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Abstract

This paper presents two Bayesian optimization (BO) algorithms with theoretical
performance guarantee to maximize the conditional value-at-risk (CVaR) of a
black-box function: CV-UCB and CV-TS which are based on the well-established
principle of optimism in the face of uncertainty and Thompson sampling, respec-
tively. To achieve this, we develop an upper confidence bound of CVaR and prove
the no-regret guarantee of CV-UCB by utilizing an interesting connection between
CVaR and value-at-risk (VaR). For CV-TS, though it is straightforwardly performed
with Thompson sampling, bounding its Bayesian regret is non-trivial because it re-
quires a tail expectation bound for the distribution of CVaR of a black-box function,
which has not been shown in the literature. The performances of both CV-UCB
and CV-TS are empirically evaluated in optimizing CVaR of synthetic benchmark
functions and simulated real-world optimization problems.

1 Introduction

A wide range of applications from Auto-ML [15] to chemistry [6] and drug design [3] require
optimizing a black-box objective function (i.e., its closed-form expression, gradient, and convexity
are unknown) through observing noisy function evaluations. To resolve this problem, an efficient
class of algorithms, called Bayesian optimization (BO) [2, 20], has seen rapid development lately.

One of the recent developments of BO considers searching for the optimization variable x∗ that
maximizes the objective function ρ[f(x,W)] [4]. Different from the classical BO, there exists an
environmental random variable W that cannot be controlled, which happens frequently in real-world
problems. For example, to maximize the crop yield (i.e., f(x,W)) by controlling the amount
of fertilizer (i.e., x), there are various uncontrollable weather conditions such as the temperature,
lighting, and rainfall (i.e., W) [13]. Thus, even though an amount of fertilizer x increases the crop
yield most of the time, there exists a risk/chance that under certain weather conditions (realizations of
W), the same amount of fertilizer leads to a low crop yield (an undesirable realization of the random
variable f(x,W)). This issue renders the optimization of f(x,W) futile, so the work of [4] proposes
to optimize a risk measure, denoted as ρ, of f(x,W) such as value-at-risk (VaR) and conditional
VaR (CVaR). However, its approach suffers from two main shortcomings: the computational cost of a
nested optimization procedure and the lack of theoretical performance guarantee. Although these
drawbacks are addressed in the work of [13], its proposed algorithm only works for optimizing VaR
of a black-box function. Hence, an efficient algorithm with theoretical performance guarantee for
optimizing CVaR of a black-box function remains an open question.

Nonetheless, optimizing CVaR of a black-box function is desirable, especially when the effect of
optimizing CVaR cannot be obtained by optimizing VaR. A prominent property of CVaR is its
sensitivity to values at the extreme tails of the random variable f(x,W), which VaR does not
exhibit [19]. Let us consider two portfolio allocation schemes: one scheme has an unacceptable
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worst-case value of the return and the other does not. It is possible that the two schemes have the same
VaR of the return because VaR is insensitive to the extreme tails of the return (e.g., the worst-case
value of the return). On the other hand, CVaR is able to distinguish the risks of the two schemes. This
advantage of CVaR is further clarified in Remark 1.

In this paper, we adopt the settings of [4, 13]: the distribution of W is given and we can control/select
the realization w of W in the optimization procedure. In practice, the distribution of W can be
estimated from data (e.g., weather historical data in the crop yield optimization example) and we can
perform BO in a laboratory or using computer simulation where W is controlled [4, 13]. After the
optimization, the optimal x∗ can be used in the real-world environment with the uncontrollable W.
Our main contribution is to propose two computationally efficient algorithms (Sec. 3) with theoretical
performance guarantee (Sec. 4) for optimizing CVaR of a black-box function.

First, we propose CVaR optimization with upper confidence bound (CV-UCB) that is based on the
well-established principle of optimism in the face of uncertainty. By exploiting the connection
between CVaR and VaR, we are able to develop a confidence bound of CVaR (Sec. 3.1.1) and prove
the no-regret guarantee of CV-UCB (Sec. 4.1).

Second, we propose CVaR optimization with Thompson sampling (CV-TS) which can be naturally
extended to handle batch queries (i.e., gathering observations at a batch of inputs in each BO iteration).
The capability of gathering observations in a batch simultaneously is often available and preferable
in laboratory settings and computer simulations. Though CV-TS can be simply performed with
the popular Thompson sampling (or posterior sampling) [18] (Sec. 3.1.2), bounding its Bayesian
regret is challenging as the distribution of CVaR in our problem has not been investigated before
and its support is unbounded. Fortunately, we are able to relate the problem of bounding the tail
expectation of CVaR to that of the function evaluation f(x,w) (Sec. 4.2). The latter follows a
Gaussian distribution with known tail expectation, unlike that of CVaR.

We empirically evaluate the performance of both CV-UCB and CV-TS in optimizing CVaR of
synthetic benchmark functions, an optimization problem of the residuary resistance per unit weight
of displacement of a yacht, a portfolio optimization problem, and a simulated robot task (Sec. 5).

Related works. Existing solutions to optimizing a black-box function f(x,W) with an environ-
mental random variable W are different in the assumptions about W and the objective function.
Other than the aforementioned works of [4, 13] where we adopt the assumptions that the distribution
of W is known and w can be selected during the optimization procedure, the work of [9] also
proposes an efficient algorithm with theoretical performance guarantee under the same assumptions
to maximize the probabilistic threshold robustness measure. This measure requires a threshold of
the desirable performance, instead of a risk level (i.e., the probability of undesirable performance) in
CVaR and VaR. Another related work is adversarially robust BO [1] which maximizes f(x,w) with
the worst-case realization w of W. It can be cast as an optimization problem of VaR of a black-box
function [13]. The work of [10] assumes that the distribution of W is given, but W is sampled
from its distribution during the optimization. Its objective is to balance between the mean and the
variance of f(x,W) from different perspectives: multi-task learning, multi-objective optimization,
and constrained optimization. The work of [22] maximizes VaR and CVaR of a black-box function,
yet, it assumes W is unobservable and its distribution is unknown. It suffers from an approximate
posterior belief and the lack of theoretical performance guarantee. The works of [12, 14] (namely,
distributional robust BO) assume that the unknown distribution of W belongs to an uncertainty set of
distributions. They maximize the mean of f(x,W) under the worst-case realization of the unknown
distribution of W in the uncertainty set.

2 Background

2.1 Conditional Value-at-Risk

Let the black-box function of interest be a real-valued function f(x,w) where x ∈ X ⊂ Rm and
w ∈W ⊂ Rn. Let W denote the environmental random variable whose probability distribution is
specified by p(W = w) for all w ∈W. Let f(x,W) denote the random variable representing the
function evaluation at x and a random realization of W. The conditional value-at-risk (CVaR) of
f(x,W) at risk level α ∈ (0, 1) is defined as:

cf (x;α) , E [f(x,W)| f(x,W) ≤ vf (x;α)] (1)
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which is the expectation of f(x,W) over function values that are at most the value-at-risk (VaR) at
the same risk level α defined as vf (x;α) , inf{ω : P (f(x,W) ≤ ω) ≥ α}.

α

cf (x0;α) = E[f(x0,W)| f(x0,W) ≤ vf (x0;α)]
vf (x0;α)

f(x0,W)

p(f(x0,W))

α

cf (x1;α) = E[f(x1,W)| f(x1,W) ≤ vf (x1;α)]
vf (x1;α)

f(x1,W)

p(f(x1,W))

Figure 1: Plot of the lower tails of f(x0,W) and f(x1,W) with their VaR and CVaR at risk level α.
The shaded area is α. It is observed that vf (x0;α) = vf (x1;α) but cf (x0;α) > cf (x1;α).

Remark 1 (CVaR vs. VaR). While VaR at α is interpreted as the α-percentile of f(x,W), CVaR is
interpreted as the expectation of function values that are at most VaR. Therefore, CVaR is sensitive to
the function values less than VaR, while VaR is not. Fig. 1 shows an example of function evaluations
at x0 and x1 such that their VaR values (i.e., their α-percentiles) are the same. We observe that VaR
is insensitive to the tails of f(x,W) which are different in this case (see the region around the black
dot). In contrast, cf (x0;α) > cf (x1;α) which conveys the idea that f(x0,W) has a lower risk of
low function values as the probability density of function values less than VaR concentrates in a
region nearer to VaR than that of f(x1,W). Thus, CVaR is more risk-aversed than VaR, especially
when the distribution of f(x,W) has a heavy lower tail, which makes it more suitable for critical
applications. In the portfolio optimization problem, if the distribution of the portfolio’s return has
negative outliers (which are captured in CVaR), the average return in the long run can be negative
even though the VaR of the return is positive.

In this work, we assume that |W| is finite to simplify the theoretical analysis (described in Sec. 4)
and the evaluation of CVaR. The latter requires the computation of the cumulative probability mass
of f(x,W) by enumerating all possible realizations of f(x,W) (described in [4]).

2.2 Bayesian Optimization of CVaR and Gaussian Processes

BO of CVaR. In this paper, we would like to maximize CVaR cf (x;α) (1) of f(x,W) given the
distribution p(W) by iteratively gathering observations as noisy function evaluations y(x,w) ,
f(x,w) + ε(x,w) where ε(x,w) ∼ N (0, σ2

n). The gist of BO of CVaR is a strategy to select the
input query (xt,wt) at iteration t such that the maximizer x∗ ∈ argmaxx∈X cf (x;α) is found as
rapidly as possible. Note that while W is controllable in BO, after the optimization, the optimal x∗
can be used in real-world settings where W is uncontrollable. At iteration t, we have all observations
at input queries in the previous t − 1 iterations, denote as Dt−1 = Dt−2 ∪ {(xt−1,wt−1)} (D0

denotes the set of initial observed inputs). These observations yDt−1
, (y(x,w))(x,w)∈Dt−1

are
used to construct the posterior belief/distribution of the underlying black-box function f(x,w) which
is utilized in building the query selection strategy. Let us revisit Fig. 1: cf (x0;α) > cf (x1;α)
implies that x0 is preferred to x1. It is because the risk/chance of getting low function values at x0

is smaller (see the region around the black dot). In contrast, VaR cannot differentiate the risk of
f(x0,W) and that of f(x1,W) since their VaR values are the same.
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Algorithm 1 BO Algorithms for optimizing CVaR of a black-box function
1: Input: algo, X, W, initial observation yD0

, prior µ0 = 0, σn, κ
2: for t = 1, 2, . . . do
3: {Selecting xt}
4: if algo is CV-UCB then
5: Select xt ∈ argmax

x
cut−1(x;α)

6: else if algo is CV-TS then
7: Sample a function f1 from the GP posterior belief given yDt−1

8: Select xt ∈ argmax
x

cf1(x;α)

9: end if
10: {Selecting wt}
11: Find αt ∈ arg max

α′∈(0,α]
vut−1(xt;α

′)− vlt−1(xt;α
′)

12: Given αt, select wt as an LV w.r.t. xt, ut−1, and lt−1
13: {Collecting data and updating GP}
14: Incorporate new observation at input query: yDt

= yDt−1
∪ {y(xt,wt)}

15: Update the GP posterior belief given yDt

16: end for

Gaussian process (GP). In order to obtain the posterior belief of f(x,w) given noisy observations
yDt−1

, we model the black-box function f with a GP: every finite subset of {f(x,w)}(x,w)∈X×W
follows a multivariate Gaussian distribution [17]. Thus, GP is fully specified by its prior mean which
is assumed to be zero and its covariance function/kernel κ(x,w; x′,w′) , cov [f(x,w), f(x′,w′)].
Given noisy observations yDt−1 at iteration t, the posterior belief p(f(x,w)|yDt−1) is a Gaussian
specified by the following mean and variance:

µt−1(x,w) , Kx,w;Dt−1
ΛDt−1

yDt−1

σ2
t−1(x,w) , κ(x,w)−Kx,w;Dt−1

ΛDt−1
KDt−1;x,w

(2)

where κ(x,w) , κ(x,w; x,w), Kx,w;Dt−1 , (κ(x,w; x′,w′))(x′,w′)∈Dt−1
, KDt−1;x,w ,

K>x,w;Dt−1
, and ΛDt−1 ,

(
KDt−1Dt−1 + σ2

nI
)−1

(I is the identity matrix and KDt−1Dt−1 ,
(κ(x′,w′; x′′,w′′))(x′,w′,x′′,w′′)∈Dt−1×Dt−1

).

Although f(x,w) follows a Gaussian distribution, CVaR cf (x;α) (defined in (1)) does not. Further-
more, although |W| is finite, the distribution of CVaR is continuous because the black-box function
evaluation is real-valued. Besides, as the support of f(x,W) is unbounded, so is CVaR. These points
pose challenges in deriving the following 2 algorithms and their theoretical analyses.

3 BO Algorithms for Optimizing CVaR of a Black-Box Function

In this section, we present two BO algorithms for optimizing CVaR of a black-box function f(x,W):
CVaR optimization with upper confidence bound (CV-UCB) and CVaR optimization with Thompson
sampling (CV-TS). These two algorithms are different in the way of handling the exploration-
exploitation trade-off in the selection of xt to find argmaxx∈X cf (x;α) (Sec. 3.1.1 and Sec. 3.1.2).
On the other hand, given the selected xt, selecting wt is only about reducing the uncertainty of CVaR
cf (xt;α). Therefore, we would like to design a single selection strategy of wt that works for both
CV-UCB and CV-TS (Sec. 3.2).

3.1 Selection Strategy of xt

3.1.1 A UCB-based Approach to Select xt in CV-UCB

In (1), CVaR cf (x;α) at risk level α of f(x,W) is defined as the expectation of function values that
are at most VaR at risk level α [4]. While this definition (1) is interpretable, it is challenging to devise
a no-regret BO algorithm based on (1). It is because (1) requires learning about not only (i) VaR
vf (x;α) but also (ii) the probabilities of function values less than vf (x;α). Even though the former
(i.e., VaR vf (x;α)) can be optimized using the V-UCB algorithm in [13], it remains a challenge to
learn about the latter.
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Interestingly, in this section, we present an approach that does not resort to handling the above two
problems (i) and (ii) separately. To achieve this, we employ an alternative definition of CVaR which
is an expectation of VaR over the risk level:

cf (x;α) =
1

α

∫ α

0

vf (x;α′) dα′ . (3)

Although (1) is more interpretable and is often used to evaluate CVaR, the above definition (3) paves
the way to our selection strategy of xt in CV-UCB: by utilizing (3), we are able to construct an upper
confidence bound of CVaR relying on that of VaR. Recall that the work of [13] proposes a confidence
bound of VaR at iteration t, denoted as It−1[vf (x;α′)]:

It−1[vf (x;α′)] , [vlt−1
(x;α′), vut−1

(x;α′)] ∀x ∈ X ∀α′ ∈ (0, 1) (4)

where vlt−1(x;α′) and vut−1(x;α′) are VaR (due to the randomness in W) of lt−1(x,W) and
ut−1(x,W), respectively. At iteration t, for all (x,w) ∈ X ×W, [lt−1(x,w), ut−1(x,w)] is a
confidence bound of f(x,w) (due to the uncertainty in the unknown black-box function f ) depending
on an exploration parameter βt [13]:

lt−1(x,w) , µt−1(x,w)− β1/2
t σt−1(x,w)

ut−1(x,w) , µt−1(x,w) + β
1/2
t σt−1(x,w)

(5)

where µt−1(x,w) and σt−1(x,w) are defined in (2). The exploration parameter βt is to balance
between exploitation (based on the GP posterior mean µt−1(x,w)) and exploration (based on the GP
posterior standard deviation σt−1(x,w)), which is specified later in Lemma 1. From (3), a confidence
bound It−1[cf (x;α)] of CVaR follows the confidence bound It−1[vf (x;α′)] of VaR (4):

It−1[cf (x;α)] , [clt−1(x;α), cut−1(x;α)] ,

[
1

α

∫ α

0

vlt−1(x;α′) dα′,
1

α

∫ α

0

vut−1(x;α′) dα′
]
.

(6)
Given the above upper confidence bound cut−1

(x;α) of CVaR, we select xt as its maximizer
(line 5 of Algorithm 1). The time complexity of the selection strategy of xt in CV-UCB is
O(|Dt−1|3 + ntrain(|W||Dt−1|2 + |W| log |W|)) where ntrain is the number of gradient descent
steps to find argmaxx cut−1(x;α), O(|Dt−1|3) is to compute ΛDt−1 in (2), O(|W||Dt−1|2) is the
GP prediction time complexity, and O(|W| log |W|) is to evaluate CVaR.

3.1.2 A Thompson Sampling Approach to Select xt in CV-TS

An alternative approach to select xt is based on Thompson sampling [18]: xt is selected as a sample
of the maximizer x∗ of CVaR cf (x;α). Unlike the selection strategy of xt in CV-UCB that requires
an exploration parameter βt (Sec. 3.1.1), the exploration-exploitation trade-off in Thompson sampling
is naturally handled by the randomness in the sampling of the maximizer of cf (x;α). This approach
can also be extended to handle a batch query at each BO iteration by drawing a batch of samples
of the maximizer of cf (x;α). While unexplored for BO of CVaR, batch queries are popular in BO
literature [8, 11].

A sample of the maximizer of cf (x;α) is obtained by the following 2 steps (lines 7-8 of Algorithm 1).
First, we draw a function sample f1 from the GP posterior belief by using random Fourier feature
approximation [16] which is also employed in classical BO works [7, 23] (line 7 of Algorithm 1).
Second, given f1, we maximize CVaR cf1(x;α) to obtain its maximizer. This is a sample of the
maximizer of cf (x;α) which is assigned to xt in CV-TS (line 8 of Algorithm 1). The time complexity
of the selection strategy of xt in CV-TS is O(|Dt−1|3 + ntrain(n2feature + |W| log |W|)) where nfeature
is the number of random Fourier samples, ntrain is the number of gradient descent steps to find
argmaxx cf1(x;α), O(|Dt−1|3) is to compute ΛDt−1

in (2) (which dominates the time complexity
to draw a function f1 from the GP posterior belief), O(n2feature) is the time complexity to evaluate f1,
and O(|W| log |W|) is to evaluate CVaR.

3.2 Selection Strategy of wt Shared by Both CV-UCB & CV-TS

Given the selected xt at iteration t, we would like to propose a single strategy of selecting wt to
reduce the uncertainty of CVaR cf (xt;α) for both CV-UCB and CV-TS that still guarantees no-regret
for both algorithms as shown in Sec. 4.
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Our main idea is to prioritize learning about VaR at risk level αt which has the highest uncertainty
among VaR vf (x;α′) at risk levels α′ ∈ (0, α]. In turn, it reduces the uncertainty of CVaR from (3).
We quantify the uncertainty of VaR by the size of its confidence bound (4). Thus, αt is defined as
(line 11 of Algorithm 1)

αt ∈ arg max
α′∈(0,α]

vut−1
(xt;α

′)− vlt−1
(xt;α

′) . (7)

To reduce the uncertainty of vf (xt;αt) quantified by the size of its confidence bound vut−1(xt;αt)−
vlt−1(xt;αt), let us view vf (xt;αt) as the αt-percentile of f(xt,W). There is no uncertainty in the
αt-percentile of f(xt,W) if the set of w where f(xt,w) is at most the αt-quantile of f(xt,W) (i.e.,
the lower tail of f(xt,W) upper bounded by its αt-percentile) remains unchanged under different
realizations of f , especially its lower confidence bound lt−1 and its upper confidence bound ut−1. On
the contrary, if there exists wLV that violates the above statement due to the uncertainty of f(xt,wLV)
(due to the unknown f ), we would like to gather observation at (xt,wLV) to reduce the uncertainty
of its function evaluation. Such wLV is formally defined as the lacing value (LV) which is shown to
exist in [13].1

Definition 1 (Lacing values [13]). Lacing values (LV) with respect to α ∈ (0, 1), x ∈ X, lt−1,
and ut−1 are wLV ∈ W that satisfies lt−1(x,wLV) ≤ vlt−1

(x;α) ≤ vut−1
(x;α) ≤ ut−1(x,wLV),

equivalently, It−1[vf (x;α)] ⊂ [lt−1(x,wLV), ut−1(x,wLV)].

Thus, we select wt as an LV w.r.t. αt, xt, lt−1, and ut−1. If there are multiple LVs, we select the LV
with the maximum probability p(W). It is a heuristic to improve the performance suggested by [13].
For CV-TS, to avoid repeating inputs in the batch query, we can select wt as a sample of the random
variable W by restricting its support to the LVs (if there are multiple LVs).

4 Theoretical Analysis

This section presents our theoretical analyses of CV-UCB and CV-TS. We choose the exploration
parameter βt in (5) following a lemma in [21]. We assume a discrete domain X for simplicity (and
|W| is finite).

Lemma 1 (Lemma 5.1 in [21]). Pick δ ∈ (0, 1) and set βt = 2 log(|X||W|πt/δ), where
∑
t≥1 π

−1
t =

1, πt > 0. Then,

|f(x,w)− µt−1(x,w)| ≤ β1/2
t σt−1(x,w) ∀(x,w) ∈ X×W ∀t ≥ 1 (8)

holds with probability ≥ 1− δ.

Thus, given the above βt, the function evaluation, VaR, and CVaR are in their confidence bounds (in
(5), (4), and (6), respectively) with probability ≥ 1− δ.

4.1 CV-UCB

The performance of CV-UCB is measured by the cumulative regret adopted from existing BO
works, e.g., in [21, 13]: RT ,

∑T
t=1 rt which is the sum over instantaneous regrets, denoted as

rt , cf (x∗;α)− cf (xt;α) where x∗ ∈ argmaxx∈X cf (x;α) is the optimal value of the optimization
variable. In this section, we would like to show that the cumulative regret of CV-UCB is sublinear so
that limT→∞RT /T = 0.

Since CV-UCB selects xt as the maximizer of the upper confidence bound of CVaR (line 5 of
Algorithm 1), it can be shown in Appendix A that the instantaneous regret is bounded by

rt ≤ cut−1(xt;α)− clt−1(xt;α) (9)

with probability ≥ 1− δ. Then, by exploiting the relationship between CVaR and VaR in (3) and the
fact that the average of a set of values is at most the maximum value of the set, the bound on rt can
be simplified to the size of a confidence bound of VaR at risk level αt (7) in Appendix A:

rt ≤ vut−1
(xt;αt)− vlt−1

(xt;αt) (10)

1Shrewd readers may notice a difference between the intuition and definition of LV (≤ vs. <). It is to handle
the case when there is only 1 LV.
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holds with probability ≥ 1− δ. Furthermore, utilizing the property of wt as an LV in Definition 1, it
can be shown in Appendix A that

rt ≤ 2β
1/2
t σt−1(xt,wt) (11)

with probability ≥ 1− δ. Then, we follow [21] to construct the following theorem which shows a
sublinear regret bound for CV-UCB (detailed in Appendix B).
Theorem 1. By selecting xt as the maximizer of the upper confidence bound cut−1(x;α) (line 5 of
Algorithm 1) and selecting wt as an LV w.r.t. αt (7), xt, lt−1, and ut−1 (line 12 of Algorithm 1),

RT ≤
√
C1TβT γT (12)

holds with probability ≥ 1− δ where C1 , 8/ log(1 + σ−2n ), γT is the maximum information gain
about f that can be obtained by observing any set of T observations (which is bounded in [21] for
several commonly used kernels), βT and δ are defined in Lemma 1.

4.2 CV-TS

The performance of CV-TS is measured by the Bayesian cumulative regret [18]: RBayes
T ,

E
[∑T

t=1 cf (x∗;α)− cf (xt;α)
]

where the expectation includes the randomness in the GP prior

of f , the observation noise, and xt. Let us denote rBayes
t , E[cf (x∗;α) − cf (xt;α)|yDt−1 ]

where the expectation includes the randomness in the GP posterior of f given yDt−1 and xt, then

RBayes
T = E

[∑T
t−1 r

Bayes
t

]
. In this section, we would like to show that the Bayesian cumulative regret

of CV-TS is sublinear so that limT→∞RBayes
T /T = 0. Following [18], we can decompose rBayes

t into
(to ease the notation, we omit yDt−1

):

rBayes
t ≤ E[∆lower

c (xt;α)] + E[∆upper
c (x∗;α)] + E[cut−1

(xt;α)− clt−1
(xt;α)] (13)

where ∆lower
c (xt;α) , max(0, clt−1

(xt;α) − cf (xt;α)) and ∆upper
c (x∗;α) , max(0, cf (x∗;α) −

cut−1
(x∗;α)) (shown in Appendix C).

From Appendix A, cut−1
(xt;α)− clt−1

(xt;α) is bounded by 2β
1/2
t σt−1(xt,wt) provided that wt

is an LV w.r.t. αt (7), xt, lt−1, and ut−1 (line 12 of Algorithm 1). Thus, we are able to obtain a
bound on the last term of the decomposed rBayes

t (13):

E[cut−1
(xt;α)− clt−1

(xt;α)] ≤ 2β
1/2
t σt−1(xt,wt) . (14)

However, the challenge remains in bounding the first two terms (i.e., E[∆lower
c (xt;α)] and

E[∆upper
c (x∗;α)]) of the decomposed rBayes

t (13). These terms are the expectations over the tails
of CVaR. As suggested by the seminal work of [18], bounding these terms may require CVaR to
have a bounded support or a strong tail decay. However, in our BO formulation where f is modelled
with a GP, the support of CVaR is unbounded. Thus, to derive the bound of the tail expectation of
the unfamiliar distribution of CVaR, our key idea is to relate it to the tail expectation of a Gaussian
distribution through 3 steps: first, relating this tail expectation of CVaR to that of VaR in Lemma 2,
second, relating the tail expectation of VaR to the tail probability of VaR in (16), and third, relating
the tail probability of VaR to that of function evaluation f(x,w) in Lemma 3. As f(x,w) follows a
Gaussian distribution, we can bound its tail expectation.
Lemma 2 (From tail expectation of CVaR to that of VaR). For all x ∈ X,

E
[
∆lower
c (x;α)

]
≤ 1

α

∫ α

0

E
[
∆lower
v (x;α′)

]
dα′ (15)

where ∆lower
v (x;α′) , max

(
0, vlt−1(x;α′)− vf (x;α′)

)
(shown in Appendix D).

Furthermore, as ∆lower
v (x;α′) is a non-negative random variable, its expectation in (15) can be

expressed as an integration over the tail probabilities: ∀α′ ∈ (0, 1), x ∈ X,

E
[
∆lower
v (x;α′)

]
=

∫ ∞
0

P (∆lower
v (x;α′) > ω) dω =

∫ ∞
0

P (vlt−1
(x;α′)− vf (x;α′) > ω) dω .

(16)

7



Then, we are able to relate the tail probability P (vlt−1(x;α′)− vf (x;α′) > ω) to the tail probability
of the function evaluation f(x,w) using our key observation on the relationship between the 2 events:
(a) VaR vf (x;α′) falls below its lower confidence bound vlt−1(x;α′) by ω ≥ 0 and (b) the function
evaluation f(x,w) falls below its lower confidence bound lt−1(x,w) by ω in the following lemma
(proved in Appendix E).
Lemma 3. Consider a realization f1 of the black-box function f following the GP posterior belief
given yDt−1 that satisfies

vlt−1(x;α′)− vf1(x;α′) > ω

for α′ ∈ (0, 1), x ∈ X, and ω ≥ 0. Let Wupper
lt−1

, {w ∈W : lt−1(x,w) ≥ vlt−1
(x;α′)}. Then,

∃w0 ∈Wupper
lt−1

, lt−1(x,w0)− f1(x,w0) > ω .

As the tail expectation of the Gaussian random variable f(x,w) can be evaluated, we can utilize
the above results ((15), (16), and Lemma 3) to obtain a bound of E[∆lower

c (x;α)] (and similarly, a
bound of E[∆upper

c (x;α)]) for all x ∈ X. These bounds and (14) lead to the following theorem on the
Bayesian cumulative regret bound (proved in Appendix F).
Theorem 2. Assuming a bounded GP prior standard deviation: κ(x,w) ≤ 1 ∀(x,w) ∈ X×W, by
selecting xt as a sample of the maximizer of cf (x;α) (lines 7-8 of Algorithm 1) and selecting wt as
an LV w.r.t. αt (7), xt, lt−1, and ut−1 (line 12 of Algorithm 1), then the Bayesian cumulative regret
is bounded by

RBayes
T ≤ δ

√
2

|X|√π +
√
C1TβT γT (17)

where C1 , 8/ log(1 + σ−2n ), γT is the maximum information gain about f that can be obtained by
observing any set of T observations, βT and δ are defined in Lemma 1.
Remark 2. We can extend CV-TS to select a batch query of size k (instead of a single query) at each
BO iteration by drawing k samples of the maximizer of CVaR and finding their corresponding αt and
LVs (detailed in Appendix G). We can also show that the difference between the average (over the
number of observations) of the Bayesian cumulative regret bound of CV-TS with batch queries and
that of CV-TS with single queries is small for a large number of observations (Appendix G), which
is similar to a result in [11] for the classical BO with Thompson sampling. However, with a larger
batch size k, more observations can be obtained given the same number of BO iterations. Thus, the
use of CV-TS with a large batch size k is advantageous if obtaining observations at the batch query is
feasible, e.g., by running multiple simulations in parallel.
Remark 3. Our CV-TS algorithm and its theoretical analysis can be utilized to construct a BO
algorithm to optimize VaR of a black-box function. Like CV-TS, this algorithm is also capable of
handling batch queries. Since it is beyond the scope of this work (which is about CVaR), we refer
readers interested in optimizing VaR of a black-box function to Appendix H.

5 Experiments

We empirically evaluate the performance of CV-UCB and CV-TS by comparing them with the work
of [4]. To the best of our knowledge, it is the only existing work that optimizes CVaR of a black-box
function by selecting both x and w. In particular, the ρKGapx algorithm is selected as a baseline
thanks to its time efficiency and competitive empirical performance as demonstrated in [4]. There are
2 variants of CV-TS in the experiments: CV-TS k = 1 which selects 1 input query at each iteration
and CV-TS k = 3 which selects 3 input queries at each iteration. Each experiment is repeated 10
times with different random seeds to account for the randomness in the observation noise, the set
of initial observations, and the sampling from the GP posterior belief. Both the average and the
confidence interval of the logarithm of the inference regret (taken from [7, 23]) are reported. The
hyperparameters of GP and the noise variance are learned from the observations using maximum
likelihood estimation [17]. Further details on the experiments are described in Appendix I.2

Figs. 2a-d show the results of optimizing CVaR of synthetic benchmark functions with low input
dimensions (the dimension of x is m = 1 and of W is n = 1): Branin-Hoo and Goldstein-Price; and

2The code is available at https://github.com/qphong/BayesOpt-LV.
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Figure 2: Plots of the regret against the BO iteration in (a-d) experiments that optimize CVaR of
synthetic benchmark functions, (e-g) simulated real-world optimization problems.

with moderate input dimensions (m = 5, n = 1; and m = 1, n = 5): Hartmann-6D. The risk level α
is set to 0.1. We observe that CV-UCB achieves comparable performance to the baseline ρKGapx in
the Branin-Hoo experiment, while it outperforms ρKGapx in the Goldstein-Price and Hartmann-6D
(m = 5) experiments. It is because the evaluation of ρKGapx is approximated with samples of f
and the nested optimization procedure involved in ρKGapx is simplified. CV-TS k = 1 does not
perform as well as other algorithms do. It is because with few observations, CV-TS k = 1 tends
towards randomly exploring X so the maximizer is not accurately located. Furthermore, as the GP
hyperparameters are assumed to be unknown in our experiments, they can be incorrectly estimated
with few observations, which affects the performance of CV-TS k = 1. When we increase the size of
the batch query to 3 in CV-TS k = 3, the number of observations increases. In turn, the estimation of
the GP hyperparameters and the exploration-exploitation trade-off are improved. Thus, CV-TS k = 3
achieves a superior performance. It suggests that CV-TS with a large batch query should be preferred
when multiple observations can be obtained, e.g., by running multiple simulations in parallel. In
contrast, CV-UCB should be preferred if only one observation is obtained at each BO iteration.

Figs. 2e-g show the results of optimizing CVaR in an optimization problem using the yatch hydrody-
namics dataset [5], a portfolio optimization problem [4], and a simulated robot pushing experiment
[23]. In the experiment with the yacht hydrodynamics dataset, we would like to minimize the resid-
uary resistance per unit weight of displacement of a yacht by searching for the optimal hull geometry
coefficients of the yacht in the face of the uncertainty in the Froude number (the Froude number
depends on the real-world environment and we assume that it can be simulated with computers
during the optimization). The ground truth function is constructed using the yacht hydrodynamics
data set [5]. The dimension of the input variables x and W are m = 5 and n = 1 (the Froude
number), respectively. The risk level of CVaR is set to α = 0.3. While CV-TS k = 3 outperforms
the other algorithms significantly thanks to its batch queries, CV-UCB converges to a lower regret
than ρKGapxdoes. The portfolio optimization problem is taken from the work of [4] where the
evolution of a portfolio over 4 years is simulated and optimized using open-source market data. The
optimization variables (i.e., x) include the risk, the trade aversion, and the holding cost multiplier,
while the environmental random variables (i.e., W) include the bid-ask spread and the borrow cost [4].
The risk level of CVaR in this problem is set to α = 0.2. We observe that CV-UCB and CV-TS k = 3
achieve the best performance by converging to lower regret values than the other algorithms. The
simulated robot pushing experiment is taken from [23] whose task is to minimize the distance of
a pushed object to a fixed goal location by controlling the robot location and the pushing duration
(i.e., x). We adopt the setting of [13] to introduce random perturbations to the robot location (i.e.,
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W). The risk level of CVaR is set to α = 0.1. While all algorithms converge to roughly the same
value of the regret in this experiment, we observe that CV-TS k = 3 shows its advantage in acquiring
more observations by converging faster than the others. Besides, CV-UCB also converges faster than
ρKGapxin this experiment.

6 Conclusion

We propose two BO algorithms to optimize CVaR of a black-box function with theoretical perfor-
mance guarantee: CV-UCB and CV-TS by taking advantage of a connection between CVaR and VaR
and establishing a link between the tail expectation of (non-Gaussian and unbounded support) CVaR
and that of the Gaussian-distributed function evaluation. The competitive empirical performance
of CV-UCB and CV-TS with batch queries are shown in optimizing CVaR of synthetic benchmark
functions and simulated real-world optimization problems. These results recommend the use of
CV-UCB to optimize CVaR of a black-box function when only an observation is obtained at each BO
iteration and the use of CV-TS with large batch queries when multiple observations can be obtained
at each BO iteration.
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