
Sample-Then-Optimize Batch Neural
Thompson Sampling

Zhongxiang Dai†, Yao Shu†, Bryan Kian Hsiang Low†, Patrick Jaillet§
Dept. of Computer Science, National University of Singapore, Republic of Singapore†

Dept. of Electrical Engineering and Computer Science, MIT, USA§

{daizhongxiang,shuyao,lowkh}@comp.nus.edu.sg†,jaillet@mit.edu§

Abstract

Bayesian optimization (BO), which uses a Gaussian process (GP) as a surrogate to
model its objective function, is popular for black-box optimization. However, due
to the limitations of GPs, BO underperforms in some problems such as those with
categorical, high-dimensional or image inputs. To this end, recent works have used
the highly expressive neural networks (NNs) as the surrogate model and derived
theoretical guarantees using the theory of neural tangent kernel (NTK). However,
these works suffer from the limitations of the requirement to invert an extremely
large parameter matrix and the restriction to the sequential (rather than batch)
setting. To overcome these limitations, we introduce two algorithms based on the
Thompson sampling (TS) policy named Sample-Then-Optimize Batch Neural TS
(STO-BNTS) and STO-BNTS-Linear. To choose an input query, we only need
to train an NN (resp. a linear model) and then choose the query by maximizing
the trained NN (resp. linear model), which is equivalently sampled from the GP
posterior with the NTK as the kernel function. As a result, our algorithms sidestep
the need to invert the large parameter matrix yet still preserve the validity of the
TS policy. Next, we derive regret upper bounds for our algorithms with batch
evaluations, and use insights from batch BO and NTK to show that they are
asymptotically no-regret under certain conditions. Finally, we verify their empirical
effectiveness using practical AutoML and reinforcement learning experiments.

1 Introduction

Bayesian optimization (BO), also called Gaussian process (GP) bandits, has become a celebrated
method for optimizing expensive-to-compute black-box functions, primarily thanks to its practical
sample efficiency and theoretically guaranteed convergence [11, 14, 21, 51]. However, there are
important problem settings where BO either underperforms or is not even applicable without sophisti-
cated modifications, such as problems with categorical [18], high-dimensional [30], or images inputs.
These issues have arisen mainly because GPs (i.e., the surrogate used by BO to model the objective
function) are not able to effectively model these types of input space, which therefore calls for the use
of alternative surrogate models in BO. To this end, neural networks (NNs) serve as a natural candidate
owing to their remarkable expressivity [37]. NNs have repeatedly proven their ability to model
extremely complicated real-world functions such as those involving categorical, high-dimensional or
image inputs, whereas the development of GPs to effectively model these functions still represents
active areas of research. In this regard, [69] have adopted NNs as the surrogate model in contextual
bandit problems and employed the theoretical framework of neural tangent kernel (NTK) [27] to
construct a principled algorithm following the well-known policy of upper confidence bound (UCB),
hence introducing the Neural UCB algorithm. More recently, [66] have extended Neural UCB to
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follow the Thompson sampling (TS) policy and proposed the Neural TS algorithm. Both Neural UCB
and Neural TS are equipped with upper bounds on their cumulative regret and perform competitively
in real-world contextual bandit experiments.

However, Neural UCB and Neural TS are still faced with several important limitations that may
hinder their practical applications. Firstly, these algorithms suffer from the requirement to invert a
p× p matrix in every iteration, in which p is the number of parameters of the NN surrogate and is
usually extremely large since the theory of NTK requires severe overparameterization. In practice,
a diagonal approximation is used to avoid the need to invert such a large p × p matrix [66, 69],
which introduces approximation errors in their practical deployment that are unaccounted for in the
theoretical analysis, hence causing a disparity between theory and practice. Secondly, the theoretical
analyses of these algorithms are restricted to the sequential setting and are hence not applicable in
the batch setting where an entire batch of inputs are selected for querying.1 To overcome these two
limitations, we introduce two algorithms based on the TS policy named Sample-Then-Optimize Batch
Neural Thompson Sampling (STO-BNTS) and STO-BNTS-Linear, both of which (1) sidestep the
need to invert the p× p matrix and hence close the gap between theory and practice, and (2) naturally
support batch evaluations while preserving the theoretical guarantees.

To avoid the inversion of the p × p matrix while still ensuring the validity of the TS policy, we
draw inspirations from sample-then-optimize optimization [42] and Bayesian deep ensembles [24] to
efficiently sample functions from the GP posterior (with the NTK as the kernel function) without
inverting the p × p matrix. Specifically, to choose an input query within a batch, our STO-BNTS
(resp. STO-BNTS-Linear) only needs to use the current observation history to train an NN surrogate
(resp. a linear model defined w.r.t. the random features embedding of the NTK associated with an
NN surrogate) using randomly initialized parameters, and then choose the input that maximizes the
trained NN (resp. trained linear model). As a result, if the NN surrogate has an infinite width, the
function of the trained NN (resp. trained linear model) is equivalently sampled from the GP posterior
with the NTK as the kernel function. This ensures that our algorithms follow the TS policy and
hence lays the foundation for our theoretical analyses. Next, to address the second challenge of
deriving theoretical guarantees for our algorithms in the batch setting, we generalize the theoretical
analysis of sequential TS [7] to account for batch evaluations and derive a regret upper bound for both
of our algorithms when the NN surrogate is infinite-width. Then, we leverage insights from batch
BO [17] and NTK [31] to show that the regret upper bound is sub-linear (under some conditions),
which implies that our algorithms are asymptotically no-regret. Next, when the NN surrogate is
finite-width, we derive a regret upper bound for our STO-BNTS-Linear by carefully accounting for
the approximation error caused by the use of a finite (instead of infinite) NN, and show that the regret
upper bound of STO-BNTS-Linear remains sub-linear as long as the NN is wide enough.

Our contributions are summarized as follows:

• Our STO-BNTS and STO-BNTS-Linear algorithms sidestep the inversion of the p × p matrix
required by Neural UCB and Neural TS, which closes their gap between theory and practice.

• Our algorithms naturally support batch evaluations with theoretical guarantees.
• Our algorithms are equipped with an upper bound on their cumulative regret when the NN surrogate

is infinite-width, and are asymptotically no-regret (i.e., their regret upper bound is sub-linear) under
certain conditions. Moreover, when the NN surrogate is finite-width, our STO-BNTS-Linear still
enjoys a regret upper bound, which remains sub-linear as long as the NN is wide enough.

• We demonstrate our empirical effectiveness in real-world experiments including automated machine
learning (AutoML) and reinforcement learning (RL) tasks, as well as a task on optimization over
images. To the best of our knowledge, our experiments (Sec. 5) are the first empirical study to
show the advantage of neural bandit over GP bandit algorithms in practical AutoML and RL tasks.

2 Background

Neural Networks and Neural Tangent Kernel. In this work, we adopt the same construction of a
neural network (NN) as [2]. We use f(x; θ) to denote the scalar output of an (L+ 1)-layer NN with
parameters θ ∈ Rp and input x, and use ∇θf(x; θ

′) to represent the gradient of the NN evaluated at

1The work of [23] focuses on the contextual bandit setting and aims to choose a batch of inputs given a batch
of diverse contexts. So, their methods are not applicable in our setting of BO where the contexts are fixed in all
iterations, since they do not explicitly encourage input diversity which is a crucial problem in batch BO [8, 17].
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θ = θ′. For simplicity, we assume every layer of the NN has the same width and represent the width
as m. We denote our initializaiton scheme for θ as init(·) which simply independently samples every
NN parameter from the standard Gaussian distribution. The NTK [27] provides an explicit connection
between NNs trained via gradient descent and kernel regression using NTK as the kernel function [2].
The NTK matrix, denoted as Θ, has been shown to stay constant during the course of training as
the width m of the NN approaches infinity [27]. Moreover, Θ can be approximated by an empirical
NTK Θ̃ [2] calculated using a finite-width NN: Θ̃(x,x′) ≜ ⟨∇θf(x; θ0),∇θf(x

′; θ0)⟩ ≈ Θ(x,x′),
where θ0 ∼ init(·) denotes initial parameters and ∇θf(x; θ0) is referred to as the neural tangent
features [66]. We refer the readers to the works of [2, 27] for a more detailed background on NTK.

Problem Setting. We aim to maximize a black-box function f : X → R, i.e., find x∗ ∈
argmaxx∈X f(x), in which the domain X is a finite subset of the d-dimensional unit ball:
X ⊂ {x|∥x∥2 ≤ 1}. Of note, our theoretical results allow X to be very large because our re-
gret upper bounds only depend on its cardinality |X | logarithmically. Moreover, all our theoretical
results can be easily extended to problems with continuous input domains with an additional assump-
tion on the Lipschitz continuity of f (Appendix E). We focus on the noisy setting, i.e., for every
queried x, we observe a noisy output y(x) = f(x) + ζ where ζ ∼ N (0, σ2). For simplicity, we
focus on the setting of synchronous batch BO with a batch size B where a new batch of B inputs are
selected only after all evaluations of the previous batch are completed [17]. However, our theoretical
results also hold for asynchronous batch BO where a new input query is selected once any pending
query is completed (Appendix C). We denote the ith selected input in iteration t as xi

t. We analyze
the cumulative regret of our algorithms: RT =

∑T/B
t=1

∑B
i=1(f(x

∗) − f(xi
t)), because if RT is

shown to be sub-linear in T , then the simple regret ST = mint,i(f(x
∗)− f(xi

t)) ≤ RT /T goes to 0
asymptotically, which implies that our algorithm is asymptotically no-regret.

3 Sample-Then-Optimize Batch Neural Thompson Sampling

Our STO-BNTS and STO-BNTS-Linear algorithms are presented in Algos. 1 and 2. In both
algorithms, the NN surrogate f(x; θ) can be either infinite-width or finite-width. Both STO-BNTS
and STO-BNTS-Linear follow the TS policy to select an input query xi

t: They firstly (a) obtain a
function f i

t (x; θ
i
t) which is equivalently sampled from the GP posterior with the NTK as the kernel:

GP(µt−1(·), β2
t σ

2
t−1(·, ·)) [24] (see Appendix A for details), and then (b) maximize the function to

select the next query: xi
t = argmaxx∈X f i

t (x; θ
i
t). Step (a) is achieved via the sample-then-optimize

procedure, i.e., by firstly sampling initial parameters (θ0 and θ′0) to construct a function f i
t (x; θ), and

then optimizing the function using gradient descent to obtain the resulting function of f i
t (x; θ

i
t).

STO-BNTS (Algo. 1). In every iteration t of STO-BNTS, we firstly construct an NN f(x; θ) and
multiply its output by βt = 2 log(π2t2|X |/(3δ)), in which δ ∈ (0, 1) (Theorem 1).2 Next, to choose
the ith query xi

t, we start by sampling initial parameters θ0 ∼ init(·) and θ′0 ∼ init(·) independently,
and then set the parameters of θ′0 in the last layer to 0 (lines 4-5). Next, we use the resulting θ0 and
θ′0, as well as the NN f(x, θ), to construct a function f i

t (x, θ) (line 6). Subsequently, in line 7, using
the current history of observations (denoted as Dt−1) as the training set, we train f i

t (x, θ) (setting θ0
as the initial parameters) using gradient descent with the following loss function:

Lt(θ,Dt−1) =
∑t−1

τ=1

∑B

j=1
(yjτ − f i

t (x
j
τ ; θ))

2 + β2
t σ

2∥θ − θ0∥22 , (1)

in which σ2 is the observation noise variance (Sec. 2). After the training, we use the resulting
function f i

t (x; θ
i
t) as the acquisition function to choose the ith query: xi

t = argmaxx∈X f i
t (x; θ

i
t)

(line 8). This procedure (lines 4-8) is repeated independently for B ≥ 1 times, after which a batch
of B queries {xi

t}i=1,...,B are selected and then queried to produce the observations {yit}i=1,...,B .
Next, the newly collected input-output pairs {(xi

t, y
i
t)}i=1,...,B are added to Dt−1 and the algorithm

proceeds to the next iteration. Importantly, if the NN f(x; θ) is infinite-width, the function f i
t (x; θ

i
t)

obtained after the training in line 7 is a sample from the GP posterior with the NTK as the kernel:
GP(µt−1(·), β2

t σ
2
t−1(·, ·)) [24] (Appendix A). This ensures the validity of the TS policy and is crucial

for deriving the theoretical guarantee of STO-BNTS (Sec. 4).

STO-BNTS-Linear (Algo. 2). Similar to STO-BNTS, at the beginning of iteration t, STO-BNTS-
Linear firstly constructs an NN f(x; θ) and multiply its output by βt. To choose the ith query in

2Note that βt is introduced only for the theoretical analysis, and hence we set βt = 1 in our experiments.
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Algorithm 1 STO-BNTS
1: for t = 1, 2, . . . , T/B do
2: Construct NN f(x; θ) and multiply its output by βt (Theorem 1)
3: for i = 1, 2, . . . , B do
4: Sample θ0 ∼ init(·)
5: Sample θ′0 ∼ init(·) and set the parameters of θ′0 in the last layer to 0
6: Set f i

t (x; θ) = f(x; θ) + ⟨∇θf(x; θ0), θ
′
0⟩

7: Use observation history Dt−1 to train f i
t (x; θ) with the loss function Lt(θ,Dt−1) (1)

(setting θ0 as the initial parameters) using gradient descent till convergence, to obtain
θit = argminθLt(θ,Dt−1)

8: Choose xi
t = argmaxx∈X f i

t (x; θ
i
t)

9: Query the batch {xi
t}i=1,...,B to yield the observations {yit}i=1,...,B , and add them to Dt−1

Algorithm 2 STO-BNTS-Linear
1: for t = 1, 2, . . . , T/B do
2: Construct NN f(x; θ) and multiply its output by βt (Theorem 1)
3: for i = 1, 2, . . . , B do
4: Sample θ′0 ∼ init(·), and define f i

t (x; θ) = ⟨∇θf(x; θ
′
0), θ⟩

5: Sample θ0 ∼ init(·)
6: Use observation history Dt−1 to train f i

t (x; θ) with the loss function Lt(θ,Dt−1) (1)
(setting θ0 as the initial parameters) using gradient descent till convergence, to obtain
θit = argminθLt(θ,Dt−1)

7: Choose the query xi
t = argmaxx∈X f i

t (x; θ
i
t)

8: Query the batch {xi
t}i=1,...,B to yield the observations {yit}i=1,...,B , and add them to Dt−1

iteration t, STO-BNTS-Linear firstly constructs a linear model f i
t (x; θ) using the neural tangent

features (i.e., ∇θf(x; θ
′
0) where θ′0 ∼ init(·) are initial parameters) as the input features (line 4). Next,

we sample θ0 ∼ init(·) (line 5) and use it as the initial parameters to train f i
t (x; θ) using gradient

descent with the same loss function (1) as STO-BNTS, to produce θit (line 6). After that, the ith query
is selected by maximizing the acquisition function f i

t (x; θ
i
t): x

i
t = argmaxx∈X f i

t (x; θ
i
t) (line 7).

Lines 4-6 of STO-BNTS-Linear can be interpreted as a sample-then-optimize method [42] using the
neural tangent features as the input features. As a result, same as STO-BNTS, if an infinite-width NN
is used, the function f i

t (x; θ
i
t) obtained after the training in line 6 is a sample from the GP posterior

with the NTK as the kernel: GP(µt−1(·), β2
t σ

2
t−1(·, ·)) (Appendix A). However, in contrast to STO-

BNTS, if the NN is finite-width, the function f i
t (x; θ

i
t) derived after line 6 of Algo. 2 still corresponds

to a sample from the GP posterior with the empirical NTK Θ̃(x,x′) = ⟨∇θf(x; θ
′
0),∇θf(x

′; θ′0)⟩ as
the kernel. As a result, for infinite-width NNs, STO-BNTS-Linear and STO-BNTS enjoy the same
sub-linear (under some conditions) upper bound on their cumulative regret (Sec. 4.1); however, for
finite-width NNs, unlike STO-BNTS, STO-BNTS-Linear still enjoys a regret upper bound which is
sub-linear as long as the NN is wide enough (Sec. 4.2).

Although STO-BNTS-Linear (Algo. 2) has the theoretical advantage of a theoretically guaranteed
convergence also for finite-width NNs (Sec. 4.2), we expect STO-BNTS (Algo. 1) to perform better
in practice. This is because STO-BNTS explicitly trains an NN surrogate model in every iteration
and is hence able to directly exploit the strong representation power of NNs to model the objective
function f . In contrast, STO-BNTS-Linear derives its representation power entirely from the neural
tangent features of NTK. However, it has been shown [1, 69] that neural tangent features of NTK
can not completely realize the representation power of NNs. As a result, STO-BNTS is expected to
be more competitive in practice, especially in problems where the strong representation power of
NNs is essential for accurately modeling the complex objective functions. We empirically verify this
practical advantage of STO-BNTS in our experiments (Sec. 5.5).

4 Theoretical Results
We firstly prove a regret upper bound for both STO-BNTS and STO-BNTS-Linear using infinite-width
NNs, and show that both algorithms are asymptotically no-regret under certain conditions (Sec. 4.1).
Next, we derive a regret upper bound for STO-BNTS-Linear when the NN is finite-width, and show
that the regret upper bound remains sub-linear as long as the NN is wide enough (Sec. 4.2).
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4.1 Infinite-width NNs

Here we use y1:t to denote the output observations from iterations 1 to t (i.e., t×B observations in
total) and use yA to denote the vector of observations at a set of inputs A ⊂ X . Theorem 1 (proof in
Appendix C) gives a regret upper bound for both STO-BNTS and STO-BNTS-Linear:

Theorem 1 (Infinite-width NNs). Assume that f is sampled from a GP with the NTK Θ as the kernel
function, that |f(x)| ≤ B′ ∀x ∈ X for some B′ > 0, and that Θ(x,x′) ≤ K0 ∀x,x′ ∈ X for some
K0 > 0. Let δ ∈ (0, 1) and βt = 2 log(π2t2|X |/(3δ)). Then with probability of ≥ 1− δ,

RT = Õ(eC
√
T (

√
γT + 1))

where Õ ignores all logarithmic factors, γT is the max information gain about f from any set of T
observations, and C is an absolute constant s.t. maxA⊂X ,|A|≤B−1 I(f ;yA|y1:t) ≤ C,∀t ≥ 1.

The assumption of Θ(x,x′) ≤ K0 is natural and in line with [31], and |f(x)| ≤ B′ is also a mild
assumption since most practical objective functions have bounded values. Our primary assumption
that f is sampled from a GP with the NTK as the kernel function is a common assumption in
the analysis of BO algorithms [17, 57]. Of note, compared with the assumptions from previous
works using other commonly used kernels such as the squared exponential (SE) kernel [17, 57], our
assumption on f holds for more complicated objective functions. Specifically, the class of functions
sampled from a GP with the NTK as the kernel subsumes more non-smooth and sophisticated
objective functions compared with the other commonly used kernels. As shown in [17], C can be
chosen to be an absolute constant that is independent of B and T as long as we initialize our algorithm
using the uncertainty sampling method, which entails choosing the initial inputs by sequentially
maximizing the GP posterior variance (more details in Appendix B). Specifically, for any chosen
constant C > 0, as long as we run the uncertainty sampling initialization stage for Tinit iterations such
that ((B− 1)γTinit)/Tinit ≤ C, then maxA⊂X ,|A|≤B−1 I(f ;yA|y1:t) ≤ C, ∀t ≥ 1 is guaranteed to be
satisfied. Since it has been shown by the work of [31] that γT = Õ(T (d−1)/d) grows sub-linearly for
the NTK,3 therefore, ((B − 1)γTinit)/Tinit is decreasing as Tinit increases. As a result, for any chosen
C, we are able to choose a finite Tinit such that the condition ((B − 1)γTinit)/Tinit ≤ C is satisfied.

For example, if we choose C = 1, then the required number of initial iterations is approximately
Tinit = Θ((B − 1)d). As a result, the regret upper bound will be a summation of 2B′Tinit (i.e., the
regrets incurred during the initializatioin stage, because the regret at every step is upper-bounded by
2B′) and the regret upper bound from Theorem 1 with C = 1. Since both B′ and Tinit are constants
independent of T (assuming that B is independent of T ), the asymptotic regret upper bound can be
simplified into RT = Õ(

√
T (1 +

√
γT )). Plugging in γT = Õ(T (d−1)/d), the final regret upper

bound becomes RT = Õ(T 1/2 + T (2d−1)/(2d)) = Õ(T (2d−1)/(2d)) which is sub-linear in T and
hence implies that our STO-BNTS and STO-BNTS-Linear are both asymptotically no-regret when
the NN surrogate is infinite-width.

Moreover, when T ≫ B and B is a constant which is independent of T , Theorem 1 gives us
insights on the benefit of batch over sequential evaluations. In this case, the regrets incurred during
initialization (i.e., Õ((B − 1)d)) is negligible. Therefore, our analysis above suggests that our
algorithms with batch evaluations (B > 1) enjoys the same asymptotic regret upper bound as its
sequential counterpart (B = 1) since the resulting regret upper bound of RT = Õ(

√
T (1 +

√
γT ))

does not depend on the batch size B. This demonstrates the advantage of batch evaluations because
when B > 1, some of our evaluations can be run in parallel, which is not supported by the sequential
setting with B = 1. As a simple illustration, for a large T , both the sequential and batch settings
achieve a simple regret of the order Õ(T−1/(2d)) after T function evaluations. However, since our
batch setting can evaluate every B > 1 selected inputs in parallel in every iteration, our batch setting
with B > 1 achieves this simple regret after only T/B iterations, which is only a fraction (1/B) of
the T iterations required by the sequential setting. This also shows that we enjoy more benefit with a
larger batch size B.

3Note that in order to quote the results from [31], we need follow their assumption to assume that the domain
X is a subset of the d-dimensional unit hyper-sphere: X ⊂ {x|∥x∥2 = 1}, which is more strict than our main
assumption (Sec. 2) that X is a subset of the unit hyper-ball: X ⊂ {x|∥x∥2 ≤ 1}.
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4.2 Finite-width NNs

Here we prove a regret upper bound for STO-BNTS-Linear with finite-width NN. The main technical
challenge in the proof lies in the disparity between the exact and empirical NTKs, i.e., the function f
is assumed to be sampled from a GP with the exact NTK Θ yet our acquisition function f i

t (x; θ
i
t)

(line 7 of Algo. 2) is obtained using the empirical NTK Θ̃ when the NN is finite-width. To this end,
we make use of the following theoretical guarantee on the approximation error between Θ and Θ̃.
Proposition 1 (Theorem 3.1 of [2]). Choose ε > 0 and δ ∈ (0, 1). If the width of every layer in an
NN satisfies m = Ω(L

6

ε4 log(4L|X |2/δ)), then ∀x,x′ ∈ X , we have with probability ≥ 1− δ/4 that∣∣⟨∇θf(x, θ0),∇θf(x
′, θ0)⟩ −Θ(x,x′)

∣∣ ≤ (L+ 1)ε.

Proposition 1 ensures that we can reduce the upper bound (L+1)ε on the approximation error between
Θ and Θ̃ by increasing the width m of the NN. For example, let m = CntkL

6ε−4 log(4L|X |2/δ)
for some constant Cntk > 0, then the approximation quality of Proposition 1 can be expressed as
(L+ 1)ε = Cntk(L+ 1)L3/2 log1/4(4L|X |2/δ)m−1/4 which decreases as the width m increases. In
our theoretical analysis, we assume that (L+ 1)ε ≤ 1, which can be satisfied as long as m is large
enough. The regret upper bound for STO-BNTS-Linear is given in Theorem 2 (proof in Appendix D):
Theorem 2 (Finite-width NNs). Let δ ∈ (0, 1) and βt = 2 log(2π2t2|X |/(3δ)). Then we have

RT = Õ(eC
√
T (

√
γT + 1) + T 3m−1/8(L+ 1)5/4),

with probability of ≥ 1− δ. Here γT and C are the same as those defined in Theorem 1.

The first term in the regret upper bound in Theorem 2 is the same as that of Theorem 1 for infinite-
width NNs and can hence be made sub-linear by using uncertainty sampling as the initialization stage:
RT = Õ(

√
T (1 +

√
γT )) = Õ(T (2d−1)/(2d)). The second term in the regret upper bound represents

the additional regrets incurred by the use of finite-width NNs, which can also be made sub-linear by
choosing m = Ω(T 24). In other words, if the width m of the NN is chosen to be large enough (i.e., if
m = Ω(T 24)), then the cumulative regret of STO-BNTS-Linear scales sub-linearly in T .

4.3 Discussion

The assumption on the function f for our theoretical analyses in Theorems 1 and 2 differs from those
made by the previous works on neural contextual bandits [66, 69]. Specifically, these previous works
have relied on the assumption of a positive definite NTK Gram matrix to approximate the value of f
(only evaluated at the observed contexts up to iteration T ) using a function that is linear in the neural
tangent features. When translated into our setting (which is equivalent to the contextual bandit setting
where all contexts are fixed for all t ≥ 1), the assumption of a positive definite NTK Gram matrix can
be easily violated as long as any input x is queried more than once, thus rendering this assumption
unrealistic in our setting. In contrast, we have assumed that f is sampled from a GP with the NTK as
the kernel, which is a common assumption in the analysis of BO [17, 57] and allows us to derive a
sub-linear regret upper bound. As a result of the different assumptions, our regret upper bounds are
not directly comparable with those from the previous works on neural contextual bandits [66, 69].

5 Experiments

We compare our STO-BNTS and STO-BNTS-Linear with the baselines of Neural UCB [69] and
Neural TS [66], as well as GP-UCB and GP-TS which use GPs (with the SE kernel) instead of NNs
as their surrogate models. The original implementations of Neural UCB [69] and Neural TS [66] are
only applicable to discrete domains. So, for a fair comparison in those tasks with continuous domains,
we have modified their implementations to maximize their acquisition functions in the same way as
our methods (i.e., through a combination of random search and L-BFGS-B, refer to Appendix F for
more details). We firstly explore some interesting insights about our algorithms using a synthetic
experiment in Sec. 5.1. Next, we apply our algorithms to real-world AutoML (Sec. 5.2) and RL
(Sec. 5.3) problems, as well as an optimization task over images (Sec. 5.4). Finally, we discuss some
interesting insights from our experiments in Sec. 5.5. We plot the simple regret (or the best found
observation till an iteration) when presenting the experimental results, which is the common practice
in BO [8, 29]. We have deferred some experimental details to Appendix F due to space limitation.
Our code is available at https://github.com/daizhongxiang/sto-bnts.
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Figure 1: (a-c) Acquisition functions and (d) performances in the synthetic experiment (Sec. 5.1).

5.1 Synthetic Experiment

Here, we sample a smooth function from a GP with an SE kernel (with a length scale of 0.1), defined
on a discrete 1-dimensional domain within the range of [0, 1]. For all methods, we use an NN
architecture with a depth of L = 8 and a width of m = 64 unless specified otherwise.

Figs. 1 (a-c) illustrate the acquisition functions f i
t (x; θ

i
t) (line 8 of Algo. 1 and line 7 of Algo. 2) of

different algorithms. The Deep Ensemble method [36] in Fig. 1a can be regarded as a reduced version
of our STO-BNTS algorithm (Algo. 1) in which the term ⟨∇θf(x; θ0), θ

′
0⟩ (i.e., the second term in

line 6 of Algo. 1) is removed. As a result, Deep Ensemble does not enjoy the theoretical guarantees
of our algorithms (Sec. 4). In Figs. 1 (a-c), given the same training set (red stars), every method
constructs a batch of B = 100 acquisition functions. E.g., STO-BNTS repeats lines 4-7 of Algo. 1
independently for B = 100 times to produce acquisition functions f i

t (x; θ
i
t) for i = 1, . . . , 100,

which are plotted as the blue lines in Fig. 1b. Note that every acquisition function (blue line) is
maximized to select an input query. The figures show that compared with the naive baseline of Deep
Ensemble, our STO-BNTS and STO-BNTS-Linear are able to display more exploratory behaviors
in unexplored regions (e.g., the interval of [0.2, 0.4]). This may be explained by our theoretical
guarantees (Sec. 4) which imply that both of our algorithms are able to perform exploration in a
principled way and hence naturally handle the the exploration-exploitation trade-off. Moreover, it has
also been justified by [24] that the addition of the term ⟨∇θf(x; θ0), θ

′
0⟩ improves the ability of the

NN to characterize the uncertainty of predictions, which corroborates our findings here.

The simple regrets of different algorithms are plotted in Fig. 1d.4 The first interesting observation is
that our STO-BNTS (orange) significantly outperforms Deep Ensemble (red), which corroborates
the insight discussed above positing that the addition of the term ⟨∇θf(x; θ0), θ

′
0⟩ leads to more

principled exploration and hence better performances. Due to its lack of exploration as illustrated in
Fig. 1a, Deep Ensemble fails to reach zero regret in Fig. 1d. Furthermore, the discrepancy between
the green and purple curves shows that batch evaluations (B = 4) lead to significant performance
improvement. Moreover, compared with the green curve for which m = 64, using a wider NN (gray
curve, m = 512) substantially improves the performance of STO-BNTS-Linear yet employing a
shallower NN (yellow curve, m = 16) significantly degrades the performance. These observations
agree with Theorem 2 which states that a larger width m reduces the regret of STO-BNTS-Linear.
Similarly, the NN surrogate model of STO-BNTS should also be wide enough since the use of a
narrower NN (light blue curve, m = 16) also leads to a worse performance for STO-BNTS. Lastly,
GP-TS (blue) performs competitively in this experiment with a very smooth objective function.
However, as we will show in the next two sections, in real-world experiments with more complicated
objective functions, GP-based methods are consistently outperformed by our algorithms.

5.2 Real-world Experiments on Automated Machine Learning (AutoML)

Here, we adopt 3 hyperparameter tuning tasks. We use tasks involving categorical hyperparameters
to highlight the advantage of our NN-based over GP-based methods. We use a diabetes diagnosis
dataset to tune 6 categorical hyperparameters of random forest (RF), and then use the MNIST dataset
to tune 9 hyperparameters (4 continuous and 5 categorical) of XGBoost and 9 hyperparameters (2
continuous and 7 categorical) of convolutional neural networks (CNNs). Fig. 2 plots the results for
the RF (a,b) and XGBoost (c,d) tasks, and the results for CNN are shown in Fig. 4 (Appendix F.2).

4To show the benefit of batch evaluations, in all experiments (including real-world experiments), we use
the iterations t as the horizontal axis and in every iteration t, we report the largest f(xi

t) (yi
t in real-world

experiments) within a batch (when B > 1) as the observation in this iteration.
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Figure 2: Validation errors for hyperparameter tuning of RF (a,b), XGBoost (c,d). B = 1 by default.
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Figure 3: Results for (a) 12-D Lunar-Lander, (b) 14-D robot pushing, (c) 20-D rover trajectory
planning, and (d) optimization over images in Sec. 5.4. B = 1 unless specified otherwise.

For each task, we firstly compare the performances of different variants of our algorithms in Figs. 2a, c
and Fig. 4a, which demonstrate a number of interesting insights. Firstly, our STO-BNTS outperforms
Deep Ensemble, which is consistent with the results in Fig. 1d and further emphasizes the practical
significance of the improved exploration performed by our STO-BNTS (Sec. 5.1). Secondly, STO-
BNTS-Linear is significantly outperformed by STO-BNTS in Figs. 2 a and c, which can likely be
attributed to its inability to fully leverage the representation power of NNs as we have discussed in
Sec. 3 (see more discussions in Sec. 5.5). Next, Figs. 2a, c and Fig. 4a also show that the performance
of STO-BNTS tends to suffer when the NN surrogate model is either overly shallow (L = 1,m = 512,
orange curves) or overly deep (L = 8,m = 64, red curves), that is, both the orange and red curves
underperform significantly in two of the three experiments. This is likely because an overly shallow
NN lacks the representation power to model complicated objective functions, whereas an overly
deep NN may be prone to overfitting since the size of the training set here is much smaller than
typical deep learning applications. In contrast, the NN architecture of L = 2,m = 256 (blue curves)
consistently performs well in all three experiments, therefore, we will use it as the default architecture
in the experiments in the next section. Moreover, the benefit of batch evaluations can also be further
confirmed by comparing the blue (B = 1) and green (B = 4) curves in Figs. 2a, c and Fig. 4a.

Figs. 2b, d and Fig. 4b show that for the same NN architecture of L = 2,m = 256, our STO-
BNTS is the best-performing method since it performs better than all baselines in Figs. 2b and d
and comparably with them in Fig. 4b. The undesirable performances of Neural UCB and Neural
TS may be explained by the errors due to their diagonal matrix approximation (Sec. 1), and the
underwhelming performances of GP-UCB and GP-TS may result from the ineffectiveness of GP in
modeling categorical inputs (more on this in Sec. 5.5).

5.3 Real-world Experiments on Reinforcement Learning (RL)

Here we optimize the control parameters of 3 RL problems: we tune d = 12 parameters of a heuristic
controller for the Lunar-Lander task from OpenAI Gym [4], d = 14 parameters of a controller for
a robot pushing task [62], and d = 20 parameters for a rover trajectory planning problem [62]. We
use L = 2,m = 256 for all methods. The results in these three RL tasks are plotted in Figs. 3a,
b and c. Our STO-BNTS and STO-BNTS-Linear (purple and yellow curves) consistently perform
the best among all methods with sequential evaluations (B = 1), and our methods with batch
evaluations (B = 4, gray and light blue curves) achieve further performance improvements over their
sequential counterparts. Of note, despite underperforming in Sec. 5.2, STO-BNTS-Linear achieves
comparable performances with STO-BNTS in all three experiments here for both the sequential and
batch evaluations, outperforming the other baselines. The inefficacy of GP-TS and GP-UCB here may
result from the inability of GPs to effectively model high-dimensional input space [30] (Sec. 5.5).
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5.4 Optimization over Images

Some real-world applications require optimizing over an input domain of images. For example, an
image recommender system sequentially recommends different images to a user in order to select
the image with the best rating/score [65]. In these applications, GP-based BO methods require
sophisticated techniques such as convolutional kernels in order to model the inputs of images [59], in
contrast, our methods can be easily applied by simply replacing the NN surrogate model with a CNN.
Here, we simulate these applications by maximizing a score over the domain of images from the
MNIST dataset. For all CNN-based methods, we use a CNN with a convolutional layer followed by a
fully connected layer (both with m = 64) as the surrogate model (more details in Appendix F.4). The
results (Fig. 3d) show that our STO-BNTS performs the best. Moreover, when using the same CNN
architecture, STO-BNTS-Linear fails to achieve comparable performances to the other CNN-based
methods since STO-BNTS-Linear is not able to fully leverage the representation power of CNN
(Sec. 3). However, again consistent with Theorem 2, increasing the width of the CNN can improve
the performance of STO-BNTS-Linear to be comparable with STO-BNTS (Fig. 6 in Appendix F.4).

5.5 Discussion

Secs. 5.2, 5.3 and 5.4 show that our algorithms, although without any special design for a specific type
of problem (e.g., problems involving categorical, high-dimensional or image inputs), are competitive in
all these problems thanks to the ability of NNs to model complicated real-world functions. Compared
with GP-based BO methods, our algorithms may incur more computation due to the need to train an
NN surrogate model. However, the additional computation can be easily overshadowed by the cost of
function evaluations since BO is usually used to optimize expensive-to-compute functions.

STO-BNTS vs. STO-BNTS-Linear. Our experimental results have demonstrated some interesting
insights on the comparison between our STO-BNTS (Algo. 1) and STO-BNTS-Linear (Algo. 2).
As we have discussed in Sec. 3, since STO-BNTS-Linear is unable to explicitly take advantage of
the representation power of NNs, it is expected to be less competitive than STO-BNTS in practice
especially in problems where the strong representation power of NNs is crucial for accurately
modeling the objective function. Examples of such problems include those with categorical (Sec. 5.2)
or image (Sec. 5.4) inputs. Interestingly, our results in Secs. 5.2 and 5.4 indeed corroborate this insight
by showing that STO-BNTS-Linear is consistently outperformed by STO-BNTS in these experiments.
However, note that in such problems, the performance of STO-BNTS-Linear can be significantly
improved by further increasing the width of the NN (CNN) as we have shown in Fig. 6. In addition,
the practical efficacy of STO-BNTS-Linear can also be seen from the experiments in Sec. 5.3, in
which STO-BNTS-Linear performs comparably with STO-BNTS and consistently outperforms all
other baselines. This demonstrates the empirical competence of STO-BNTS-Linear in some real-
world problems such as RL. Moreover, also note that compared with STO-BNTS, STO-BNTS-Linear
enjoys the theoretical advantage of having a guaranteed convergence for finite-width NNs (Sec. 4.2).

Baseline Methods. The underwhelming performances of Neural UCB and Neural TS in our ex-
periments are likely caused by the errors introduced by the diagonal matrix approximation that is
used to avoid the inversion of the p× p matrix (Sec. 1). The inadequate performances of GP-UCB
and GP-TS may be explained by the ineffectiveness of GPs to model objective functions involving
categorical [15, 18] or high-dimensional inputs [30, 43], which correspond to the experiments in
Secs. 5.2 and 5.3, respectively. Nevertheless, we expect GP-based methods to achieve better perfor-
mances (than their performances here) in problems with lower-dimensional and purely continuous
input space (e.g., GP-TS performs competitively in the synthetic experiment as shown in Fig. 1d).

Depth L and Width m of the NN Surrogate Model. Our experimental results have provided some
guidelines on the choices of the depth L and width m of the NN surrogate model in our algorithms.
Regarding the depth L, our experiments in Sec. 5.2 have shown that an overly shallow NN usually
hurts the performance due to its lack of expressive power, whereas an excessively deep NN is also
likely to deteriorate the performance due to overfitting. Therefore, we discourage the use of NNs
which are either exceedingly shallow or overly deep, and recommend shallower NNs for simpler
tasks to prevent overfitting and deeper NNs for more complicated tasks to gain enough representation
power. The width m should be chosen to be large enough since our experiments in Sec. 5.1 (Fig. 1d)
and Sec. 5.4 (Fig. 6 in Appendix F.4) suggest that a larger width usually improves the performance.
Moreover, we have shown that the choice of L = 2,m = 256 consistently leads to competitive
performances in a wide range of experiments (i.e., all experiments in Sec. 5.2 and Sec. 5.3). Therefore,
we recommend it as the default choice for real-world problems.
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6 Related Works
The NTK provides a theoretical tool to study the training dynamics of NNs by drawing connections
with kernel methods [2, 5, 13, 27, 38], and it has been successfully applied to a number of practical
problems such as neural architecture search [52, 54], active learning [61], data valuation [63], among
others. The pioneering work of [69] exploited the theory of NTK to introduce the Neural UCB
algorithm for contextual bandits, which uses an NN to learn the reward (objective) function and
leverages neural tangent features for exploration following the UCB principle. Neural UCB has
been followed up by other works which mainly aimed to make Neural UCB more practical. [64]
proposed to improve the computational efficiency of Neural UCB through the additional assumption
that the reward function is linear in the feature mapping of the last layer of the NN, [23] also aimed to
reduce the computational cost of Neural UCB by limiting the number of updates of the NN surrogate
model, and [44] proposed a method to reduce the memory requirement of generic neural bandit
algorithms. The recent work of [41] performed an empirical study of neural bandit algorithms, and
discovered that they tend to perform competitively in problems that require learning complicated
representations. Above all, the work that is most closely related to our paper is [66], which introduced
the Neural TS algorithm. Following similar principles as Neural UCB, Neural TS learns the reward
function using an NN surrogate model and constructs the exploration term through the neural tangent
features, which are used as, respectively, the mean and variance of the Gaussian distribution from
which the reward is sampled for running the TS routine. GP-based BO methods [3, 33, 48, 49]
have achieved impressive performances in recent years, and have been extended to various problem
settings such as high-dimensional BO [19, 26, 30], multi-fidelity BO [14, 28, 67, 68], meta-BO
[10, 50], risk-averse BO [46, 47, 58], multi-agent/collaborative BO [9, 56], non-myopic BO [34, 40],
among others. More importantly, they have also been extended to the batch setting, based on either
GP-UCB [8, 16, 17, 32, 60] or GP-TS [25, 29, 45, 60].

7 Conclusion
We propose STO-BNTS and STO-BNTS-Linear, both of which sidestep the requirement to invert a
large parameter matrix in existing neural bandit algorithms, and naturally support batch evaluations
while preserving their theoretical guarantees. Both algorithms are asymptotically no-regret under
certain conditions if the NN surrogate is infinite-width, and STO-BNTS-Linear still enjoys sub-linear
regret for a finite-width NN if it is wide enough. A potential limitation is that our theoretical analysis
for finite-width NNs (Sec. 4.2) only holds for STO-BNTS-Linear but not for STO-BNTS, which
we will explore in future works. Another promising future topic is to leverage our ability to exploit
the strong representation power of NNs to apply our algorithms to other challenging optimization
tasks with sophisticated search spaces, such as chemical design [22, 35], neural architecture search
[53, 55], etc. Moreover, it is also an interesting future direction to extend our algorithms to handle
other problem settings such as those which have been considered by BO (Sec. 6), e.g., multi-fidelity
optimization [67, 68], risk aversion/fault tolerance [20, 46, 47], etc. A potential negative societal
impact is that our work may promote more adoption of deep learning methods and hence cause more
electricity consumption.
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A Justification for The Acquisition Functions Being Sampled from GPs

For our Algo. 1, the work of [24] has shown that if βt = 1, then after running lines 4-7 of Algo. 1,
the resulting function f i

t (x; θ
i
t) corresponds to a function sampled from the GP posterior with the

NTK as the kernel function: GP(µt−1(·), σ2
t−1(·, ·)) conditioned on the (t − 1) × B observations

from the first t− 1 iterations. The GP posterior mean and covariance function are expressed as:

µt−1(x) ≜ kt−1(x)
⊤(Kt−1 + σ2I)−1yt−1 , (2)

σ2
t−1(x,x

′) ≜ k(x,x′)− kt−1(x)
⊤(Kt−1 + σ2I)−1kt−1(x

′) (3)

where kt−1(x) ≜ (k(x,xi
τ ))

⊤
τ=1,...,t−1,i=1,...,B which is a (t − 1)B−dimensional vector,

yt ≜ (yiτ )
⊤
τ=1,...,t−1,i=1,...,B which is also a (t − 1)B−dimensional vector, and Kt ≜

(k(xi
τ ,x

i′

τ ′))τ=1,...,t−1,i=1,...,B;τ ′=1,...,t−1,i′=1,...,B which is a (t − 1)B × (t − 1)B−dimensional
squared matrix.

For our Algo. 2, when βt = 1, because every run of the procedure in lines 4-6 corresponds to running
the sample-then-optimize method [42] while treating the neural tangent features as the input features,
therefore, the resulting linear function f i

t (x; θ
i
t) w.r.t. θit also corresponds to a sampled function from

the GP posterior GP(µt−1(·), σ2
t−1(·, ·)) with the NTK (if the NN is infinite-width) or empirical

NTK (if the NN if finite-width) as the kernel function according to the work of [42].

Next, for both Algo. 1 and Algo. 2, when βt = 2 log(π2t2|X |/δ), since we have multiplied the output
of NN by βt which corresponds to multiplying the gradient of the NN by βt, therefore, the resulting
NTK will be multiplied by β2

t . Also note that we have also multiplied the noise variance σ2 by β2
t in

(1). As a result, after plugging these two changes into the equations for GP posterior mean (2) and
variance (3), it is easy to verify that the GP posterior variance will be multiplied by β2

t while the GP
posteior mean is unchanged.

B GP Posterior Variance with NTK

When using the NTK as the kernel function, the GP posterior variance (3) at any input x can be easily
approximated by

σ2
t−1(x,x) ≈ ∇θf(x; θ0)

⊤
[
Σt−1 + σ2I

]−1

∇θf(x; θ0), (4)

in which

Σt−1 =

t−1∑
τ=0

B∑
i=1

∇θf(x
i
τ ; θ0)∇θf(x

i
τ ; θ0)

⊤, (5)

and θ0 ∼ init(·) are randomly initialized parameters. Therefore, to run the uncertainty sampling
algorithm as the initialization stage, we simply need to sequentially maximize equation (4), i.e.,
in iteration t of the initialization stage, we simply choose the next initial input x by maximizing
equation (4).

C Proof of Theorem 1

Here, to simplify the analysis, we follow the work of [17] and reparameterize the iterations to view
our algorithms in the sequential setting. Specifically, in the main text (Algos. 1 and 2), every B
function evaluations are counted as an iteration t; however, we reparameterize the iterations such that
every query selection is counted as an iteration t. That is, every time an input query is selected, we
increment the number of iterations by 1. As a result, before the reparameterization, the cumulative
regret is expressed as RT =

∑T/B
t=1

∑B
i=1(f(x

∗) − f(xi
t)); after reparameterization, the same

cumulative regret is now expressed as RT =
∑T

t=1(f(x
∗)− f(xt)). Note that when B = 1, the two

parameterizations are the same. Therefore, in the entire proof in this section, we index the iterations
sequentially by 1, 2, . . . , t, t+ 1, . . . , T .

At iteration t, we use fb[t] to denote the largest iteration index whose observation has been collected.
For example, if the batch size is B = 3, assuming that after the most recent batch of inputs
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have been collected, we have in total gathered t − 1 observations; then when selecting the input
queries in iterations t, t + 1 and t + 2, we have that fb[t] = fb[t + 1] = fb[t + 2] = t − 1,
because the index of the most recent observation is fixed at t − 1 since we do not collect any
new observations during this process. Next, when choosing the input query at iterations t + 3,
t + 4 and t + 5, we have that fb[t + 3] = fb[t + 4] = fb[t + 5] = t + 2. As a result of our
reparameterization here, the requirement on the constant C from Theorem 1 should be slightly
modified into: maxA⊂X ,|A|≤B−1 I(f ;yA|y1:fb[t]) ≤ C, ∀t ≥ 1, where y1:fb[t] represents the output
observations from iterations 1 to fb[t].

Our reparameterization mentioned above allows us to derive more general theoretical results which
hold for both synchronous and asynchronous batch BO. In the setting of synchronous batch evaluations
which we have focused on in the main text, max{t − B, 0} ≤ fb[t] ≤ t − 1. In this setting, fb[t]
is a deterministic function of t, which is determined before the algorithm starts. Of note, although
we focus on the setting of synchronous batch BO in our theoretical analysis, the only requirement
of our theoretical analysis on fb[t] is that t − fb[t] ≤ B, i.e., the number of pending observations
t− fb[t]− 1 should be upper-bounded by B − 1. Therefore, our theoretical results also hold in the
setting of asynchronous batch BO, because the number of pending observations in asynchronous
batch BO is always equal to B − 1 [17].

Denote as µfb[t] and σfb[t] the GP posterior mean and standard deviation conditioned on the ob-
servations from iteration 1 to fb[t]. Define Ft−1 = {x1, y1, . . . ,xfb[t], yfb[t],xfb[t]+1, . . . ,xt−1}
as the history of selected inputs and observed outputs for those completed observations, as well
as the selected inputs of those pending observations. Define βt = 2 log(π2t2|X |/(3δ)), and
ct = βt(1 +

√
2 log(|X |t2)).

Lemma 1. Choose δ ∈ (0, 1). Define Ef (t) as the event that |µfb[t](x)− f(x)| ≤ βtσfb[t](x),∀x ∈
X . We have that P(Ef (t)) ≥ 1− δ/2,∀t ≥ 1.

The proof of Lemma 1, which follows from the proof of Lemma 5.1 of [57], makes use of our assump-
tion that f is sampled from a GP and relies on simple applications of the concentration of Gaussian
distributions and union bounds. Denote by ft the acquisition function in iteration t, which is sampled
from the GP posterior with the NTK as the kernel function: ft ∼ GP(µfb[t](·), β2

t σ
2
fb[t](·, ·)) as we

have justified in Appendix A. Note that the query in iteration t is selected by xt = argmaxx∈X ft(x),
which corresponds to line 8 of Algo. 1 and line 7 of Algo. 2 respectively.

Lemma 2. Define Eft(t) as the event that |µfb[t](x)− ft(x)| ≤ βt

√
2 log(|X |t2)σfb[t](x),∀x ∈ X .

We have that P(Eft(t)) ≥ 1− 1/t2,∀t ≥ 1.

The proof of Lemma 2 follows from Lemma 5 of the work of [7]. Importantly, conditioned on both
events Ef (t) and Eft(t), we have that

|f(x)− ft(x)| ≤ ctσfb[t](x). (6)

We next define the set of saturated points, which can be understood as the set of undesirable points in
every iteration.

Definition 1. Define the set of saturated inputs in iteration t as

St = {x ∈ X : ∆(x) > ctσfb[t](x)},

in which ∆(x) = f(x∗)− f(x).

An important consequence of the definition above is that x∗ is always unsaturated, because ∆(x∗) =
0 < ctσfb[t](x

∗).

Lemma 3. For any Ft−1, conditioned on the events Ef (t), we have that ∀x ∈ X ,

P
(
ft(x) > f(x)|Ft−1

)
≥ p, (7)

in which p = 1
4e

√
π

.
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Proof.

P
(
ft(x) > f(x)|Ft−1

)
= P

(
ft(x)− µfb[t](x)

βtσfb[t](x)
>

f(x)− µfb[t](x)

βtσfb[t](x)

∣∣∣Ft−1

)

≥ P

(
ft(x)− µfb[t](x)

βtσfb[t](x)
>

|f(x)− µfb[t](x)|
βtσfb[t](x)

∣∣∣Ft−1

)
(a)

≥ P

(
ft(x)− µfb[t](x)

βtσfb[t](x)
> 1
∣∣∣Ft−1

)
(b)

≥ e−1

4
√
π
.

(8)

(a) follows from Lemma 1, which holds because we condition on the event Ef (t) here. (b) follows
since ft(x) ∼ N (µfb[t](x), β

2
t σ

2
fb[t](x)) and makes use of the Gaussian anti-concentration inequality,

i.e., P(Z > a) ≥ e−a2

4
√
πa

where Z follows a standard Gaussian distribution.

The next Lemma shows that the probability that the selected input is unsaturated (i.e., desirable
according to Definition 1) can be lower-bounded.
Lemma 4. For any Ft−1, conditioned on the event Ef (t), we have that

P
(
xt ∈ X \ St, |Ft−1

)
≥ p− 1/t2.

Proof. To begin with, we can lower-bounded the probability that the selected xt is unsaturated as
follows:

P
(
xt ∈ X \ St|Ft−1

)
≥ P

(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1

)
. (9)

The inequality above holds because the event on the right hand sight implies the event on the left
hand side. Specifically, because x∗ is always unsaturated (Definition 1), therefore, as long as
ft(x

∗) > ft(x),∀x ∈ St, then the selected xt is guaranteed to be unsaturated because it is selected
as xt = argmaxx∈X ft(x).

Next, we assume that both events Ef (t) and Eft(t) holds, which allows us to derive an upper bound
on ft(x) for all x ∈ St:

ft(x)
(a)

≤ f(x) + ctσfb[t](x)
(b)

≤ f(x) + ∆(x) = f(x) + f(x∗)− f(x) = f(x∗), (10)

in which (a) results from Lemma 1 and Lemma 2 and (b) follows from Definition 1. As a re-
sult,equation (10) implies that when both both events Ef (t) and Eft(t) hold, we have that

P
(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1

)
≥ P

(
ft(x

∗) > f(x∗)|Ft−1

)
. (11)

Next, combining equations (9) and (11) and separately considering the cases where the event Eft(t)
is true or false, we have that

P
(
xt ∈ X \ St|Ft−1

)
≥ P

(
ft(x

∗) > ft(x),∀x ∈ St|Ft−1

)
(a)

≥ P
(
ft(x

∗) > f(x∗)|Ft−1

)
− P

(
Eft(t)|Ft−1

)
(b)

≥ p− 1/t2.

(12)

This completes the proof.

We use σt−1(·) to represent the GP posterior standard deviation conditioned on all selected input
queries from iterations 1 to t− 1.
Lemma 5. We have for all t ≥ 1 and all x ∈ X that

σfb[t](x)

σt−1(x)
≤ eC .
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Proof. We use y1:fb[t] to denote the output observations from iterations 1 to fb[t], use yfb[t]+1:t−1 to
represent the the output observations from iterations fb[t] + 1 to t − 1, and use yA to denote the
vector of observations at a set of inputs A ⊂ X . We use H(·) to represent the entroy of a random
variable.

To begin with, we establish the relationship between the following conditional information gain and
the ratio of GP posterior standard deviations which we intend to upper-bound:

I(f(x);yfb[t]+1:t−1|y1:fb[t])) = H(f(x)|y1:fb[t]))−H(f(x)|y1:t−1))

=
1

2
log(2πeσ2

fb[t](x))−
1

2
log(2πeσ2

t−1(x))

= log
σfb[t](x)

σt−1(x)
.

(13)

The first equality comes from the definition of conditional information gain and the second equality
follows immediately from the entroy of Gaussian random variables. The equation above allows us to
upper-bound the ratio of GP posterior standard deviations as follows:

σfb[t](x)

σt−1(x)
= exp(I(f(x);yfb[t]+1:t−1|y1:fb[t])))

(a)

≤ exp(I(f ;yfb[t]+1:t−1|y1:fb[t])))

(b)

≤ exp
(

max
A⊂X ,|A|≤B−1

I(f ;yA|y1:fb[t])
) (c)

≤ eC ,

(14)

in which (a) is because the information gain about f is larger than that of f(x), (b) follow since the
size of yfb[t]+1:t−1 is at most B − 1 in our batch setting with a batch size of B, and (c) is a result of
the definition of the constant C. This completes the proof.

Next, we are ready to prove an upper bound on the expected instantaneous regret rt = f(x∗)− f(xt).

Lemma 6. For any Ft−1, conditioned on the event Ef (t), we have that

E
[
rt|Ft−1

]
≤ cte

C

(
1 +

10

p

)
E
[
σt−1(xt)|Ft−1

]
+

2B′

t2
.

Proof. To begin with, define
xt ≜ argminx∈X\St

σfb[t](x). (15)

That is, xt is the unsaturated input with the smallest GP posterior standard deviation. Note that given
a Ft−1, xt is deterministic. Next, we have that

E[σfb[t](xt)|Ft−1] ≥ E
[
σfb[t](xt)|Ft−1,xt ∈ X \ St

]
P
(
xt ∈ X \ St|Ft−1

)
≥ σfb[t](xt)(p− 1/t2),

(16)

where the second inequality makes use of Lemma 4, which holds here because we have also
conditioned on the event Ef (t) in Lemma 4. Next, conditioned on both Ef (t) and Eft(t), we
have that

rt = f(x∗)− f(xt) = f(x∗)− f(xt) + f(xt)− f(xt)

(a)

≤ ∆(xt) + ft(xt) + ctσfb[t](xt)− ft(xt) + ctσfb[t](xt)

(b)

≤ ctσfb[t](xt) + ctσfb[t](xt) + ctσfb[t](xt) + ft(xt)− ft(xt)

(c)

≤ ct

(
2σfb[t](xt) + σfb[t](xt)

)
,

(17)

in which (a) makes use of Lemma 1 and Lemma 2, (b) follows since xt is unsaturated, and (c)
follows from the way in which xt is selected: xt = argmaxx∈X ft(x). Next, the expected value of
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rt can be upper-bounded as follows:

E
[
rt|Ft−1

]
≤ E

[
ct

(
2σfb[t](xt) + σfb[t](xt)

)
|Ft−1

]
+ 2B′P

(
Eft(t)|Ft−1

)
(a)

≤ E

[
ct

(
2

p− 1/t2
σfb[t](xt) + σfb[t](xt)

)
|Ft−1

]
+

2B′

t2

= E

[
ct

(
1 +

2

p− 1/t2

)
σfb[t](xt)|Ft−1

]
+

2B′

t2

(b)

≤ ct

(
1 +

2

p− 1/t2

)
E
[
eCσt−1(xt)|Ft−1

]
+

2B′

t2

(c)

≤ cte
C

(
1 +

10

p

)
E
[
σt−1(xt)|Ft−1

]
+

2B′

t2
,

(18)

where (a) follows from equation (16) and (b) makes use of Lemma 5. (c) follows since 2/(p−1/t2) ≤
10/p, which holds because (i) p− 1/t2 < 0 for t < 5, (ii) 2/(p− 1/t2) ≤ 10/p for t = 5, and (iii)
2/(p− 1/t2) is decreasing as t increases when t ≥ 5.

Definition 2. Define Y0 = 0, and for all t = 1, . . . , T ,

rt = rtI{Ef (t)},

Xt = rt − cte
C

(
1 +

10

p

)
σt−1(xt)−

2B′

t2

Yt =

t∑
s=1

Xs.

Lemma 7. Conditioned on the event Ef (t), (Yt : t = 0, . . . , T ) is a super-martingale with respect
to the filtration Ft.

Proof.
E[Yt − Yt−1|Ft−1] = E[Xt|Ft−1]

= E[rt − cte
C

(
1 +

10

p

)
σt−1(xt)−

2B′

t2
|Ft−1]

= E[rt|Ft−1]−

(
cte

C

(
1 +

10

p

)
E[σt−1(xt)|Ft−1] +

2B′

t2

)
≤ 0.

(19)

If the event Ef (t) holds, then rt = rt and the inequality follows from Lemma 6. If Ef (t) does not
hold, rt = 0 and the inequality holds trivially.

Lastly, we can apply the Azuma-Hoeffding’s inequality to the martingale (Yt : t = 0, . . . , T ) to
derive the upper bound on the cumulative regret RT .
Lemma 8. Define C1 ≜ 2

log(1+σ−2) . With probability of ≥ 1− δ, we have that

RT ≤ cT e
C

(
1 +

10

p

)√
C1TγT +

B′π2

3
+

[
4B′ + cT e

C

(
1 +

10

p

)
K0

]√
2T log(2/δ). (20)

Proof. To begin with, note that

|Yt − Yt−1| = |Xt| ≤ |rt|+ cte
C

(
1 +

10

p

)
σt−1(xt) +

2B′

t2

≤ 2B′ + cte
C

(
1 +

10

p

)
K0 + 2B′

= 4B′ + cte
C

(
1 +

10

p

)
K0,

(21)
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where we have made use of our assumption that Θ(x,x′) ≤ K0 in the second inequality. Next,
applying the Azuma-Hoeffding’s inequality to (Yt : t = 0, . . . , T ) with a probability of δ/2, we have
with probability ≥ 1− δ/2 that

T∑
t=1

rt ≤
T∑

t=1

cte
C
(
1 +

10

p

)
σt−1(xt) +

T∑
t=1

2B′

t2
+

√√√√2 log(2/δ)

T∑
t=1

(
4B′ + cteC

(
1 +

10

p

)
K0

)2
(a)

≤ cT e
C
(
1 +

10

p

) T∑
t=1

σt−1(xt) +
B′π2

3
+

[
4B′ + cT e

C

(
1 +

10

p

)
K0

]√
2T log(2/δ)

(b)

≤ cT e
C
(
1 +

10

p

)√
C1TγT +

B′π2

3
+

[
4B′ + cT e

C

(
1 +

10

p

)
K0

]√
2T log(2/δ).

(22)

(a) follows since ct is increasing in t, and (b) follows from the proof of Lemma 5.4 in the work
of [57]. Next, note that rt = rt,∀t ≥ 1 with probability of ≥ 1 − δ/2 according to Lemma 1.
Therefore, the upper bound derived in the equation above is an upper bound on RT =

∑T
t=1 rt (with

probability of ≥ 1− δ), and the proof is completed.

Note that cT = O(log2 T ). From Lemma 8, we have that

RT = O
(
eC(log2 T )

√
T
(
1 +

√
γT
))

= Õ
(
eC

√
T
(
1 +

√
γT
))

. (23)

D Proof of Theorem 2

In this section, the main technical challenge is to rigorously account for the mismatch between the
kernel with which we assume the objective function f is sampled (i.e., the exact NTK Θ) and the
kernel with which the acquisition function is sampled (i.e., the empirical NTK Θ̃). For ease of
exposition, we use k and k̃ (instead of Θ and Θ̃) to represent the exact and empirical NTK in the
proof in this section. Similarly, we also use˜ to indicate that a term is associated with the empirical
NTK k̃. For example, we use µ̃fb[t](·) and σ̃2

fb[t](·) to represent the GP posterior mean and variance

calculated using the empirical NTK k̃.

For simplicity, we assume that the event in Proposition 1 holds throughout the entire proof, which
happens with probability of ≥ 1− δ/4. That is, the approximation error between exact and empirical
NTKs is bounded:

|k̃(x,x′)− k(x,x′)| =
∣∣∣⟨∇θf(x, θ̃),∇θf(x

′, θ̃)⟩ −Θ(x,x′)
∣∣∣ ≤ (L+ 1)ε, ∀x,x′ ∈ X . (24)

To begin with, we use the following lemma to bound the difference between the GP posterior standard
deviations calculated using the exact and empirical NTKs. Here, to simplify the derivations and
results, we assume that (L+ 1)ε ≤ 1 and σ2 ≤ 1. Note that these assumptions are not essential to
the proof but are only used get cleaner expressions. Here, again for ease of expositions, we define
K̂0 ≜ max{1,K0}, and K̂2

0 ≜ max{1,K2
0}.

Lemma 9. We have ∀t ≥ 1,∀x ∈ X that

|σfb[t](x)− σ̃fb[t](x)| ≤

√√√√(L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
.

Proof. Denote by Kt the fb[t] × fb[t]-dimensional gram matrix of exact NTK covariance values
calculated using all fb[t] observations up to iteration fb[t], and use K̃t to represent the corresponding
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gram matrix calculated using the empirical NTK k̃. If we define A = (Kt + σ2)−1 or A =

(K̃t + σ2)−1, then for both values of A, we have that

∥A∥2 =
√
max[eig(A⊤A)] =

√
max[eig(A)2] ≤ 1

σ2
. (25)

This allows us to derive the following equation:∥∥∥(Kt + σ2)−1 − (K̃t + σ2)−1
∥∥∥
2
≤
∥∥∥(Kt + σ2)−1

∥∥∥
2

∥∥∥(K̃t + σ2)−1
∥∥∥
2

∥∥∥Kt − K̃t

∥∥∥
2

≤ 1

σ2
× 1

σ2
× t(L+ 1)ε =

t(L+ 1)ε

σ4
.

(26)

Define the fb[t]-dimensional vectors kt(x) = [k(x,xτ )]τ=1,...,fb[t] and k̃t(x) = [k̃(x,xτ )]τ=1,...,fb[t].
Then making use of the approximation guarantee from equation (24), we define k̃t(x) = kt(x) +
(L+ 1)εν(x), where ν(x) is an fb[t]−dimensional vector where every element satisfies |ν(x)i| ≤
1,∀i ∈ [fb[t]]. Now we can use these definitions to derive the following upper bound.

|σ2
fb[t](x)− σ̃2

fb[t](x)| = |k(x,x)− kt(x)
⊤(Kt + σ2I)−1kt(x)

− k̃(x,x) + k̃t(x)
⊤(K̃t + σ2I)−1k̃t(x)|

≤ |k(x,x)− k̃(x,x)|+ |kt(x)
⊤(Kt + σ2I)−1kt(x)− k̃t(x)

⊤(K̃t + σ2I)−1k̃t(x)|

≤ (L+ 1)ε+
∣∣∣kt(x)

⊤
(
(Kt + σ2I)−1 − (K̃t + σ2I)−1

)
kt(x)

− 2(L+ 1)εν(x)⊤(K̃t + σ2I)−1kt(x)− (L+ 1)2ε2ν(x)⊤(K̃t + σ2I)−1ν(x)
∣∣∣

≤ (L+ 1)ε+
∥∥kt(x)

∥∥
2

∥∥∥(Kt + σ2)−1 − (K̃t + σ2)−1
∥∥∥
2

∥∥kt(x)
∥∥
2
+

2(L+ 1)ε
∥∥ν(x)∥∥

2

∥∥∥(K̃t + σ2)−1
∥∥∥
2

∥∥kt(x)
∥∥
2
+ (L+ 1)2ε2

∥∥ν(x)∥∥
2

∥∥∥(K̃t + σ2I)−1
∥∥∥
2

∥∥ν(x∥∥
2
)

≤ (L+ 1)ε+K0

√
t
t(L+ 1)ε

σ4
K0

√
t+ 2(L+ 1)ε

√
t
1

σ2
K0

√
t+ (L+ 1)2ε2

√
t
1

σ2

√
t

= (L+ 1)ε+K2
0

t2(L+ 1)ε

σ4
+ 2K0(L+ 1)ε

t

σ2
+ (L+ 1)2ε2

t

σ2

≤ (L+ 1)ε+ 4K̂2
0

t2(L+ 1)ε

σ4

≤ (L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
.

(27)

Elementary calculation tells us that for a, b, c > 0, if a2 − b2 ≤ c2, then a ≤
√
b2 + c2 ≤ b + c,

which leads to a − b ≤ c. As a result, the equation above tells us that |σfb[t](x) − σ̃fb[t](x)| ≤√
(L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
.

The next Lemma gives an upper bound on the difference between the GP posterior means calculated
using the exact and empirical NTKs.
Lemma 10. With probability of ≥ 1− δ/4, we have ∀t ≥ 1,∀x ∈ X that

|µfb[t](x)− µ̃fb[t](x)| ≤ 2K̂0
t2(L+ 1)ε

σ4

(
B′ + σ

√
2 log(4T/δ)

)
.

Proof. Define yt = [yτ ]τ=1,...,fb[t]. We have that yτ = f(xτ ) + ϵ where ϵ ∼ N (0, σ2). Standard
Gaussian concentration tells us that |ϵ| ≤ zσ with probability of ≥ 1− exp(−z2/2). Substituting
z =

√
2 log(4T/δ) and making use of the assumption that |f(x)| ≤ B′,∀x ∈ X , we have that

|yτ | ≤ B′+σ
√
2 log(4T/δ) with probability of ≥ 1−δ/(4T ). Now taking a union bound over all T
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iterations, we have that |yτ | ≤ B′ + σ
√

2 log(4T/δ),∀τ = 1, . . . , T with probability of ≥ 1− δ/4.

This further implies that∥yt∥2 =

√∑fb[t]
τ=1 y

2
τ ≤

√
t
(
B′ + σ

√
2 log(4T/δ)

)
. Now we are ready to

bound the term in question:

|µfb[t](x)− µ̃fb[t](x)| = |kt(x)
⊤(Kt + σ2I)−1yt − k̃t(x)

⊤(K̃t + σ2I)−1yt|

= |kt(x)
⊤(Kt + σ2I)−1yt − kt(x)

⊤(K̃t + σ2I)−1yt − (L+ 1)εν(x)⊤(K̃t + σ2I)−1yt|

≤
∥∥kt(x)

∥∥
2

∥∥∥(Kt + σ2I)−1 − (K̃t + σ2I)−1
∥∥∥∥yt∥2 + (L+ 1)ε

∥∥ν(x)∥∥
2

∥∥∥(K̃t + σ2I)−1
∥∥∥
2
∥yt∥2

≤ K0

√
t
t(L+ 1)ε

σ4

√
t
(
B′ + σ

√
2 log(4T/δ)

)
+ (L+ 1)ε

√
t
1

σ2

√
t
(
B′ + σ

√
2 log(4T/δ)

)
≤ 2K̂0

t2(L+ 1)ε

σ4

(
B′ + σ

√
2 log(4T/δ)

)
.

(28)

Next, similar to the proof in Appendix C, here we also need a lemma showing the concentration of
the function f . Define βt = 2 log(2π2t2|X |/(3δ)), and ct = βt(1 +

√
2 log(|X |t2)). Note that the

value of βt defined here is slightly different due to the use of different error probabilities (i.e., we
have used an error probability of δ/2 in the proof in Appendix C yet δ/4 in this section).
Lemma 11. |µfb[t](x)− f(x)| ≤ βtσfb[t](x),∀x ∈ X , with probability of ≥ 1− δ/4,∀t ≥ 1.

The proof of Lemma 11 is the same as that of Lemma 1. The next Lemma proves the concentration
of the objective function f around the GP posterior mean calculated using the empirical NTK k̃,
which consists of an additional error term ϵm,t due to the use of the empirical NTK compared with
Lemma 11 above.
Lemma 12. Define

ϵm,t ≜ 2K̂0
t2(L+ 1)ε

σ4

(
B′ + σ

√
2 log(4T/δ)

)
+ βt

√√√√(L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
.

Define Ef̃ (t) as the event that |µ̃fb[t](x) − f(x)| ≤ βtσ̃fb[t](x) + ϵm,t,∀x ∈ X . We have that

P(Ef̃ (t)) ≥ 1− δ/2,∀t ≥ 1.

Proof.

|µ̃fb[t](x)− f(x)| ≤ |µ̃fb[t](x)− µfb[t](x)|+ |µfb[t](x)− f(x)|
(a)

≤ 2K̂0
t2(L+ 1)ε

σ4

(
B′ + σ

√
2 log(4T/δ)

)
+ βtσfb[t](x)

(b)

≤ 2K̂0
t2(L+ 1)ε

σ4

(
B′ + σ

√
2 log(4T/δ)

)
+ βt

σ̃fb[t](x) +

√√√√(L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
= βtσ̃fb[t](x) + 2K̂0

t2(L+ 1)ε

σ4

(
B′ + σ

√
2 log(4T/δ)

)
+ βt

√√√√(L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
= βtσ̃fb[t](x) + ϵm,t

(29)

(a) follows from Lemma 10 and Lemma 11 and hence holds with probability of ≥ 1− δ/4− δ/4 =
1− δ/2, and (b) results from Lemma 9.

Denote by f̃t the sampled function in iteration t using the empirical NTK, i.e., f̃t ∼
GP(µ̃fb[t](·), β2

t σ̃
2
fb[t](·, ·)).
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Lemma 13. Define Ef̃t(t) as the event that |µ̃fb[t](x)− f̃t(x)| ≤ βt

√
2 log(|X |t2)σ̃fb[t](x),∀x ∈ X .

We have that P(Ef̃t(t)) ≥ 1− 1/t2,∀t ≥ 1.

Lemma 13 is the counterpart to Lemma 2 in Appendix C and can be proved using the same techniques.
Of note, conditioned on both events Ef̃ (t) and Ef̃t(t), we have that

|f(x)− f̃t(x)| ≤ |f(x)− µ̃fb[t](x)|+ |µ̃fb[t](x)− f̃t(x)|

≤ βtσ̃fb[t](x) + ϵm,t + βt

√
2 log(|X |t2)σ̃fb[t](x)

= ctσ̃fb[t](x) + ϵm,t.

(30)

Next, we similarly define the set of saturated inputs.

Definition 3. Define the set of saturated inputs in iteration t as

St = {x ∈ X : ∆(x) > ctσ̃fb[t](x) + 2ϵm,t},

in which ∆(x) = f(x∗)− f(x).

Again, x∗ is always unsaturated.

Lemma 14. For any Ft−1, conditioned on the events Ef̃ (t), we have that ∀x ∈ X ,

P
(
f̃t(x) + ϵm,t > f(x)|Ft−1

)
≥ p, (31)

in which p = 1
4e

√
π

.

Proof.

P
(
f̃t(x) + ϵm.t > f(x)|Ft−1

)
= P

(
f̃t(x)− µ̃fb[t](x) + ϵm.t

βtσ̃fb[t](x)
>

f(x)− µ̃fb[t](x)

βtσ̃fb[t](x)

∣∣∣Ft−1

)

≥ P

(
f̃t(x)− µ̃fb[t](x) + ϵm.t

βtσ̃fb[t](x)
>

|f(x)− µ̃fb[t](x)|
βtσ̃fb[t](x)

∣∣∣Ft−1

)

= P

(
f̃t(x)− µ̃fb[t](x)

βtσ̃fb[t](x)
>

|f(x)− µ̃fb[t](x)| − ϵm.t

βtσ̃fb[t](x)

∣∣∣Ft−1

)
(a)

≥ P

(
f̃t(x)− µ̃fb[t](x)

βtσ̃fb[t](x)
> 1
∣∣∣Ft−1

)
(b)

≥ exp(−1)

4
√
π

.

(32)

(a) follows from Lemma 12, and (b) follows because f̃t(x) ∼ N (µ̃fb[t](x), β
2
t σ̃

2
fb[t](x)) and makes

use of the Gaussian anti-concentration inequality.

Next, we again prove a lower bound on the probability that the selected input is unsaturated.

Lemma 15. For any Ft−1, conditioned on the event Ef̃ (t), we have that

P
(
xt ∈ X \ St, |Ft−1

)
≥ p− 1/t2.

Proof. The proof here follows similar steps as the proof of Lemma 4. To begin with, we have the
following relationship.

P
(
xt ∈ X \ St|Ft−1

)
≥ P

(
f̃t(x

∗) > f̃t(x),∀x ∈ St|Ft−1

)
, (33)
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The validity of this equation can be justified in a similar way as equation (9) in the proof of Lemma 4,
i.e., the event on the right hand sight implies the event on the left hand side.

Next, we assume that both events Ef̃ (t) and Ef̃ (t) are true, which allows us to derive an upper
bound on f̃t(x) for all x ∈ St:

f̃t(x)
(a)

≤ f(x) + ctσ̃fb[t](x) + ϵm,t

(b)

≤ f(x) + ∆(x)− ϵm,t = f(x∗)− ϵm,t, (34)

in which (a) follows from Lemmas 12 and 13, and (b) is a result of Definition 3.

Therefore, (34) implies that when both both events Ef̃ (t) and Ef̃t(t) hold,

P
(
f̃t(x

∗) > f̃t(x),∀x ∈ St|Ft−1

)
≥ P

(
f̃t(x

∗) > f(x∗)− ϵm,t|Ft−1

)
. (35)

Next, we can show that

P
(
xt ∈ X \ St|Ft−1

)
≥ P

(
f̃t(x

∗) > f̃t(x),∀x ∈ St|Ft−1

)
≥ P

(
f̃t(x

∗) > f(x∗)− ϵm,t|Ft−1

)
− P

(
Ef̃t(t)|Ft−1

)
≥ p− 1/t2,

(36)

where the last inequality makes use of Lemma 14.

The next Lemma derives an upper bound on the expected instantaneous regret rt = f(x∗)− f(xt).

Lemma 16. For any Ft−1, conditioned on the event Ef̃ (t), we have that

E
[
rt|Ft−1

]
≤ cte

C

(
1 +

10

p

)
E
[
σt−1(xt)|Ft−1

]
+ ϵ′m,t +

2B′

t2
,

where

ϵ′m,t ≜ 3ct

√√√√(L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
+ 4ϵm,t. (37)

Proof. Define
xt ≜ argminx∈X\St

σfb[t](x). (38)

Note that given a Ft−1, xt is deterministic. Next, this definiton also leads to:

E[σfb[t](xt)|Ft−1] ≥ E
[
σfb[t](xt)|Ft−1,xt ∈ X \ St

]
P
(
xt ∈ X \ St|Ft−1

)
≥ σfb[t](xt)(p− 1/t2),

(39)

where the last inequality makes use of Lemma 15.

Next, conditioned on both Ef̃ (t) and Ef̃t(t), we have that

rt = f(x∗)− f(xt) = f(x∗)− f(xt) + f(xt)− f(xt)

(a)

≤ ∆(xt) + f̃t(xt) + ctσ̃fb[t](xt) + ϵm,t − f̃t(xt) + ctσ̃fb[t](xt) + ϵm,t

(b)

≤ ctσ̃fb[t](xt) + 2ϵm,t + ctσ̃fb[t](xt) + ctσ̃fb[t](xt) + 2ϵm,t + f̃t(xt)− f̃t(xt)

(c)

≤ ct

(
2σ̃fb[t](xt) + σ̃fb[t](xt)

)
+ 4ϵm,t

(d)

≤ ct

(
2σfb[t](xt) + σfb[t](xt)

)
+ 3ct

√√√√(L+ 1)ε

(
1 +

4K̂2
0 t

2

σ4

)
+ 4ϵm,t

= ct

(
2σfb[t](xt) + σfb[t](xt)

)
+ ϵ′m,t.

(40)
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(a) follows from Lemmas 12 and 13, (b) follows from the definition of unsaturated inputs (Defini-
tion 3), (c) results from the way in which xt is selected: xt = argmaxx∈X f̃t(x), (d) makes use of
Lemma 9.

Next, we can upper-bound the expected instantaneous regret:

E
[
rt|Ft−1

]
≤ E

[
ct

(
2σfb[t](xt) + σfb[t](xt)

)
+ ϵ′m,t|Ft−1

]
+ 2B′P

(
Ef̃t(t)|Ft−1

)
(a)

≤ E

[
ct

(
2

p− 1/t2
σfb[t](xt) + σfb[t](xt)

)
+ ϵ′m,t|Ft−1

]
+

2B′

t2

= E

[
ct

(
1 +

2

p− 1/t2

)
σfb[t](xt) + ϵ′m,t|Ft−1

]
+

2B′

t2

(b)

≤ ct

(
1 +

2

p− 1/t2

)
E
[
eCσt−1(xt)|Ft−1

]
+ ϵ′m,t +

2B′

t2

(c)

≤ cte
C

(
1 +

10

p

)
E
[
σt−1(xt)|Ft−1

]
+ ϵ′m,t +

2B′

t2
.

(41)

(a) follows from equation (39), (b) makes use of Lemma 5, and (c) follows since 2/(p−1/t2) ≤ 10/p.
This completes the proof.

We similarly define the following stochastic process, which will be shown to be a super-martingale in
the subsequent Lemma.

Definition 4. Define Y0 = 0, and for all t = 1, . . . , T ,

rt = rtI{Ef̃ (t)},

Xt = rt − cte
C

(
1 +

10

p

)
σt−1(xt)− ϵ′m,t −

2B′

t2

Yt =

t∑
s=1

Xs.

Lemma 17. Conditioned on the event Ef (t), (Yt : t = 0, . . . , T ) is a super-martingale with respect
to the filtration Ft.

The proof of Lemma 17 above follows closely the proof of Lemma 7 and is hence omitted.

Lemma 18. Define C1 ≜ 2
log(1+σ−2) . With probability of ≥ 1− δ,

RT ≤ cT e
C
(
1+

10

p

)√
C1TγT+Tϵ′m,T+

B′π2

3
+
(
4B′+cT e

C
(
1+

10

p

)
K0+ϵ′m,T

)√
2T log(4/δ).

(42)

Proof. To begin with, we have that

|Yt − Yt−1| = |Xt| ≤ |rt|+ cte
C

(
1 +

10

p

)
σt−1(xt) + ϵ′m,t +

2B′

t2

≤ 2B′ + cte
C

(
1 +

10

p

)
K0 + ϵ′m,t + 2B′

= 4B′ + cte
C

(
1 +

10

p

)
K0 + ϵ′m,t.

(43)
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Using the Azuma-Hoeffding’s inequality with an error probability of δ/4, we have that

T∑
t=1

rt ≤
T∑

t=1

cte
C

(
1 +

10

p

)
σt−1(xt) +

T∑
t=1

ϵ′m,t +

T∑
t=1

2B′

t2
+√√√√2 log(4/δ)

T∑
t=1

(
4B′ + cteC

(
1 +

10

p

)
K0 + ϵ′m,t

)2

(a)

≤ cT e
C

(
1 +

10

p

) T∑
t=1

σt−1(xt) +

T∑
t=1

ϵ′m,t +
B′π2

3
+(

4B′ + cT e
C

(
1 +

10

p

)
K0 + ϵ′m,T

)√
2T log(4/δ)

(b)

≤ cT e
C

(
1 +

10

p

)√
C1TγT +

T∑
t=1

ϵ′m,t +
B′π2

3
+(

4B′ + cT e
C

(
1 +

10

p

)
K0 + ϵ′m,T

)√
2T log(4/δ)

≤ cT e
C

(
1 +

10

p

)√
C1TγT + Tϵ′m,T +

B′π2

3
+(

4B′ + cT e
C

(
1 +

10

p

)
K0 + ϵ′m,T

)√
2T log(4/δ).

(44)

(a) follows since ct is increasing in t, and (b) follows from the proof of Lemma 5.4 in the work of [57].
Next, note that rt = rt,∀t ≥ 1 with probability of ≥ 1−δ/2 according to Lemma 12. Also recall that
throughout the entire proof in this section, we have conditioned on the event in Proposition 1, which
also holds with probability of ≥ 1− δ/4. Therefore, also taking into account the error probability of
δ/4 from the Azuma-Hoeffding’s inequality, the upper bound derived above is an upper bound on the
cumulative regret RT =

∑T
t=1 rt with probability of ≥ 1− δ/2− δ/4− δ/4 = 1− δ.

Now let’s analyze the asymptotic scaling of the regret upper bound derived above. Firstly, note
that cT = O(log2 T ). Next, recall that we have in the main text that (L + 1)ε = Cntk(L +

1)L3/2 log1/4(4L|X |2/δ)m−1/4. This allows us to analyze the scaling of ϵ′m,T .

ϵ′m,T = 3cT

√√√√(L+ 1)ε

(
1 +

4K̂2
0T

2

σ4

)
+ 4
(
2K̂0

T 2(L+ 1)ε

σ4

(
B′ + σ

√
2 log(4T/δ)

)
+

βT

√√√√(L+ 1)ε

(
1 +

4K̂2
0T

2

σ4

))
= Õ

(
(log T )2

√
(L+ 1)εT + T 2(L+ 1)ε+ log T
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(45)

This allows us to analyze the asymptotic scaling of our regret upper bound (ignoring all log factors)

RT = Õ
(
eC
√
TγT + Tϵ′m,T + (eC + ϵ′m,T )

√
T
)

= Õ
(
eC

√
T (

√
γT + 1) + Tϵ′m,T +

√
Tϵ′m,T

)
= Õ

(
eC

√
T (

√
γT + 1) + T 3m−1/8(L+ 1)5/4

)
.

(46)
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E Extension to Continuous Input Domains

To extend our theoretical results to cases where the input domain X is continuous, we can follow the
techniques discussed in Section 3.1 of the work of [39]. We assume that X ⊂ [0, 1]d. To begin with,
we need to additionally assume that the objective function f is Lipschitz continuous with a Lipschitz
constant L > 0. Next, we can construct a finite sub-domain X̃ of the continuous domain X , where
X̃ has equal spacing of 1√

T
in each dimension. As a result, the finite sub-domain X̃ contains T d/2

points, i.e., |X̃ | = T d/2. Then, we can simply run our algorithms (Algo. 1 and Algo. 2) on this finite
sub-domain X̃ .

As a consequence, for Theorem 1, we only need to make two changes to our theoretical results.
Firstly, we need to modify βt to be βt = 2 log(π2t2|X̃ |/(3δ)) = 2 log(π2t2T d/2/(3δ)), which will
only introduce an additional dependence on O(d log T ) into cT (Appendix C) and hence an additional
multiplicative factor of O(d log T ) = Õ(d) into the regret upper bound in Theorem 1. Secondly,
due to the Lipschitz continuity of f and the fact that every input x ∈ X has a neighbor in the finite
sub-domain X̃ whose distance to it is less than d√

T
, we have that f(x∗) ≤ maxx̃∈X̃ f(x̃) +O( Ld√

T
).

As a result, this will introduce an additional additive term of O(T × Ld√
T
) = O(Ld

√
T ) to the final

upper bound on the cumulative regret.

For Proposition 1, an additional multiplicative factor of d log T will be introduced into the condition
on m. For Theorem 2, to begin with, same as the analysis of Theorem 1 in the paragraph above, an
additional additive factor of O(Ld

√
T ) will be introduced, and an additional multiplicative factor of

O(d log T ) = Õ(d) will be introduced into the first term in Theorem 2. Moreover, as a result of the
additional factor of d log T in the condition on m (Proposition 1), an additional multiplicative factor
of d log T will also be introduced into the approximation quality of (L+ 1)ε (Sec. 4.2). As a result,
in the proof of Theorem 2 (Appendix D), an additional multiplicative factor of

√
d will be introduced

into the term ϵ′m,T (see (45)) and hence into the second term in the upper bound in Theorem 2.

Of note, the modified results discussed above do not affect the scaling of our theoretical results
(Theorem 1 and Theorem 2) in T (we ignore all dependencies on log T ), because the only additional
term depending on T for both theorems is an additive term of Õ(

√
T ).

F More Experimental Details

In all experiments, for simplicity, we set βt = 1,∀t ≥ 1, which is consistent with many previous
papers on BO which have found the theoretical values of βt to be overly conservative [57]. For
fair comparisons, in every experiment, all methods under comparison use the same set of initial
inputs which are selected by random search. We use the ERF activation function in the synthetic
experiment (Sec. 5.1) because the synthetic function we have adopted is very smooth. In all real-world
experiments (Secs. 5.2, 5.3 and 5.4), we use the ReLU activation function since it has been found to
be very effective in modeling complicated real-world functions.

For all methods under comparison, when maximizing the acquisition function to choose an input
query, if the domain is discrete, we simply evaluate the acquisition function value at every input in the
domain and then choose the input that maximizes it. When the domain is continuous, we firstly use
random search to randomly sample 10, 000 inputs in the domain to evaluate their acquisition function
values, and then use L-BFGS-B with 100 random restarts to refine the search. When the domain is
mixed (i.e., consisting of both continuous and discrete inputs), we treat it as a continuous domain
and after finding the input the maximizes the acquisition function, we round the discrete inputs to
the nearest integer. For Neural UCB [69], we treat the UCB value calculated for each arm (input)
as the acquisition function; for Neural TS, we treat the reward sampled for each arm (input) as the
acquisition function [66].

We implement the training of the surrogate model f i
t (x; θ) for both Algos. 1 and 2 based on the

implementations from the work of [24], and we adopt all their default parameter settings (refer to
the implementations of [24] for the specific parameter settings, available at https://github.com/
bobby-he/bayesian-ntk) and only vary the architecture of the NN surrogate model (e.g., the
depth and width of the NN, we replace the NN with a CNN for our experiments in Sec. 5.4) as we
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have mentioned in the main text. For both Neural UCB and Neural TS, we adopt the implementations
from the work of [66], use all their default parameter settings, and only modify the architecture of
their NN surrogate model for a fair comparison with our methods. As we have mentioned in the main
text, to apply Neural UCB and Neural TS for problems with continuous domains, we adapt their
implementations such that we optimize their acquisition functions in the same way as our methods
(i.e., through a combination of random search and L-BFGS-B as discussed above). Our experiments
are performed using a computing cluster where each machine has an NVIDIA A100 GPU and 96
CPUs.

F.1 Synthetic Experiments

In the synthetic experiment, the objective function f is sampled from a GP with an SE kernel using a
lengthscale of 0.1. The domain of f is a uniform grid of size 1, 000 in the interval of [0, 1].

F.2 Real-world Experiments on Automated ML

In this section, we give more details on the three hyperparameter tuning experiments in Sec. 5.2.

Hyperparamter Tuning of Random Forest. Here we tune 6 categorical hyperparameters of
random forest:

• the maximum depth of any individual tree (integer within [1, 10]),

• the minimum number of samples required to split an internal node (integer within [2, 10]),

• the minimum number of samples required to be at a leaf node (integer within [1, 10]),

• the maximum number of features to consider when looking for the best split (integer within
[1, 8]),

• the criterion to measure the quality of a split (binary, "entropy" or "gini"),

• whether bootstrap samples are used when building trees (binary, True or False).

We use the publicly available diabetes prediction dataset which can be accessed from https://
www.kaggle.com/uciml/pima-indians-diabetes-database and has the CC0 License. This
dataset does not contains personally identifiable information or offensive content. It consists of 768
data instances, each containing 8 input features. We use 70% of the dataset as the training set and the
remaining 30% as the validation set. We use random search to choose 5 initial inputs as the set of
initialization, which is shared among all methods under comparison.

Hyperparameter Tuning of XGBoost. The MNIST dataset is publicly available and associated
with the GNU General Public License, and can be obtained from the Keras Package5. It does not
contain personally identifiable information or offensive content. In this experiment, we use the
MNIST dataset to tune 9 hyperparameters of XGBoost [6]:

• gamma which represents the minimum loss reduction required to make a further partition on
a leaf node of the tree (continuous, [0, 10]),

• the learning rate (continuous, [10−6, 1]),

• the maximum depth of any individual tree (integer, [1, 15]),

• which booster to use (binary, "dart" or "gbtree"),

• the grow policy which controls the way new nodes are added to the tree (binary, "depthwise"
or "lossguide"),

• the objective (bianry, "multi:softprob" or "multi:softmax"),

• the tree construction method (binary, "exact" or "hist"),

• alpha which is the L1 regularization term on the weights (continuous, [0, 10]), and

• lambda which is the L2 regularization term on the weights (continuous, [0, 10]).
5https://keras.io/
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Figure 4: Validation errors for hyperparameter tuning of CNN. B = 1 unless specified otherwise.

Hyperparameter Tuning of Convolutional Neural Networks. Here we use the MNIST dataset
to tune 9 hyperparameters of convolutional neural networks (CNN). The CNN consists of one
convolutional layer, followed by a max pooling layer and subsequently a fully connected layer. The 9
hyperparameters are:

• the learning rate (continuous, [10−4, 0.1]),

• the weight decay (continuous, [10−6, 10−2]),

• the batch size (integer, [64, 512]),

• the max pooling size (integer, [3, 5]),

• the number of neurons in the convolutional layer (integer, 4, 16),

• the size of the convolutional kernel (integer, [3, 5]),

• the number of neurons in the fully connected layer (integer, [4, 16]),

• which activation function to use (binary, ReLU or Tanh),

• which optimization method to use (binary, ADAM or RMSprop).

F.3 Real-world Experiments on Reinforcement Learning

The lunar lander task involves tuning 12 parameters of a heuristic controller which is used to
control the LunarLander-v2 environment from OpenAI Gym [4]. The heuristic controller is
provided by OpenAI Gym and can be found at https://github.com/openai/gym/blob/
8a96440084a6b9be66b2216b984a1c170e4a061c/gym/envs/box2d/lunar_lander.py#
L447. OpenAI Gym6 is open-sourced and under the MIT License. The (14-dimensional) robots
pushing and (20-dimensional) rover trajectory planning tasks were firstly introduced by the work
of [62] where the detailed experimental settings can be found. Both tasks are publicly available
at https://github.com/zi-w/Ensemble-Bayesian-Optimization and are under the MIT
license. Due to the large number of iterations (500) of these three experiments (which is necessary
as a result of the high dimensionality of the input spaces), standard GP-UCB and GP-TS become
too computationally costly to run. Therefore, we applied random Fourier features approximations
[11, 12] to the GP using a large number 1, 000 of random features, with which GP-UCB and GP-TS
perform well and are still computationally feasible to run.

Using the Lunar-Lander experiment, we have also compared our STO-BNTS and STO-BNTS-Linear
with batch versions of GP-TS and Neural TS. The results are shown in Fig. 5 (a), in which all methods
use the same batch size of B = 4. The figure shows that our STO-BNTS and STO-BNTS-Linear are
still able to significantly outperform the other baseline methods when the same batch size is used.

We also use the Lunar-Lander experiment to show an alternative visualization of the performances of
our algorithms with batch evaluations in Fig. 5 (b). Specifically, the horizontal axis in Fig. 5 (b) is the
number of function evaluations, in contrast to iterations in Fig. 3a. Same as Fig. 3a, this figure also
shows the benefit of batch evaluations, because compared with the sequential algorithms (B = 1,

6https://github.com/openai/gym
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Figure 5: (a) Comparison of different algorithms with the same batch size of B = 4, including batch
versions of our STO-BNTS and STO-BNTS-Linear, as well as batch GP-TS and batch Neural TS.
(b) An alternative visualization of the performance of our algorithms with batch evaluations, using
the 12-D Lunar-Lander experiment (Fig. 3a). The horizontal axis here is the number of function
evaluations, in contrast to iterations in Fig. 3a.
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Figure 6: Results of STO-BNTS-Linear in the experiments on optimization over images (Sec. 5.4).

purple and yellow curves), our algorithms with a batch size of B = 4 only suffer slight degradations
of the per-function evaluation performances.

F.4 Optimization over Images

In this experiment, to construct the score function (Fig. 3d), we firstly use the training set of the
MNIST dataset (consisting of 60, 000 images) to train a CNN, and then use the trained CNN to
predict the class probabilities for the 10 different classes using the testing set of 10, 000 images.
Next, we use the predicted probability of class 0 for the 10, 000 testing images as the score function.
As a result of our construction of the score function, similar images in general have similar score
values since they share similar representations from the CNN, and images of 0 overall have much
larger scores than images from the other classes. This can simulate the real-world scenario of image
recommender system, in which the user may prefer a certain type of images and hence give higher
ratings to them.

For all three CNN-based methods in Fig. 3d, we use a CNN with one convolutional layer (with
convolutional kernels size of 3), followed by a max pooling layer (with a pooling size of 3), and then
followed by a fully connected layer. We have used the ReLU activation function. The width of both
the convolutional and fully connected layers are m = 64. Fig. 6 plots the results for STO-BNTS-
Linear in this experiment, which shows that its performance can be dramatically improved if we
increase the width m of the NN surrogate model (Sec. 5.4).
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