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Abstract

Data valuation arises as a non-trivial challenge in use cases such as collaborative
data sharing, data markets, among others. The value of data is often associated
with the learning performance (e.g., validation accuracy) of the model trained on
the data. This intuitive methodology introduces a high coupling between data
valuation and validation. This may be undesirable because a validation set may not
be available in practice, and it can be challenging for the data providers to reach an
agreement on the choice of the validation set. A separate but practical issue is data
replication. Given the value of some data points, a dishonest data provider may
replicate these data points to exploit the valuation for a higher reward/payment. We
observe that the diversity of the data points is an inherent property of the dataset
that is independent of validation. We formalize diversity via the volume of the
data matrix (determinant of its left Gram). This allows us to formally connect
the diversity of data to the learning performance without requiring validation.
Furthermore, we propose a robust volume with theoretical replication robustness
guarantees by following the intuition that copying the same data points does not
increase the diversity in data. We perform extensive experiments to demonstrate
its consistency and practical advantages over existing baselines and show that
our method is model- and task-agnostic and flexibly adaptable to various neural
networks.

1 Introduction

Data is increasingly recognized as a valuable resource [17], so we need a principled way to measure
its worth. A suitable data valuation has wide-ranging applications such as fairly compensating clinical
trial researchers for their collected data [9, 14, 24], fostering collaborative machine learning among
industrial organizations [35, 36, 40], and formulating data markets and a data economy [2, 4, 30, 32].

A popular viewpoint is that the value of data should correlate with the learning performance of the
model trained on it [11, 16]. These intuitive methods enforce a high coupling between data valuation
and validation, so they face certain practical limitations. In practice, a validation set may not always
be available [35]. Furthermore, as different choices of the validation set can lead to different data
valuations, it is difficult for the data providers to agree on the choice of such a validation set [35].
Since the valuation is coupled with the validation, if the validation set is not a good representation
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of the actual application scenario, then the obtained valuation may be less useful [39]. We adopt a
different perspective that data value should be related to the intrinsic properties of data, and decouple
valuation from validation by considering the inherent diversity in the data. Intuitively, a more diverse
collection of data points corresponds to a higher-quality dataset and thus a higher value. This
approach circumvents the above practical limitations and allows our valuation method to be model-
and task-agnostic. The diversity is formalized by the volume of the data matrix.

Data replication is another practical issue due to the digital nature and anonymous settings of data
markets [12]. Supposing a dataset has some value and a data provider instead offers one containing
two copies of every data point, is this “new” dataset twice as valuable as the original one? Intuitively,
the answer should be no as replication adds no new data and so does not increase diversity. We
formalize this intuition to guarantee replication robustness. Specifically, we construct a compressed
version of the original data to preserve its inherent diversity and assign little value to replicated data.

We provide theoretical justification for formalizing diversity with volume. Firstly, the diversity
should be non-negative and monotonic [11, 16, 35, 38], and the volume satisfies both of these
properties. Subsequently, a higher diversity should indicate better learning performance [21]. We
formally show that larger volumes generally correspond to better performance using the ordinary
least squares (OLS) framework and extend our method to more complex models (i.e., various neural
networks) in our empirical investigation. Specifically, data with larger volumes can lead to more
accurate pseudo-inverses (a key part of the least squares solution) and lower mean squared errors.

To guarantee replication robustness, we find that the marginal increase in value from replication must
diminish to zero. Otherwise, a data provider can exploit this valuation by making infinite copies
of the data to achieve infinite value. We thus formalize a notion of replication robustness via the
asymptotic value attainable through replication. Unfortunately, the conventional volume definition
does not have this property. We propose a robust volume (RV) which groups similar data together to
construct a compressed version of the original data using the statistics of these data groups. Moreover,
we show that RV leads to similar valuations as the conventional volume when there is no replication
and is robust if replication exists. We perform extensive experiments on synthetic and real-world
datasets to demonstrate that our method produces consistent valuations with existing methods while
making fewer assumptions.

Our specific contributions include:

• Formalizing a measure of data diversity via the volume of data and justifying (both theoretically
and empirically) the suitability of volume for data valuation;

• Formalizing a notion of replication robustness and designing a robust volume (RV) valuation with
robustness guarantees;

• Performing extensive empirical comparisons with baselines to demonstrate our method’s consis-
tency in valuation, replication robustness without validation, and flexible adaptability to more
complex machine learning models, i.e., various neural networks.

2 Problem Setting and Notations

Consider two data submatrices XS and XS′ to be valued that contain s and s′ rows of d-dimensional
feature vectors, respectively. We concatenate them along the rows to form the full data matrix
X ∈ Rn×d, i.e., X := [X>S X>S′ ]> and s + s′ = n. Similarly, we denote the corresponding
observations as y := [y>S y>S′ ]> ∈ Rn×1. The least squares solution from OLS is w := X+y =

argminβ ‖y −Xβ‖2 where X+ := (X>X)−1X> is the pseudo-inverse of X. Similarly, we denote
X+
S as the pseudo-inverse of XS and wS := X+

SyS . For notational brevity, let V := Vol(X) and
VS := Vol(XS) where Vol() is defined below. Let |A| := det(A). The left Gram matrix of X is
G := X>X ∈ Rd×d, so for submatrix XS , GS := X>SXS .

Definition 1 (Volume). For a full-rank X ∈ Rn×d with n ≥ d, Vol(X) :=
√
|(X>X)| =

√
|G|.

We adopt this volume definition for several reasons: (a) Often, the feature space of data is pre-
determined and fixed due to the data collection process. But, new data can become available
incrementally, thus implying that n can grow indefinitely with d fixed [6, 7]. (b) By leveraging the
theoretical connections between volume and learning performance, we can design a volume-based
data valuation to assign higher value for data that lead to better learning performance. (c) This allows
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an intuitive interpretation between volume and diversity: Adding a data point to a dataset can increase
the diversity/volume depending on the data points already in the dataset (Lemma 1).

We restrict our discussion to full-rank matrices X, XS , and XS′ since otherwise we can adopt the
Gram-Schmidt process to remove the linearly dependent columns [6, 7]. In practice, we perform
pre-processing such as principal component analysis to reduce the feature space dimension to ensure
that this assumption is satisfied. This assumption is to ensure that there are no redundant features,
namely, features that can be exactly reconstructed with other features. For instance, if a dataset
already contains monthly salaries, then an annual salary would be redundant.

3 Larger Volumes Yield Better Learning Performance

The value of a data (sub)matrix depends on the learning performance trained on it [11, 16], which
we will show depends on its volume. Simply put, the larger the volume, the better the learning
performance. In this section, we formalize this claim through the OLS framework. In particular, we
investigate two metrics for learning performance: (a) the quality of the pseudo-inverse formalized
as biasS :=

∥∥X+
S −X+

∥∥ because estimating X+ accurately is important in achieving low mean
squared error (MSE) [6], and (b) the MSE as L(wS) := ‖y −XwS‖2.

3.1 A Larger Volume Corresponds to a Smaller Bias

In regression problems, the closed-form optimal solution is constructed via X+ computed on X, so
the bias between X+

S and X+ indirectly determines the value of XS [6], i.e., smaller bias means
higher value. We show that ‘a larger volume means a smaller bias’ is always true for d = 1. But, for
d > 1, it requires additional assumptions which are mostly satisfied via empirical verification (Fig. 1).
Proposition 1 (Volume vs. Bias for d = 1). For non-zero XS ,XS′ of X ∈ Rn×1, VS ≥ VS′ ⇐⇒
biasS − biasS′ ≤ 0.

We can generalize to M > 2 non-zero submatrices: Let X = [X>S1
X>S2

· · · X>SM
]> and w.l.o.g.,

assume VS1 ≥ VS2 ≥ . . . ≥ VSM
. Then, biasS1 ≤ biasS2 ≤ . . . ≤ biasSM

. For d > 1, there exist
counterexamples (see Fig. 1), so we compare the bias, as follows:
Proposition 2 (Volume vs. Bias in General). For full-rank XS ,XS′ of X ∈ Rn×d,

bias2
S − bias2

S′ =
1

V 4
S

‖XSQS‖2 −
1

V 4
S′
‖XS′QS′‖2 + 2

〈
1

V 2
QX>,

1

V 2
S′
QS′X>S′ −

1

V 2
S

QSX
>
S

〉
where Q :=

∑k
l=1(λlσl)

−1
∏k
j=1,j 6=l(G − λjI), {λl}kl=1 denotes the k unique eigenvalues

of the left Gram matrix G of X, QS ,QS′ are similarly defined w.r.t. GS ,GS′ , and σl :=∑k
g=1(−1)g+1λk−gl [

∑
H⊆{1,...,k}\{l},|H|=g−1(

∏
h∈{1,...,k}\H λ

−1
h )].

The proof of Proposition 1 relies on a key observation that for d = 1, the left Gram matrix is a
scalar and the rest of the proof follows. However, it cannot be generalized to that for d > 1, so
we resort to a different approach. The proof of Proposition 2 requires Lemma 2 in Appendix A.1
which establishes the connection between volume and G−1 using Sylvester’s formula. To obtain
VS ≥ VS′ =⇒ biasS ≤ biasS′ , there are two cases requiring different additional assumptions:
(A) VS � VS′ , and (B) ‖XSQS‖ ≈ ‖XS′QS′‖ and V � max(VS , VS′). Case A is intuitive:
VS � VS′ means XS is much ‘larger’ than XS′ , so biasS is smaller. Case B is when XS and
XS′ are similar, e.g., when they are sampled from the same distribution. In this case, we show
V � max(VS , VS′) (Lemma 3 in Appendix A.1) and verify that the implication is true most of the
time (over 80% of random trials) in Fig. 1.

3.2 A Larger Volume Corresponds to a Lower MSE

We show a similar result for MSE when d = 1, which may be surprising since Vol() does not
consider y at all and yet, it can determine which submatrix predicts better on the rest of the unseen
data. Unfortunately, this result does not directly generalize to d > 1 or beyond two submatrices.
Nevertheless, we analyze how the difference in MSEs depends on volumes to shed light on how
volume affects learning performance in more complicated scenarios.
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Proposition 3 (Volume vs. MSE for d = 1). For non-zero XS ,XS′ of X ∈ Rn×1, VS ≥ VS′ ⇐⇒
L(wS)− L(wS′) ≤ 0.

Unfortunately, it does not generalize to d > 1. For full-rank XS ,XS′ of X ∈ Rn×d, we rewrite
L(wS)− L(wS′), as follows (derivations in Appendix A.2):

L(wS)− L(wS′) = 〈wS −wS′ , (X>SXS + X>S′XS′)(wS + wS′)− 2X>y〉 . (1)

As L(wS) − L(wS′) explicitly depends on y and Vol() does not include y at all, it is possible to
adversarially construct y to have L(wS)− L(wS′) > 0 or < 0 for fixed XS ,XS′ (Appendix A.2).

The adversarial cases notwithstanding, volume is still considered a good indirect measure of the
quality of data applied in active learning and matrix subsampling with theoretical performance
guarantees [8, 27]. We can also adopt the perspective that Vol() is a measure of the diversity in the
features [21], which provides an intuitive interpretation for the theoretical guarantee: A more diverse
dataset (i.e., larger volume) gives better learning performance. We will demonstrate in Sec. 5.2 that
not requiring labels can be an advantage in practice if the obtained labels are noisy/corrupted or there
is a distributional difference between the validation sets and the test set.

We conclude this section by empirically verifying the additional required assumptions. We randomly
and identically sample equal-sized XS ,XS′ for 500 independent trials and compute the percentage of
times that a larger volume leads to better performance (vertical axis) against the size of XS ,XS′ (hor-
izontal axis). We consider uniform and normal distributions of various dimensions: ‘N d = 1’
denotes XS ,XS′ drawn from 1-dimensional standard normal distribution. For MSE, the response y
for a data point x is calculated from y = sin(〈w∗,x〉) where the true parameters w∗ are randomly
sampled from U(0, 2)d. The left figure shows that a larger volume leads to a smaller bias for more
than 80% of times, thus verifying that our assumptions are satisfied. The right figure shows that a
larger volume leads to a lower MSE for more than 50% of times for d ≤ 10, which is consistent with
what we expect from (1).

Figure 1: Volume vs. bias (left) and vs. MSE (right) for two identically sampled, equal-sized datasets
XS ,XS′ under two distributions (Uniform: U(0, 1)d, Normal: N (0, 1)d). The vertical axis shows
the percentage of times where the dataset of a larger volume leads to better performance: lower bias
or MSE (from 500 independent trials). Here, d denotes the dimension of the dataset.

4 Robustifying the Volume-based Valuation

As larger volumes can indicate better learning performance, we consider a volume-based data valua-
tion method [11, 16, 35]. Unfortunately, the volume (Definition 1) is not robust to replication via direct
data copying. Hence, we propose a modification to ensure robustness to replication. We conclude by
raising an interesting relation involving replication robustness and diversity representation.

4.1 First Attempt of Volume-based Data Valuation

Directly using Vol(X) as a valuation for X satisfies both non-negativity and monotonicity:

Proposition 4 (Non-negativity and Monotonicity of Vol()). For full-rank X ∈ Rn×d, Vol(X) ≥ 0
and Vol([X> x>]>) ≥ Vol(X) where x is a new data point.

These properties imply that a larger X (i.e., more data) should correspond to a higher value [11, 16, 35].
However, Vol() is unbounded and has a multiplicative scaling factor w.r.t. replication. The implication
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is that a data provider can arbitrarily “inflate” the volume or value of the data by replicating data
infinitely:

Lemma 1 (Unbounded Multiplicative Scaling of Vol(X) from Replication). For full-rank
X ∈ Rn×d, let xq ∈ R1×d be a data point that is replicated for m ≥ 1 times and so, Xrep :=

[X> x>q . . . x>q ]> ∈ R(n+m)×d. Then, Vol(Xrep) = Vol(X)× (1 +m× xq(X
>X)−1x>q )1/2.

Replication robustness defined via inflation. Following the previous discussion, we use the term
inflation to denote the ratio ν(replicate(X, c))/ν(X) where ν() is a data valuation function that maps
a data matrix to a real value (e.g., Vol()). The function replicate(X; c) means directly copying the
data in X and appending them back to X so that Xrep ∈ R(nc)×d, and the replication factor c denotes
the amount of replication. One choice of replication is to copy the entire X for c times. Another
way is to copy some selected subset for a certain number of repetitions so that Xrep ∈ R(nc)×d. The
second way is considered because replicating different data increases the value differently (Lemma 1).
We propose the replication robustness definition to formalize the intuition that a high robustness
should guarantee low inflation:

Definition 2 (Replication Robustness of Valuation ν()). Define the replication robustness as
γν := ν(X)/(supc≥1 ν(Xrep)) where the replicated matrix Xrep := replicate(X, c) ∈ R(nc)×d.

The theoretical optimal robustness is γν = 1, which implies that there is no additional gain from
replicating data, so it eliminates any motivation for replication. In contrast, the worst case is γν = 0.
It is the case for any valuation that strictly monotonically increases with replication and, in particular,
γVol = 0 by applying Lemma 1. Consequently, a replication robust valuation must have diminishing
marginal values from replication. In other words, the additional gain from having more copies of the
same data converges asymptotically to 0 with respect to c. This is congruent with what we observe in
practice: Adding the same data to the training set repeatedly does not improve performance infinitely.

4.2 Replication Robust Volume-Based Valuation

We propose a robust definition to balance the value of diversity and repetition in data. Specifically,
we construct a compressed version of the original data matrix X by grouping and representing the
data points via discretized cubes of the input space:

Definition 3 (Replication Robust Volume (RV)). Given a discretization coefficient ω, the input
domain for X is discretized into a set of d-cubes with sides of length ω and Ψ denotes the set of
indices of these d-cubes. Let φi denote the number of data points in the i-th d-cube. The replication
robust volume is

RV(X;ω) := Vol(X̃)×
∏
i∈Ψ ρi (2)

where ρi :=
∑φi

p=0 α
p, X̃ := {meani|φi 6= 0, i ∈ Ψ} is a compressed version of X, α ∈ (0, 1)

controls the degree of robustness, and meani is a statistic of the data points in the i-th d-cube.

X̃ “compresses” X by grouping similar data together and each row in X̃ is constructed via a
statistic (e.g., average, trimmed mean) of the data points in a non-empty d-cube. Therefore, the number
of rows in X̃ is equal to the number of non-empty d-cubes. In contrast, with the unbounded Vol(),
we ensure that RV(;ω) is bounded by setting

∏
i∈Ψ ρi to be bounded and convergent w.r.t. the size

of replicated data. Note that φi = 0 =⇒ ρi = 1 (i.e., an empty d-cube) and φi > 0 =⇒ ρi > 1.

Before considering robustness guarantees, we first demonstrate that Definition 3 preserves the
original volume in a relative sense, i.e., the ratio between VS and VS′ is preserved. This ensures that
Definition 3 has similar guarantees on learning performance from Sec. 3 (empirically demonstrated
in Sec. 5.1).

Proposition 5 (Bounded Distortion of RV(XS ;ω)/RV(XS′ ;ω) ∀ω). Set α = 1/(βn). De-
fine distortion δ(ω) := [RV(XS ;ω)/RV(XS′ ;ω)]/[Vol(XS)/Vol(XS′)]. Then, for all ω,
(exp(β−1))−1 ≤ δ(ω) ≤ exp(β−1). For example, β = 10 bounds δ(ω) ∈ [0.905, 1.105] ap-
proximately.

Achieving near-optimal robustness by upper-bounding the inflation. We define robustness (Defi-
nition 2) as the maximum attainable inflation via replication. Since ρi and inflation are monotonic in
φi, we consider the asymptotic inflation (φi →∞). In Definition 3, even if the data in i-th d-cube is
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replicated for infinitely many times, the inflation from this d-cube is still upper-bounded by a constant.
This can be generalized to all the d-cubes as each can be considered independently and there is a
constant number of d-cubes for a fixed X and ω.

Proposition 6 (Robustness γRV). Let ρi :=
∑φi

p=0 α
p. For α ∈ (0, 1), γRV ≥ (1− α)|Ψ| where |Ψ|

is the number of non-empty d-cubes; for α ≥ 1, γRV = 0. Note that γ = 1 is optimal.

Reducing α achieves a lower upper bound on inflation and a higher/better robustness. However, if α
is too small, then it may have an undesirable effect: RV(X;ω) < Vol(X) for some X (with similar
data points) from an honest provider without replication. In this situation, RV has an over-correcting
effect: RV is designed to avoid exploitation of Vol() due to replication but mistakenly leads to a
decrease in the value of an honest dataset. Therefore, α is set to achieve a certain upper bound on
inflation but is not unnecessarily small; more details are given in Proposition 8 in Appendix A.3.
In particular, setting α = 1/(βn) guarantees a constant upper bound on the inflation of exp(β−1)
(see Lemma 5 in Appendix A.3). For instance, setting β = 10 and α = 1/(βn) guarantees
RV(replicate(X, c);ω) ≤ 110% × RV(X;ω). However, it requires us to know the true n without
any replication. In practice, as we only observe the data with replication (if any) [12], we estimate n
with the number of rows in X̃ (i.e., |Ψ|).
Diversity representation vs. replication robustness balance via ω. A smaller ω means that the d-
cubes are more refined and RV can better represent the original data instead of crudely grouping many
data points together and estimating them via a statistic. On the other hand, a larger ω means lower
diversity representation but higher replication robustness. In the extreme case, a sufficiently large ω
results in grouping all data points together and representing them all using one single statistic, hence
foregoing the diversity in data. Therefore, a balance between them should be achieved depending
on the practical requirements of the problem. We formalize this discussion with the following
proposition:

Proposition 7 (Reduction to Vol() vs. Achieving γ = 1 Robustness). Set ω to be such that each
d-cube only contains completely identical data points, and

1. set ρi = KX̃,i which is a constant from recursive application of Lemma 1. Then, RV(·;ω) =

Vol();
2. set α = 0. So, ρi = 1(φi 6= 0) and name this formulation RV1(·;ω). Then, γRV1

= 1.

RV1(·;ω) can be seen as reducing all potential replications to one data point. It achieves robustness
but loses the density information of each d-cube due to the indicator function. Specifically, the true
distribution may have different densities at different d-cubes, which is reflected via φi’s. But, this
information is completely lost in RV1(·;ω). In contrast, Vol() represents all the data indiscriminately,
hence sacrificing robustness. Furthermore, while we restrict our consideration of replication to
direct copying, it is natural to additionally consider a noisy replication (i.e., adding small random
perturbations to copies [12]). Intuitively, RV1(·;ω) is not robust to noisy replication as the replicated
data are perturbed. Preliminary empirical exploration in Appendices B.2 and B.3 shows that RV is
robust to noisy replication if the noise magnitude is small relative to ω. Consequently, an interesting
future exploration is to formalize the strategies for striking a balance between diversity representation
and replication robustness by modifying ω. For this work, we empirically find ω = 0.1 suitable for
standardized features.

In using standardized features, we implicitly assume that the features follow a normal distribution.
This makes data further away from the mean (i.e., statistically rarer) more valuable in learning [8]. We
also observe this in Sec. 5.2 where data closer to the mean are valued to be lower across all baselines
and our method. This work excludes considerations of outliers as they are not truly representative of
the actual distribution. All proofs and derivations are in Appendix A.

5 Experiments and Discussion

In this section, we first verify our claim in Sec. 3 that a larger volume leads to better learning
performance, and derive some interesting practical perspectives in Sec. 5.1. Subsequently, in Sec. 5.2,
we show that RV produces valuations consistent with baseline methods, and additionally demonstrate
the limitations of existing methods. In particular, RV is model- and task-agnostic while another
baseline with an explicit dependence on the validation set is shown to have some deviations in data
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Figure 2: Effect of removing/adding the dataset with the highest/lowest RV on the train/test loss for
two real-world datasets: credit card and Uber Lyft. The plots show the average and standard errors
over 50 random trials.

valuation as the validation set changes. Lastly, in Sec. 5.3, we verify our robustness guarantees via
approximated asymptotic performance. Importantly, our empirical investigation has gone beyond the
OLS framework for the theoretical analysis in Sec. 3 as we have adapted our method to various neural
network architectures on different machine learning tasks including both image and natural language
processing. All experiments were run on a server with Intel(R) Xeon(R)@ 2.70GHz processor and
256GB RAM.

5.1 Robust Volume and Learning Performance

In this subsection, robust volume (RV) and volume are interchangeable as we do not consider repli-
cation and Proposition 5 guarantees their similarity. We consider the paradigm of sequentially
adding/removing the dataset with the highest/lowest RV to observe the trend in model perfor-
mance [11]. We also include random selection as a baseline. We simulate 8 data providers, so the
results are more generalizable. For this experiment, we use two real-world datasets: credit card fraud
detection [37] (i.e., transaction amount prediction) and Uber & Lyft [5] (i.e., carpool rides price
prediction) which are pre-processed to contain 8 and 12 standardized features, respectively. The
results are in Fig. 2. Additional results on two more real-world datasets are in Appendix B.4.

We observe adding (resp., removing) a dataset with a high RV leads to a lower (resp., higher) train
loss, thus verifying Proposition 2 that a larger volume leads to a more accurate pseudo-inverse and
lower train loss in terms of mean squared error. Furthermore, a consistent trend is observed for test
loss, albeit with higher standard errors. This confirms (1) that in a higher dimensional feature space,
a higher volume does not immediately guarantee a lower test loss.

Interesting practical perspectives. The additional experiment provides a justification for data buyers
under a constrained budget to spend their budget on datasets with high RVs first in order to get
the best performance, thereby resonating with the active learning framework [29]. On the other
hand, the removal experiment sheds light on the following question: If the collected datasets are too
computationally expensive to learn altogether due to memory or time constraints, then which dataset
should be removed first without hurting learning performance (i.e., the dataset with the lowest RV)?

5.2 Robust Volume Shapley Value vs. Baselines

We demonstrate that RV without validation gives results consistent with other methods which
may require validation. Subsequently, we show the limitations of the baselines, as revealed in the
experiments.

We combine (robust) volume with the commonly used Shapley value to design principled and fair
payments to the providers (i.e., relative valuations for the datasets) [11, 16, 35]. We compare with
the following baselines: the validation loss leave-one-out (LOO) value [19, 26], the validation loss
Shapley value (VLSV) [11, 16], and the information gain Shapley value (IGSV) [35]. Our volume
Shapley value (VSV) and robust volume Shapley value (RVSV) are as follows [33]:

RVSVm := 1/(M !)
∑
C⊆M\{Sm}[|C|!× (M − |C| − 1)!]× [RV(XC∪{Sm};ω)− RV(XC ;ω)]
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where M is the total number of datasets/data providers, C ⊆ M := {S1, . . . , SM}, XSm denotes
provider m’s data matrix, and we abuse the notation slightly by using XC to denote the matrix
constructed by concatenating all the data matrices from C. VSV is computed by using Vol() instead
of RV(·;ω). We set M = 3 and investigate the relative valuations for 3 datasets XS1

, XS2
, and

XS3
[35]. The input features are standardized and we set ω = 0.1. LOO and VLSV use MSE on a

validation set.

Synthetic data on baseline distributions. We first investigate simpler scenarios on synthetic data and
baseline distributions for XS1 , XS2 , and XS3 . We consider the 6D Hartmann function [23] defined
over [0, 1]6 and four baseline data distributions: (A) independent and identical distribution (i.i.d.)
where each of XS1

, XS2
, and XS3

contains 200 samples; (B) ascending size where XS1
, XS2

, and
XS3

contain 20, 50, and 200 i.i.d. samples, respectively; (C) disjoint domains where XS1
, XS2

, and
XS3

are sampled from the input domains of [0, 1/3]6, [1/3, 2/3]6, and [2/3, 1]6, respectively; and
(D) supersets XS1

⊂ XS2
⊂ XS3

with sizes 200, 400, and 600 where XS2
(resp., XS3

) has 200
i.i.d. data samples in addition to XS1

(resp., XS2
). The results are in Fig. 3.

Results in Fig. 3 show that both VSV and RVSV are generally consistent with VLSV and IGSV.
For (B) ascending size distribution, both RVSV and IGSV show an increasing trend, while VLSV
surprisingly shows approximately equal valuations for all three sizes. It may be attributed to VLSV’s
sensitivity to the definition of the value on an empty set of data (i.e., ν(∅) in the Shapley value
calculation). Fig. 4 illustrates that VLSV is sensitive to ν(∅) definitions for i.i.d. XS1

, XS2
, and XS3

.
Setting ν(∅) to 0 [16], to 1.06 (i.e., by initializing parameters to zeros), and to 8.75 (i.e., by random
parameter initialization from N (0, 1) [11]) gives very different VLSV for XS1

of 0.346, 0.183, and
0.330, respectively. These conflicting choices of ν(∅) add to the difficulties of applying VLSV in
practice.

Interestingly, under (C) disjoint domain distribution, all methods unanimously value XS2
to be the

lowest despite identically sized input domain ranges. This is due to the standardization of the features
which offers the following interpretation: The data in the “center” is the most common if we assume
the true population follows a normal distribution. Therefore, the most common data are valued less
while the statistically “rarer” data at the two tails of the distribution are valued more. Additional
experimental results under this distribution are reported in Appendix B.5. The counter-intuitive LOO
valuation of XS1 with 0 under i.i.d. may be attributed to instability due to the calculation of relative
values [3].

Figure 3: Relative values of XS1
, XS2

, and XS3
on Hartmann function under baseline distributions:

(A) i.i.d., (B) ascending dataset size, (C) disjoint input domain, and (D) supersets.

Figure 4: VLSV is sensitive to ν(∅) def-
initions. Red dotted lines denote 3 pro-
posed ν(∅) definitions.

Figure 5: Relative valuations for two different validation
sets denoted by darker/lighter shades.

Real-world datasets with different preferences on validation sets. We investigate two real-world
datasets: the UK used car dataset [1] (i.e., car price prediction) and the credit card fraud detection
dataset [37] (i.e., transaction amount prediction) where there are differences in the choice of the
validation set [35]. For instance, car dealers for different manufacturers such as Audi, Ford, and
Toyota may have different preferences over data. Thus, we construct two different validation sets
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composing cars from different manufacturers. Similarly, different financial institutions may differ in
their interests in the size of transactions. For example, smaller banks typically manage and focus on
smaller transactions, so we construct two different validation sets composing high (> $1000) or low
transactions. The results are in Fig. 5 where the three colors represent XS1

, XS2
, and XS3

and the
two shades denote the two different validation sets. The effect of validation choice on LOO is very
pronounced, as expected. The effect on VLSV is less due to the averaging of marginal contributions.
On the other hand, IGSV, VSV, and RVSV stay consistent as they do not require validation.

5.3 Replication Robustness

We first conduct a simpler experiment to demonstrate the effect due to replication and then perform
more extensive experiments under more complicated settings to show asymptotic performance.

Relative valuations in i.i.d. setting. We conduct this experiment on the Trip Advisor hotel reviews
dataset [22] (i.e., numerical rating prediction) which contains text reviews data. We utilize the
GloVe [31] word embeddings and a bidirectional long short-term memory (LSTM) model with a
fully-connected layer of 8 hidden units. Regression is performed over the 8-dimensional features
from this model. XS1

, XS2
, and XS3

follow an i.i.d. partition of the processed data and subsequently,
XS2

and XS3
are replicated for 2 and 10 times, respectively. The relative valuations are in Fig. 6

where the darker shaded plots denote without replication. The noticeable increases in XS3’s value
from IGSV and VSV imply that they are not replication robust. Both VLSV and RVSV appear to be
robust.

Figure 6: Effect of replication on valuation;
darker/lighter shades denotes before/after
replication.

Figure 7: Relative value for the replicated XS1
on

CaliH (left) and FaceA (right). The vertical axis
shows its value and horizontal axis shows the repli-
cation factor c.

Asymptotic valuations in non-i.i.d. settings. As our replication robustness includes supc, we inves-
tigate large replication factors c (i.e, up to 100). As the previous experiment demonstrates that VLSV
is robust, we use it as the comparison baseline. We additionally consider two non-i.i.d. distributions
extended from the previous setting: supersets and disjoint on four separate real-world datasets:
California housing price prediction (CaliH) [18], Kings county housing sales prediction (KingH) [13],
US census income prediction (USCensus) [28], and age estimation from facial images (FaceA) [41].
We use 60% of data to construct XS1

, XS2
, and XS3

and the remaining 40% as the validation set
for LOO and VLSV. For i.i.d. and supersets, we set XS2

= XS1
such that XS2

simulates an honest
provider and we examine the relative effect of replicating XS1

. For supersets, we vary the proportion
of data from XS1

contained in XS3
. If the ratio is 0.1, then XS3

contains 10% data from XS1
. If the

ratio is 1, then XS1
⊂ XS3

. For disjoint, we have three different datasets XS1
, XS2

, and XS3
and

vary the degree of disjoint via a ratio: 0 (resp., 1) means that the sampling spaces for XS1
, XS2

, and
XS3 are completely disjoint (resp., overlapped). In other words, with ratio 0, they do not contain any
same data and are completely disjoint; with ratio 1, they may contain some same data. The results
on i.i.d. for two datasets are in Fig. 7. For CaliH, we use the features from the last layer of a neural
network with two fully connected layers of 64 and 10 hidden units and rectified linear units as the
activation function. Additional details on distributions, datasets, and models are in Appendix B.6.

Next, we compare the relative valuations, as follows: compute the similarity (between the valu-
ations by VLSV and those of another method) averaged over different replication factors c. We
consider several such similarity measures including the Pearson correlation coefficient (rp) [16],
cosine similarity (cos), and the reciprocal of the l2 norm of the difference [36]. For RVSV, we
set ω = 0.05, 0.1, denoted by RVSV-005 and RVSV-01. The results for CaliH are in Table 1 and
other results are in Appendix B.6. VSV and IGSV are not robust and may be exploited as Fig. 7
shows both increase with replication relatively quickly for c < 20. Furthermore, our additional
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experiments (Appendix B.7) on hyperparameter selection comparison show that IGSV is sensitive to
the hyperparameter whereas RVSV is consistent, even with varying ω. RVSV is replication robust
from Fig. 7 and the high similarity with VLSV in Table 1 shows that it achieves similar performance
to VLSV without requiring validation.

Table 1: Similarity with VLSV under replication for CaliH. Values in bold indicate the best results.
Method i.i.d. disjoint 0 disjoint 1 supersets 0.1 supersets 1

rp cos 1/l2 rp cos 1/l2 rp cos 1/l2 rp cos 1/l2 rp cos 1/l2

LOO -0.991 0.730 1.894 -0.459 0.816 2.457 -0.488 0.406 0.770 -0.339 0.801 2.362 -0.590 0.771 2.100
IGSV -0.903 0.637 1.591 0.640 0.639 1.583 -0.763 0.636 1.589 -0.893 0.636 1.580 -0.716 0.653 1.687
VSV -0.886 0.787 2.493 0.644 0.784 2.415 -0.780 0.775 2.335 -0.892 0.779 2.389 -0.660 0.813 2.696
RVSV-005 0.767 0.959 5.857 0.700 1.000 77.714 -0.784 0.998 28.479 0.810 0.983 9.314 0.918 0.946 5.051
RVSV-01 0.767 0.920 4.055 0.351 0.999 47.066 -0.939 0.997 20.845 0.808 0.976 7.839 0.917 0.914 3.901

6 Related Works

Data valuation methods assign high values to data which lead to high performance [11, 16, 35, 39].
Existing methods such as leave-one-out approaches [16], the Shapley value-based methods [11, 15]
and a reinforcement learning framework [39] require validation. Due to the tight coupling between
valuation and validation, these approaches may face practical limitations of acquiring a good validation
set [35]. The work of [35] has proposed an information-theoretic approach by valuing data based on
the information gain (IG) on a Bayesian prior to avoid the need for validation. However, they have
not theoretically shown a higher IG (value) leads to a better predictive performance. Our method
has this theoretical property without needing validation. While existing methods demonstrate some
effectiveness against replication using carefully selected validation sets [11, 16], our method achieves
such guarantees without needing validation. The work of [12] has considered replication from a
different perspective and is thus not directly comparable to our method.

7 Conclusion and Future Work

This paper proposes a replication robust data valuation method that requires no validation (i.e.,
model- and task-agnostic). In particular, we value data based on the inherent diversity formalized
as the volume of the data matrix because we show that larger volumes correspond to better learning
performance. We identify that volume is not robust to replication, so we propose a novel robust
volume (RV) to provide replication robustness guarantees. In our experiments, we demonstrate that
RV can be combined with the Shapley value and empirical comparison with baselines verifies its
effectiveness in data valuation and its robustness guarantees. Importantly, we investigated various
real-world datasets and adapted our proposed robust volume to machine learning models more
complex than OLS (i.e., various neural networks) to demonstrate the practical applicability of robust
volume. Current works on data pricing may build upon our perspective to reduce the dependence on
validation and auxiliary datasets. For future work, we plan to consider more sophisticated replication
techniques and investigate the balance between diversity representation vs. robustness.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] We clearly describe the problem of data valuation and
give an overview of our proposed method and what it achieves - a diversity-based data
valuation method without validation and with robustness guarantees to replication. We
summarize our contributions in point forms in the introduction section.

(b) Did you describe the limitations of your work? [Yes] See Sec. 3, we show the theoretical
guarantees require complicated assumptions to generalize to high-dimensional feature
spaces, but demonstrate in Sec. 5 that our method works well empirically. See the
last part of Sec. 4.2 that we restrict our consideration to data that follow a normal
distribution and do not contain outliers.

(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] All assumptions
are clearly stated.

(b) Did you include complete proofs of all theoretical results? [Yes] All theoretical results
are proven. Complete proofs are given in the Appendix A.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We submit our
code as supplementary materials. Instructions on getting the datasets, processing the
datasets and running the code are given.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Experiment settings including datasets and models are described
in Sec. 5 with additional details in Appendix B.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Fig. 2 and additional figures in Appendix B.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Sec. 5.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Our work uses

existing datasets. We cite creators for all datasets clearly. URLs are also provided.
(b) Did you mention the license of the assets? [Yes] See Appendix B.1.
(c) Did you include any new assets either in the supplemental material or as a URL?[N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A] No crowdsourcing or human subjects were involved.

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A] No crowdsourcing or human subjects
were involved.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] No crowdsourcing or human subjects were
involved.
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