practical scenario where a
small subset of data previously used for training is later identified as malicious (e.g., anomalies) [4, 9]
and the trained ML model can perform well once again if it can unlearn from the malicious data.

A naive alternative to machine unlearning is to simply retrain an ML model from scratch with the data
remaining after erasing that to be unlearned from. In practice, this is prohibitively expensive in terms
of time and space costs since the remaining data is often large such as in the above scenarios. How
then can a trained ML model directly and efficiently unlearn from a small subset of data to be erased to
become (a) exactly and if not, (b) approximately close to that from retraining with the large remaining
data? Unfortunately, (a) exact unlearning is only possible for selected ML models (e.g., naive Bayes
classifier, linear regression, k-means clustering, and item-item collaborative filtering [4, 12, 30]).
This motivates the need to consider (b) approximate unlearning as it is applicable to a broader family
of ML models like neural networks [9, 13] but, depending on its choice of loss function, may suffer
from catastrophic unlearning1 that can render the model useless. For example, to mitigate this issue,
the works of [9, 13] have to “patch up” their loss functions by additionally bounding the loss incurred

1A trained ML model is said to experience catastrophic unlearning from the erased data when its resulting
performance is considerably worse than that from retraining with the remaining data.
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by erased data with a rectified linear unit and injecting a regularization term to retain information of
the remaining data, respectively. This begs the question whether there exists a loss function that can
directly quantify the approximation gap and naturally prevent catastrophic unlearning.

Our work here addresses the above question by focusing on the family of Bayesian models. Specif-
ically, our proposed loss function measures the Kullback-Leibler (KL) divergence between the
approximate posterior belief of model parameters by directly unlearning from erased data vs. the
exact posterior belief from retraining with remaining data. Using the variational inference (VI)
framework, we show that minimizing this KL divergence is equivalent to minimizing (instead of
maximizing) a counterpart of the evidence lower bound called the evidence upper bound (EUBO)
(Sec. 3.2). Interestingly, the EUBO lends itself to a natural interpretation of a trade-off between fully
unlearning from erased data vs. not entirely forgetting the posterior belief given the full data (i.e.,
including the remaining data); the latter prevents catastrophic unlearning induced by the former.

Often, in model training, only an approximate (instead of exact) posterior belief of model parameters
given the full data can be learned, say, also using VI. This makes unlearning even more challenging.
To tackle this challenge, we analyse two sources of inaccuracy in the approximate posterior belief
learned using VI, which lay the groundwork for proposing our first trick of an adjusted likelihood of
erased data (Sec. 3.3.1): Our key idea is to curb unlearning in the region of model parameters with
low approximate posterior belief where both sources of inaccuracy primarily occur. Additionally, to
avoid the risk of incorrectly tuning the adjusted likelihood, we propose another trick of reverse KL
(Sec. 3.3.2) which is naturally more protected from such inaccuracy without needing the adjusted
likelihood. Nonetheless, our adjusted likelihood is general enough to be applied to reverse KL.

VI is a popular approximate Bayesian inference framework due to its scalability to massive
datasets [15, 18] and its ability to model complex posterior beliefs using generative adversarial
networks [33] and normalizing flows [21, 29]. Our work in this paper exploits VI to broaden the
family of ML models that can be unlearned, which we empirically demonstrate using synthetic
and real-world datasets on several Bayesian models such as sparse Gaussian process and logistic
regression with the approximate posterior belief modeled by a normalizing flow (Sec. 4).

2 Variational Inference (VI)

In this section, we revisit the VI framework [2] for learning an approximate posterior belief of the
parameters θ of a Bayesian model. Given a prior belief p(θ) of the unknown model parameters θ
and a set D of training data, an approximate posterior belief q(θ|D) ≈ p(θ|D) is being optimized
by minimizing the KL divergence KL[q(θ|D) ‖ p(θ|D)] ,

∫
q(θ|D) log(q(θ|D)/p(θ|D)) dθ or,

equivalently, maximizing the evidence lower bound (ELBO) L [2]:

L ,
∫
q(θ|D) log p(D|θ) dθ − KL[q(θ|D) ‖ p(θ)] . (1)

Such an equivalence follows directly from L = log p(D) − KL[q(θ|D) ‖ p(θ|D)] where the log-
marginal likelihood log p(D) is independent of q(θ|D). Since KL[q(θ|D) ‖ p(θ|D)] ≥ 0, the ELBO
L is a lower bound of log p(D). The ELBO L in (1) can be interpreted as a trade-off between attaining
a higher likelihood of D (first term) vs. not entirely forgetting the prior belief p(θ) (second term).

When the ELBO L (1) cannot be evaluated in closed form, it can be maximized using stochastic
gradient ascent (SGA) by approximating the expectation in

L = Eq(θ|D)[log p(D|θ) + log(p(θ)/q(θ|D))] =

∫
q(θ|D) (log p(D|θ) + log(p(θ)/q(θ|D))) dθ

with stochastic sampling in each iteration of SGA. The approximate posterior belief q(θ|D) can
be represented by a simple distribution (e.g., in the exponential family) for computational ease or
a complex distribution (e.g., using generative neural networks) for expressive power. Note that
when the distribution of q(θ|D) is modeled by a generative neural network whose density cannot be
evaluated, the ELBO can be maximized with adversarial training by alternating between estimating
the log-density ratio log(p(θ)/q(θ|D)) and maximizing the ELBO [33]. On the other hand, when
the distribution of q(θ|D) is modeled by a normalizing flow (e.g., inverse autoregressive flow (IAF)
[21]) whose density can be computed, the ELBO can be maximized with SGA.
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3 Bayesian Unlearning

3.1 Exact Bayesian Unlearning

Let the (full) training data D be partitioned into a small subset De of data to be erased and a
(large) set Dr of remaining data, i.e., D = Dr ∪ De and Dr ∩ De = ∅. The problem of exact
Bayesian unlearning involves recovering the exact posterior belief p(θ|Dr) of model parameters
θ given remaining data Dr from that given full data D (i.e., p(θ|D) assumed to be available) by
directly unlearning from erased data De. Note that p(θ|Dr) can also be obtained from retraining with
remaining data Dr, which is computationally costly, as discussed in Sec. 1. By using Bayes’ rule and
assuming conditional independence between Dr and De given θ,

p(θ|Dr) = p(θ|D) p(De|Dr)/p(De|θ) ∝ p(θ|D)/p(De|θ) . (2)

When the model parameters θ are discrete-valued, p(θ|Dr) can be obtained from (2) directly. The use
of a conjugate prior also makes unlearning relatively simple. We will investigate the more interesting
case of a non-conjugate prior in the rest of Sec. 3.

3.2 Approximate Bayesian Unlearning with Exact Posterior Belief p(θ|D)

The problem of approximate Bayesian unlearning differs from that of exact Bayesian unlearning
(Sec. 3.1) in that only the approximate posterior belief qu(θ|Dr) (instead of the exact one p(θ|Dr))
can be recovered by directly unlearning from erased dataDe. Since existing unlearning methods often
use their model predictions to construct their loss functions [3, 4, 12, 14], we have initially considered
doing likewise (albeit in the Bayesian context) by defining the loss function as the KL divergence
between the approximate predictive distribution qu(y|Dr) ,

∫
p(y|θ) qu(θ|Dr) dθ vs. the exact

predictive distribution p(y|Dr) =
∫
p(y|θ) p(θ|Dr) dθ where the observation y (i.e., drawn from

a model with parameters θ) is conditionally independent of Dr given θ. However, it may not be
possible to evaluate these predictive distributions in closed form, hence making the optimization
of this loss function computationally difficult. Fortunately, such a loss function can be bounded
from above by the KL divergence between posterior beliefs qu(θ|Dr) vs. p(θ|Dr), as proven in
Appendix A:

Proposition 1. KL[qu(y|Dr) ‖ p(y|Dr)] ≤ KL[qu(θ|Dr) ‖ p(θ|Dr)] .2

Proposition 1 reveals that reducing KL[qu(θ|Dr) ‖ p(θ|Dr)] decreases KL[qu(y|Dr) ‖ p(y|Dr)],
thus motivating its use as the loss function instead. In particular, it follows immediately from our
result below (i.e., proven in Appendix B) that minimizing KL[qu(θ|Dr) ‖ p(θ|Dr)] is equivalent to
minimizing a counterpart of the ELBO called the evidence upper bound (EUBO) U :

Proposition 2. Define the EUBO U as

U ,
∫
qu(θ|Dr) log p(De|θ) dθ + KL[qu(θ|Dr) ‖ p(θ|D)] . (3)

Then, U = log p(De|Dr) + KL[qu(θ|Dr) ‖ p(θ|Dr)] ≥ log p(De|Dr) such that p(De|Dr) is inde-
pendent of qu(θ|Dr).

From Proposition 2, minimizing EUBO (3) is equivalent to minimizing KL[qu(θ|Dr) ‖ p(θ|Dr)]
which is precisely achieved using VI (i.e., by maximizing ELBO (1)) from retraining with remaining
data Dr. This is illustrated in Fig. 1a where unlearning from De by minimizing EUBO maximizes
ELBO w.r.t. Dr; in Fig. 1b, retraining with Dr by maximizing ELBO minimizes EUBO w.r.t. De.

The EUBO U (3) can be interpreted as a trade-off between fully unlearning from erased data De

(first term) vs. not entirely forgetting the exact posterior belief p(θ|D) given the full data D (i.e.,
including the remaining data Dr) (second term). The latter can be viewed as a regularization term
to prevent catastrophic unlearning1 (i.e., potentially induced by the former) that naturally results
from minimizing our loss function KL[qu(θ|Dr) ‖ p(θ|Dr)], which differs from the works of [9, 13]
needing to “patch up” their loss functions (Sec. 1). Generative models can be used to model the
approximate posterior belief qu(θ|Dr) in the EUBO U (3) in the same way as that in the ELBO L (1).

2Similarly, KL[p(y|Dr) ‖ qu(y|Dr)] ≤ KL[p(θ|Dr) ‖ qu(θ|Dr)] holds.
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(a) Unlearning from De by minimizing EUBO (b) Retraining with Dr by maximizing ELBO

Figure 1: Plots of EUBO and ELBO when (a) unlearning from De and (b) retraining with Dr.
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λmax q(θ|D)

Figure 2: Plot of q(θ|D) learned using VI. Gray shaded region corresponds to values of θ where
q(θ|D) ≤ λmaxθ′ q(θ′|D). Vertical blue strips on horizontal axis show 100 samples of θ ∼ q(θ|D).

3.3 Approximate Bayesian Unlearning with Approximate Posterior Belief q(θ|D)

Often, in model training, only an approximate posterior belief3 q(θ|D) (instead of the exact p(θ|D)
in Sec. 3.2) of model parameters θ given full data D can be learned, say, using VI by maximizing
the ELBO (Sec. 2). Our proposed unlearning methods are parsimonious in requiring only q(θ|D)
and erased data De to be available, which makes unlearning even more challenging since there is no
further information about p(θ|D) nor the difference between p(θ|D) vs. q(θ|D). So, we estimate the
unknown p(θ|Dr) (2) with

p̃(θ|Dr) ∝ q(θ|D)/p(De|θ) (4)
and minimize the KL divergence between the approximate posterior belief recovered by directly
unlearning from erased data De vs. p̃(θ|Dr) (4) instead. We will discuss two novel tricks below to
alleviate the undesirable consequence of using p̃(θ|Dr) instead of the unknown p(θ|Dr) (2).

3.3.1 EUBO with Adjusted Likelihood

Let the loss function KL[q̃u(θ|Dr) ‖ p̃(θ|Dr)] be minimized w.r.t. the approximate posterior belief
q̃u(θ|Dr) that is recovered by directly unlearning from erased data De. Similar to Proposition 2,
q̃u(θ|Dr) can be optimized by minimizing the following EUBO:

Ũ ,
∫
q̃u(θ|Dr) log p(De|θ) dθ + KL[q̃u(θ|Dr) ‖ q(θ|D)] (5)

which follows from simply replacing the unknown p(θ|D) in U (3) with q(θ|D). We discuss the
difference between p(θ|D) vs. q(θ|D) in the remark below:

Remark 1. We analyze two possible sources of inaccuracy in q(θ|D) that is learned using VI by
minimizing the loss function KL[q(θ|D) ‖ p(θ|D)] (Sec. 2). Firstly, q(θ|D) often underestimates the
variance of p(θ|D): Though q(θ|D) tends to be close to 0 at values of θ where p(θ|D) is close to 0,
the reverse is not enforced [1] (see, for example, Fig. 2). So, q(θ|D) can differ from p(θ|D) at values
of θ where q(θ|D) is close to 0. Secondly, if q(θ|D) is learned through stochastic optimization of
the ELBO (i.e., with stochastic samples of θ ∼ q(θ|D) in each iteration of SGA), then it is unlikely
that the ELBO is maximized using samples of θ with small q(θ|D) (Fig. 2). Thus, both sources of
inaccuracy primarily occur at values of θ with small q(θ|D). Though it can also be inaccurate at
values of θ with large q(θ|D), such an inaccuracy can be reduced by representing q(θ|D) with a
complex distribution (Sec. 2).

Remark 1 motivates us to curb unlearning at values of θ with small q(θ|D) by proposing our first
novel trick of an adjusted likelihood of the erased data:

padj(De|θ;λ) ,

{
p(De|θ) if q(θ|D) > λmaxθ′ q(θ′|D) ,

1 otherwise (i.e., shaded area in Fig. 2) ;
(6)

3With a slight abuse of notation, we let q(θ|D) be the approximate posterior belief that maximizes the ELBO
L (1) (Sec. 2) from Sec. 3.3 onwards.

4



0.75 1.00 1.25 1.50 1.75 2.00 2.25

(a) EUBO

λ = 1

λ = 0.1

λ = 0.01

λ = 0.001

λ = 10−10

λ = 10−20

q(θ|D)

q(θ|Dr)
λ = 0

0.75 1.00 1.25 1.50 1.75 2.00 2.25

(b) reverse KL

Figure 3: Plot of approximate posterior beliefs with varying λ obtained by minimizing (a) EUBO
(i.e., q̃u(θ|Dr;λ)) and (b) reverse KL (i.e., q̃v(θ|Dr;λ)); horizontal axis denotes θ = α. In (a), a
huge probability mass of q̃u(θ|Dr, λ = 0) is at large values of α beyond the plotting area and the top
of the plot of q̃u(θ|Dr, λ = 10−20) is cut off due to lack of space.

for any θ where λ ∈ [0, 1] controls the magnitude of a threshold under which q(θ|D) is considered
small. To understand the effect of λ, let p̃adj(θ|Dr;λ) ∝ q(θ|D)/padj(De|θ;λ), i.e., by replacing
p(De|θ) in (4) with padj(De|θ;λ). Then, using (6),

p̃adj(θ|Dr;λ) ∝
{
q(θ|D)/p(De|θ) if q(θ|D) > λmaxθ′ q(θ′|D) ,

q(θ|D) otherwise (i.e., shaded area in Fig. 2) .
(7)

According to (7), unlearning is therefore focused at values of θ with sufficiently large q(θ|D) (i.e.,
q(θ|D) > λmaxθ′ q(θ′|D)). Let the loss function KL[q̃u(θ|Dr;λ) ‖ p̃adj(θ|Dr;λ)] be minimized
w.r.t. the approximate posterior belief q̃u(θ|Dr;λ) that is recovered by directly unlearning from
erased data De. Similar to (5), q̃u(θ|Dr;λ) can be optimized by minimizing the following EUBO:

Ũadj(λ) ,
∫
q̃u(θ|Dr;λ) log padj(De|θ;λ) dθ + KL[q̃u(θ|Dr;λ) ‖ q(θ|D)] (8)

which follows from replacing p(De|θ) in (5) with padj(De|θ;λ). Note that q̃u(θ|Dr;λ) can be
represented by a simple distribution (e.g., Gaussian) or a complex one (e.g., generative neural
network, IAF). We initialize q̃u(θ|Dr;λ) at q(θ|D) for achieving empirically faster convergence.
When λ = 0, Ũadj(λ = 0) reduces to Ũ (5), i.e., EUBO is minimized without the adjusted likelihood.
As a result, q̃u(θ|Dr;λ = 0) = q̃u(θ|Dr). As λ increases, unlearning is focused on a smaller and
smaller region of θ with sufficiently large q(θ|D). When λ reaches 1, no unlearning is performed
since p̃adj(θ|Dr;λ = 1) = q(θ|D), which results in q̃u(θ|Dr;λ = 1) = q(θ|D) minimizing the loss
function KL[q̃u(θ|Dr;λ = 1) ‖ p̃adj(θ|Dr;λ = 1)].

Example 1. To visualize the effect of varying λ on q̃u(θ|Dr;λ), we consider learning the shape α of
a Gamma distribution with a known rate (i.e., θ = α): D are 20 samples of the Gamma distribution,
De are the smallest 5 samples in D, and the (non-conjugate) prior belief and approximate posterior
beliefs of α are all Gaussians. Fig. 3a shows the approximate posterior beliefs q̃u(θ|Dr;λ) with
varying λ as well as q(θ|D) and q(θ|Dr) learned using VI. As explained above, q̃u(θ|Dr, λ = 1) =
q(θ|D). When λ = 0.001, q̃u(θ|Dr, λ = 0.001) is close to q(θ|Dr). However, as λ decreases to 0,
q̃u(θ|Dr, λ) moves away from q(θ|Dr).

The optimized q̃u(θ|Dr;λ) suffers from the same issue of underestimating the variance as q(θ|D)
learned using VI (see Remark 1), especially when λ tends to 0 (e.g., see q̃u(θ|Dr;λ = 10−20) in
Fig. 3a). Though this issue can be mitigated by tuning λ in the adjusted likelihood (6), we may not
want to risk facing the consequence of picking a value of λ that is too small. So, in Sec. 3.3.2, we
will propose another novel trick that is not inconvenienced by this issue.

3.3.2 Reverse KL

Let the loss function be the reverse KL divergence KL[p̃(θ|Dr) ‖ q̃v(θ|Dr)] that is minimized
w.r.t. the approximate posterior belief q̃v(θ|Dr) recovered by directly unlearning from erased data
De. In contrast to the optimized q̃u(θ|Dr;λ) from minimizing EUBO (8), the optimized q̃v(θ|Dr)
from minimizing the reverse KL divergence overestimates (instead of underestimates) the variance
of p̃(θ|Dr) [1]: If p̃(θ|Dr) is close to 0, then q̃v(θ|Dr) is not necessarily close to 0. From (4), the
reverse KL divergence can be expressed as follows:

KL[p̃(θ|Dr) ‖ q̃v(θ|Dr)] = C0 − C1 Eq(θ|D) [(log q̃v(θ|Dr))/p(De|θ)] (9)
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where C0 and C1 are constants independent of q̃v(θ|Dr). So, the reverse KL divergence (9) can be
minimized by maximizing Eq(θ|D)[(log q̃v(θ|Dr))/p(De|θ)] with stochastic gradient ascent (SGA).
We also initialize q̃v(θ|Dr) at q(θ|D) for achieving empirically faster convergence. Since stochastic
optimization is performed with samples of θ ∼ q(θ|D) in each iteration of SGA, it is unlikely that
the reverse KL divergence (9) is minimized using samples of θ with small q(θ|D). This naturally
curbs unlearning at values of θ with small q(θ|D), as motivated by Remark 1. On the other hand,
it is still possible to employ the same trick of adjusted likelihood (Sec. 3.3.1) by minimizing the
reverse KL divergence KL[p̃adj(θ|Dr;λ) ‖ q̃v(θ|Dr;λ)] as the loss function or, equivalently, maximiz-
ing Eq(θ|D)[(log q̃v(θ|Dr;λ))/padj(De|θ;λ)] where padj(De|θ;λ) and p̃adj(θ|Dr;λ) are previously
defined in (6) and (7), respectively. The role of λ here is the same as that in (8).

To illustrate the difference between minimizing the reverse KL divergence (9) and EUBO (8),
Fig. 3b shows the approximate posterior beliefs q̃v(θ|Dr;λ) with varying λ. It can be observed that
q̃v(θ|Dr;λ = 1) = q(θ|D) (i.e., no unlearning). In contrast to minimizing EUBO (Fig. 3a), as λ
decreases to 0, q̃v(θ|Dr;λ) does not deviate that much from q(θ|Dr), even when λ = 0 (i.e., the
reverse KL divergence is minimized without the adjusted likelihood). This is because the optimized
q̃v(θ|Dr;λ) is naturally more protected from both sources of inaccuracy (Remark 1), as explained
above. Hence, we do not have to be as concerned about picking a small value of λ, which is also
consistently observed in our experiments (Sec. 4).

4 Experiments and Discussion

This section empirically demonstrates our unlearning methods on Bayesian models such as sparse
Gaussian process and logistic regression using synthetic and real-world datasets. Further experimental
results on Bayesian linear regression and with a bimodal posterior belief are reported in Appendices C
and D, respectively. In our experiments, each dataset comprises pairs of input x and its corresponding
output/observation yx. We use RMSProp as the SGA algorithm with a learning rate of 10−4. To assess
the performance of our unlearning methods (i.e., by directly unlearning from erased data De), we
consider the difference between their induced predictive distributions vs. that obtained using VI from
retraining with remaining data Dr, as motivated from Sec. 3.2. To do this, we use a performance
metric that measures the KL divergence between the approximate predictive distributions

q̃u(yx|Dr) ,
∫
p(yx|θ) q̃u(θ|Dr;λ) dθ or q̃v(yx|Dr) ,

∫
p(yx|θ) q̃v(θ|Dr;λ) dθ

vs. q(yx|Dr) ,
∫
p(yx|θ) q(θ|Dr) dθ where q̃u(θ|Dr;λ) and q̃v(θ|Dr;λ) are optimized by, respec-

tively, minimizing EUBO (8) and reverse KL (rKL) divergence (9) while requiring only q(θ|D) and
erased dataDe (Sec. 3.3), and q(θ|Dr) is learned using VI (Sec. 2). The above predictive distributions
are computed via sampling with 100 samples of θ. For tractability reasons, we evaluate the above
performance metric over finite input domains, specifically, over that in De and Dr, which allows
us to assess the performance of our unlearning methods on both the erased and remaining data,
i.e., whether they can fully unlearn from De yet not forget nor catastrophically unlearn from Dr,
respectively. For example, the performance of our EUBO-based unlearning method over De is shown
as an average (with standard deviation) of the KL divergences between q̃u(yx|Dr) vs. q(yx|Dr)
over all (x, yx) ∈ De. We also plot an average (with standard deviation) of the KL divergences
between q(yx|D) vs. q(yx|Dr) over Dr and De as baselines (i.e., representing no unlearning), which
is expected to be larger than that of our unlearning methods (i.e., if performing well) and labeled as
full in the plots below.

4.1 Sparse Gaussian Process (GP) Classification with Synthetic Moon Dataset

This experiment is about unlearning a binary classifier that is previously trained with the synthetic
moon dataset (Fig. 4a). The probability of input x ∈ R2 being in the ‘blue’ class (i.e., yx = 1 and
denoted by blue dots in Fig. 4a) is defined as 1/(1 + exp(fx)) where fx is a latent function modeled
by a sparse GP [27], which is elaborated in Appendix E. The parameters θ of the sparse GP consist
of 20 inducing variables; the approximate posterior beliefs of θ are thus multivariate Gaussians
(with full covariance matrices), as shown in Appendix E. By comparing Figs. 4b and 4c, it can be
observed that after erasing De (i.e., mainly in ‘yellow’ class), q(yx = 1|Dr) increases at x ∈ De.
Figs. 4d and 4e show results of the performance of our EUBO- and rKL-based unlearning methods
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Figure 4: Plots of (a) synthetic moon dataset with erased data De (crosses) and remaining data
Dr (dots), and of predictive distributions obtained using VI from (b) training with full data D and
(c) retraining with Dr. Graphs of averaged KL divergence vs. λ achieved by EUBO, rKL, and
q(θ|D) (i.e., baseline labeled as full) over (d) Dr and (e) De. Plots of predictive distributions (f-h)
q̃u(yx = 1|Dr) and (i-k) q̃v(yx = 1|Dr) induced, respectively, by EUBO and rKL for varying λ.

over Dr and De with varying λ, respectively.4 When λ = 10−9, EUBO performs reasonably well
(compare Figs. 4g vs. 4c) as its averaged KL divergence is smaller than that of q(θ|D) (i.e., baseline
labeled as full). When λ = 0, EUBO performs poorly (compare Figs. 4h vs. 4c) as its averaged
KL divergence is much larger than that of q(θ|D), as shown in Figs. 4d and 4e. This agrees with
our discussion of the issue with picking too small a value of λ for EUBO at the end of Sec. 3.3.1.
In particular, catastrophic unlearning is observed as the input region containing De (i.e., mainly in
‘yellow’ class) has a high probability in ‘blue’ class after unlearning in Fig. 4h. On the other hand,
when λ = 0, rKL performs well (compare Figs. 4k vs. 4c) as its KL divergence is much smaller than
that of q(θ|D), as seen in Figs. 4d and 4e. This agrees with our discussion at the end of Sec. 3.3.2
that rKL can work well without needing the adjusted likelihood.

One may question how the performance of our unlearning methods would vary when erasing a
large quantity of data or with different distributions of erased data (e.g., erasing the data randomly
vs. deliberately erasing all data in a given class). To address this question, we have discovered that a
key factor influencing their unlearning performance in these scenarios is the difference between the
posterior beliefs of model parameters θ given remaining data Dr vs. that given full data D, especially
at values of θ with small q(θ|D) since unlearning in such a region is curbed by the adjusted likelihood
and reverse KL. In practice, we expect such a difference not to be large due to the small quantity
of erased data and redundancy in real-world datasets. We will present the details of this study in
Appendix F due to lack of space by considering how much De reduces the entropy of θ given Dr.

4.2 Logistic Regression with Banknote Authentication Dataset

The banknote authentication dataset [10] of size |D| = 1372 is partitioned into erased data of size
|De| = 412 and remaining data of size |Dr| = 960. Each input x comprises 4 features extracted
from an image of a banknote and its corresponding binary label yx indicates whether the banknote
is genuine or forged. We use a logistic regression model with 5 parameters that is trained with this
dataset. The prior beliefs of the model parameters are independent Gaussians N (0, 100).

Unlike the previous experiment, the erased data De here is randomly selected and hence does not
reduce the entropy of model parameters θ givenDr much, as explained in Appendix F; a discussion on
erasing informative data (such as that in Sec. 4.1) is in Appendix F. As a result, Figs. 5a and 5b show
a very small averaged KL divergence of about 10−3 between q(yx|D) vs. q(yx|Dr) (i.e., baselines)
over Dr and De.4 Figs. 5a and 5b also show that our unlearning methods do not perform well when
using multivariate Gaussians to model the approximate posterior beliefs of θ: While rKL still gives
a useful q̃v(θ|Dr;λ) achieving an averaged KL divergence close to that of q(θ|D), EUBO gives a
useless q̃u(θ|Dr;λ) incurring a large averaged KL divergence when λ is small. On the other hand,

4Note that the log plots can only properly display the upper confidence interval of 1 standard deviation
(shaded area) and hence do not show the lower confidence interval.

7



0.
5

0.
1

0.
00

1

1e
-0

5

1e
-0

9

0.
0 λ

10−2

101

0.
5

0.
1

0.
00

1

1e
-0

5

1e
-0

9

0.
0 λ

10−3

10−1

0.
00

1

1e
-0

5

1e
-0

7

1e
-0

9

0.
0 λ

10−4

10−3

0.
00

1

1e
-0

5

1e
-0

7

1e
-0

9

0.
0 λ

10−4

10−3
rKL

EUBO

full

(a) Dr (b) De (c) Dr (d) De

Figure 5: Graphs of averaged KL divergence vs. λ achieved by EUBO, rKL, and q(θ|D) (i.e., baseline
labeled as full) overDr andDe for the banknote authentication dataset with the approximate posterior
beliefs of model parameters represented by (a-b) multivariate Gaussians and (c-d) normalizing flows.

when more complex models like normalizing flows with the MADE architecture [26] are used to
represent the approximate posterior beliefs, EUBO and rKL can unlearn well (Figs. 5c and 5d).

4.3 Logistic Regression with Fashion MNIST Dataset

The fashion MNIST dataset of size |D| = 60000 (28 × 28 images of fashion items in 10 classes)
is partitioned into erased data of size |De| = 10000 and remaining data of size |Dr| = 50000. The
classification model is a neural network with 3 fully-connected hidden layers of 128, 128, 64 hidden
neurons and a softmax layer to output the 10-class probabilities. The model can be interpreted as one
of logistic regression on 64 features generated from the hidden layer of 64 neurons. Since modeling
all weights of the neural network as random variables can be costly, we model only 650 weights in
the transformation of the 64 features to the inputs of the softmax layer. The other weights remain
constant during unlearning and retraining. The prior beliefs of the network weights are N (0, 10).
The approximate posterior beliefs are modeled with independent Gaussians. Though a large part of
the network is fixed and we use simple models to represent the approximate posterior beliefs, we
show that unlearning is still fairly effective.

As discussed in Sec. 4.1, 4.2, and Appendix F, the random selection of erased dataDe and redundancy
in D lead to a small averaged KL divergence of about 0.1 between q(yx|D) vs. q(yx|Dr) (i.e.,
baselines) over Dr and De (Figs. 6a and 6b) despite choosing a relatively large |De|. Figs. 6a and 6b
show that when λ ≥ 10−9, EUBO and rKL achieve averaged KL divergences comparable to that
of q(θ|D) (i.e., baseline labeled as full), hence making their unlearning insignificant.4 However, at
λ = 0, the unlearning performance of rKL improves by achieving a smaller averaged KL divergence
than that of q(θ|D), while EUBO’s performance deteriorates. Their performance can be further
improved by using more complex models to represent their approximate posterior beliefs like that
in Sec. 4.2, albeit high-dimensional. Figs. 6c and 6d show the class probabilities for two images
evaluated at the mean of the approximate posterior beliefs with λ = 0. We observe that rKL induces
the highest class probability for the same class as that of q(θ|Dr). The class probabilities for other
images are shown in Appendix G. The two images are taken from a separate set of 10000 test images
(i.e., different from D) where rKL with λ = 0 yields the same predictions as q(θ|Dr) and q(θ|D) in,
respectively, 99.34% and 99.22% of the test images, the latter of which are contained in the former.

4.4 Sparse Gaussian Process (GP) Regression with Airline Dataset

This section illustrates the scalability of unlearning to the massive airline dataset of ∼ 2 million
flights [15]. Training a sparse GP model with this massive dataset is made possible through stochastic
VI [15]. Let Xu denote the set of 50 inducing inputs in the sparse GP model and fXu be a vector of
corresponding latent function values (i.e., inducing variables). The posterior belief p(fD, fXu |D) is
approximated as q(fD, fXu |D) , q(fXu |D) p(fD|fXu) where fD , (fx)x∈D. Let the sets XD and
XDe denote inputs in the full and erased data, respectively. Then, the ELBO can be decomposed to

L =
∑

x∈XD

∫
q(fXu |D) p(fx|fXu) log p(yx|fx) dfx dfXu − KL[q(fXu |D) ‖ p(fXu)] (10)

where
∫
p(fx|fXu) log p(yx|fx) dfx can be evaluated in closed form [11]. To unlearn such a trained

model from De (|De| = 100K here), the EUBO (8) can be expressed in a similar way as the ELBO:

Ũadj(λ)=
∑

x∈XDe

∫
q̃u(fXu |Dr;λ)p(fx|fXu) log padj(yx|fx;λ) dfx dfXu+KL[q̃u(fXu |Dr;λ)‖q(fXu |D)]
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Figure 6: Graphs of averaged KL divergence vs. λ achieved by EUBO, rKL, and q(θ|D) (i.e., baseline
labeled as full) over (a) Dr and (b) De. (c-d) Plots of class probabilities for two images in the fashion
MNIST dataset obtained using q(θ|D), q(θ|Dr), optimized q̃v(θ|Dr;λ = 0) and q̃u(θ|Dr;λ = 0).

Table 1: KL divergence achieved by EUBO (top row) and rKL (bottom row) with varying λ for
airline dataset.

λ 10−11 10−13 10−20 0

KL[q̃u(fXu |Dr;λ) ‖ q(fXu |Dr)] 2194.49 1943.00 1384.96 2629.71
KL[q̃v(fXu |Dr;λ) ‖ q(fXu |Dr)] 418.42 367.12 543.45 455.11

where padj(yx|fx;λ) = p(yx|fx) if q(fx, fXu |D) > λmaxfXu
q(fx, fXu |D), and padj(yx|fx;λ) = 1

otherwise. EUBO can be minimized using stochastic gradient descent with random subsets (i.e.,
mini-batches of size 10K) of De in each iteration. For rKL, we use the entire De in each iteration.
Since q̃u(fXu |Dr;λ), q̃v(fXu |Dr;λ), and q(fXu |Dr) in (10) [11] are all multivariate Gaussians, we
can directly evaluate the performance of EUBO and rKL with varying λ through their respective
KL[q̃u(fXu |Dr;λ) ‖ q(fXu |Dr)] and KL[q̃v(fXu |Dr;λ) ‖ q(fXu |Dr)] which, according to Table 1, are
smaller than KL[q(fXu |D) ‖ q(fXu |Dr)] of value 4344.09 (i.e., baseline representing no unlearning),
hence demonstrating reasonable unlearning performance.

5 Conclusion

This paper describes novel unlearning methods for approximately unlearning a Bayesian model from
a small subset of training data to be erased. Our unlearning methods are parsimonious in requiring
only the approximate posterior belief of model parameters given the full data (i.e., obtained in model
training with VI) and erased data to be available. This makes unlearning even more challenging due to
two sources of inaccuracy in the approximate posterior belief. We introduce novel tricks of adjusted
likelihood and reverse KL to curb unlearning in the region of model parameters with low approximate
posterior belief where both sources of inaccuracy primarily occur. Empirical evaluations on synthetic
and real-world datasets show that our proposed methods (especially reverse KL without adjusted
likelihood) can effectively unlearn Bayesian models such as sparse GP and logistic regression from
erased data. In practice, for the approximate posterior beliefs recovered by unlearning from erased
data using our proposed methods, they can be immediately used in ML applications and continue to
be improved at the same time by retraining with the remaining data at the expense of parsimony. In
our future work, we will apply our our proposed methods to unlearning more sophisticated Bayesian
models like the entire family of sparse GP models [5, 6, 7, 8, 16, 17, 18, 19, 20, 22, 23, 25, 31, 32, 34])
and deep GP models [33].
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Broader Impact

As discussed in our introduction (Sec. 1), a direct contribution of our work to the society in this
information age is to the implementation of personal data ownership (i.e., enforced by the General
Data Protection Regulation in the European Union [24]) by studying the problem of machine
unlearning for Bayesian models. Such an implementation can boost the confidence of users about
sharing their data with an application/organization when they know that the trace of their data can
be reduced/erased, as requested. As a result, organizations/applications can gather more useful data
from users to enhance their service back to the users and hence to the society.

Our unlearning work can also contribute to the defense against data poisoning attacks (i.e., injecting
malicious training data). Instead of retraining the tampered machine learning model from scratch to
recover the quality of a service, unlearning the model from the detected malicious data may incur
much less time, which improves the user experience and reduces the cost due to the service disruption.

In contrast, the ability to unlearn machine learning models may also open the door to new adversarial
activities. For example, in the context of data sharing, multiple parties share their data to train a
common machine learning model. An unethical party can deliberately share a low-quality dataset
instead of its high-quality one. After obtaining the model trained on datasets from all parties (including
the low-quality dataset), the unethical party can unlearn the low-quality dataset and continue to train
the model with its high-quality dataset. By doing this, the unethical party achieves a better model
than other parties in the collaboration. Therefore, the possibility of machine unlearning should be
considered in the design of different data sharing frameworks.
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A Proof of Proposition 1

We first follow the proof of the log-sum inequality to prove the following inequality:

qu(y|Dr) log
qu(y|Dr)

p(y|Dr)
≤
∫
qu(θ|Dr) p(y|θ) log

qu(θ|Dr)

p(θ|Dr)
dθ (11)

where qu(y|Dr) , Equ(θ|Dr)[p(y|θ)] =
∫
qu(θ|Dr) p(y|θ) dθ and p(y|Dr) , Ep(θ|Dr)[p(y|θ)] =∫

p(θ|Dr) p(y|θ) dθ.

Proof. Define the function f(t) , t log t which is convex. Then,∫
qu(θ|Dr) p(y|θ) log

qu(θ|Dr)

p(θ|Dr)
dθ

=

∫
p(θ|Dr) p(y|θ) f

(
qu(θ|Dr)

p(θ|Dr)

)
dθ

= Ep(θ|Dr)[p(y|θ)]

∫
p(θ|Dr) p(y|θ)

Ep(θ|Dr)[p(y|θ)]
f

(
qu(θ|Dr)

p(θ|Dr)

)
dθ

≥ Ep(θ|Dr)[p(y|θ)] f

(∫
p(θ|Dr) p(y|θ)

Ep(θ|Dr)[p(y|θ)]

qu(θ|Dr)

p(θ|Dr)
dθ
)

= Ep(θ|Dr)[p(y|θ)] f

(∫
p(y|θ) qu(θ|Dr)

Ep(θ|Dr)[p(y|θ)]
dθ
)

= Ep(θ|Dr)[p(y|θ)] f

(Equ(θ|Dr)[p(y|θ)]

Ep(θ|Dr)[p(y|θ)]

)
= Equ(θ|Dr)[p(y|θ)] log

Equ(θ|Dr)[p(y|θ)]

Ep(θ|Dr)[p(y|θ)]

= qu(y|Dr) log
qu(y|Dr)

p(y|Dr)

where the inequality is due to Jensen’s inequality.

Then, integrating both sides of (11) w.r.t. y,∫
qu(y|Dr) log

qu(y|Dr)

p(y|Dr)
dy ≤

∫ ∫
qu(θ|Dr) p(y|θ) log

qu(θ|Dr)

p(θ|Dr)
dθ dy∫

qu(y|Dr) log
qu(y|Dr)

p(y|Dr)
dy ≤

∫
qu(θ|Dr)

(∫
p(y|θ) dy

)
log

qu(θ|Dr)

p(θ|Dr)
dθ∫

qu(y|Dr) log
qu(y|Dr)

p(y|Dr)
dy ≤

∫
qu(θ|Dr) log

qu(θ|Dr)

p(θ|Dr)
dθ

KL[qu(y|Dr) ‖ p(y|Dr)] ≤ KL[qu(θ|Dr) ‖ p(θ|Dr)] .

B Proof of Proposition 2

From (2),

log p(De|Dr) = log
p(De|θ) p(θ|Dr)

p(θ|D)

= log
qu(θ|Dr) p(De|θ) p(θ|Dr)

qu(θ|Dr) p(θ|D)

= log p(De|θ) + log
qu(θ|Dr)

p(θ|D)
− log

qu(θ|Dr)

p(θ|Dr)
.
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Then, taking an expectation of both sides w.r.t. qu(θ|Dr),

log p(De|Dr) =

∫
qu(θ|Dr) log p(De|θ) dθ +

∫
qu(θ|Dr) log

qu(θ|Dr)

p(θ|D)
dθ −

∫
qu(θ|Dr) log

qu(θ|Dr)

p(θ|Dr)
dθ

=

∫
qu(θ|Dr) log p(De|θ) dθ + KL[qu(θ|Dr) ‖ p(θ|D)]− KL[qu(θ|Dr) ‖ p(θ|Dr)]

= U − KL[qu(θ|Dr) ‖ p(θ|Dr)] .

Therefore,

U = log p(De|Dr) + KL[qu(θ|Dr) ‖ p(θ|Dr)] ≥ log p(De|Dr)

since KL[qu(θ|Dr) ‖ p(θ|Dr)] ≥ 0. So, U is an upper bound of log p(De|Dr).

C Bayesian Linear Regression

We perform unlearning of a simple Bayesian linear regression model: yx = ax3 + bx2 + cx+ d+ ε
where a = 2, b = −3, c = 1, and d = 0 are the model parameters θ, and the noise is ε ∼ N (0, 0.052).
Though the exact posterior belief of θ is known to be a multivariate Gaussian, we choose to use a
low-rank approximation (i.e., multivariate Gaussian with a diagonal covariance matrice) and represent
the approximate posterior beliefs of the model parameters with independent Gaussians so that the
approximation is not exact.

Fig. 7a shows the remaining data Dr and erased data De. Note that the erased data De is informative
to the approximate posterior beliefs of the model parameters θ as De are clustered. So, the difference
between the samples drawn from predictive distributions q(yx|D) (Fig. 7b) vs. q(yx|Dr) (Fig. 7c) is
large.

Table 2: KL divergences achieved by EUBO (left column) and rKL (right column) with varying λ for
synthetic linear regression dataset.

λ KL[q̃u(θ|Dr;λ) ‖ q(θ|Dr)] KL[q̃v(θ|Dr;λ) ‖ q(θ|Dr)]

0.5 0.1143 0.1012
0.1 0.0899 0.0600
0.0 266.68 0.0158

From Table 2, the KL divergences achieved by EUBO and rKL with λ = 0.1, 0.5 are smaller than
KL[q(θ|D) ‖ q(θ|Dr)] of value 0.1170 (i.e., baseline representing no unlearning), hence demonstrat-
ing reasonable unlearning performance. When λ = 0, EUBO suffers from catastrophic unlearning,
but rKL does not. The KL divergences in Table 2 also agree with the plots of samples drawn from the
predictive distributions induced by EUBO and rKL in Fig. 7 by comparing with the samples drawn
from the predictive distribution obtained using VI from retraining with Dr in Fig. 7c.

D Bimodal Posterior Belief

Let the posterior belief of model parameter θ given full data D be a Gaussian mixture (i.e., a bimodal
distribution):

p(θ|D) , 0.5 φ(θ; 0, 1) + 0.5 φ(θ; 2, 1) (12)

where φ(θ;µ, σ2) is a Gaussian p.d.f. with mean µ and variance σ2. We deliberately choose the
likelihood of the erased data De to be

p(De|θ) , 1 +
φ(θ; 2, 1)

φ(θ; 0, 1)
(13)

so that the posterior belief of θ given the remaining data Dr is a Gaussian:

p(θ|Dr) ∝ p(θ|D)

p(De|θ)
= φ(θ; 0, 1) (14)
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Figure 7: Plots of (a) synthetic linear regression dataset with erased data De (crosses) and remaining
data Dr (dots), and samples from predictive distributions obtained using VI from (b) training with
full data D and (c) retraining with Dr. Plots of samples from predictive distributions (d-f) q̃u(yx|Dr)
and (g-i) q̃v(yx|Dr) induced, respectively, by EUBO and rKL with varying λ.

where the proportionality is due to (2).

We assume to only have access to the likelihood of the erased data in (13); the exact posterior beliefs
of θ given the full data (12) and that given the remaining data (14) are not available. Instead, we have
access to an approximate posterior belief q(θ|D) given the full data obtained using VI by minimizing
KL[q(θ|D) ‖ p(θ|D)] or, equivalently, maximizing the ELBO (Section 2):

q(θ|D) = φ(θ; 1.004, 1.3902) . (15)

Given the likelihood p(De|θ) of the erased data in (13) and the approximate posterior belief q(θ|D)
given the full data (15), unlearning from De is performed using EUBO and rKL to obtain

q̃u(θ|Dr;λ = 0) = φ(θ; 0.060, 1.0002) and q̃v(θ|Dr;λ = 0) = φ(θ; 0.062, 1.0182) ,

respectively. Hence, both EUBO and rKL perform reasonably well since their respective q̃u(θ|Dr;λ =
0) and q̃v(θ|Dr;λ = 0) are close to p(θ|Dr) = φ(θ; 0, 1) (14) when p(θ|D) is a bimodal distribution.

E Gaussian Process (GP) Classification with Synthetic Moon Dataset:
Additional Details and Experimental Results

This section discusses the sparse GP model that is used in the classification of the synthetic moon
dataset in Sec. 4.1. Let yx ∈ {0, 1} be the class label of x ∈ X ⊂ R2; yx = 1 denotes the ‘blue’
class plotted as blue dots in Fig. 4a. The probability of yx is defined as follows:

p(yx = 1|fx) ,
1

1 + exp(fx)

p(yx = 0|fx) ,
exp(fx)

1 + exp(fx)

(16)
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Figure 8: Plots of approximate posterior beliefs (a-b) q(fx|D) and (c-d) q(fx|Dr).

where fx is modeled using a GP [28], that is, every finite subset of {fx}x∈X follows a multivariate
Gaussian distribution. A GP is fully specified by its prior mean (i.e., assumed to be 0 w.l.o.g.)
and covariance kxx′ , cov(x,x′), the latter of which can be defined by the widely-used squared
exponential covariance function kxx′ , σ2

f exp(−0.5‖Λ(x− x′)‖22) where Λ = diag[λ1, λ2] and σ2
f

are the length-scale and signal variance hyperparameters, respectively. In this experiment, we set
λ1 = 1.56, λ2 = 1.35, and σ2

f = 4.74.

We employ a sparse GP model, namely, the deterministic training conditional (DTC) [27] ap-
proximation of the GP model with a set Xu of 20 inducing inputs. These inducing inputs are
randomly selected from X and remain the same (and fixed) for both model training and unlearn-
ing. Given the latent function values (i.e., also known as inducing variables) fXu

, (fx)>x∈Xu

at these inducing inputs, the posterior belief of the latent function value fx at a new input x is a
Gaussian p(fx|fXu

) = N (kxXu
K−1XuXu

fXu
, kxx − kxXu

K−1XuXu
kXux) where kxXu

, (kxx′)x′∈Xu
,

kXux = k>xXu
, and KXuXu = (kxx′)x,x′∈Xu .

Using p(fx|fXu
) and q(fXu

|D) , N (µXu
,ΣXu

), it can be derived that the approximate posterior
belief q(fx|D) of fx given full data D is also a Gaussian with the following respective posterior
mean and variance:

µx|D , kxXu
K−1XuXu

µXu
, (17)

σ2
x|D , kxx − kxXuK−1XuXu

kXux + kxXuK−1XuXu
ΣXuK−1XuXu

kXux . (18)

The approximate posterior belief q(fx|Dr) of fx from retraining with remaining data Dr using VI
(specifically, using q(fXu

|Dr)) can be derived in the same way as that of q(fx|D).

The parameters µXu
, ΣXu

of the approximate posterior belief q(fXu
|D) is optimized by maximizing

the ELBO with stochastic gradient ascent (let θ = fXu in (1) in Sec. 2):

EfXu∼q(fXu |D) [log p(D|fXu
)− log q(fXu

|D) + log p(fXu
)]

where p(D|fXu
) is computed using (16), (17) and (18).

Fig. 8 visualizes q(fx|D) (Figs. 8a and 8b) and q(fx|Dr) (Figs. 8c and 8d) whose corresponding
predictive distributions q(yx = 1|D) and q(yx = 1|Dr) are shown in Figs. 4b and 4c, respectively.
On the other hand, Figs. 9 and 10 visualize the approximate posterior beliefs q̃u(fx|Dr;λ) and
q̃v(fx|Dr;λ) induced, respectively, by EUBO and rKL whose corresponding predictive distributions
q̃u(yx = 1|Dr) and q̃v(yx = 1|Dr) are shown in Figs. 4f-k. Similar to the comparison between
predictive distributions q̃u(yx = 1|Dr) vs. q(yx = 1|Dr) in Sec. 4.1, it can be observed that
the approximate posterior belief q̃u(fx|Dr;λ = 10−9) induced by EUBO is similar to q(fx|Dr)
obtained using VI from retraining with Dr (compare Figs. 9c vs. 8c and Figs. 9d vs. 8d). However,
q̃u(fx|Dr;λ = 0) induced by EUBO differs from q(fx|Dr) obtained using VI from retraining with
Dr (compare Figs. 9e vs. 8c and Figs. 9f vs. 8d). On the other hand, both the approximate posterior
beliefs q̃v(fx|Dr;λ = 10−9) and q̃v(fx|Dr;λ = 0) induced by rKL are similar to q(fx|Dr) obtained
using VI from retraining with Dr (compare Fig. 10 vs. Figs. 8c-d).

F A Note on Erasing Informative Data

In this section, we study the performance of our unlearning methods when erasing a large quantity
of data or with different distributions of erased data (i.e., erasing the data randomly vs. deliberately
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Figure 9: Plots of approximate posterior belief q̃u(fx|Dr;λ) induced by EUBO for varying λ.
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erasing all data in a given class). Let us consider the experiment in Sec. 4.1 on the sparse GP model
(i.e., the model parameters θ in (1) in Sec. 2 are inducing variables fXu) in the classification of the
synthetic moon dataset as it allows us to easily visualize both the approximate posterior beliefs of
the latent function fx and the predictive distributions of the output/observation yx. A key factor
influencing the performance of our unlearning methods in the above-mentioned scenarios is the
difference between the approximate posterior belief of model parameters fXu

given remaining data
Dr vs. that given full data D. We quantify such a difference by how much the erased data De reduces
the entropy of model parameters/inducing variables fXu

given remaining data Dr:

I , H(fXu |Dr)−H(fXu |D) = −
∫
q(fXu |Dr) log q(fXu |Dr) dfXu+

∫
q(fXu |D) log q(fXu |D) dfXu .

(19)
Note that I (19) is not the same as the mutual information (i.e., information gain) between fXu and
yDe

, (yx)>(x,yx)∈De
given Dr, which is equal to H(fXu

|Dr)− Ep(yDe |Dr) [H(fXu
|Dr,yDe

)] with
an expensive-to-evaluate expectation term. Furthermore, the outputs/observations yDe

are known
from De. These therefore prompt us to choose I (19) as the measure of how much the erased data
De reduces the entropy of model parameters/inducing variables fXu

given remaining data Dr.

We investigate 4 different scenarios in the order of increasing I:

1. Randomly selected De (I = 0.27): The erased data of size |De| = 20 are randomly selected
from D. Hence, they are not necessarily near the decision boundary, i.e., De does not reduce
the entropy of model parameters/inducing variables fXu

given Dr much;

2. Partially ‘yellow’ De (I = 1.59): The erased data of size |De| = 30 are labeled with the
‘yellow’ class and comprise inputs x with the largest possible first component x0. Such a
choice ensures that the erased data group together to cover a part of the decision boundary,
as shown in Fig. 11d;

3. Largely ‘yellow’ De (I = 2.06): The erased data of size |De| = 40 are labeled with the
yellow class and comprise inputs x with the largest possible first component x0. As the
quantity of the erased dataDe increases from 30 (i.e., partially ‘yellow’De) to 40,De covers
a larger part of the decision boundary (compare Figs. 11g vs. 11d); and

4. Fully ‘yellow’ De (I = 3.86): The erased data of size |De| = 50 comprise all data in
the yellow class. In this case, De reduces the entropy of the model parameters/inducing
variables fXu

given Dr the most when compared to the above 3 scenarios.

As I increases, the difference between the approximate posterior belief of fXu given remaining data
Dr vs. that given full data D increases. Though it is difficult to visualize such a difference directly,
Proposition 1 tells us that this difference can be alternatively understood by comparing the predictive
distributions q(yx = 1|Dr) in Table 3 vs. q(yx = 1|D) in Fig. 4b.

Fig. 11 shows results of averaged KL divergences (i.e., performance metric described in Sec. 4)
achieved by EUBO, rKL, and q(fXu |D) over Dr and De for the 4 scenarios above. Table 3 also
analyzes the performance of our unlearning methods qualitatively by plotting the means of the
approximate posterior beliefs q̃u(fx|Dr;λ) and q̃v(fx|Dr;λ) induced, respectively, by EUBO and
rKL with the corresponding predictive distributions q̃u(yx = 1|Dr) and q̃v(yx = 1|Dr), together with
the mean of the approximate posterior belief q(fx|Dr) with the corresponding predictive distribution
q(yx = 1|Dr) obtained using VI from retraining with remaining data Dr. The following observations
result:

• Fig. 11 shows that as I increases across the 4 scenarios, the averaged KL divergence between
q(yx|D) vs. q(yx|Dr) over Dr and De (i.e., baseline labeled as full) generally increases.

• In the scenario of randomly selected De (i.e., I is small), we expect the difference between
the predictive distributions q(yx|D) vs. q(yx|Dr) over Dr and De to be small, which is
reflected in the very small averaged KL divergences of about 0.002 and 0.004 achieved by
q(fXu |D) (i.e., baseline labeled as full) in Figs. 11b and 11c, respectively. It can also be
observed that though EUBO and rKL with λ ∈ {10−5, 10−9} achieve smaller averaged
KL divergences than that of q(fXu |D) (i.e., baseline), EUBO’s averaged KL divergence
increases beyond than that of the baseline when λ = 0, but remains very small. As a result,
the first row in Table 3 shows that when λ = 10−9 or λ = 0, the predictive distributions
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q̃u(yx = 1|Dr) and q̃v(yx = 1|Dr) induced, respectively, by EUBO and rKL are similar
to q(yx = 1|Dr) obtained using VI from retraining with Dr. Hence, we can conclude that
both EUBO and rKL perform reasonably well in this scenario, even when λ = 0.

• In the scenarios of partially and largely ‘yellow’De, I is much larger than that in the scenario
of randomly selected De. So, we expect an increase in the difference between the predictive
distributions q(yx|D) vs. q(yx|Dr) over Dr and De. It can be observed from Figs. 11e-f
and 11h-i that when λ = 0, EUBO performs poorly as its averaged KL divergence is larger
than that of q(fXu

|D) (i.e., baseline labeled as full), while rKL performs well as its averaged
KL divergence is much smaller than that of the baseline. On the other hand, when λ = 10−9,
both EUBO and rKL perform well, which can also be observed from the second and third
rows of Table 3. These plots also show that while the predictive distributions q̃v(yx = 1|Dr)
induced by rKL with λ = 10−9 are not as similar to q(yx = 1|Dr) as q̃u(yx = 1|Dr)
induced by EUBO with λ = 10−9, the performance of rKL with λ = 0 is more robust.

• In the scenario of fully ‘yellow’ De (i.e., I is largest), the difference between the predictive
distributions q(yx|D) vs. q(yx|Dr) over Dr and De is larger than that in the above 3
scenarios. Except for EUBO with λ = 0, the predictive distributions q̃u(yx|Dr) and
q̃v(yx|Dr) induced, respectively, by EUBO and rKL are closer to q(yx|Dr) than q(yx|D) as
they achieve smaller averaged KL divergences than that of q(fXu

|D), as shown in Figs. 11k-l.
However, the fourth row of Table 3 shows that both EUBO and rKL do not perform that well.
Nevertheless, it can be observed that when λ = 0, the predictive distribution q̃v(yx = 1|Dr)
induced by rKL is still usable while q̃u(yx = 1|Dr) induced by EUBO is useless.

To summarize, when only an approximate posterior belief q(θ|D) of model parameters θ = fXu

given full data D (i.e., obtained in model training with VI) is available, both EUBO and rKL can
perform well if the difference between the approximate posterior belief of model parameters given
remaining data Dr vs. that given full data D is sufficiently small. In practice, this is expected due to
the small quantity of erased data and redundancy in real-world datasets. In the case where the erased
data is highly informative, the approximate posterior belief q̃v(θ|Dr;λ = 0) induced by rKL remains
usable by being close to q(θ|D) and hence sacrificing its unlearning performance. On the other hand,
EUBO may suffer from poor unlearning performance when λ is too small.

The above remark highlights the limitation of our unlearning methods when the erased data De is
informative and only the approximate posterior belief q(θ|D) is available. Such a limitation is due
to the lack of information about the difference between the exact posterior belief p(θ|D) vs. the
approximate one q(θ|D) (Sec. 3.3), which motivates future investigation into maintaining additional
information about this difference during the model training with VI to improve the unlearning
performance. In practice, an ML application may require an unlearning method to be time-efficient in
order to satisfy the constraint on the response time to a user’s request for her data to be erased while
not rendering the model useless (e.g., due to catastrophic unlearning). After processing the user’s
request, the ML application can continue to improve the approximate posterior belief recovered by
unlearning from erased data (i.e., using our proposed EUBO or rKL) by retraining with the remaining
data at the expense of parsimony (i.e., in terms of time and space costs).

One may wonder how our unlearning methods can handle multiple users’ request arriving sequentially
over time. To avoid approximation errors from accumulating, we can adopt the approach of lazy
unlearning by aggregating all the (past and new) users’ erased data intoDe and performing unlearning
(i.e., using only q(θ|D) and De) as and when necessary. As expected, our unlearning methods can
perform well, provided that the aggregated erased data De remains sufficiently small or contains
enough redundancy.

G Logistic Regression with Fashion MNIST Dataset: Additional
Experimental Results

In this section, we will present the following:

• Additional visualizations of the class probabilities for images in Dr evaluated at the mean of
the approximate posterior beliefs obtained using EUBO and rKL with λ = 0 in Fig. 13, and
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Figure 11: Plots of (a,d,g,j) synthetic moon dataset with erased data De (crosses) and remaining
data Dr (dots) in 4 different scenarios. Graphs of averaged KL divergence vs. λ achieved by EUBO,
reverse KL (rKL), and q(θ|D) (i.e., baseline labeled as full) over Dr and De in the following 4
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Table 3: Plots of the mean of approximate posterior belief q(fx|Dr) with the corresponding predictive
distribution q(yx = 1|Dr) obtained using VI from retraining with remaining data Dr, and also the
means of approximate posterior beliefs q̃u(fx|Dr;λ) and q̃v(fx|Dr;λ) induced, respectively, by
EUBO and rKL with the corresponding predictive distributions q̃u(yx = 1|Dr) and q̃v(yx = 1|Dr)
for λ ∈ [10−9, 0]. The 1-st, 2-nd, 3-rd, and 4-th rows correspond to the following 4 respective
scenarios: randomly selected De, partially ‘yellow’ De, largely ‘yellow’ De, and fully ‘yellow’ De.

Dataset Retrained EUBO rKL

Mean µx|Dr
q(yx = 1|Dr) Mean q̃u(yx = 1|Dr) Mean q̃v(yx = 1|Dr)
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Figure 12: Graphs of averaged KL divergence vs. λ achieved by EUBO, rKL, and q(θ|D) (i.e.,
baseline labeled as full) over Dr and De for the fashion MNIST dataset. The approximate posterior
beliefs of the model parameters/weights are represented by (a-b) independent Gaussians (i.e., diagonal
covariance matrices) and (c-d) multivariate Gaussians (i.e., full covariance matrices).

• Comparison of the unlearning performance obtained using approximate posterior beliefs
modeled with independent Gaussians (i.e., diagonal covariance matrices) vs. that modeled
with multivariate Gaussians (i.e., full covariance matrices).

Fig. 13 shows the class probabilities for the images in Dr evaluated at the mean of the approximate
posterior beliefs with λ = 0. Figs. 13a-d and 13g show that rKL induces the highest class probability
for the same class as that of q(θ|Dr). In Figs. 13e-f and 13h, the class probabilities obtained using
optimized q̃v(θ|Dr;λ = 0) resemble that obtained using q(θ|D), though the probability of the correct
class is reduced due to unlearning.

Fig. 12 shows the averaged KL divergences of EUBO, rKL, and q(θ|D) where the approximate
posterior beliefs are modeled with independent Gaussians (i.e., diagonal covariance matrices) in
Figs. 12a-b and multivariate Gaussians (i.e., full covariance matrices) in Figs. 12c-d. It can be
observed that the averaged KL divergences between q(yx|D) vs. q(yx|Dr) over Dr and De (i.e.,
baselines labeled as full) decrease when multivariate Gaussians with full covariance matrices are
used to model the approximate posterior beliefs instead (compare the baselines labeled as full in
Figs. 12c-d vs. that in Figs. 12a-b). Furthermore, in such a case, the unlearning performance of both
EUBO and rKL improve as their averaged KL divergences are not as large (relative to the baselines)
as that using independent Gaussians.
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Figure 13: Plots of class probabilities for images in Dr obtained using q(θ|D), q(θ|Dr), optimized
q̃v(θ|Dr;λ = 0) and q̃u(θ|Dr;λ = 0). 23
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