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Abstract

Bayesian optimization (BO) is a prominent approach to optimizing expensive-
to-evaluate black-box functions. The massive computational capability of edge
devices such as mobile phones, coupled with privacy concerns, has led to a surging
interest in federated learning (FL) which focuses on collaborative training of deep
neural networks (DNNs) via first-order optimization techniques. However, some
common machine learning tasks such as hyperparameter tuning of DNNs lack
access to gradients and thus require zeroth-order/black-box optimization. This hints
at the possibility of extending BO to the FL setting (FBO) for agents to collaborate
in these black-box optimization tasks. This paper presents federated Thompson
sampling (FTS) which overcomes a number of key challenges of FBO and FL in a
principled way: We (a) use random Fourier features to approximate the Gaussian
process surrogate model used in BO, which naturally produces the parameters
to be exchanged between agents, (b) design FTS based on Thompson sampling,
which significantly reduces the number of parameters to be exchanged, and (c)
provide a theoretical convergence guarantee that is robust against heterogeneous
agents, which is a major challenge in FL and FBO. We empirically demonstrate
the effectiveness of FTS in terms of communication efficiency, computational
efficiency, and practical performance.

1 Introduction

Bayesian optimization (BO) has recently become a prominent approach to optimizing expensive-
to-evaluate black-box functions with no access to gradients, such as in hyperparameter tuning of
deep neural networks (DNNs) [49]. A rapidly growing computational capability of edge devices
such as mobile phones, as well as an increasing concern over data privacy, has given rise to the
widely celebrated paradigm of federated learning (FL) [39] which is also known as federated
optimization [35]. In FL, individual agents, without transmitting their raw data, attempt to leverage
the contributions from the other agents to more effectively optimize the parameters of their machine
learning (ML) model (e.g., DNNs) through first-order optimization techniques (e.g., stochastic
gradient descent) [24, 33]. However, some common ML tasks such as hyperparameter tuning of
DNNs lack access to gradients and thus require zeroth-order/black-box optimization, and a recent
survey [24] has pointed out that hyperparameter optimization of DNNs in the FL setting is one of the
promising research directions for FL. This opportunity, combined with the proven capability of BO to
efficiently optimize expensive-to-evaluate black-box functions [49], naturally suggests the possibility
of extending BO to the FL setting, which we refer to as federated BO (FBO).

The setting of our FBO is similar to that of FL, except that FBO uses zeroth-order optimization, in
contrast to first-order optimization adopted by FL. In FBO, every agent uses BO to optimize a black-
box function (e.g., hyperparameter optimization of a DNN) and attempts to improve the efficiency of
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its BO task by incorporating the information from other agents. The information exchange between
agents has to take place without directly transmitting the raw data of their BO tasks (i.e., history of
input-output pairs). A motivating example is when a number of mobile phone users collaborate in
optimizing the hyperparameters of their separate DNNs used for next-word prediction in a smart
keyboard application, without sharing the raw data of their own hyperparameter optimization tasks.
This application cannot be handled by FL due to the lack of gradient information and thus calls for
FBO. Note that the generality of BO as a black-box optimization algorithm makes the applicability
of FBO extend beyond hyperparameter tuning of DNNs on edge devices. For example, hospitals can
be agents in an FL system [24]: When a hospital uses BO to select the patients to perform a medical
test [61], FBO can be employed to help the hospital accelerate its BO task using the information from
other hospitals without requiring their raw data. Unfortunately, despite its promising applications,
FBO faces a number of major challenges, some of which are only present in FBO, while others
plague the FL setting in general.

The first challenge, which arises only in FBO yet not FL, results from the requirement for retaining
(hence not transmitting) the raw data. In standard FL, the transmitted information consists of the
parameters of a DNN [39], which reduces the risk of privacy violation compared to passing the raw
data. In BO, the information about a BO task is contained in the surrogate model which is used to
model the objective function and hence guide the query selection (Section 2). However, unlike a
DNN, a Gaussian process (GP) model [45], which is the most commonly used surrogate model in BO,
is nonparametric. Therefore, a BO task has no parameters (except for the raw data of BO) that can
represent the GP surrogate and thus be exchanged between agents, while the raw data of BO should
be retained and never transmitted [29]. To overcome this challenge, we exploit random Fourier
features (RFF) [43] to approximate a GP using a Bayesian linear regression model. This allows us to
naturally derive parameters that contain the information about the approximate GP surrogate and thus
can be communicated between agents without exchanging the raw data (Section 2). In fact, with RFF
approximation, the parameters to be exchanged in FBO are equivalent to those of a linear model in
standard FL (Section 3.2).

FBO also needs to handle some common challenges faced by FL in general: communication efficiency
and heterogeneity of agents. Firstly, communication efficiency is an important factor in the FL
setting since a large number of communicated parameters places a demanding requirement on the
communication bandwidth [24] and is also more vulnerable to potential malicious privacy attacks [3].
To this end, we use Thompson sampling (TS) [54], which has been recognized as a highly effective
practical method [4], to develop our FBO algorithm. The use of TS reduces the required number of
parameters to be communicated while maintaining competitive performances (Section 3.2). Secondly,
the heterogeneity of agents is an important practical consideration in FL since different agents can
have highly disparate properties [33]. In FBO, heterogeneous agents represent those agents whose
objective functions are significantly different from that of the target agent (i.e., the agent performing
BO). For example, the optimal hyperparameters of the DNN for next-word prediction may vary
significantly across agents as a result of the distinct typing habits of different mobile phone users.
To address this challenge, we derive a theoretical convergence guarantee for our algorithm which is
robust against heterogeneous agents. In particular, our algorithm achieves no regret asymptotically
even when some or all other agents have highly different objective functions from the target agent.

This paper introduces the first algorithm for the FBO setting called federated Thompson sampling
(FTS) which is both theoretically principled and practically effective. We provide a theoretical conver-
gence guarantee for FTS that is robust against heterogeneous agents (Section 4). We demonstrate the
empirical effectiveness of FTS in terms of communication efficiency, computational efficiency, and
practical performance using a landmine detection experiment and two activity recognition experiments
using Google glasses and mobile phone sensors (Section 5).

2 Background

Bayesian Optimization (BO) and Gaussian Process (GP). BO attempts to find a global maximizer
of a black-box objective function f defined on a domain X ⊂ RD, i.e., find x∗ , arg maxx∈X f(x)
through sequential queries. That is, in iteration t = 1, . . . , T , BO queries an input xt to observe
a noisy output y(xt) , f(xt) + ε where ε is an additive Gaussian noise with variance σ2: ε ∼
N (0, σ2). The aim of a BO algorithm is to minimize regret. Specifically, if the cumulative regret
RT ,

∑
t=1,...,T [f(x∗) − f(xt)] grows sublinearly, then the BO algorithm is said to achieve no
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regret since it implies that the simple regret ST , mint=1,...,T [f(x∗)− f(xt)] ≤ RT /T goes to 0
asymptotically. In order to sequentially select the queries to minimize regret, BO usually uses a GP as
a surrogate to model the objective function f . A GP is a stochastic process in which any finite subset
of random variables follows a multivariate Gaussian distribution [45]. A GP, which is represented
as GP(µ(·), k(·, ·)), is fully characterized by its mean function µ(x) and covariance/kernel function
k(x, x′) for all x, x′ ∈ X . We assume w.l.o.g. that µ(x) , 0 and k(x, x′) ≤ 1 for all x, x′ ∈ X . We
consider the widely used squared exponential (SE) kernel here. Conditioned on a set of t observations
Dt , {(x1, y(x1)), . . . , (xt, y(xt))}, the posterior mean and covariance of GP can be expressed as

µt(x) , kt(x)>(Kt + σ2I)−1yt , σ2
t (x, x′) , k(x, x′)− kt(x)>(Kt + σ2I)−1kt(x

′) (1)

where Kt , [k(xt′ , xt′′)]t′,t′′=1,...,t, kt(x) , [k(x, xt′)]
>
t′=1,...,t, and yt , [y(x1), . . . , y(xt)]

>.

Unfortunately, GP suffers from poor scalability (i.e., by incurring O(t3) time), thus calling for the
need of approximation methods. Bochner’s theorem states that any continuous stationary kernel
k (e.g., SE kernel) can be expressed as the Fourier integral of a spectral density p(s) [45]. As a
result, random samples can be drawn from p(s) to construct the M -dimensional (M ≥ 1) random
features φ(x) for all x ∈ X (Appendix A) whose inner product can be used to approximate the kernel
values: k(x, x′) ≈ φ(x)>φ(x′) for all x, x′ ∈ X [43]. The approximation quality of such a random
Fourier features (RFF) approximation method is theoretically guaranteed with high probability:
supx,x′∈X |k(x, x′) − φ(x)>φ(x′)| ≤ ε where ε , O(M−1/2) [43]. Therefore, increasing the
number M of random features improves the approximation quality (i.e., smaller ε).

A GP with RFF approximation can be interpreted as a Bayesian linear regression model with φ(x) as
the features: f̂(x) , φ(x)>ω. With the prior of P(ω) , N (0, I) and given the set of observations
Dt, the posterior belief of ω can be derived as

P(ω|Φ(Xt), yt) = N (νt, σ
2Σ−1t ) (2)

where Φ(Xt) = [φ(x1), . . . , φ(xt)]
> is a t×M -dimensional matrix and

Σt , Φ(Xt)
>Φ(Xt) + σ2I , νt , Σ−1t Φ(Xt)

>yt (3)

which contain M2 and M parameters, respectively. As a result, we can sample a function f̃ from
the GP posterior/predictive belief with RFF approximation by firstly sampling ω̃ from the posterior
belief of ω (2) and then setting f̃(x) = φ(x)>ω̃ for all x ∈ X . Moreover, Σt and νt (3) fully define
the GP posterior/predictive belief with RFF approximation at any input x, which is a Gaussian with
the mean µ̂t(x) , φ(x)>νt and variance σ̂2

t (x) , σ2φ(x)>Σ−1t φ(x) (Appendix B).

Problem Setting of Federated Bayesian Optimization. Assume that there are N + 1 agents in
the system: A and A1, . . . ,AN . For ease of exposition, we focus on the perspective of A as the
target agent, i.e., A attempts to use the information from agents A1, . . . ,AN to accelerate its BO
task. We denote A’s objective function as f and a sampled function from A’s GP posterior belief (1)
at iteration t as ft. We represent An’s objective function as gn and a sampled function from An’s
GP posterior belief with RFF approximation as ĝn. We assume that all agents share the same set
of random features φ(x) for all x ∈ X , which is easily achievable since it is equivalent to sharing
the first layer of a neural network in FL (Appendix A). For theoretical analysis, we assume that all
objective functions are defined on the same domain X ⊂ RD which is assumed to be discrete for
simplicity but our analysis can be easily extended to compact domain through discretization [9]. A
smoothness assumption on these functions is required for theoretical analysis; so, we assume that
they have bounded norm induced by the reproducing kernel Hilbert space (RKHS) associated with
the kernel k: ‖f‖k ≤ B and‖gn‖k ≤ B for n = 1, . . . , N . This further suggests that the absolute
function values are upper-bounded: |f(x)| ≤ B and |gn(x)| ≤ B for all x ∈ X . We denote the
maximum difference between f and gn as dn , maxx∈X |f(x) − gn(x)| which characterizes the
similarity between f and gn. A smaller dn implies that f and gn are more similar and heterogeneous
agents are those with large dn’s. Let tn denote the number of BO iterations that An has completed
(i.e., number of observations of An) when it passes information to A; tn’s are constants unless
otherwise specified.
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3 Federated Bayesian Optimization (FBO)

3.1 Federated Thompson Sampling (FTS)

Before agent A starts to run a new BO task, it can request for information from the other agents
A1, . . . ,AN . Next, every agent An for n = 1, . . . , N uses its own history of observations, as
well as the shared random features (Section 2), to calculate the posterior belief N (νn, σ

2Σ−1n ) (2)
where νn and Σn represent An’s parameters of the RFF approximation (3). Then, An draws a
sample from the posterior belief: ωn ∼ N (νn, σ

2Σ−1n ) and passes the M -dimensional vector ωn
to the target agent A (possibly via a central server). After receiving the messages from other
agents, A uses them to start the FTS algorithm (Algorithm 1). To begin with, A needs to define
(a) a monotonically increasing sequence [pt]t∈Z+ s.t. pt ∈ (0, 1] for all t ∈ Z+ and pt → 1 as
t → +∞, and (b) a discrete distribution PN over the agents A1, . . . ,AN s.t. PN [n] ∈ [0, 1] for
n = 1, . . . , N and

∑N
n=1 PN [n] = 1. In iteration t ≥ 1 of FTS, with probability pt (line 4

of Algorithm 1), A samples a function ft using its current GP posterior belief (1) and chooses
xt = arg maxx∈X ft(x). With probability 1 − pt (line 6), A firstly samples an agent An from
PN and then chooses xt = arg maxx∈X ĝn(x) where ĝn(x) = φ(x)>ωn corresponds to a sampled
function fromAn’s GP posterior belief with RFF approximation. Next, xt is queried to observe y(xt)
and FTS proceeds to the next iteration t+ 1.

Algorithm 1 Federated Thompson Sampling (FTS)
1: for t = 1, 2, . . . , T do
2: Sample r from the uniform distribution over [0, 1]: r ∼ U(0, 1)
3: if r ≤ pt then
4: Sample ft ∼ GP(µt−1(·), β2

t σ
2
t−1(·, ·))1and choose xt = arg maxx∈X ft(x)

5: else
6: Sample agent An from the distribution PN and choose xt = arg maxx∈X φ(x)>ωn
7: end if
8: Query xt to observe y(xt) and update GP posterior belief (1) with (xt, y(xt))
9: end for

Interestingly, FTS (Algorithm 1) can be interpreted as a variant of TS with a mixture of GPs. That
is, in each iteration t, we firstly sample a GP: The GP of A is sampled with probability pt while the
GP of An is sampled with probability (1− pt)PN [n] for n = 1, . . . , N . Next, we draw a function
from the sampled GP whose maximizer is selected to be queried. As a result, xt follows the same
distribution as the maximizer of the mixture of GPs and the mixture model gradually converges to the
GP of A as pt → 1. The sequence [pt]t∈Z+ controls the degree of which information from the other
agents is exploited, such that decreasing the value of this sequence encourages the utilization of such
information. The distribution PN decides the preferences for different agents. A natural choice for
PN is the uniform distribution PN [n] = 1/N for n = 1, . . . , N indicating equal preferences for all
agents, which is a common choice when we have no knowledge regarding which agents are more
similar to the target agent. In FTS, stragglers2 can be naturally dealt with by simply assigning 0 to the
corresponding agentAn in the distribution PN such thatAn is never sampled (line 6 of Algorithm 1).
Therefore, FTS is robust against communication failure which is a common issue in FL [35].

Since only one message ωn is received from each agent before the beginning of FTS, once an agent
An is sampled and its message ωn is used (line 6 of Algorithm 1), we remove it from PN by setting
the corresponding element to 0 and then re-normalize PN . However, FTS can be easily generalized
to allow A to receive information from each agent after every iteration (or every few iterations) such
that every agent can be sampled multiple times. This more general setting requires more rounds
of communication. In practice, FTS is expected to perform similarly in both settings when (a) the
number N of agents is large (i.e., a common assumption in FL), and (b) PN gives similar or equal
preferences to all agents such that the probability of an agent being sampled more than once is small.
Furthermore, this setting can be further generalized to encompass the scenario where multiple (even
all) agents are concurrently performing optimization tasks using FTS. In this case, the information

1We will define βt in Theorem 1 (Section 4).
2Stragglers refer to those agents whose information is not received by the target agent [35].
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received from An can be updated as An collects more observations, i.e., tn may increase as updated
information is received from An.

3.2 Comparison with Other BO Algorithms Modified for the FBO Setting

Although FTS is the first algorithm for the FBO setting, some algorithms for meta-learning in BO,
such as ranking-weighted GP ensemble (RGPE) [16] and transfer acquisition function (TAF) [55],
can be adapted to the FBO setting through a heuristic combination with RFF approximation. Meta-
learning aims to use the information from previous tasks to accelerate the current task. Specifically,
both RGPE and TAF use a separate GP surrogate to model the objective function of every agent
(i.e., previous task) and use these GP surrogates to accelerate the current BO task. To modify both
algorithms to suit the FBO setting, every agent An firstly applies RFF approximation to its own GP
surrogate and passes the resulting parameters νn and Σ−1n (Section 2) to the target agentA. Next, after
receiving νn and Σ−1n from the other agents, A can use them to calculate the GP surrogate (with RFF
approximation) of each agent (Section 2), which can then be plugged into the original RGPE/TAF
algorithm.3 However, unlike FTS, RGPE and TAF do not have theoretical convergence guarantee and
thus lack an assurance to guarantee consistent performances in the presence of heterogeneous agents.
Moreover, as we will analyze below and show in the experiments (Section 5), FTS outperforms both
RGPE and TAF in a number of major aspects including communication efficiency, computational
efficiency, and practical performance.

Firstly, regarding communication efficiency, both RGPE and TAF require νn and Σ−1n (i.e., M +M2

parameters) from each agent since both the posterior mean and variance of every agent are needed.
Moreover, TAF additionally requires the incumbent (currently found maximum observation value)
of every agent, which can further increase the risk of privacy leak. In a given experiment and
for a fixed M , our FTS algorithm is superior in terms of communication efficiency since it only
requires an M -dimensional vector ωn from each agent, which is equivalent to standard FL using a
linear model with M parameters. Secondly, FTS is also advantageous in terms of computational
efficiency: When xt is selected using ωn from an agent, FTS only needs to solve the optimization
problem of xt = arg maxx∈X φ(x)>ωn (line 6 of Algorithm 1), which incurs minimal computational
cost;4 when xt is selected by maximizing a sampled function from A’s GP posterior belief (line 4 of
Algorithm 1), this maximization step can also utilize the RFF approximation, which is computationally
cheap. In contrast, for both RGPE and TAF, every evaluation of the acquisition function (i.e., to be
maximized to select xt) at an input x ∈ X requires calculating the posterior mean and variance using
the GP surrogate of every agent at x. Therefore, their required computation in every iteration grows
linearly in the number N of agents and can thus become prohibitively costly when N is large. We
have also empirically verified this in our experiments (see Fig. 3d in Section 5.2).

4 Theoretical Results

In our theoretical analysis, since we allow the presence of heterogeneous agents (i.e., other agents
with significantly different objective functions from the target agent), we do not aim to show that FTS
achieves a faster convergence than standard TS and instead prove a convergence guarantee that is
robust against heterogeneous agents. This is consistent with most works proving the convergence of
FL algorithms [34, 35] and makes the theoretical results more applicable in general since the presence
of heterogeneous agents is a major and inevitable challenge of FL and FBO. Note that we analyze
FTS in the more general setting where communication is allowed before every iteration instead of
only before the first iteration. However, as discussed in Section 3.1, FTS behaves similarly in both
settings in the common scenario when N is large and PN assigns similar probabilities to all agents.
Theorem 1 below is our main theoretical result (see Appendix C for its proof):

Theorem 1. Let γt be the maximum information gain on f from any set of t observations. Let
δ ∈ (0, 1), βt , B + σ

√
2(γt−1 + 1 + log(4/δ), and ct , βt(1 +

√
2 log(|X |t2)) for all t ∈ Z+.

Choose [pt]t∈Z+ as a monotonically increasing sequence satisfying pt ∈ (0, 1] for all t ∈ Z+, pt → 1
as t → +∞, and (1− pt)ct ≤ (1− p1)c1 for all t ∈ Z+ \ {1}. With probability of at least 1− δ,

3Refer to [16] and [55] for more details about RGPE and TAF, respectively.
4We use the DIRECT method for this optimization problem, which, for example, takes on average 0.76

seconds per iteration in the landmine detection experiment (Section 5.2).
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the cumulative regret incurred by FTS is5

RT = Õ
((
B + 1/p1

)
γT
√
T +

∑T

t=1
ψt

)
where ψt , 2(1−pt)

∑N
n=1 PN [n]∆n,t and ∆n,t , Õ(M−1/2Bt2n+B+

√
γtn +

√
M+dn+

√
γt).

Since γT = O((log T )D+1) for the SE kernel [52], the first term in the upper bound is sublinear in T .
Moreover, since the sequence of [pt]t∈Z+ is chosen to be monotonically increasing and goes to 1 when
t→∞, 1− pt goes to 0 asymptotically. Therefore, the second term in the upper bound also grows
sublinearly.6 For example, if [pt]t∈Z+ is chosen such that 1− pt = O(1/

√
t),
∑T
t=1 ψt = Õ(

√
T ).

As a result, FTS achieves no regret asymptotically regardless of the difference between the target
agent and the other agents, which is a highly desirable property for FBO in which the heterogeneity
among agents is a prominent challenge. Such a robust regret upper bound is achieved because
we upper-bound the worst-case error for any set of agents (i.e., any set of values of dn and tn for
n = 1, . . . , N ) in our proof. The robust nature of the regret upper bound can be reflected in its
dependence on the sequence [pt]t∈Z+ as well as on dn and tn. When the value of the sequence
[pt]t∈Z+ is small, i.e., when the information from the other agents is exploited more (Section 3.1), the
worst-case error due to more utilization of these information is also increased. This is corroborated
by Theorem 1 since smaller values of pt increase the regret upper bound through the terms 1/p1 and
(1− pt) in ψt. Theorem 1 also shows that the regret bound becomes worse with larger values of dn
and tn because a larger dn increases the difference between the objective functions of An and A, and
more observations from An (i.e., larger tn) also loosens the upper bound since for a fixed dn, a larger
number of observations increases the worst-case error by accumulating the individual errors.7

The dependence of the regret upper bound (through ∆n,t) on the number M of random features is
particularly interesting due to the interaction between two opposing factors. Firstly, the M−1/2Bt2n
term arises since better approximation quality of the agent’s GP surrogates (i.e., larger M ) improves
the performance. However, the

√
M term suggests the presence of another factor with an opposite

effect. This results from the need to upper-bound the distance between the M -dimensional Gaussian
random variable ωn and its mean νn (2), which grows at a rate ofO(

√
M) (Lemma 3 in Appendix C).

Taking the derivative of both terms w.r.t. M reveals that the regret bound is guaranteed to become
tighter with an increasing M (i.e., the effect of the M−1/2Bt2n term dominates more) when tn is
sufficiently large, i.e., when tn = Ω(

√
M/B). An intuitive explanation of this finding, which is

verified in our experiments (Section 5.1), is that the positive effect (i.e., a tighter regret bound) of
better RFF approximation from a larger M is amplified when more observations are available (i.e.,
tn is large). In contrast, when tn is small, minimal information is offered by agent An and increasing
the quality of RFF approximation thus only leads to marginal or negligible improvement in the
performance. The practical implication of this insight is that when the other agents only have a small
number of observations, it is not recommended to use a large number of random features since it
requires a larger communication bandwidth (Section 3.2) yet is unlikely to improve the performance.

5 Experiments and Discussion

We firstly use synthetic functions to investigate the behavior of FTS. Next, using 3 real-world experi-
ments, we demonstrate the effectiveness of FTS in terms of communication efficiency, computational
efficiency, and practical performance. Since it has been repeatedly observed that the theoretical
choice of βt that is used to establish the confidence interval is overly conservative [2, 52], we set it to
a constant: βt = 1.0. As a result, ct (Theorem 1) grows slowly (i.e., logarithmically) and we thus
do not explicitly check the validity of the condition (1 − pt)ct ≤ (1 − p1)c1 for all t ∈ Z+ \ {1}.
All error bars represent standard errors. For simplicity, we focus on the simple setting here where
communication happens only before the beginning of FTS (Section 3.1). In Appendix D.2.1, we
also evaluate the performance of FTS in the most general setting where the other agents are also
performing optimization tasks such that they may collect more observations between different rounds

5The Õ notation ignores all logarithmic factors.
6Note that for the SE kernel,

√
γt in ∆n,t is logarithmic in t:

√
γt = O((log t)(D+1)/2).

7In the most general setting where An may collect more observations between different rounds of communi-
cation such that tn may increase (Section 3.1), 1− pt can decay faster to preserve the no-regret convergence.
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(a) (b) (c)
Figure 1: Simple regret in synthetic experiments showing the effect of M when tn is (a) small and
(b) large, and (c) the performance when dn = 1.2 is large. Each curve is averaged over 5 randomly
sampled functions from a GP and 5 random initializations of 1 input for each function.

of communication (i.e., increasing tn). The results (Fig. 4 in Appendix D.2.1) show consistent perfor-
mances of FTS in both settings. More experimental details and results are deferred to Appendix D
due to space constraint.

5.1 Optimization of Synthetic Functions

In synthetic experiments, the objective functions are sampled from a GP (i.e., defined on a 1-D
discrete domain within [0, 1]) using the SE kernel and scaled into the range [0, 1]. We fix the total
number of agents as N = 50 and vary dn, tn, and M to investigate their effects on the performance.
We use the same dn and tn for all agents for simplicity. We choose PN to be uniform: PN [n] = 1/N
for n = 1, . . . , N and choose the sequence [pt]t∈Z+ as pt = 1 − 1/

√
t for all t ∈ Z+ \ {1} and

p1 = p2. Figs. 1a and b show that when dn = 0.02 is small, FTS is able to perform better than
TS. Intuitively, the performance advantage of FTS results from its ability to exploit the additional
information from the other agents to reduce the need for exploration. These results also reveal that
when tn of every agent is small (Fig. 1a), the effect of M is negligible; on the other hand, when tn is
large (Fig. 1b), increasing M leads to evident improvement in the performance. This corroborates
our theoretical analysis (Section 4) stating that when tn is large, increasing the value of M is more
likely to tighten the regret bound and hence improve the performance. Moreover, comparing the
green curves in Figs. 1a and b shows that when the other agents’ objective functions are similar to the
target agent’s objective function (i.e., dn = 0.02 is small) and the RFF approximation is accurate
(i.e., M = 100 is large), increasing the number of observations from the other agents (tn = 100
vs. tn = 40) improves the performance. Lastly, Fig. 1c verifies FTS’s theoretically guaranteed
robustness against heterogeneous agents (Section 4) since it shows that even when all other agents are
heterogeneous (i.e., every dn = 1.2 is large), the performances of FTS are still comparable to that of
standard TS. Note that Fig. 1c demonstrates a potential limitation of our method, i.e., in this scenario
of heterogeneous agents, FTS may converge slightly slower than TS if pt does not grow sufficiently
fast. However, the figure also shows that making pt grow faster (i.e., making the effect of the other
agents decay faster) allows FTS to match the performance of TS in this adverse scenario (red curve).

5.2 Real-world Experiments

For real-world experiments, we use 3 datasets generated in federated settings that naturally contain
heterogeneous agents [51]. Firstly, we use a landmine detection dataset in which the landmine fields
are located at two different terrains [58]. Next, we use two activity recognition datasets collected
using Google glasses [44] and mobile phone sensors [1], both of which contain heterogeneous agents
since cross-subject heterogeneity has been a major challenge for human activity recognition [44]. We
compare our FTS algorithm with standard TS (i.e., no communication with other agents), RGPE, and
TAF. Note that RGPE and TAF are meta-learning algorithms for BO and are hence not specifically
designed for the FBO setting (Section 3.2).

Landmine Detection. This dataset includes 29 landmine fields. For each field, every entry in the
dataset consists of 9 features and a binary label indicating whether the corresponding location contains
landmines. The task of every field is to tune 2 hyperparameters of an SVM classifier (i.e., RBF kernel
parameter in [0.01, 10] and L2 regularization parameter in [10−4, 10]) that is used to predict whether
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(a) (b) (c)
Figure 2: Best performance after 50 iterations (vertical) vs. the length of the message (i.e., the
number of parameters) communicated from each agent (horizontal) for the (a) landmine detection,
(b) Google glasses, and (c) mobile phone sensors experiments. The more to the bottom left, the better
the performance and the less the required communication. The results for every method correspond
to M = 50, 100, 150, 200, respectively. Every result is averaged over 6 different target agents and
each target agent is averaged over 5 different initializations of 3 randomly selected inputs.

(a) (b) (c) (d)

Figure 3: Best performance observed vs. run time (seconds) for the (a) landmine detection, (b) Google
glasses, and (c) mobile phone sensors experiments, in which FTS converges faster than other methods.
These results correspond to the first (of the 6) target agent used in each experiment in Fig. 2 with
M = 100 and are averaged over 5 random initializations of 3 inputs.8 Every method is run for 50
iterations. (d) Total runtime vs. the number of agents for the landmine detection experiment.

a location contains landmines. We fix one of the landmine fields as the target agent and the remaining
N = 28 fields as the other agents, each of whom has completed a BO task of tn = 50 iterations.

Activity Recognition Using Google Glasses. This dataset contains sensor measurements from
Google glasses worn by 38 participants. Every agent attempts to use 57 features, which we have
extracted from the corresponding participant’s measurements, to predict whether the participant is
eating or performing other activities. Every agent uses logistic regression (LR) for activity prediction
and needs to tune 3 hyperparameters of LR: batch size ([20, 60]), L2 regularization parameter
([10−6, 1]), and learning rate ([0.01, 0.1]). We fix one of the participants as the target agent and all
other N = 37 participants as the other agents, each of whom possesses tn = 50 BO observations.

Activity Recognition Using Mobile Phone Sensors. This dataset consists of mobile phone sensor
measurements from 30 subjects performing 6 activities. Each agent attempts to tune the hyperpa-
rameters of a subject’s activity prediction model whose input includes 561 features and output is one
of the 6 activity classes. The activity prediction model and tuned hyperparameters, as well as their
ranges, are the same as that in the Google glasses experiment. We again fix one of the subjects as the
target agent and all other N = 29 subjects as the other agents with tn = 50 observations each.

For all experiments, we set PN to be uniform: PN [n] = 1/N,∀n = 1, . . . , N , and pt = 1− 1/t2 for
all t ∈ Z+ \ {1} and p1 = p2. We use validation error as the performance metric for the two activity
recognition experiments, and use area under the receiver operating characteristic curve (AUC)
to measure the performance of the landmine detection experiment since this dataset is extremely
imbalanced (i.e., only 6.2% of all locations contain landmines). We repeat every experiment 6 times
with each time treating one of the first 6 agents as the target agent. Fig. 2 shows the (averaged)
best performance after 50 iterations of different methods (vertical axis) as well as their required
number of parameters to be passed from each agent (horizontal axis). FTS outperforms both RGPE
and TAF in terms of both the performance metric and the communication efficiency. Note that this
comparison is unfair for FTS since FTS is much more computationally efficient than RGPE and TAF
(Section 3.2) such that it completes 50 iterations in significantly shorter time (Fig. 3). Fig. 3 plots
the best performance achieved vs. the run time of different algorithms with the first agent treated as

8



the target agent; refer to Appendix D.2.3 for the results of the other agents.8 Fig. 3 shows that FTS
achieves the fastest convergence among all methods and showcases the advantage of FTS over RGPE
and TAF in terms of computational efficiency (Section 3.2). Overall, the consistent performance
advantage of FTS across all real-world experiments is an indication of its practical robustness, which
may be largely attributed to its robust theoretical convergence guarantee ensuring its consistent
performance even in the presence of heterogeneous agents (Section 4). Furthermore, we also use
the landmine detection experiment to illustrate the scalability of our method w.r.t. the number N of
agents. The results (Fig. 3d) show that increasing N has minimal effect on the runtime of FTS yet
leads to growing computational cost for RGPE and TAF. This verifies the relevant discussion at the
end of Section 3.2.

6 Related Works

Since its recent introduction in [39], FL has gained tremendous attention mainly due to its prominent
practical relevance in the collaborative training of ML models such as DNNs [39] or decision tree-
based models [31, 32]. Meanwhile, efforts have also been made to derive theoretical convergence
guarantees for FL algorithms [34, 35]. Refer to recent surveys [24, 30, 33] for more comprehensive
reviews of FL. TS [54] has been known as a highly effective practical technique for multi-armed bandit
problems [4, 47]. The Bayesian regret [46] and frequentist regret [9] of TS in BO have both been
analyzed and TS has been shown to perform effectively in BO problems such as high-dimensional
BO [40]. The theoretical analysis in this work has adopted techniques used in the works of [9, 40].
Our algorithm is also related to multi-fidelity BO [12, 25, 42, 56, 62, 63] which has the option to
query low-fidelity functions. This is analogous to our algorithm allowing the target agent to use the
information from the other agents for query selection and the similarity between an agent and the
target agent can be interpreted as a measure of fidelity. Moreover, our algorithm also bears similarity
to parallel/distributed BO algorithms [10, 13, 14], especially those based on TS [17, 26]. However,
there are fundamental differences: For example, they usually optimize a single objective function
whereas we need to consider possibly heterogeneous objective functions from different agents. On the
other hand, BO involving multiple agents with possibly different objective functions has been studied
from the perspective of game theory by the works of [11, 48]. As discussed in Section 3.2, some
works on meta-learning for BO [16, 55], which study how information from other related BO tasks is
used to accelerate the current BO task, can be adapted to the FBO setting. However, these works do
not provide theoretical convergence guarantee nor tackle the issues of avoiding the transmission of
raw data and achieving efficient communication. Moreover, their adapted variants for FBO have been
shown to be outperformed by our FTS algorithm in various major aspects including communication
efficiency, computational efficiency, and practical performance (Section 5.2).

7 Conclusion and Future Works

This paper introduces the first algorithm for the FBO setting called FTS which addresses some key
challenges in FBO in a principled manner. We theoretically show its convergence guarantee which
is robust against heterogeneous agents, and empirically demonstrate its communication efficiency,
computational efficiency, and practical effectiveness using three real-world experiments. As a future
work, we plan to explore techniques to automatically optimize the distribution PN used by FTS to
sample agents by learning the similarity between each agent and the target agent (i.e., the fidelity of
each agent). Other than the RFF approximation used in this work, other approximation techniques for
GP (such as those based on inducing points [5, 6, 7, 8, 18, 19, 20, 21, 23, 37, 38, 41, 53, 57, 59, 60])
may also be used to derive the parameters to be exchanged between agents, which is worth exploring
in future works. Moreover, in our experiments, the hyperparameters of the target agent’s GP is
learned by maximizing the marginal likelihood; it would be interesting to explore whether the
GP hyperparameters can also be shared among the agents, which can potentially facilitate better
collaboration. Furthermore, our current algorithm is only able to avoid sharing of raw data and may
hence be susceptible to advanced privacy attacks. So, it would be interesting to incorporate the
state-of-the-art privacy-preserving techniques into our algorithm such as differential privacy [15]
which has been applied to BO by the works of [27, 29]. We will consider incentivizing collaboration
in FBO [50] and generalizing FBO to nonmyopic BO [28, 36] and high-dimensional BO [22] settings.

8We cannot average the results across different agents since their output scales vary significantly.
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Broader Impact

Since the setting of our FBO is similar to that of FL, our work inherits a number of potential broader
impacts of FL. We will analyze here the potential impacts of our work in the scenario where the
individual agents are edge devices such as mobile phones since it is a major area of application for
FBO and FL.

Specifically, since our algorithm can be used to improve the efficiency of black-box optimization
tasks performed by mobile phones, it has the potential of dramatically improving the efficacy and
function of various applications for the user (e.g., the smart keyboard example that we mentioned
in Section 1), which will enhance their user experience and productivity. On the other hand, some
negative impacts of FL also need to be considered when promoting the widespread application of our
work. For example, although our work is able to prevent exchanging the raw data in the same way as
standard FL, advanced privacy attack methods (e.g., inference attack) may still incur risks of privacy
leak for FL and thus FBO. Preventing this risk through principled privacy protection techniques (e.g.,
differential privacy) is important for the widespread adoption of FL and FBO algorithms and hence
represents an interesting and promising direction for future research.
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A Construction of Random Fourier Features

As mentioned in Section 2, in this work, we focus on the widely used squared exponential (SE) kernel:
k(x, x′) = σ2

0 exp(−
∥∥x− x′∥∥2

2
/(2l2)) in which l is the length scale and σ2

0 is the signal variance.
σ2
0 = 1 is usually the default value, which we use in all experiments. We construct the random

features following the work of [43]. Specifically, for the SE kernel with length scale l, the spectral
density follows a D-dimensional Gaussian distribution: p(s) = N (0, 1

l2 ID×D). To begin with, we
draw M independent samples of {si}i=1,...,M from p(s) (every si is a D-dimensional vector), and
M independent samples of {bi}i=1,...,M from the uniform distribution over [0, 2π] (every bi is a
scalar). Next, for an input x, the corresponding M -dimensional random features (basis functions)
can be constructed as φ(x)> = [

√
2/M cos(s>i x+ bi)]i=1,...,M . Each set of random features φ(x)

is then normalized such that
∥∥φ(x)

∥∥2
2

= σ2
0 . As a result, sharing the random features φ(x),∀x ∈ X

among all agents (Section 2) can be achieved by simply sharing the parameters {si}i=1,...,M and
{bi}i=1,...,M . This is easily achievable since it is equivalent to sharing the parameters of the first
layer of a neural network model with M units in the hidden layer, in which {si}i=1,...,M are the
weights (which form a D ×M -dimensional weight matrix) and {bi}i=1,...,M are the biases.

B GP Posterior/Predictive Belief with Random Fourier Features
Approximation

Here we derive the expressions of the posterior/predictive mean and variance of a GP with ran-
dom Fourier features (RFF) approximation (Section 2). Recall that we have defined Φ(Xt) =
[φ(x1), . . . , φ(xt)]

> which is a t×M -dimensional matrix.

With the RFF approximation, the kernel function is approximated by k(x, x′) ≈ φ(x)>φ(x′).
Define K̂t = [φ(xt′)

>φ(xt′′)]t′,t′′=1,...,t = Φ(Xt)Φ(Xt)
> and k̂t(x) = [φ(x)>φ(xt′)]

>
t′=1,...,t =

Φ(Xt)φ(x), which are analogous to Kt and kt(x) in (1) with the kernel values k(x, x′) replaced by
the approximate kernel values φ(x)>φ(x′). With these definitions, we have that

Φ(Xt)
>
[
K̂t + σ2I

]
= Φ(Xt)

>
[
Φ(Xt)Φ(Xt)

> + σ2I
]

= Φ(Xt)
>Φ(Xt)Φ(Xt)

> + σ2Φ(Xt)
>

=
[
Φ(Xt)

>Φ(Xt) + σ2I
]

Φ(Xt)
>

= ΣtΦ(Xt)
>.

(4)

Multiplying both sides by Σ−1t from the left and (K̂t + σ2I)−1 from the right, we get

Σ−1t Φ(Xt)
> = Φ(Xt)

>(K̂t + σ2I)−1. (5)
Then multiplying both sides by φ(x)> from the left and yt from the right, we get

µ̂t(x) = φ(x)>νt = φ(x)>Σ−1t Φ(Xt)
>yt = φ(x)>Φ(Xt)

>(K̂t + σ2I)−1yt

= k̂t(x)>(K̂t + σ2I)−1yt,
(6)

which proves that the expression of the approximate posterior mean with RFF approximation:
µ̂t(x) = φ(x)>νt matches the expression of the posterior mean of standard GP without RFF
approximation, except that the kernel values k(x, x′) are replaced by the approximate kernel values
φ(x)>φ(x′).

Next, we derive the expression of the approximate posterior variance. Making use of the matrix
inversion lemma, we get

σ̂2
t (x) = σ2φ(x)>Σ−1t φ(x) = σ2φ(x)>(Φ(Xt)

>Φ(Xt) + σ2I)−1φ(x)

= σ2φ(x)>

[
1

σ2
I − 1

σ2
Φ(Xt)

>
(
I + Φ(Xt)

1

σ2
Φ(Xt)

>
)−1

Φ(Xt)
1

σ2

]
φ(x)

= φ(x)>φ(x)− φ(x)>Φ(Xt)
>
(
σ2I + Φ(Xt)

>Φ(Xt)
)−1

Φ(Xt)φ(x)

= k̂(x, x)− k̂t(x)>
(
K̂t + σ2I

)−1
k̂t(x),

(7)
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which gives the expression of the approximate posterior variance: σ̂2
t (x) = σ2φ(x)>Σ−1t φ(x). To

conclude, Equations (6) and (7) prove that the expressions of the GP posterior mean and variance with
RFF approximation given in Section 2 (in the paragraph after Equation (3)) match the corresponding
expressions of standard GP posterior mean and variance without RFF approximation (1), except that
the original kernel values (i.e., k(x, x′)) are replaced by the corresponding approximate kernel values
(i.e., φ(x)>φ(x′)).

C Proof of Theorem 1

As mentioned in Section 4, we analyze our FTS algorithm in the more general setting in which a
message can be received from each agent An before every iteration t, instead of only before the first
iteration. Therefore, throughout our theoretical analysis, we use ωn,t, instead of ωn, to denote the
message received from agent An before iteration t. Similarly, we use ĝn,t, instead of ĝn, to denote
the corresponding sampled function from agent An with RFF approximation in iteration t, obtained
using ωn,t: ĝn,t(x) = φ(x)>ωn,t,∀x ∈ X . Note that our theoretical analysis and results also hold
in the most general setting where every agent An may collect more observations between different
rounds of communication, in which the only difference is that every tn,∀n = 1, . . . , N may increase
over different iterations.

Define Ft as the filtration containing agent A’s history of selected inputs and observed outputs up to
iteration t. Let δ ∈ (0, 1), we have defined in Theorem 1 that βt = B + σ

√
2(γt−1 + 1 + log(4/δ)

and ct = βt(1 +
√

2 log(|X |t2)) for all t ∈ Z+. Clearly, both βt and ct are increasing in t. Denote
by At the event that agentA chooses xt by maximizing a sampled function from its own GP posterior
belief (i.e., xt = arg maxx∈X ft(x), as in line 4 of Algorithm 1), which happens with probability pt;
denote by Bt the event that A chooses xt by maximizing the sampled function from any other agent
A1, . . . ,AN (line 6 of Algorithm 1), which happens with probability (1− pt); denote by Bt,n the
event that A chooses xt by maximizing the sampled function of agent An using RFF approximation
(i.e., xt = arg maxx∈X ĝn,t(x)), which happens with probability (1− pt)× PN [n].

To begin with, we define two high-probability events through the following lemmas.
Lemma 1. Let δ ∈ (0, 1). Define Ef (t) as the event that |µt−1(x) − f(x)| ≤ βtσt−1(x) for all
x ∈ X . We have that P

[
Ef (t)

]
≥ 1− δ/4 for all t ≥ 1.

Lemma 1 quantifies the concentration of the function f around its posterior mean and its proof
follows directly from Theorem 2 of the work of [9] by using an error probability of δ/4.

Lemma 2. Define Eft(t) as the event that |ft(x)− µt−1(x)| ≤ βt
√

2 log(|X |t2)σt−1(x). We have
that P

[
Eft(t)|Ft−1

]
≥ 1− 1/t2 for any possible filtration Ft−1.

Lemma 2 illustrates how concentrated a sampled function ft from f is around its posterior mean and
is a simpler version of Lemma 5 of the work of [9]. Specifically, we have assumed a discrete domain,
whereas the work of [9] deals with a compact domain. Note that both events Ef (t) and Eft(t) are
Ft−1-measurable.

Next, we define a set of inputs at every iteration t called saturated points, which represents the set of
“bad” inputs at iteration t. These inputs are “bad” in the sense that the function values at these inputs
have relatively large difference from the value of the global maximum of f . In the subsequent proof,
we will lower-bound the probability that the selected input xt is unsaturated, which will be a critical
step in the proof.
Definition 1. Define the set of saturated points at iteration t as

St = {x ∈ X : ∆(x) > ctσt−1(x)}

in which ∆(x) = f(x∗)− f(x) and x∗ = arg maxx∈X f(x).

Note that from this definition, x∗ is always unsaturated since ∆(x) = f(x∗) − f(x∗) = 0 <
ctσt−1(x∗) for all t ≥ 1. Also note that St is Ft−1-measurable.

The next lemma bounds the deviation of the sampled function ĝn,t(x) from agent An’s GP posterior
belief with RFF approximation around its posterior mean µ̂n,t(x), whose proof is based on that of
Lemma 11 of [40].

15



Lemma 3. Given δ ∈ (0, 1). We have that for all agents An,∀n = 1, . . . , N , all x ∈ X and all
t ≥ 1, with probability of at least 1− δ/4

|µ̂n,t(x)− ĝn,t(x)| ≤
√

2 log
2π2t2N

3δ
+M.

Proof. Recall from Section 2 that the sampled function ĝn,t is obtained by firstly sampling ωn,t ∼
N (νn,t, σ

2Σ−1n,t), and then setting ĝn,t(x) = φ(x)>ωn,t,∀x ∈ X . Moreover, we have shown in

Section 2 that µ̂n,t(x) = φ(x)>νn,t. Denote ωn,t = νn,t + σΣ
−1/2
n,t z, in which z ∼ N (0, I) is the

M × 1-dimensional standard Gaussian distribution. We have that

|µ̂n,t(x)− ĝn,t(x)|2 = |φ(x)>νn,t − φ(x)>(νn,t + σΣ
−1/2
n,t z)|2

= |σφ(x)>Σ
−1/2
n,t z|2

≤ σ2
∥∥∥φ(x)>Σ

−1/2
n,t

∥∥∥2
2
‖z‖22

= σ2φ(x)>Σ−1n,tφ(x)‖z‖22
= σ̂2

n,t(x)‖z‖22 ≤‖z‖
2
2 ,

(8)

in which we have made use of the assumption w.l.o.g. that the posterior variance is upper-bounded
by 1 in the last inequality. Next, making use of the concentration of chi-squared distribution:
P(‖z‖22 ≥M + 2λ) ≤ exp(−λ) [40], we have that with probability of at least 1− 3δ

2π2t2N ,

‖z‖22 ≤M + 2 log
2π2t2N

3δ
. (9)

Taking a union bound over all agents A1, . . . ,AN and over all t ≥ 1 completes the proof.

The following lemma uniformly upper-bounds the difference between agent An’s objective function
gn and sampled function ĝn,t from its GP posterior belief with RFF approximation.
Lemma 4. Given any δ ∈ (0, 1). For agent An’s sampled function ĝn,t from its GP posterior belief
with RFF approximation, we have that for all agents An,∀n = 1, . . . , N , all x ∈ X and all t ≥ 1,
with probability of at least 1− δ/2,

|ĝn,t(x)− gn(x)| ≤ ∆̃n,t,

where β′t = B + σ
√

2(γt−1 + 1 + log(8N/δ), and

∆̃n,t , ε
(tn + 1)2

σ2

B +

√
2 log

(
4π2t2N

3δ

)+ β′tn+1 +

√
2 log

2π2t2N

3δ
+M.

Proof. Recall that ε is the accuracy of the RFF approximation, tn is the number of iterations that
agent An has completed in its own BO task when it passes information to A, M is the number
of random features used in the RFF approximation. Denote by µ̂n,t(x) and µn,t(x) (σ̂n,t(x) and
σn,t(x)) the posterior mean (standard deviation) at x of agent An’s GP after running its own BO task
for tn iterations with and without the RFF approximation respectively.

We have that for all x ∈ X , all agents An and all t ≥ 1, with probability of at least 1− δ/8,

|µn,t(x)− µ̂n,t(x)| ≤ ε (tn + 1)2

σ2

B +

√
2 log

(
4π2t2N

3δ

) , (10)

which can be proved by following the proof of Theorem 5 in the work of [40] by substituting the
error probability of 3δ

4π2t2N , and taking a union bound over all agents and all t ≥ 1. Next, making use
of Lemma 1 (replacing f by gn, and δ/4 by δ/(8N)), we get

|µn,t(x)− gn(x)| ≤ β′tn+1σn,t(x) ≤ β′tn+1, (11)

which holds for all x ∈ X , agents An and tn ≥ 1, with probability of at least 1 − δ/8. The last
inequality follows from our assumption w.l.o.g. that the posterior variance is upper-bounded by 1.

Combining the two equations above and making use of Lemma 3 completes the proof.
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The next lemma shows a uniform upper bound on the difference between the sampled function ft of
agent A and that of agent An with RFF approximation (ĝn,t).

Lemma 5. At iteration t, conditioned on the events Ef (t) and Eft(t), we have that for all agents
An,∀n = 1, . . . , N and for all x ∈ X with probability ≥ 1− δ/2

|ĝn,t(x)− ft(x)| ≤ ∆n,t,

in which

∆n,t , ε
(tn + 1)2

σ2

B +

√
2 log

(
4π2t2N

3δ

)+ β′tn+1 +

√
2 log

2π2t2N

3δ
+M + dn + ct.

Proof. Firstly, note that since we condition on both events Ef (t) and Eft(t), we have that for all
x ∈ X and all t ≥ 1

|f(x)− ft(x)| ≤ |f(x)− µt−1(x)|+ |µt−1(x)− ft(x)|

= βtσt−1(x) + βt
√

2 log(|X |t2)σt−1(x) = ctσt−1(x)
(12)

Next,

|ĝn,t(x)− ft(x)| ≤ |ĝn,t(x)− gn(x)|+ |gn(x)− f(x)|+ |f(x)− ft(x)|
≤ ∆̃n,t + dn + ctσt−1(x)

≤ ∆̃n,t + dn + ct,

(13)

in which we have made use of Lemma 4, the definition of dn: dn = maxx∈X |f(x) − gn(x)|
(Section 2, last paragraph), Equation (12), and the assumption that the posterior variance is upper-
bounded by 1. Plugging in the expression of ∆̃n,t from Lemma 4 completes the proof.

Lemma 6. For any filtration Ft−1, conditioned on the events Ef (t) and At, we have that for every
x ∈ X ,

P
(
ft(x) > f(x)|Ft−1, Ef (t), At

)
≥ p, (14)

in which p = 1
4e
√
π

.

As shown in the proof of Lemma 8 of [9], the proof of Lemma 6 makes use of the fact that
ft(x) ∼ N (µt−1(x), β2

t σ
2
t−1(x)) since we are conditioning on the event At, the confidence bound

given in Lemma 1 which holds since we are conditioning on the event Ef (t), and the Gaussian
anti-concentration lemma. That is, for a Gaussian random variable X ∼ N (µ, σ2), for any β > 0,
we have that

P
(
X − µ
σ

> β

)
≥ exp(−β2)

4
√
πβ

.

The next lemma shows that in each iteration t, the probability that an unsaturated input is selected
can be lower-bounded.

Lemma 7. For any filtration Ft−1, conditioned on the event Ef (t), we have that with probability
≥ 1− δ/2,

P
(
xt ∈ X \ St|Ft−1

)
≥ Pt,

in which
Pt , pt(p− 1/t2).

Proof. Note that all probabilities in this proof are conditioned on the event Ef (t) and thus this
conditioning is omitted for simplicity. At iteration t, the probability that the selected input xt is
unsaturated can be lower-bounded by:

P
(
xt ∈ X \ St|Ft−1

)
≥ P

(
xt ∈ X \ St|Ft−1, At

)
P(At) = P

(
xt ∈ X \ St|Ft−1, At

)
pt (15)

Next, we attempt to lower-bound P
(
xt ∈ X \ St|Ft−1, At

)
.
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Firstly, recall that conditioned on the event At, xt is selected by maximizing ft, which is sampled
from the GP posterior belief of function f . This gives rise to:

P
(
xt ∈ X \ St|Ft−1, At

)
≥ P

(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1, At
)
. (16)

This inequality can be obtained by observing that the event on the right hand side is a subset of
the event on the left hand side. Specifically, recall from Definition 1 that x∗ is always unsaturated.
Therefore, if ft(x∗) > ft(x),∀x ∈ St, as a result of the way in which xt is selected (i.e., xt =
arg maxx∈X ft(x)), this guarantees that an unsaturated input will be selected as xt since at least one
unsaturated input (x∗) has a larger value of ft than all saturated inputs.

Next, we assume that both events Ef (t) and Eft(t) are true, which allows us to derive an upper
bound on ft(x) for all x ∈ St:

ft(x)
(a)

≤ f(x) + ctσt−1(x)
(b)

≤ f(x) + ∆(x) = f(x) + f(x∗)− f(x) = f(x∗), (17)

in which (a) follows from (12) since here we also assume both events Ef (t) and Eft(t) are true, and
(b) results from the definition of saturated set (Definition 1). Therefore, (17) implies that

P
(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1, At, Eft(t)
)
≥ P

(
ft(x

∗) > f(x∗)|Ft−1, At, Eft(t)
)
. (18)

Next, we can show that

P
(
xt ∈ X \ St|Ft−1, At

)
≥ P

(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1, At
)

(a)

≥ P
(
ft(x

∗) > f(x∗)|Ft−1, At
)
− P

(
Eft(t)|Ft−1

)
(b)

≥ p− 1/t2,

(19)

in which (a) follows from some simple probabilistic manipulations and the fact that the event Eft(t)
is Ft−1-measurable and thus independent of the event At, (b) results from Lemma 6 and the fact
that the event Eft(t) holds with probability of at least 1− 1/t2. Combining this inequality with (15)
completes the proof.

The next lemma presents an upper bound on the expected instantaneous regret of the FTS algorithm.
Lemma 8. For any filtration Ft−1, conditioned on the event Ef (t), we have that with probability of
≥ 1− δ/2

E[rt|Ft−1] ≤ ct
(

1 +
10

pp1

)
E
[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2
,

in which rt is the instantaneous regret: rt = f(x∗)− f(xt), and ψt , 2(1− pt)
∑N
n=1 PN [n]∆n,t.

Proof. To begin with, we define xt as the unsaturated input at iteration t with the smallest (posterior)
standard deviation:

xt = arg minx∈X\St
σt−1(x). (20)

Following this definition, for any Ft−1 such that Ef (t) is true, we have that

E
[
σt−1(xt)|Ft−1

]
≥ E

[
σt−1(xt)|Ft−1, xt ∈ X \ St

]
P
(
xt ∈ X \ St|Ft−1

)
≥ σt−1(xt)Pt,

(21)

in which the last inequality follows from the definition of xt and Lemma 7.

Now we condition on both events Ef (t) and Eft(t), and analyze the instantaneous regret as:

rt = ∆(xt) = f(x∗)− f(xt) + f(xt)− f(xt)

(a)

≤ ∆(xt) + ft(xt) + ctσt−1(xt)− ft(xt) + ctσt−1(xt)

(b)

≤ ctσt−1(xt) + ctσt−1(xt) + ctσt−1(xt) + ft(xt)− ft(xt)
= ct(2σt−1(xt) + σt−1(xt)) + ft(xt)− ft(xt),

(22)
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in which (a) follows from the definition of ∆(x) and |ft(x)−f(x)| ≤ ctσt−1(x) for all x ∈ X since
we assume both events Ef (t) and Eft(t) are true, and (b) results from the fact that xt is unsaturated.
Next, we analyze the expected value of the underlined term given a filtration Ft−1:

E
[
ft(xt)− ft(xt)|Ft−1

]
= P (At)E

[
ft(xt)− ft(xt)|Ft−1, At

]
+ P (Bt)

N∑
n=1

PN [n]E
[
ft(xt)− ft(xt)|Ft−1, Bt,n

]
(a)

≤ (1− pt)
N∑
n=1

PN [n]E
[
ft(xt)− ft(xt)|Ft−1, Bt,n

]
(b)

≤ (1− pt)
N∑
n=1

PN [n]E
[
ĝn,t(xt) + ∆n,t − ĝn,t(xt) + ∆n,t|Ft−1, Bt,n

]
(c)

≤ 2(1− pt)
N∑
n=1

PN [n]∆n,t , ψt,

(23)

in which (a) follows since when At is true, i.e., when xt = arg maxx∈X ft(x), ft(xt)− ft(xt) ≤ 0,
(b) makes use of Lemma 5 (note that here we are also conditioning on the events Ef (t) and Eft(t)
which is the same as Lemma 5, and that Lemma 5 holds irrespective of the event Bt,n since both
Eft and Eft(t) are Ft−1-measurable) and thus holds with probability of ≥ 1− δ/2, and (c) follows
since conditioned on the event Bt,n (i.e., xt = arg maxx∈X ĝn,t(x)), ĝn,t(xt)− ĝn,t(xt) ≤ 0.

Subsequently, we can analyze the expected instantaneous regret by separately considering the two
cases in which the event Eft(t) is true and false respectively:

E
[
rt|Ft−1

]
≤ E

[
ct(2σt−1(xt) + σt−1(xt)) + ft(xt)− ft(xt)|Ft−1

]
+ 2BP

[
Eft(t)|Ft−1

]
≤ E

[
ct(2σt−1(xt) + σt−1(xt))|Ft−1

]
+ E

[
ft(xt)− ft(xt)|Ft−1

]
+ 2BP

[
Eft(t)|Ft−1

]
≤ 2ct

Pt
E
[
σt−1(xt)|Ft−1

]
+ ctE

[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2

≤ ct
(

1 +
2

Pt

)
E
[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2
.

(24)

Note that since 1/(p− 1/t2) ≤ 5/p and pt ≥ p1 for all t ≥ 1,
2

Pt
=

2

pt(p− 1
t2 )
≤ 10

ppt
≤ 10

pp1
. (25)

Therefore, (24) can be further analyzed as

E
[
rt|Ft−1

]
≤ ct

(
1 +

10

pp1

)
E
[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2
, (26)

which completes the proof.

Subsequently, we make use of the concentration inequality of super-martingales to derive a bound on
the cumulative regret.
Definition 2. Define Y0 = 0, and for all t = 1, . . . , T ,

rt = rtI{Ef (t)},

Xt = rt − ct
(

1 +
10

pp1

)
σt−1(xt)− ψt −

2B

t2
,

Yt =

t∑
s=1

Xs.
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Lemma 9. Conditioned on Lemma 8 (i.e., with probability of ≥ 1− δ/2), (Yt : t = 0, . . . , T ) is a
super-martingale with respect to the filtration Ft.

Proof.

E
[
Yt − Yt−1|Ft−1

]
= E

[
Xt|Ft−1

]
= E

[
rt − ct

(
1 +

10

pp1

)
σt−1(xt)− ψt −

2B

t2
|Ft−1

]

= E
[
rt|Ft−1

]
−

[
ct

(
1 +

10

pp1

)
E
[
σt−1(xt)|Ft−1

]
+ ψt +

2B

t2

]
≤ 0,

(27)

in which the last inequality follows from Lemma 8 when the event Ef (t) is true; when Ef (t) is false,
rt = 0 and thus the inequality holds trivially.

The Azuma-Hoeffding Inequality presented below will be useful for proving the concentration of the
super-martingale (Yt : t = 0, . . . , T ).

Lemma 10 (Azuma-Hoeffding Inequality). Given any δ′ ∈ (0, 1). If a super-martingale (ZT : t =
1, . . . , T ), defined with respect to the filtration Ft, satisfies |Zt − Zt−1| ≤ αt for some constant αt,
then for all t = 1, . . . , T and with probability of at least 1− δ′,

ZT − Z0 ≤

√√√√2 log(1/δ′)

T∑
t=1

α2
t .

Finally, we can derive an upper bound on the cumulative regret through the following lemma.

Lemma 11. Given δ ∈ (0, 1), then with probability of at least 1− δ,

RT ≤cT
(

1 +
10

pp1

)
O(
√
TγT ) +

T∑
t=1

ψt +
Bπ2

3
+[

cT

(
1 +

4B

p
+

10

pp1

)
+ ψ1 +O(

√
log T )

]√
2T log

4

δ
,

in which γT is the maximum information gain about f obtained from any set of T observations.

Proof.

|Yt − Yt−1| = |Xt| ≤ |rt|+ ct

(
1 +

10

pp1

)
σt−1(xt) + ψt +

2B

t2

(a)

≤ 2B + ct

(
1 +

10

pp1

)
+ ψt +

2B

t2

(b)

≤ 2Bct
p

+ ct

(
1 +

10

pp1

)
+ ψt +

2Bct
p

≤ ct
(

1 +
4B

p
+

10

pp1

)
+ ψt,

(28)

in which (a) follows since the posterior variance is upper-bounded by 1, (b) follows since 2B ≤
2Bct/p and 2B/t2 ≤ 2Bct/p.
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This allows us to apply the Azuma-Hoeffding Inequality (Lemma 10) by using an error probability of
δ/4,

T∑
t=1

rt ≤
T∑
t=1

ct

(
1 +

10

pp1

)
σt−1(xt) +

T∑
t=1

ψt +

T∑
t=1

2B

t2
+√√√√2 log

4

δ

T∑
t=1

[
ct

(
1 +

4B

p
+

10

pp1

)
+ ψt

]2

≤ cT
(

1 +
10

pp1

) T∑
t=1

σt−1(xt) +

T∑
t=1

ψt +
Bπ2

3
+[

cT

(
1 +

4B

p
+

10

pp1

)
+ ψ1 +O(

√
log T )

]√
2T log

4

δ

= cT

(
1 +

10

pp1

)
O(
√
TγT ) +

T∑
t=1

ψt +
Bπ2

3
+[

cT

(
1 +

4B

p
+

10

pp1

)
+ ψ1 +O(

√
log T )

]√
2T log

4

δ
,

(29)

which holds with probability ≥ 1 − δ/4. The last inequality follows since ct is increasing in t,∑T
t=1 1/t2 = π2/6, and ψt ≤ ψ1 +O(

√
log t) for all t ∈ Z+ which is ensured by the way in which

we choose the sequence pt, i.e., such that (1− pt)ct ≤ (1− p1)c1 for all t ∈ Z+ \ {1}. Lastly, note
that the event Ef (t) holds with probability ≥ 1 − δ/4, i.e., rt = rt with probability ≥ 1 − δ/4.
In the last equality, we made use of the fact that

∑T
t=1 σt−1(xt) = O(

√
TγT ) which is proved by

Lemmas 5.3 and 5.4 of [52]. Taking into account the error probability of Lemma 8 (δ/2), which is
required for (Yt : t = 0, . . . , T ) to form a super-martingale, completes the proof.

Finally, we are ready to prove Theorem 1. Recall that ct = O
((

B +
√
γt + log(1/δ)

)√
log t

)
.

Therefore,

RT = O

(
1

p1

(
B +

√
γT + log

1

δ

)√
log T

√
TγT +

T∑
t=1

ψt+(
B +

1

p1

)(
B +

√
γT + log

1

δ

)√
log T

√
T log

1

δ

)

= O

(B +
1

p1

)√
T log TγT log

1

δ

(
γT + log

1

δ

)
+

T∑
t=1

ψt


= Õ

(B +
1

p1

)
γT
√
T +

T∑
t=1

ψt

 .

(30)

D Further Experimental Details and Results

All experiments reported in this work are run on a computer with 48 cores of Xeon Silver 4116
(2.1Ghz) processors, RAM of 256GB, and 1 NVIDIA Tesla T4 GPU. For fair comparisons, in all
experiments, the same random initializations are used by all methods.

D.1 Optimization of Synthetic Functions

In the synthetic experiments, we sample the objective functions from a GP with a length scale of
0.03. The functions are defined on a 1-dimensional discrete domain uniformly distributed in [0, 1],
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Figure 4: Performances in the most general setting in which tn is increasing (green curve) for the
(a) landmine detection, (b) Google glasses and (c) mobile phone sensors experiments. The specific
experimental setup is described in Appendix D.2.1. The results correspond to Fig. 3 in the main
paper.

with size |X | = 1, 000. The output values of all functions f(x),∀x ∈ X are normalized into the
range of [0, 1]. Whenever an input x is queried, the corresponding noisy observation is obtained
by adding a zero-mean Gaussian noise N (0, σ2) where σ2 = 0.01 to the corresponding function
value f(x) (Section 2, first paragraph). For a sampled objective function for the target agent, we
generate the objective functions of the other agents, as well as their observations, in the following
way. For agent An, we go through every input in the entire discrete domain, and for each input, we
add either dn or −dn to the corresponding output function value with probability 0.5 each, after
which the resulting value is used as the objective function value of the agent An. This step ensures
the validity of the definition of dn as the maximum difference between the objective function of
the target agent A and that of agent An: dn = maxx∈X |f(x)− gn(x)| (Section 2, last paragraph).
Next, we randomly sample tn inputs from the entire discrete domain, and for each sampled input, we
obtain a noisy output observation by adding a zero-mean Gaussian noise: N (0, σ2) where σ2 = 0.01,
to the corresponding function value. Subsequently, following the procedures described in the first
paragraph of Section 3.1, every agent An applies RFF approximation using its own tn observations
(input-output pairs) to derive the RFF approximation parameters νn and Σn and hence to draw a
sample of ωn, which is the parameter to be passed to and used by the target agent A. Finally, after
receiving the parameters ωn’s from all other agents, the target agent starts to run the FTS algorithm
(Algorithm 1).

D.2 Real-world Experiments

D.2.1 Results in the Most General Setting with Increasing tn

Here we perform additional experiments in the most general setting of our FTS algorithm (Section 3.1,
last paragraph): (a) information can be received from every agent An before every iteration instead
of only before the first iteration, and (b) every An may also be performing black-box optimization
tasks (possibly also using FTS), such that An may collect more observations (i.e., tn may increase)
between different rounds of communication. We use the three real-world experiments (Section 5.2) to
investigate the performances in this setting, and compare the performances with those in the simpler
setting where communication is allowed only before the first iteration.

Here we describe the detailed experimental setup for the experiments in this section. Before the
first iteration of the FTS algorithm, every agent An for n = 1, . . . , N , who has completed tn = 50
iterations of its own BO task (we use standard TS here for simplicity, but it can be replaced by FTS
in which An is the target agent), passes the first message to the target agent A. Next, before every
iteration t > 1 of the FTS algorithm (Algorithm 1), every agentAn runs one more iteration of its own
BO task, calculates the updated RFF approximation parameters νn,t and Σn,t (3), samples a new ωn,t
from its posterior belief: ωn,t ∼ N (νn,t, σ

2Σ−1n,t), and finally passes the sampled ωn,t to the target
agentA. Then,A uses the received updated information to run iteration t of the FTS algorithm. After
this, the information from every agent An is updated and sent to A again, and the FTS algorithm
proceeds to the next iteration t+ 1. As a result, every tn,∀n = 1, . . . , N increases by 1 after every
iteration of FTS.
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The performances in all three experiments are shown in Fig. 4, in which FTS outperforms standard
TS in both settings for all experiments. The figure also shows that in the most general setting
in which tn is increasing, the performances for the two activity recognition experiments (Google
glasses and mobile phone sensors experiments) are improved, whereas the performances for the
landmine detection experiment are comparable in both settings. Note that the most general setting
with increasing tn may not necessarily lead to better performances: Although using more observations
from those agents with similar objective functions to the target agent can give more useful information
and hence potentially benefit the FTS algorithm, more observations from heterogeneous agents may
turn out to hurt the performance of FTS since the information from these agents are actually harmful
for the BO task of the target agent.

D.2.2 More Experimental Details

In all real-world experiments, we use length scale = 0.01 to generate the random features (Ap-
pendix A) and σ2 = 10−6 in the RFF approximation using equations (2) and (3).

Landmine Detection. This dataset, downloadable from http://www.ee.duke.edu/~lcarin/
LandmineData.zip, consists of the data from 29 landmine fields, with each field associated with
a dataset for landmine detection. The dataset of each landmine field is made up of a number of
input-output pairs, each corresponding to a location; for every location, the input includes 9 features
extracted from radar images and the output is a binary label indicating whether the location contains
landmines. The number of data points (input-output pairs) of every field ranges from 445 to 690,
with a mean of 511; for every field, we use 50% of the data points as the training set, and the other
50% as the validation set. We use support vector machines (SVM) as the predictive model, and tune
two SVM hyperparameters: RBF kernel parameter in the range of [0.01, 10], and L2 regularization
parameter in [10−4, 10]. For every queried hyperparamter setting, the SVM model is trained on the
training set using this particular set of hyperparameters, and evaluated using the validation set to
produce the reported performances. As mentioned in the main text, the dataset of the landmine fields
are significantly imbalanced, i.e., there are considerably more locations without than with landmines.
Specifically, the percentage of positive samples (i.e., locations with landmines) in different landmine
fields ranges from 2.9% to 9.4%, with a mean of 6.2%. Therefore, for this dataset, validation error is
inappropriate since an all-zero prediction would result in very low classification error. Hence, we
use the Area Under the Receiver Operating Characteristic Curve (AUC) which is a more appropriate
metric when evaluating the performance of ML models on imbalanced datasets.

Activity Recognition Using Google Glasses. This dataset consists of two-hour long sensor data
collected using Google glasses from 38 participants, while the participants are performing different
activities such as eating. The dataset can be downloaded from http://www.skleinberg.org/
data/GLEAM.tar.gz. For every participant, we group the sensor data into different time windows;
for each time window, we calculate the statistics (i.e., mean, variance and kurtosis) of different sensor
measurements within this time window, and use them as the features (57 features in total are extracted
from each time window); the label for each time window is a binary value indicating whether the
participant is eating or conducting other activities during this time window. As a result, for every
participant, each time window produces a data point, i.e., an input-output pair. The number of data
points for every participant ranges from 242 to 3416 with an average of 1930. For every participant,
we randomly select 100 data points as the validation set, and use the remaining data points as the
training set. We use logistic regression (LR) as the activity prediction model for every participant, and
tune 3 hyperparameters of LR: the batch size in the range of [20, 60], the L2 regularization parameter
in [10−6, 1], and the learning rate in [0.01, 0.1]. Following the common practice for using LR and
neural network models, the inputs are pre-processed by removing the mean and dividing by the
standard deviation.

Activity Recognition Using Mobile Phone Sensors. This dataset, which can be downloaded from
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+
Smartphones, contains measurements from mobile phone sensors (accelerometer and gyroscope)
involving 30 subjects. 561 features were provided together with the dataset, with each set of features
associated with a corresponding label indicating which one of the six activities the subject is
performing. Therefore, the activity recognition problem for every subject corresponds to a 6-class
classification problem. The number of data points (input-output pairs) possessed by the subjects
ranges from 281 to 409 with a mean of 343. For every subject, we use 50% of the data points as the
training set, and the remaining 50% as the validation set. We again use LR as the activity recognition
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Figure 5: Additional results for the other 5 target agents for the landmine detection experiment
(M = 100).

model, and the tuned hyperparameters, as well as their ranges, are the same as those in the activity
recognition experiment using Google glasses.

D.2.3 Additional Results for More Agents

In this section, we present additional experimental results for the three real-world experiments
(Section 5.2). Note that as mentioned in Section 5.2 (last paragraph), the results presented in Fig. 3
in the main text correspond to using the first agent (of the 6 agents used to produce the results in
Fig. 2 in the main text) as the target agent for every experiment. Meanwhile, the additional results
shown in this section (Figs. 5, 6 and 7) correspond to using each of the remaining 5 agents (agents 2
to 6) as the target agent. Note that since all three real-world datasets contain heterogeneous agents
(Section 5.2, first paragraph), it is unreasonable to expect FTS to always outperform standard TS
for all agents. Instead, as shown in the figures, FTS performs better than TS for some agents, and
comparably with TS for other agents.
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Figure 6: Additional results for the other 5 target agents for the activity recognition experiment using
Google glasses (M = 100).
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Figure 7: Additional results for the other 5 target agents for the activity recognition experiment using
mobile phone sensors (M = 100).
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