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Abstract

Collaborative machine learning involves training models on data from multiple
parties but must incentivize their participation. Existing data valuation methods
fairly value and reward each party based on shared data or model parameters but
neglect the privacy risks involved. To address this, we introduce differential privacy
(DP) as an incentive. Each party can select its required DP guarantee and perturb
its sufficient statistic (SS) accordingly. The mediator values the perturbed SS
by the Bayesian surprise it elicits about the model parameters. As our valuation
function enforces a privacy-valuation trade-off, parties are deterred from selecting
excessive DP guarantees that reduce the utility of the grand coalition’s model.
Finally, the mediator rewards each party with different posterior samples of the
model parameters. Such rewards still satisfy existing incentives like fairness but
additionally preserve DP and a high similarity to the grand coalition’s posterior.
We empirically demonstrate the effectiveness and practicality of our approach on
synthetic and real-world datasets.

1 Introduction

Collaborative machine learning (ML) seeks to build ML models of higher quality by training on
more data owned by multiple parties [47, 62]. For example, a hospital can improve its prediction
of disease progression by training on data collected from more and diversified patients from other
hospitals [6]. Likewise, a real-estate firm can improve its prediction of demand and price by training
on data from others [9]. However, parties have two main concerns that discourage data sharing and
participation in collaborative ML: (a) whether they benefit from the collaboration and (b) privacy.

Concern (a) arises as each party would expect the significant cost that it incurs to collect and share
data (e.g., the risk of losing its competitive edge) to be covered. Some existing works [47, 51], among
other data valuation methods,1 have recognized that parties require incentives to collaborate, such as
a guaranteed fair higher reward from contributing more valuable data than the others, an individually
rational higher reward from collaboration than in solitude, and a higher total reward (i.e., group
welfare) whenever possible. Often, parties share and are rewarded with information (e.g., gradients
[58] or parameters [47] of parametric ML models) computed from the shared data. However, these
incentive-aware reward schemes expose parties to privacy risks.

1Data valuation methods study how much data is worth. As explained in [46], a party’s data is first valued
independently using a performance metric (e.g., see Def. 3.1 later) and then relative to the data contributed by
others (e.g., Shapley value (Sec. 4)). The latter value is helpful to (i) model interpretability and (ii) deciding how
much to compensate the data owners fairly.
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On the other hand, some federated learning (FL) works [34] have addressed the privacy concern (b)
and satisfied strict data protection laws (e.g., European Union’s General Data Protection Regulation)
by enforcing differential privacy (DP) [1, 36] during the collaboration. Each party injects noise
before sharing information to ensure that its shared information would not significantly alter a
knowledgeable collaborating party’s or mediator’s belief about whether a datum was input to the
algorithm. Injecting more noise leads to a stronger DP guarantee. As raised in [64], adding DP
can invalidate game-theoretic properties and hence affect participation. For example, in the next
paragraph, we will see that adding DP may lead to the collaboration being perceived as unfair and a
lower group welfare. However, to the best of our knowledge (and as discussed in Sec. 7 and Fig. 5),
there are no works that address both concerns, i.e., ensure the fairness, individual rationality, and
group welfare incentives (see Sec. 4), alongside privacy. Thus, we aim to fill in this gap and design
an incentive-aware yet privacy-preserving reward scheme by addressing the following questions:

If a party (e.g., hospital) requires a stronger DP guarantee, what should the impact be on its
valuation and reward? Our answer is that, on average, its valuation and reward should decrease.
Intuitively, it is unfair when this party gets a higher valuation due to randomness in the DP noise.
More importantly, parties require guaranteed higher rewards to consider a weaker privacy guarantee
[22, 64] which will help maximize the utility of the collaboratively trained model(s). As observed
in [14, 65], the weaker the DP guarantee, the smaller the loss in model accuracy from enforcing DP.
Thus, we will (i) assign a value to each party to enforce a privacy-valuation trade-off and incentivize
parties against unfetteredly selecting an excessively strong DP guarantee,2 and (ii) flexibly allow each
party to enforce a different DP guarantee without imposing a party’s need for strong DP on others.
This new perspective and its realization is our main contribution.

To enforce a privacy-valuation trade-off, how should DP be ensured and a party’s data be valued
(Sec. 3)? Initially, valuation using validation accuracy seems promising as the works of [18, 25] have
empirically shown that adding noise will decrease the valuation. However, parties may be reluctant to
contribute validation data due to privacy concerns and disagree on the validation set as they prioritize
accurate predictions on different inputs (e.g., patient demographics). So, we revert to valuing parties
based on the quality of inference of the model parameters under DP. Bayesian inference is a natural
choice as it quantifies the impact of (additional DP) noise. In Sec. 2, we will explain how each party
ensures DP by only sharing perturbed sufficient statistic (SS) with the mediator. The mediator values
the perturbed SS by the surprise it elicits relative to the prior belief of model parameters. Intuitively,
noisier perturbed SS is less valuable as the posterior belief of the model parameters will be more
diffuse and similar to the prior. As parties prioritize obtaining a model for future predictions and
may face legal/decision difficulties in implementing monetary payments, we reward each party with
posterior samples of the model parameters (in short, model reward) instead.

How should the reward scheme be designed to satisfy the aforementioned privacy, individual
rationality, and fairness incentives (Sec. 4)? Our scheme will naturally satisfy the privacy incentive
as any post-processing of the perturbed SS will preserve DP. To satisfy fairness and individual
rationality, we set the target reward value for every party using ρ-Shapley value [47]. Lastly, to
realize these target reward values, how should the model reward be generated for each party
(Sec. 5)? Instead of rewarding all parties with samples from the same (grand coalition’s) posterior of
the model parameters given all their perturbed SS (which would be unfair if their valuations differ),
our reward control mechanism generates a different posterior for each party that still preserves a
high similarity to the grand coalition’s posterior. Concretely, the mediator scales the SS by a factor
between 0 and 1 before sampling to control the impact of data on the posterior (by tempering the data
likelihood). Scaling the SS by a factor of 0, 1, and between 0 and 1 yield the prior, posterior, and
their interpolation, respectively. We then solve for the factor to achieve the target reward value.

By answering the above questions, our work here provides the following novel contributions3:

• A new privacy-valuation trade-off criterion for valuation functions that is provably satisfied by the
combination of our Bayesian surprise valuation function with DP noise-aware inference (Sec. 3);

• New incentives including DP (while deterring excessive DP) and similarity to grand coalition’s
model (Sec. 4);

2The work of [30] describes problems posed by excessive data privacy and “the need to balance privacy with
fuller and representative data collection” (instead of privileging privacy). But, parties are still free to seek DP.

3See App. B for the key differences of our work here vs. data valuation and DP/FL works.
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• Reward control mechanisms (Sec. 5) to generate posterior samples of the model parameters for each
party that achieve a target reward value and the aforementioned incentives; one such mechanism
tempers the likelihood of the data by scaling the SS and data quantity.

2 Collaborative ML Problem with Privacy Incentive

Our private collaborative ML problem setup comprises a mediator coordinating information sharing,
valuation, and reward, and n parties performing a common ML task (e.g., predicting disease progres-
sion). Let the set N ≜ {1, . . . , n} denote the grand coalition of n parties. Each party i owns a private
dataset Di which cannot be directly shared with others, including the mediator. What alternative
information should each party provide to the mediator for collaborative training of an ML model?

To ease aggregation, this work focuses only on Bayesian models with sufficient statistic (SS), such
as exponential family models [5], Bayesian linear regression [39], and generalized linear models,
including Bayesian logistic regression [21] (with approximate SS).

Definition 2.1 (Sufficient Statistic (SS) [48, 52]). The statistic si is a SS for the dataset Di if the
model parameters θ and datasetDi are conditionally independent given si, i.e., p(θ|si,Di) = p(θ|si).

We propose that each party i shares its SS si for and in place of its datasetDi to protect the privacy of
Di. We assume that the parties have agreed to adopt a common Bayesian model with the same prior
p(θ) of model parameters θ, and each party i’s dataset Di is independently drawn from the likelihood
p(Di|θ) that is conjugate to the prior p(θ) (i.e., belonging to an exponential family). The mediator
can compute the posterior belief p(θ|{Di}i∈N ) of model parameters θ given the grand coalition N ’s
datasets using a function fθ of the sum over shared SS: p(θ|{Di}i∈N ) ∝ p(θ) fθ(

∑
i∈N si). We

give a concrete example and the mathematical details of SS in Apps. A.1 and E, respectively.

Privacy Incentive. However, sharing the exact SS sN ≜ {si}i∈N will not ensure privacy as
the mediator can draw inferences about individual datum in the private datasets DN ≜ {Di}i∈N .
To mitigate the privacy risk, each party i should choose its required privacy level ϵi and enforce
(λ, ϵi)-Rényi differential privacy.4 In Def. 2.2, a smaller ϵi corresponds to a stronger DP guarantee.4

Definition 2.2 (Rényi Differential Privacy (DP) [38]). A randomized algorithm R : D → o is
(λ, ϵ)-Rényi differentially private if for all neighboring datasets D and D′, the Rényi divergence4 of
order4 λ > 1 is Dλ(R(D) || R(D′)) ≤ ϵ.

Party i can enforce (example-level)4 (λ, ϵi)-Rényi DP by applying the Gaussian mechanism: It
generates perturbed SS oi ≜ si + zi by sampling a Gaussian noise vector zi from the distribution
p(Zi) = N (0, 0.5 (λ/ϵi) ∆

2
2(g) I) where ∆2

2(g) is the squared ℓ2-sensitivity4 of the function g that
maps the dataset Di to the SS si. We choose Rényi DP over the commonly used (ϵ, δ)-DP as it gives
a stronger privacy definition and allows a more convenient composition of the Gaussian mechanisms
[38], as explained in App. A.2.

Each party i will share (i) the number ci ≜ |Di| of data points in its dataset Di, (ii) its perturbed
SS oi,5 and (iii) its Gaussian distribution p(Zi) with the mediator. As DP algorithms are robust to
post-processing, the mediator’s subsequent operations of oi (with no further access to the dataset)
will preserve the same DP guarantees. The mediator uses such information to quantify the impact of
the DP noise and compute the DP noise-aware posterior6 p(θ|{oi}i∈N ) via Markov Chain Monte
Carlo (MCMC) sampling steps outlined by [3, 4, 27].

In this section, we have satisfied the privacy incentive. In Sec. 3, we assign a value vC to each
coalition C ⊆ N ’s perturbed SS oC ≜ {oi}i∈C that would decrease, on average, as the DP guarantee
strengthens. In Secs. 4 and 5, we outline our reward scheme: Each party iwill be rewarded with model
parameters sampled from qi(θ) (in short, model reward) for future predictions with an appropriate
reward value ri (decided based on (vC)C⊆N ) to satisfy collaborative ML incentives (e.g., individual

4Parties agree on λ. In App. A.2, we will define/explain the DP-related concepts and other DP notions.
5A benefit of sharing perturbed SS is that each party only incurs the privacy cost once regardless of the

number of samples drawn or coalitions considered.
6Here, oi should be interpreted as a random vector taking the value of its sample. Non-noise-aware inference

incorrectly treats oi as si and computes p(θ|{si = oi}i∈N ) instead. See App. A.3.
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rationality, fairness). Our work’s main contributions, notations, and setup are detailed in Fig. 1. The
main steps involved are detailed in Algo. 2.

Figure 1: An overview of our private collaborative ML problem setup from party i’s perspective
and our novel contributions (ideas in blue, novel combination of solutions in blue). We (i) enforce a
privacy-reward trade-off (using each party i’s desire for a higher-quality model reward in collaborative
ML) to deter party i from unfetteredly/overcautiously selecting an excessive DP guarantee (small ϵi),
(ii) ensure DP in valuation and rewards, and (iii) preserve similarity of its model reward qi(θ) to the
grand coalition N ’s posterior p(θ|oN ) to achieve a high utility.

3 Valuation of Perturbed Sufficient Statistics

The perturbed SS oC of coalition C is more valuable and assigned a higher value vC if it yields a
model (in our work here, the DP noise-aware posterior p(θ|oC)) of higher quality. Most data valuation
methods [24, 18, 63] measure the quality of an ML model by its performance on a validation set.
However, it may be challenging for collaborating parties (e.g., competing healthcare firms) to create
and agree on a large, representative validation set as they may prioritize accurate predictions on
different inputs (e.g., patient demographics) [47]. The challenge increases when each firm requires
privacy and avoids data sharing. Other valuation methods [47, 59] have directly used the private
inputs of the data (e.g., design matrix). Here, we propose to value the perturbed SS oC of coalition C
based on the surprise [23] that it elicits from the prior belief of model parameters, as defined below:
Definition 3.1 (Valuation via Bayesian Surprise). The value of coalition C or its surprise vC is the
KL divergence DKL(p(θ|oC); p(θ)) between posterior p(θ|oC) vs. prior p(θ).

From Def. 3.1, a greater surprise would mean that more bits will be needed to encode the information
in p(θ|oC) given that others already know p(θ). Otherwise, a smaller surprise means our prior
belief has not been updated significantly. Moreover, as the valuation depends on the observed oC ,
the surprise elicited by the exact SS and data points will indirectly influence the valuation. Next,
by exploiting the equality of the expected Bayesian surprise and the information gain on model
parameters θ given perturbed SS oC (i.e., EoC

[vC ] = I(θ;oC)), we can establish the following
essential properties of our valuation function:

V1 Non-negativity. ∀C ⊆ N ∀oC vC ≥ 0 . This is due to the non-negativity of KL divergence.
V2 Party monotonicity. In expectation w.r.t. oC , adding a party will not decrease the valuation:
∀C ⊆ C ′ ⊆ N EoC′ [vC′ ] ≥ EoC

[vC ] . The proof (App. C.1) uses the “information never hurts”
property.

V3 Privacy-valuation trade-off. When the DP guarantee is strengthened from ϵi to a smaller ϵsi and
independent Gaussian noise is added to oi to generate os

i , in expectation, the value of any coalition
C containing i will strictly decrease: Let vsC denote the value of coalition C with the random
variable and realization of oi replaced by os

i . Then, (i ∈ C)∧(ϵsi < ϵi) ⇒ EoC
[vC ] > Eos

C
[vsC ] .

The proof of V3 (App. C.1) uses the data processing inequality of information gain and the conditional
independence between θ and os

i given oi. Together, these properties address an important question
of how to ensure DP and value a party’s data to enforce a privacy-valuation trade-off (Sec. 1).
Additionally, in App. C.2, we prove that in expectation, our Bayesian surprise valuation is equivalent
to the alternative valuation that measures the similarity of p(θ|oC) to the grand coalition N ’s DP
noise-aware posterior p(θ|oN ).
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Implementation. Computing the Bayesian surprise valuation is intractable since the DP noise-aware
posterior p(θ|oC) and its KL divergence from p(θ) do not have a closed-form expression. Nonetheless,
there exist approximate inference methods like the Markov chain Monte Carlo (MCMC) sampling to
estimate p(θ|oC) efficiently, as discussed in App. A.3. As our valuation function requires estimating
the value of multiple coalitions and the posterior sampling step is costly, we prefer estimators with a
low time complexity and a reasonable accuracy for a moderate numberm of samples. We recommend
KL estimation to be performed using the nearest-neighbors method [45], and repeated and averaged
to reduce the variance of the estimate (see App. C.3 for a discussion). The nearest-neighbor KL
estimator is also asymptotically unbiased; drawing more samples would reduce the bias and variance
of our estimates and is more likely to ensure fairness — for example, party i’s sampled valuation is
only larger than j’s if i’s true valuation is higher.

Remark. Our valuation is based on the submitted information {ci,oi, p(Zi)}i∈N without verifying
or incentivizing their truthfulness. We discuss how this limitation is shared by existing works and can
be overcome by legal contracts and trusted data-sharing platforms in App. I.

4 Reward Scheme for Ensuring Incentives

After valuation, the mediator should reward each party i with a model reward (i.e., consisting of
samples from qi(θ)) for future predictions. Concretely, qi(θ) is a belief of model parameters θ
after learning from the perturbed SS oN . As in Sec. 3, we value party i’s model reward as the KL
divergence from the prior: ri ≜ DKL(qi(θ); p(θ)). The mediator will first decide the target reward
value r∗i for every party i ∈ N using {vC}C⊆N to satisfy incentives such as fairness. The mediator
will then control and generate a different qi(θ) for every party i ∈ N such that ri = r∗i using reward
control mechanisms from Sec. 5. We will now outline the incentives and desiderata for model reward
qi(θ) and reward values ri and r∗i for every party i ∈ Nwhen the grand coalition forms7.

P1 DP-Feasibility. In party i’s reward, any other party k is still guaranteed at least its original
(λ, ϵk)-DP guarantee or stronger. The implication is that the generation of party i’s reward should
not require more private information (e.g., SS) from party k.

P2 Efficiency. There is a party i ∈ N whose model reward is the grand coalition N ’s posterior, i.e.,
qi(θ) = p(θ|oN ). It follows that ri = vN .

P3 Fairness. The target reward values (r∗i )i∈N must consider the coalition values {vC}C⊆N and
satisfy properties F1 to F4 given in [47] and reproduced in App. D.2. The monotonicity axiom F4
ensures using a valuation function which enforces that a privacy-valuation trade-off will translate
to a privacy-reward trade-off and deter parties from selecting excessive DP guarantees.

P4 Individual Rationality. Each party should receive a model reward that is more valuable than the
model trained on its perturbed SS alone: ∀i ∈ N r∗i ≥ vi .

P5 Similarity to Grand Coalition’s Model. Among multiple model rewards qi(θ) whose
value ri equates the target reward r∗i , we secondarily prefer one with a higher similarity
r′i = −DKL(p(θ|oN ); qi(θ)) to p(θ|oN ).8

P6 Group Welfare. The reward scheme should maximize the total reward value
∑n

i=1 ri to increase
the utility of model reward for each party and achieve the aims of collaborative ML.

Choice of desiderata. We adopt the desiderata from [47] but make P1 and P2 more specific (by
considering each party’s actual reward qi(θ) over just its values ri and vN ) and introduce P5. Firstly,
for our Bayesian surprise valuation function, the feasibility constraint of [47] is inappropriate as
removing a party or adding some noise realization may result in ri > vN ,9 so we propose P1 instead.
Next, we recognize that party i is not indifferent to all model rewards qi(θ) with the same target
reward value as they may have different utility (predictive performance). Thus, we propose our more
specific P2 and a secondary desideratum P5. As P5 is considered after other desiderata, it does not
conflict with existing results, e.g., design for (r∗i )i∈N to satisfy other incentives.

Remark on Rationality. In P4, a party’s model reward is compared to the model trained its perturbed
SS instead of its exact SS alone. This is because the mediator cannot access (and value the model

7See App. D.1 for the modifications needed when the grand coalition does not form.
8Expectation propagation, a common approximate inference technique, also maximizes r′i. [5].
9The valuation fn. is only monotonic in expectation (V2-V3). See further discussion in App. I, Question 9.
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trained on) the private exact SS. Moreover, with no restrictions on the maximum DP noise, the value
of some party’s exact SS may exceed the grand coalition’s perturbed SS when parties require strong
DP guarantees. P4 is sufficient when parties require DP when alone to protect data from curious users
of their ML model [1, 3, 27]. For example, a hospital may not want doctors to infer specific patients’
data. When parties do not require DP when alone, our reward scheme cannot theoretically ensure
that the model reward from collaboration is better than using the exact SS. We further discuss this
limitation in App. D.3.

Design of (r∗i )i∈N . To satisfy the desiderata from [47] (including our fairness P3 and ratio-
nality P4 incentives), we adopt their ρ-Shapley fair reward scheme with ρ ∈ (0, 1] that sets
r∗i = vN (ϕi/maxk∈N ϕk)

ρ with Shapley value10 ϕi ≜ (1/n)
∑

C⊆N\i

[(
n−1
|C|
)−1 (

vC∪{i} − vC
)]

.
Shapley value’s consideration of marginal contribution (MC) to all coalitions is key to ensuring
strict desirability F3 such that party i obtains a higher reward than party k (despite vi = vk) if i’s
perturbed SS adds more value to every other non-empty coalition. Applying Theorem 1 of [47], the
mediator should set ρ between 0 and mini∈N log(vi/vN )/log(ϕi/maxk ϕk) to guarantee rationality.
Selecting a larger ρ incentivizes a party with a high-quality perturbed SS to share by fairly limiting
the benefits to parties with lower-quality ones. Selecting a smaller ρ reward parties more equally and
increase group welfare P6. Refer to Sec. 4.2 of [47] for a deeper analysis of the impact of varying ρ.
These results hold for any choice of (λ, ϵi).

After explaining the desiderata for model reward qi(θ) and reward values ri and r∗i for every party
i ∈ N , we are now ready to solve for qi(θ) such that ri = r∗i .

5 Reward Control Mechanisms

This section discusses two mechanisms to generate model reward qi(θ) with different attained reward
value ri for every party i ∈ N by controlling a single continuous parameter and solving for its value
such that the attained reward value equates the target reward value: ri = r∗i . We will discuss the
more obvious reward mechanism in Sec. 5.1 to contrast its cons with the pros of that in Sec. 5.2. Both
reward mechanisms do not request new information from the parties; thus, the DP post-processing
property applies, and every party k is still guaranteed at least its original DP guarantee or stronger in
all model rewards (i.e., P1 holds).

5.1 Reward Control via Noise Addition

The work of [47] controls the reward values by adding Gaussian noise to the data outputs. We adapt
it such that the mediator controls the reward value for party i ∈ N by adding Gaussian noise to the
perturbed SS of each party k ∈ N instead. To generate the model reward for party i (superscripted),
the mediator will reparameterize the sampled Gaussian noise vectors {eik ∼ N (0, I)}k∈N to generate
the further perturbed SS11

tiN ≜
{
tik ≜ ok +

(
0.5 λ ∆2

2(gk) τi
)1/2

eik

}
k∈N

where ∆2
2(gk) is the squared ℓ2-sensitivity of function gk that computes the exact SS sk from dataset

Dk (Sec. 2). Then, the mediator rewards party i with samples of model parameters θ from the new
DP noise-aware posterior qi(θ) = p(θ|tiN ).

Here, the scalar τi ≥ 0 controls the additional noise variance and can be optimized via root-finding
to achieve ri = r∗i . The main advantage of this reward control mechanism is its interpretation of
strengthening party k’s DP guarantee in all parties’ model rewards (see P1). For example, it can
be derived that if ϵk = ∞, then party k will now enjoy (λ, 1/τi)-DP guarantee in party i’s reward
instead. If ϵk < ∞, then party k will now enjoy a stronger (λ, ϵk/(1 + τiϵk))-DP guarantee since
ϵk/(1 + τiϵk) < ϵk.

However, this mechanism has some disadvantages. Firstly, for the same scaled additional noise
variance τi, using different noise realizations {eik}k∈N will lead to model reward qi(θ) with varying

10 Party i’s MC to some coalitions and Shapley value ϕi may be negative, which results in an unusable
negative/undefined r∗i . This issue can be averted while preserving P3 by upweighting non-negative MCs such as
to the empty set.

11To ease notation, we slightly abuse tik to represent both a random vector and its sample.
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similarity r′i to the grand coalition N ’s posterior. The mechanism cannot efficiently select the best
model reward with higher r′i (P5). Secondly, the value of ri computed using such tik may be non-
monotonic12 in τi (see Fig. 2d), which makes it hard to bracket the smallest root τi that solves for
ri = r∗i . To address these disadvantages, we will propose the next mechanism.

5.2 Reward Control via Likelihood Tempering

Intuitively, a party i who is assigned a lower target reward value r∗i < vN should be rewarded with
posterior samples of model parameters θ that use less information from the datasets and SS of all
parties. Sparked by the diffuse posterior algorithm [16], we propose that the mediator can generate
such “less informative” samples for party i using the normalized posterior13

qi(θ) ∝ p(θ) [p(DN |θ)]κi (1)

involving the product of the prior p(θ) and the data likelihood p(DN |θ) to the power of (or, said in
another way, tempered by a factor of) κi. Notice that setting κi = 0 and κi = 1 recover the prior
p(θ) and the posterior p(θ|DN ), respectively. Thus, setting κi ∈ (0, 1) should smoothly interpolate
between both. We can optimize κi to control qi(θ) so that ri = r∗i < vN .

But, how do we temper the likelihood? We start by examining the easier, non-private setting. In
Sec. 2, we stated that under our assumptions, the posterior p(θ|DN ) can be computed by using the
sum of data quantities {ck}k∈N and sum of exact SS sN . In App. E, we further show that using
the tempered likelihood [p(DN |θ)]κi is equivalent to scaling the data quantities and the exact SS
sN by the factor κi beforehand. In the private setting, the mediator can similarly scale the data
quantities, the perturbed SS in oN (instead of the inaccessible exact SS), and the ℓ2-sensitivity by the
factor κi beforehand; see App. E.3 for details. This likelihood tempering mechanism addresses both
disadvantages of Sec. 5.1:

• There is no need to sample additional DP noise. We empirically show that tempering the likelihood
produces a model reward that interpolates between the prior vs. posterior (in App. G) and preserves
a higher similarity r′i to the grand coalition N ’s posterior (P5 and hence, more group welfare P6)
and better predictive performance than noise addition (see Sec. 6).

• Using a smaller tempering factor κi ∈ [0, 1] provably decreases the attained reward value ri (see
App. E). Thus, as the relationship between ri and κi is monotonic, we can find the only root by
searching the interval [0, 1].

Remark. Our discussion on improving the estimate of vC in the paragraph on implementation in
Sec. 3 also applies to the estimate of ri in Secs. 5.1 and 5.2. Thus, solving for τi or κi to achieve
ri = r∗i using any root-finding algorithm can only be accurate up to the variance in our estimate.

6 Experiments and Discussion

This section empirically evaluates the privacy-valuation and privacy-reward trade-offs (Sec. 6.1),
reward control mechanisms (Sec. 6.2), and their relationship with the utility of the model rewards
(Sec. 6.3). The time complexity of our scheme is analyzed in App. F and baseline methods are
discussed in App. H.3. We consider Bayesian linear regression (BLR) with unknown variance on the
Syn and CaliH datasets, and Bayesian logistic regression on the Diab dataset with 3 collaborating
parties (see App. H.1 for details) and enforce (2, ϵi)-Rényi DP. For Synthetic BLR (Syn), we select
and use a normal inverse-gamma distribution (i) to generate the true regression model weights,
variance, and a 2D-dataset and (ii) as our model prior p(θ). We consider 3 parties with c1 = 100,
c2 = 200, c3 = 400 data points, respectively. For Californian Housing dataset (CaliH) [44], as
in [47], 60% of the CaliH data is deemed “public/historic” and used to pre-train a neural network
without DP. Real estate firms may only care about the privacy of their newest transactions. As
the parties’ features-house values relationship may differ from the “public” dataset, we do transfer
learning and selectively retrain only the last layer with BLR using the parties’ data. Parties 1 to 3 have,

12Increasing τi (i.e., using tik that diverges more from sk) can instead increase the surprise: The privacy-
valuation trade-off (Sec. 3) only holds in expectation across all noise and SS realizations.

13The normalized posterior is also known as the power posterior. [37] discuss useful interpretation and benefits
such as synthetically reducing the sample size, increasing the ease of computation/MCMC mixing and robustness
to model misspecifications.
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Figure 2: (a-c) Graphs of party 2’s valuation v2, Shapley value ϕ2, attained reward value r2 vs. privacy
guarantee ϵ2 for various datasets. (d-e) Graphs of attained reward value ri vs. κi (Sec. 5.2) and τi
(Sec. 5.1) for 2 different noise realizations. (f) Graph of similarity r′i to grand coalition N ’s posterior
p(θ|oN ) vs. ri for Syn dataset corresponding to (e).

respectively, 20%, 30%, and 50% of the dataset with 6581 data points and 6 features. For PIMA
Indian Diabetes classification dataset (Diab) [50], we use a Bayesian logistic regression model to
predict whether a patient has diabetes based on sensitive inputs (e.g., patient’s age, BMI, number of
pregnancies). To reduce the training time, we only use the 4 PCA main components as features (to
generate the approximate SS) [27]. Parties 1, 2, and 3 have, respectively, 20%, 30%, and 50% of the
dataset with 614 data points. As we are mainly interested14 in the impact of one party controlling
its privacy guarantee ϵi, for all experiments, we only vary party 2’s from the default 0.1. We fix the
privacy guarantees of others (ϵ1 = ϵ3 = 0.2) and ρ = 0.2 in the ρ-Shapley fair reward scheme, and
analyze party 2’s reward and utility. Note that as ϵ2 increases (decreases), party 2 becomes the most
(least) valuable of all parties.

6.1 Privacy-valuation and Privacy-reward Trade-offs

For each dataset, we only vary the privacy guarantee of party i = 2 with ϵ2 ∈
[0.004, 0.02, 0.1, 0.5, 2.5, 12.5] and use the Gaussian mechanism and a fixed random seed to generate
the perturbed SS o2 from the exact SS s2. Fig. 2a-c plot the mean and shades the standard error of
vi, vN , ϕi, and ri over 5 runs. The privacy-valuation and privacy-reward trade-offs can be observed:
As the privacy guarantee weakens (i.e., ϵ2 increases), party 2’s valuation v2, Shapley value ϕ2, and
attained reward value r2 increase. When ϵ2 is large, party 2 will be the most valuable contributor and
rewarded with p(θ|oN ), hence attaining ri = vN . App. H.5 shows that the trade-offs do not hold for
non-noise-aware inference.

6.2 Reward Control Mechanisms

We use the Syn experiment to compare the reward mechanisms that vary the noise addition using
τi (Sec. 5.1) vs. temper the likelihood using κi (Sec. 5.2). The mechanisms control qi(θ) (i.e., used
to generate party i’s model reward) to attain the target reward values. For each value of τi and κi
considered, we repeat the posterior sampling and KL estimation method 5 times. Figs. 2d and 2e-f
use different sets of sampled noise {eik}k∈N to demonstrate the stochastic relationship between
ri and τi. In Fig. 2d, the non-monotonic disadvantage of noise addition can be observed: As τi
increases, ri does not consistently decrease, hence making it hard to solve for the smaller τi that
attains r∗i = 3. In contrast, as κi decreases from 1, ri consistently decreases. Furthermore, in
Fig. 2f, we demonstrate the other advantage of likelihood tempering: For the same ri, tempering the
likelihood leads to a higher similarity r′i to the posterior p(θ|oN ) than noise addition. In App. H.6,
we report the relationship between ri vs. κi and τi for the other real-world datasets.

6.3 Utility of Model Reward

The utility (or the predictive performance) of both Bayesian models can be assessed by the mean
negative log probability (MNLP) of a non-private test set.15 In short, MNLP reflects how unlikely the
test set is given the perturbed SS and additionally cares about the uncertainty/confidence in the model
predictions (e.g., due to the impact of DP noise). MNLP will be higher (i.e., worse) when the model

14We defer the analysis of valuation function (e.g., impact of varying coverage of input space) to App. H.4.
15Such a test set is hard to obtain in practice and we are only using it for evaluation purposes.
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Figure 3: (a-c) Graphs of utility of party 2’s model reward measured by MNLPr vs. privacy guarantee
ϵ2 for various datasets. (d-f) Graphs of utility of model reward measured by MNLPr vs. attained
reward value ri under the two reward control mechanisms for various datasets.

is more uncertain of its accurate predictions or overconfident in inaccurate predictions on the test set;
see App. H.2 for an in-depth definition.

Privacy trade-offs. Figs. 3a-c illustrate the privacy-utility trade-off described in Sec. 1: As ϵ2
decreases (i.e., privacy guarantee strengthens), the MNLPN of grand coalition N ’s collaboratively
trained model and the MNLPi of party i = 2’s individually trained model generally increase, so their
utilities drop (†). This motivates the need to incentivize party 2 against selecting an excessively small
ϵ2 by enforcing privacy-valuation and privacy-reward trade-offs. From Figs. 3a-c, the impact of our
scheme enforcing the trade-offs can be observed: As ϵ2 decreases, the MNLPr of party i = 2’s model
reward increases.

Remark. In Fig. 3c, an exception to (†) is observed. The exception illustrates that the privacy-valuation
trade-off may not hold for a valuation function based on the performance on a validation set.

Individual rationality. It can be observed from Figs. 3a-c that as ϵ2 decreases, the MNLPr of party
i = 2’s model reward increases much less rapidly than the MNLPi of its individually trained model.
So, it is rational for party i = 2 to join the collaboration to get a higher utility.

Remark. Party i = 2’s utility gain appears small when ϵ2 is large due to parties 1 and 3’s selection of
strong privacy guarantee ϵ = 0.2. Party i can gain more when other parties require weaker privacy
guarantees such as ϵ = 2 instead (see App. H.5).

Likelihood tempering is a better reward control mechanism. Extending Sec. 6.2, we compare the
utility of party i’s model reward generated by noise addition vs. likelihood tempering in Figs. 3d-f.
Across all experiments, likelihood tempering (with κi) gives (i) a lower MNLPr and hence a higher
utility, and (ii) a lower variance in MNLPr than varying the noise addition (with τi).

7 Related Works

Fig. 5 in App. B gives a diagrammatic overview showing how our work fills the gap in existing works.

Data Valuation. Most data valuation methods are not differentially private and directly access the
data. For example, computing the information gain [47] or volume [59] requires the design matrix.
While it is possible to make these valuation methods differentially private (see App. H.3) or value DP
trained models using validation accuracy (on an agreed, public validation set), the essential properties
of our valuation function (V2-V3) may not hold.

Privacy Incentive. Though the works of [20, 60] reward parties directly proportional to their privacy
budget, their methods do not incentivize data sharing as a party does not fairly receive a higher reward
value for contributing a larger, more informative dataset. While the work of [28] artificially creates a
privacy-reward trade-off by paying each party i the product of its raw data’s Shapley value ϕi and a
monotonic transformation of ϵi, it neither ensures DP w.r.t. the mediator nor fairly considers how a
stronger DP guarantee may reduce party i’s marginal contribution to others (hence ϕi). The work
of [13] considers data acquisition from parties with varying privacy requirements but focuses on
the mean estimation problem and designing payment and privacy loss functions to get parties to
report their true unit cost of privacy loss. Our work here distinctively considers Bayesian models and
fairness and allows parties to choose their privacy guarantees directly while explicitly enforcing a
privacy-reward trade-off.
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Difficulties ensuring incentives with existing DP/FL works. The one posterior sampling (OPS)
method [56, 16] proposes that each party i can achieve DP by directly releasing samples from the
posterior p(θ|Di) (if the log-likelihood is bounded). However, OPS is data inefficient and may not
guarantee privacy for approximate inference [15]. It is unclear how we can privately value a coalition
C and sample from the joint posterior p(θ|{Di}i∈C). DP-FedAvg/DP-FedSGD [36] or DP-SGD [1]
enable collaborative but private training of neural networks by requiring each party i to clip and add
Gaussian noise to its submitted gradient updates. However (in addition to the valuation function issue
above), it is tricky to ensure that the parties’ rewards satisfy data sharing incentives. In each round of
FL, parties selected will receive the (same) latest model parameters to compute gradient updates. This
setup goes against the fairness (P3) incentive as parties who share less informative gradients should
be rewarded with lower quality model parameters instead. Although the unfairness may potentially
be corrected via gradient-based [58] or monetary rewards, there is no DP reward scheme to guarantee
a party better model reward from collaboration than in solitude or a higher monetary reward than its
cost of participation, hence violating individual rationality.

8 Conclusion

Unlike existing works in collaborative ML that solely focus on the fairness incentive, our proposed
scheme further (i) ensures privacy for the parties during valuation and in model rewards and (ii)
enforces a privacy-valuation trade-off to deter parties from unfetteredly selecting excessive DP guaran-
tees to maximize the utility of collaboratively trained models.16 This involves novelly combining our
proposed Bayesian surprise valuation function and reward control mechanism with DP noise-aware
inference. We empirically evaluate our scheme on several datasets.

Our work has two limitations which future work should overcome. Firstly, we only consider ML
models with SS (see App. A.1 for applications) and a single round of sharing information with the
mediator as a case study to show the incentives and trade-offs can be achieved. Future work should
generalize our scheme to ML models without an explicit SS.

Next, like the works of [18, 17, 25, 40, 47, 51] and others, we do not consider the truthfulness of
submitted information and value data as-is. This limitation is acceptable for two reasons. 1) Parties
such as hospitals and firms will truthfully share information as they are primarily interested in building
and receiving a model reward of high quality and may additionally be bound by the collaboration’s
legal contracts and trusted data-sharing platforms. For example, with the use of X-road ecosystem,17

parties can upload a private database which the mediator can query for the perturbed SS. This ensures
the authenticity of the data (also used by the owner) and truthful computation given the uploaded
private database. 2) Each party would be more inclined to submit true information as any party k who
submits fake SS will reduce its utility from the collaboration. This is because party k’s submitted
SS is used to generate k’s model reward and cannot be replaced locally as party k will only receive
posterior samples. Future work should seek to verify and incentivize truthfulness.
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A Fundamental Concepts

In this section, we will elaborate on concepts from Sec. 2 in more detail.

A.1 Sufficient Statistics

Bayesian learning involves updating our belief of the likely values of the model parameters θ, captured
in the prior p(θ), to a posterior belief p(θ|Di) ∝ p(θ) × p(Di|θ). The posterior belief gets more
concentrated (around the maximum likelihood estimate) after observing a larger dataset Di.

The statistic si is a SS for Di if θ and Di are conditionally independent given si, i.e.,
p(θ|Di) = p(θ|si,Di) = p(θ|si) [48, 52]. Knowing the dataset Di does not provide any extra
information about θ beyond the SS si. For example, for Bayesian linear regression, the statistic
si ≜

[
X⊤

i Xi, X
⊤
i yi, y

⊤
i yi

]
is sufficient for party i’s dataset Di ≜ (Xi,yi). The posterior belief

p(θ|Di) of model parameters can be computed using a closed-form formula only from si. For
example, for Bayesian linear regression, if the prior p(θ) of the weights and precision (variance
inversed) follow a normal inverse-gamma distribution, NIG(0,V0, a0, b0), the posterior p(θ|Di) is
the normal inverse-gamma distribution NIG(wi,Vi, a0 + ci/2, bi) where ci is the number of data
points and

wi = ViX
⊤
i yi Vi =

(
V −1
i +X⊤

i Xi

)−1
bi = b0 + (1/2)

[
y⊤
i yi −w⊤

i V
−1
i wi

]
The posterior belief p(θ|Di,Dj) given parties i and j’s dataset (e.g., yij is the concatenation of yi

and yj) can be similarly computed using the SS of their pooled dataset, sij . As the SS sij is just
si + sj , we only need si and sj from party i and j instead of the private dataset.

Given the perturbed SS oN ≜ {oi}i∈N instead of the exact SS sN ≜ {si}i∈N , we may need to use
Markov Chain Monte Carlo sampling methods to approximate the posterior belief p(θ|oN ). The
detailed steps are given in App. A.3.

SS exists for exponential family models [5] and Bayesian linear regression [39]. Approximate SS has
been proposed by [21] for generalized linear models.

Transfer learning suggests that we can use pre-trained neural networks like VGG-16 as feature
extractors. Thus, for more complex data such as images, we can generate approximate SS from a
neural network’s last hidden layer’s outputs.

A.2 Differential Privacy

Remark 1. Our work aims to ensure example-level DP for each collaborating party: A party updat-
ing/adding/deleting a single datum will only change the perturbed SS visible to the mediator and
the corresponding belief of the model parameters in a provably minimal way. We are not ensuring
user-level DP: The belief of model parameters only changes minimally after removing a collaborating
party’s (or a user/data owner’s) dataset, possibly with multiple data points [35].

Intuitively, a DP algorithm R : D → o guarantees that each output o is almost equally likely
regardless of the inclusion or exclusion of a data point d in D. This will allay privacy concerns and
incentivize a data owner to contribute its data point d since even a knowledgeable attacker cannot
infer the presence or absence of d.

The works on noise-aware inference [4, 27] assume that the input x and output y of any data point
have known bounded ranges. We will start by introducing our domain-dependent definitions:

Definition A.1 (Neighboring datasets). Two datasets D and D′ are neighboring if D′ can be obtained
from D by replacing a single data point. The total number of data points and all other data points are
the same.

Definition A.2 (Sensitivity [11]). The sensitivity of a function g that takes in dataset Dk quantifies
the maximum impact a data point can have on the function output. The ℓ1-sensitivity ∆1(g) and
ℓ2-sensitivity ∆2(g) measure the impact using the ℓ1 and ℓ2 norm, respectively. Given that D′

i must
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be a neighboring dataset of Di,

∆1(g) ≜ max
Di,D′

i

∥g(Di)− g(D′
i)∥1 ,

∆2(g) ≜ max
Di,D′

i

∥g(Di)− g(D′
i)∥2 .

In our problem, g computes the exact SS si for Di. The sensitivity can be known/computed if the
dataset is normalized and the feature ranges are bounded.

We start with the definition of ϵ-differential privacy. The parameter ϵ bounds how much privacy is
lost by releasing the algorithm’s output.
Definition A.3 (Pure ϵ-DP [11]). A randomized algorithmR : D → o with range O is ϵ-DP if for
all neighboring datasets D and D′ and possible output subset O ⊂ Range(R),

P (R(D) ∈ O) ≤ eϵP (R(D′) ∈ O) .

The Laplace mechanism [11] is an ϵ-DP algorithm. Instead of releasing the exact SS si, the
mechanism will output a sample of the perturbed SS oi ∼ Laplace(si, (∆1(g)/ϵ) I).

A common relaxation of ϵ-differential privacy is (ϵ, δ)-differential privacy. It can be interpreted as
ϵ-DP but with a failure of probability at most δ.
Definition A.4 ((ϵ, δ)-DP). A randomized algorithmR : D → o with range O is (ϵ, δ)-differentially
private if for all neighboring datasets D and D′ and possible output subset O ⊂ Range(R),

P (R(D) ∈ O) ≤ eϵP (R(D′) ∈ O) + δ .

The Gaussian mechanism is an (ϵ, δ)-DP algorithm. The variance of the Gaussian noise to be added
can be computed by the analytic Gaussian mechanism algorithm [2].

In the main paper, we have also discussed another relaxation of ϵ-differential privacy that is reproduced
below:
Definition A.5 (Rényi DP [38]). A randomized algorithm R : D → o is (λ, ϵ)-Rényi differen-
tially private if for all neighboring datasets D and D′, the Rényi divergence of order λ > 1 is
Dλ(R(D) || R(D′)) ≤ ϵ where

Dλ(R(D) || R(D′)) ≜
logEo∼R(D′)

[
P (R(D) = o)

P (R(D′) = o)

]λ
λ− 1

.

When λ = ∞, Rényi DP becomes pure ϵ-DP. Decreasing λ emphasizes less on unlikely
large values and emphasizes more on the average value of the privacy loss random variable
log [P (R(D) = o)/P (R(D′) = o)] with o ∼ R(D′).

The Gaussian mechanism is a (λ, ϵ)-Rényi DP algorithm. Instead of releasing the exact SS si, the
mechanism will output a sample of the perturbed SS oi ∼ N

(
si, 0.5 (λ/ϵ) ∆2

2(g) I
)
.

Post-processing. A common and important property of all DP algorithms/mechanisms is their
robustness to post-processing: Processing the output of a DP algorithm R without access to the
underlying dataset will retain the same privacy loss and guarantees [12].

Choosing Rényi-DP over (ϵ, δ)-DP. In our work, we consistently use the Gaussian mechanism in all
the experiments, like in that of [27]. We choose Rényi DP over (ϵ, δ)-DP due to the advantages stated
below:

• Rényi-DP is a stronger DP notion according to [38]: While (ϵ, δ)-DP allows for a complete failure
of privacy guarantee with probability of at most δ, Rényi-DP does not and the privacy bound is
only loosened more for less likely outcomes. Additionally, [38] claims that it is harder to analyze
and optimize (ϵ, δ)-DP due to the trade-off between ϵ and δ. More details can be found in [38].

• Rényi-DP supports easier composition: In a collaborative ML framework, each party i may need
to release multiple outputs on the same dataset Di such as the SS and other information for
preprocessing steps (e.g., principal component analysis). Composition rules bound the total privacy
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cost ϵ̂ of releasing multiple outputs of differentially private mechanisms. It is harder to keep track
of the total privacy cost when using (ϵ, δ)-DP due to advanced composition rules and the need
to choose from a wide selection of possible (ϵ(δ), δ) [38]. In contrast, the composition rule (i.e.,
Proposition 1 in [38]) is straightforward: When λ is a constant, the ϵ of different mechanisms can
simply be summed.

Note that the contribution of our work will still hold for (ϵ, δ)-DP (using the Gaussian mechanism)
and ϵ-DP (using the Laplace mechanism) with some modifications of the inference process and
proofs.

Remark 2. Our work is in the same spirit as local DP (and we also think that no mediator can be
trusted to directly access any party’s private dataset) but does not strictly satisfy the definition of local
DP (see Def. A.6). In the definition, the local DP algorithm takes in a single input/datum and ensures
the privacy of its output — the perturbation mechanism is applied to every input independently. In
contrast, in our case, a party may have multiple inputs and the perturbation mechanism is only applied
to their aggregate statistics.
Definition A.6 (ϵ-Local DP [61]). A randomized algorithmR is ϵ-local DP if for any pair of data
points d, d′ ∈ D and for any possible output O ⊂ Range(R),

P (R(d) ∈ O) ≤ eϵP (R(d′) ∈ O) .

A.3 DP Noise-Aware Inference

From the mediator’s perspective, there is incomplete knowledge and uncertainty regarding party i’s
dataset Di. Hence, the exact and perturbed sufficient statistics (SS) of each party i should be modeled
as random variables Si and Oi, respectively. There is additional uncertainty in Oi due to the noise Zi

added by the DP mechanism. Concretely, the relationship can be expressed as Oi ≜ Si + Zi and the
Gaussian mechanism sets Zi follows N

(
si, 0.5 (λ/ϵ) ∆2

2(g) I
)
. The exact SS si and perturbed SS

oi computed by party i are realizations of Si and Oi, respectively.

Supposing the mediator observes the exact SS si from party i, the posterior belief p(θ|Si = si) can
be computed in closed form (see App. A.1). However, since the mediator only observes the perturbed
SS oi, the naive posterior belief p(θ|Si = oi) will not accurately reflect the unobservability of the
exact SS random variable Si. Thus, the naive posterior belief fails to quantify the impact of the noise
added by the DP mechanism. Instead, the mediator should use and approximate the DP noise-aware
posterior belief p(θ|Oi = oi). It is conveniently abbreviated as p(θ|oi). For a coalition C of parties,
the DP noise-aware posterior belief is p(θ|oC) ≜ p(θ|{Oi = oi}i∈C)), as described in Footnote 6.

The works of [3, 4, 27] have shown that DP noise-aware inference leads to a posterior belief that is
better calibrated (i.e., lower bias and better quantification of uncertainty without overconfidence)
and of higher utility (i.e., closer to the non-private posterior belief). This should translate to a better
predictive performance.

Detailed sampling steps. There is no closed form formula to compute p(θ|oC). We have to use
Markov Chain Monte Carlo methods, such as Gibbs sampling and No-U-Turn [19] sampler, to
approximate the posterior belief p(θ|oC) instead. We extend the works of [4, 27] that only consider a
single party to the multi-party setting. The graphical model is drawn in Fig. 4.

Gibbs sampling for Bayesian linear regression (BLR). Given the perturbed SS {oi}i∈N of all
parties in the grand coalition N and the prior beliefs p(θ) of model parameters and p(ω) of data
parameters, we adapt the algorithm of [4] to sample the parameters from the BLR posterior p(θ|oN )
in Algorithm 1. The algorithm repeatedly draws θ based on

p(θ|oN ) ∝
∫ ∏

i∈N

[p(oi|si) p(si|θ)] p(θ) dsN .

For BLR with unknown variance, the model parameters θ consist of the weight of each feature, the
bias, and the unknown variance σ2. The normal approximation of p(Si|θ) is appropriate as Si is a
sum of i.i.d. SS for each datum, and the central limit theorem applies.

We follow the work of [3] and use two views of the joint distribution p(θ, Si) [3]. When updating
θ, we use the standard exponential family model view to compute the posterior belief p(θ|Si) via
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θ Si Oi

Xi Ziω

n

Figure 4: In the graphical model above, all parties share the same prior belief p(θ) of model parameters
θ and prior belief p(ω) of data parameters ω. Each party i submits its data quantity and perturbed
SS oi to the mediator. The mediator models its beliefs of the SS of each party separately, so the
model includes Si and observed (shaded) Oi for each party i ∈ N . The distribution of the sufficient
statistic Si depends on the belief of model parameters θ (which affect the model output y) and the
model inputs Xi. We illustrate the relationship between ω, Xi, and Si as dashed lines as they may be
modeled differently in the various DP noise-aware inference methods. See [4, 27] for their respective
graphical models and details.

conjugate updates. When updating si, we approximate p(Si|θ) with an asymptotically correct
Gaussian distribution pN (Si|θ) = N (si|nµi, nΣi) where µi and Σi are the mean and variance of
the sufficient statistic of a single datum of party i, respectively.

MCMC sampling for generalized linear models. For generalized linear models, the model
parameters θ only consist of the weight of each feature. In linear models, the mean of y given x,
abbreviated as E[y], is x⊤θ.

Generalized linear models (GLMs) generalize linear models by introducing an inverse link function
Υ to compute the mean of y given x, i.e., E[y] = Υ(x⊤θ). For logistic regression, the output y is
binary ({±1}) and follows a Bernoulli distribution such that Υ is the sigmoid function. As the use of
the non-linear link function Υ destroys the exponential family structure, GLMs typically do not have
sufficient statistics.

Let φ denote the log-likelihood of observing y given its corresponding linear model output x⊤θ, i.e.,
φ : x⊤θ, y 7→ log p(y|x⊤θ). For logistic regression, φl = − log(1 + exp(−yx⊤θ)).

The work of [21] has proposed to approximate φ with a polynomial approximation φM using the
monomials of yx with degree ≤M as the approximate sufficient statistic. For example, a degree 2
monomial is x(1)x(2)y2 where the subscript (j) indexes feature j. This approximation results in a
model similar to a linear model. The GLM posterior belief p(θ|y,X) can then be approximated by
MCMC sampling.

The work of [27] has proposed to ensure DP by releasing a perturbed version oi of these approximate
SS si, and provided the DP analysis and normal approximation of p(si|θ) needed for approximate
inference/sampling using the No-U-Turn [19] sampler.
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Algorithm 1 Gibbs sampling algorithm for DP noise-aware BLR inference

Require: Shared prior p(θ) of model parameters, prior p(ω) of data parameters, data quantity ci,
shared perturbed SS realization oi, the Gaussian noise distribution of Zi for every party i ∈ N ,
number b of burn-in samples, number m of samples, Boolean parameter (shared) controlling if
p(x) is the same across parties.

1: Sample the initial model parameters θ(0) from the prior p(θ).
2: Sample the data prior parameters ω(0) from the prior p(ω).
3: Compute the moments of Xi based on ω.
4: for t = 1, . . . , b+m do
5: for i = 1, . . . , n do
6: Compute the normal approximation of p(Si|θ), denoted as pN (Si|θ), using the moments of

Xi.
7: Sample s

(t)
i from the product of two multivariate Gaussians pN (Si|θ) p(oi|Si), which is

also multivariate Gaussian.
8: if not shared then
9: Use information from s

(t)
i and ci to perform conjugate update on p(ωi) to obtain

p(ωi|(s(t)i , ci)). Sample ω(t)
i and compute the moments of Xi.

10: end if
11: end for
12: if shared then
13: Use information from (s

(t)
i , ci)i∈N to perform conjugate update on p(ω) to obtain

p(ω|(s(t)i , ci)i∈N ). Sample ω(t) and compute the moments of Xi.
14: end if
15: Use (s

(t)
i , ci)i∈N to perform conjugate update on p(θ) to obtain p(θ|(s(t)i , ci)i∈N ).

16: Sample θ(t) from p(θ|(s(t)i , ci)i∈N ).
17: if t > b then
18: Append θ(t) to Θ.
19: end if
20: end for
21: return Θ
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B Key Differences with Existing Data Valuation, Collaborative ML, and
DP/FL Works

FL
[34]

Data Valuation
[18, 25, 59]

DP Mechanisms
[1, 4, 27, 56]

◀ [47],
[55, 58]

▼
[20],

[26, 36]

▶

⋆

Incentives for Data Sharing
Higher reward for contributing more valuable data
(fairness across parties, individual rationality, etc.)

Collaboratively Trained
Model
Each party receives a
model decentrally trained
with everyone’s data

Differentially Private
Even to the mediator

Figure 5: Our work, ⋆, uniquely satisfies all 3 desiderata. When parties share information computed
from their data, we ensure that every party has at least its required DP w.r.t. the mediator, receives a
collaboratively trained model, and receives a higher reward for sharing higher-quality data than the
others.
It is not trivial to (i) add DP to ◀ while simultaneously enforcing a privacy-valuation trade-off, (ii)
add data sharing incentives to ▼ (i.e., design valuation functions and rewards), and (iii) achieve ▶ as
access to a party’s dataset (or a coalition’s datasets) is still needed for its valuation in [57].

Difference with existing data valuation and collaborative ML works considering incentives. Our
work aims to additionally (A) offer parties assurance about privacy but (B) deter them from selecting
excessive privacy guarantees. We achieve (A) by ensuring differential privacy (see definitions in
App. A.2) through only collecting the noisier/perturbed version of each party’s sufficient statistics
(see App. A.1). To achieve (B), we must assign a lower valuation (and reward) to a noisier SS.
Our insight is to combine noise-aware inference (that computes the posterior belief of the model
parameters given the perturbed SS) with the Bayesian surprise valuation function. Lastly, (C) we
propose a mechanism to generate model rewards (i.e., posterior samples of the model parameters)
that attain the target reward value and are similar to the grand coalition’s model.

Difference with federated learning and differential privacy works. Existing FL works have covered
learning from decentralized data with DP guarantees. However, these works may not address the
question: Would parties want to share their data? How do we get parties to share more to maximize
the gain from the collaboration? Our work aims to address these questions and incentivize (A) parties
to share more, higher-quality data and (B) select a weaker DP guarantee. To achieve (A), it is standard
in data valuation methods [18, 25, 46] to use the Shapley value to value a party relative to the data of
others as it considers a party’s marginal contribution to all coalitions (subsets) of parties. This would
require us to construct and value a trained model for each coalition C ⊆ N : To ease aggregation
(and to avoid requesting more information or incurring privacy costs per coalition), we consider
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sufficient statistics (see App. A.1). To achieve (B), we want a valuation function that provably ensures
a lower valuation for a stronger DP guarantee. Our insight is to combine noise-aware inference (that
computes the posterior belief of the model parameters given perturbed SS) with the Bayesian surprise
valuation function. Lastly, like the works of [47, 51], (C) we generate a model reward that attains a
target reward value (which parties can use for future predictions). Our model reward is in the form of
posterior samples of the model parameters instead. We propose a new mechanism to control/generate
model rewards that work using SS and preserve similarity to the grand coalition’s model.

Fig. 5 shows how our work in this paper fills the gap in the existing works.

C Characteristic/Valuation Function

C.1 Proofs of properties for valuation function

In this section, we will use the random variable notations defined in App. A. Moreover, we abbreviate
the set of perturbed SS random variables corresponding to a coalition C of parties as OC ≜ {Oi}i∈C .

Let H(a) denote the entropy of the variable a.

Relationship between KL divergence and information gain.
I(θ;OC) = EoC∼OC

[DKL(p(θ|oC); p(θ))]

= H(θ)− EoC∼OC
[H(θ|OC = oC)] .

Party monotonicity (V2). Consider two coalitions C ⊂ C ′ ⊆ N . By taking an expectation
w.r.t. random vector OC′ ,

EoC′∼OC′ [vC ] = EoC∼OC
[DKL(p(θ|oC); p(θ))] = I(θ;OC) = H(θ)−H(θ|OC)

and

EoC′∼OC′ [vC′ ] = EoC′∼OC′ [DKL(p(θ|oC′); p(θ))] = I(θ;OC′) = H(θ)−H
(
θ|OC , OC′\C

)
.

Then, EoC′∼OC′ [vC′ ] > EoC′∼OC′ [vC ] as conditioning additionally on OC′\C should not increase
the entropy (i.e., H

(
θ|OC , OC′\C

)
≤ H(θ|OC)) due to the “information never hurts" bound for

entropy [10].

θ Si Oi

Z1
i

Os
i

Z2
i

SC\{i} OC\{i}

Figure 6: Graphical model to illustrate privacy-valuation trade-off (V3) where Oi ≜ Si + Z1
i and

Os
i ≜ Oi + Z2

i .

Privacy-valuation trade-off (V3). Let ϵsi < ϵi, and Z1
i and Z2

i be independent Gaussian distribu-
tions with mean 0 and, respectively, variance ai/ϵi and (ai/ϵsi )−(ai/ϵi) > 0 where ai ≜ 0.5 λ∆2

2(g),
function g computes the exact SS si from local dataset Di, and ∆2(g) denotes its ℓ2-sensitivity.
Adding Z1

i to Si will ensure (λ, ϵi)-DP while adding both Z1
i and independent Z2

i to Si is equiva-
lent to adding Gaussian noise of variance ai/ϵsi to ensure (λ, ϵsi )-DP.18 From the graphical model

18Adding or subtracting independent noise will lead to a random variable with a higher variance. Thus, we
cannot model the random variable Oi of a lower variance ai/ϵi to ensure (λ, ϵi)-DP as Os

i − Z2
i .
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in Fig. 6 and the Markov chain θ → Oi → Os
i , the following conditional independence can be

observed: θ ⊥⊥ Os
i | Oi. By the data processing inequality, no further processing of Oi, such as the

addition of noise, can increase the information of θ. Formally, I(θ;Oi) ≥ I(θ;Os
i ). Simultaneously,

θ ⊥̸⊥ Oi | Os
i . Hence, I(θ;Oi) ̸= I(θ;Os

i )⇒ (I(θ;Oi) > I(θ;Os
i )).

To extend to any coalition C containing i, by the chain rule of mutual information,

I
(
θ;Oi, O

s
i , OC\{i}

)
= I
(
θ;Oi, OC\{i}

)
+ I
(
θ;Os

i |Oi, OC\{i}
)

= I
(
θ;Os

i , OC\{i}
)
+ I
(
θ;Oi|Os

i , OC\{i}
)
.

As conditional independence θ ⊥⊥ Os
i | Oi, OC\{i} and dependence θ ⊥̸⊥ Oi | Os

i , OC\{i} still
hold, I

(
θ;Os

i |Oi, OC\{i}
)
= 0 and I

(
θ;Oi|Os

i , OC\{i}
)
> 0, respectively. It follows from the

above expression that I(θ;OC) > I
(
θ;Os

i , OC\{i}
)
, which implies EOC

[vC ] > EOC\{i},O
s
i
[vsC ] .

For future work, the proof can be extended to other DP mechanisms.

C.2 Proof of Remark in Sec. 3

Let the alternative valuation of a coalition C be v′C ≜ DKL(p(θ|oN ); p(θ)) −
DKL(p(θ|oN ); p(θ|oC)). Then, v′∅ = 0 and v′N = DKL(p(θ|oN ); p(θ)). It can be observed that

• Unlike vC , v′C may be negative.
• Unlike vN , v′N is guaranteed to have the highest valuation as the minimum KL divergence
DKL(p(θ|oN ); q(θ)) is 0 only when q(θ) = p(θ|oN ). This is desirable when we want the grand
coalition to be more valuable than the other coalitions but odd when we consider the non-private
posterior q(θ) = p(θ|sN ): Intuitively, the model computed using sN should be more valuable
using v′ than that computed using the perturbed SS oN .

By taking an expectation w.r.t. oN ,

Ep(ON )[v
′
C ] = I(θ;ON )− EoC∼p(OC)

[
EoN\C∼p(ON\C |oC)

[
DKL

(
p(θ|oN = {oN\C ,oC}); p(θ|oC)

)]]
= I(θ;ON )− EoC∼p(OC)

[
EoN\C∼p(ON\C |oC)

[
Eθ∼p(θ|oN\C ,oC)

[
log

p(θ|oN\C ,oC)

p(θ|oC)

]]]
(i)
= I(θ;ON )− EoC∼p(OC)

[
Eθ,oN\C∼p(θ,ON\C |oC)

[
log

p(θ,oN\C |oC)

p(θ|oC) p(oN\C |oC)

]]
= I(θ;ON )− EoC∼p(OC)

[
DKL

(
p(θ,ON\C |oC); p(θ|oC) p(ON\C |oC)

)]
(ii)
= I(θ;ON )− I

(
θ;ON\C |OC

)
= I(θ;OC) = Ep(ON )[vC ] .

In equality (i) above, we multiply both the numerator and denominator within the log term by
p(oN\C |oC) and consider the expectation of the joint distribution since by the chain rule of prob-
ability, p(θ,ON\C |oC) = p(ON\C |oC) p(θ|ON\C ,oC). Equality (ii) is due to the definition of
conditional mutual information.

C.3 KL Estimation of Valuation Function

KL estimation is only a tool and not the focus of our work. Our valuation will become more accurate
and computationally efficient as KL estimation tools improve.

Recommended - nearest-neighbors [45, 54]. Given Θpost and Θprior which consists of m samples
of θ (with dimension d) from, respectively, the posterior p(θ|oC) and prior p(θ), we estimate the KL
divergence as

d

m

∑
θ∈Θpost

log
δprior
k (θ)

δpost
k (θ)

+ log
m

m− 1

where δpost
k (θ) is the distance of the sampled θ to its k-th nearest neighbor in Θpost (excluding itself)

and δprior
k (θ) is the distance of the sampled θ to the k-th nearest neighbor in Θprior.
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The number k of neighbors is tunable and analyzed in the follow-up work of [49]. As the number
m of samples increases, the bias and variance decrease. The convergence rate is analysed by [66].
Moreover, the estimate converges almost surely [45] and is consistent [54] for independent and
identically distributed (i.i.d.) samples. Furthermore, as the KL divergence is invariant to metric
reparameterizations, the bias can be reduced by changing the distance metric [42, 54].

To generate i.i.d. samples, we suggest the usage of the NUTS sampler or thinning (keeping only
every t-th sample). We observe that if the samples from θ | oC are non-independent, i.e., correlated
and close to the previous sample, we may underestimate its distance to the k-th distinct neighbor in
θ | oC , δpost

k (θ), and thus overestimate the KL divergence. This is empirically verified in Table 2. We
have also observed that the KL divergence may be underestimated when the posterior is concentrated
at a significantly different mean from the prior.

Recommended for large ϵ - approximate p(θ|oC) using maximum likelihood distribution from
the p(θ)’s exponential family. When a small noise is added to ensure weak DP, we can approximate
p(θ|oC) with a distribution q from the same exponential family as p(θ|sC). We can (i) determine q’s
parameters via maximum likelihood estimation (MLE) from the Gibbs samples19 and (ii) compute the
KL divergence in closed form.

However, the KL estimate is inaccurate (i.e., large bias) when the distribution q is a poor fit for the
posterior p(θ|oC). Future work can consider using normalizing flows as q to improve the fit, reduce
the estimation bias, and work for a larger range of DP guarantees ϵ. However, this KL estimation
method may be computationally slow and risks overfitting.

Probabilistic classification. Using probabilistic classification for KL estimation involves training a
binary classifier f : Θ→ [0, 1] (e.g., a neural network) to discriminate between samples from two
densities q(θ) and p(θ) where the posterior p(θ|oC) is treated as the prior. Concretely, we label the
m samples from q(θ) and p(θ) with 1 and 0, respectively. By Bayes’ rule, the density ratio is

q(θ)

p(θ)
=
p(θ|y = 1)

p(θ|y = 0)
=
p(y = 1|θ)
p(y = 0|θ)

.

By optimizing a proper scoring rule such as minimizing the binary cross-entropy loss, we obtain
a Bayes optimal classifier f∗(x) = p(y = 1|θ). The KL estimate is then computed as the mean
log-density ratio.

However, with only limited finite samples m and a large separation between the distributions q and p,
the density ratio and KL estimate may be highly inaccurate [8]: Intuitively, the finite samples may
be linearly separable and the loss is minimized by setting the logits (hence KL) to infinity. As the
separation between the distributions q and p increases, exponentially more samples may be needed
[8]. Moreover, as training may not produce the Bayes optimal classifier, there is an additional issue
of larger variance across runs.

D Desiderata and Incentives

D.1 When the grand coalition does not form

Now, we consider the more general case where parties team up and partition themselves into a
coalition structure CS. Formally, CS is a set of coalitions such that

⋃
C∈CS C = N and C ∩C ′ = ∅

for any C,C ′ ∈ CS and C ̸= C ′. The following incentives are modified below:

P2 For any coalition C ∈ CS, there is a party i ∈ C whose model reward is the coalition C’s
posterior, i.e., qi(θ) = p(θ|oC). It follows that ri = vC as in R2 of [47].

P5 Among multiple model rewards qi(θ) whose value ri equates the target reward r∗i , we secondarily
prefer one with a higher similarity r′i,C = −DKL(p(θ|oC); qi(θ)) to the coalition’s posterior p(θ|oC)
where i ∈ C.

19The distribution q from MLE minimizes the KL divergence DKL(p(θ|oC); q(θ)).
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D.2 Fairness Axioms

The fairness axioms from the work of [47] are reproduced below:

F1 Uselessness. If including the data or sufficient statistic of party i does not improve the quality of
a model trained on the aggregated data of any coalition (e.g., when Di = ∅, ci = 0), then party i
should receive a valueless model reward: For all i ∈ N ,

(∀C ⊆ N \ {i} vC∪{i} = vC)⇒ ri = 0 .

F2 Symmetry. If including the data or sufficient statistic of party i yields the same improvement as
that of party j in the quality of a model trained on the aggregated data of any coalition (e.g., when
Di = Dj), then they should receive equally valuable model rewards: For all i, j ∈ N s.t. i ̸= j,

(∀C ⊆ N \ {i, j} vC∪{i} = vC∪{j})⇒ ri = rj .

F3 Strict Desirability [33]. If the quality of a model trained on the aggregated data of at least a
coalition improves more by including the data or sufficient statistic of party i than that of party j,
but the reverse is not true, then party i should receive a more valuable model reward than party j:
For all i, j ∈ N s.t. i ̸= j,

(∃B ⊆ N \ {i, j} vB∪{i} > vB∪{j}) ∧
(∀C ⊆ N \ {i, j} vC∪{i} ≥ vC∪{j})⇒ ri > rj .

F4 Strict Monotonicity. If the quality of a model trained on the aggregated data of at least a coalition
containing party i improves (e.g., by including more data of party i), ceteris paribus, then party i
should receive a more valuable model reward than before: Let {vC}C∈2N and {ṽC}C∈2N denote
any two sets of values of data over all coalitions C ⊆ N , and ri and r̃i be the corresponding
values of model rewards received by party i. For all i ∈ N ,

(∃B ⊆ N \ {i} ṽB∪{i} > vB∪{i}) ∧
(∀C ⊆ N \ {i} ṽC∪{i} ≥ vC∪{i}) ∧
(∀A ⊆ N \ {i} ṽA = vA) ∧ (ṽN > ri)⇒ r̃i > ri .

D.3 Rationality

Is there a way to ensure that party i’s model reward is more valuable than the model trained
on its exact SS alone: r∗i ≥ vsi

(stronger rationality)? We consider two ideas and explain where
they fall short below

• Party i can declare the value vsi
to the mediator and the mediator selects a small ρ to ensure

stronger rationality for each party.
Problem: Stronger rationality is still impossible when the value of the grand coalition N ’s
posterior vN is less than vsi

. Using Fig. 2, vs2
must be higher than the value of v2 when

the privacy guarantee is weak (i.e., the right end point of the blue line corresponding to
v2). However, the attained reward value r2 only exceeds the right end point when ϵ2 is very
large.
Implication: Stronger rationality is more likely to be empirically achieved when party 2 and
others select a weaker DP guarantee as in Fig. 10 in App. H.5. We incentivize weaker DP
guarantees but do not restrict parties’ choice of DP guarantees.

• Instead of rewarding model parameter samples, the mediator can reward each party with
perturbed SS tij (for Sec. 5.1) or κioj , κicj , κiZj (for Sec. 5.2) for every other party j. Then,
each party i is free to use its rewards and its own exact SS si for inference, thus achieving
stronger rationality.
Problem: As party i’s model reward would not be directly influenced by its submitted oi,
it may be less deterred (hence more inclined) to submit less informative or fake SS (see
Question 2 in App. I).
Implication: The mediator should make party i use oi to incentivize party i to submit
informative and real perturbed SS.

Discussion on limitation. The limitation (no theoretical guarantee for stronger rationality) is
acceptable when parties care about privacy even when alone. Even when parties do not, the limitation
is needed to incentivize parties to submit (i) informative and real perturbed SS that they are willing to
use, while (ii) not compromising for weak DP guarantees.
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E Details on Reward Control Mechanisms

In the subsequent proofs, any likelihood pκi(·) should be interpreted as [p(·)]κi : We only raise
likelihoods (of data conditioned on model parameters) to the power of κi.

E.1 Tempering the data likelihood is equivalent to scaling each party’s SS

Let g denote the function that maps any data point dl or dataset Dk to its sufficient statistic. For any
data point dl, we assume that the data likelihood p(dl|θ) is from an exponential family with natural
parameters θ and sufficient statistic g(dl). The data likelihood p(dl|θ) can be expressed in its natural
form:

p(dl|θ) = h(dl) exp [g(dl) · θ −A(θ)]

where a · b ≜ a⊤b denotes the dot product between two vectors.

Next, we assume that p(θ) is the conjugate prior20 for p(Dk|θ) with natural parameters η and the
sufficient statistic mapping function T : θ →

[
θ⊤,−A(θ)

]⊤
. Then, for ck data points which are

conditionally independent given the model parameters θ,

p(θ|{dl}ckl=1) ∝ p(d1|θ) . . . p(dck |θ) p(θ|η)

∝


(

ck∏
l=1

h(dl)

)
exp


ck∑
l=1

g(dl)︸ ︷︷ ︸
g(Dk)

·θ − ckA(θ)


 [h(θ) exp [T (θ) · η −B(η)]]

∝ exp [g(Dk) · θ − ckA(θ) + T (θ) · η −B(η)]

∝ exp
[([

g(Dk)
⊤, ck

]⊤
+ η
)
· T (θ)− C(η)

]
where C(η) is chosen such that the distribution is normalized.

Substituting the above SS formulae into (1), the normalized posterior distribution (after tempering
the likelihood) is

qi(θ) ∝ pκi(d1|θ) . . . pκi(dck |θ) p(θ|η)

∝

[(
ck∏
l=1

h(dl)

)κi

exp [κi [g(Dk) · θ − ckA(θ)]]

]
[h(θ) exp [T (θ) · η −B(η)]]

∝ exp [κig(Dk) · θ − κickA(θ) + T (θ) · η −B(η)]

∝ exp
[([

κig(Dk)
⊤, κick

]⊤
+ η
)
· T (θ)− C ′(η)

]
where C ′(η) is chosen such that the distribution is normalized.

Observe that the SS and data quantity used in the conjugate update
([
g(Dk)

⊤, ck
]⊤

+ η
)

have been
scaled by κi.

Bayesian linear regression (BLR). Let D denote the dataset with c data points, and y and X be
the corresponding concatenated output vector and design matrix. The model parameters θ consist of
the weight parameters β and noise variance σ2 such that y = X · β +N (0, σ2I).21 For BLR, the
posterior distribution can be expressed as

p(θ|D) = p(β, σ2|y,X) ∝ p(y|X, β, σ2) p(β|σ2) p(σ2) p(X|ω) p(ω) .

The normalized posterior distribution (after tempering the likelihood) is

qi(θ) ∝ pκi(y|X, β, σ2) p(β|σ2) p(σ2) pκi(X|ω) p(ω)
20p(θ) and p(θ|Di) belong to the same exponential family.
21Here, X · β denotes matrix multiplication.
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where the Gaussian likelihoods p(y|X, β, σ2) and p(X|ω) are tempered. Since

pκi(y|X, β, σ2) ∝
[
(σ2)−

c
2 exp

(
− (y −X · β)⊤(y −X · β)

2σ2

)]κi

= (σ2)−
cκi
2 exp

(
−κi(y −X · β)⊤(y −X · β)

2σ2

)
,

raising the Gaussian likelihood to the power of κi is equivalent to scaling c (the data quantity) by κi
and X,y by

√
κi (hence the sufficient statistic [X⊤X,X⊤y,y⊤y] by κi).

E.2 Using a smaller scaling factor κi decreases the surprise/valuation

The KL divergence between two members of the same exponential family with natural parameters
η and η′, and log partition function B(·) is given by (η − η′)⊤∇B(η) − B(η) + B(η′) [41]. To
ease notational overload, we abuse some existing ones, which only apply in this subsection, by
letting sN ≜

∑
k∈N sk and cN ≜

∑
k∈N ck. Let η′ and η be the natural parameters of the prior

and the normalized tempered posterior distribution (used to generate a model reward with value
ri), respectively. Then, η = η′ + κi

[
s⊤N , cN

]⊤
. For κi ∈ [0, 1], the derivative of ri w.r.t. κi is

non-negative:

dri
dκi

=
∂ri
∂η

∂η

∂κi

=
(
(η − η′)⊤∇2B(η) +∇B(η)−∇B(η)

) [
s⊤N , cN

]⊤
=
[
κis

⊤
N , κicN

]
∇2B(η)

[
s⊤N , cN

]⊤
= κi

[
s⊤N , cN

]
∇2B(η)

[
s⊤N , cN

]⊤ ≥ 0 .

As B(η) is convex w.r.t. η, the second derivative22 ∇2B(η) is positive semi-definite, so[
s⊤N , cN

]
∇2B(η)

[
s⊤N , cN

]⊤ ≥ 0.

Hence, for κi ∈ [0, 1], the KL divergence is non-decreasing as κi increases to 1. In other words, as
κi shrinks towards 0, the KL divergence is decreasing; equality only holds when the variance of the
SS is 0.

E.3 Reward control mechanisms to generate qi(θ)

This subsection introduces how to obtain the model reward qi(θ) for each party i in Sec. 5.

Update to Gibbs sampling (varying κi). To use pκi(DN |θ) instead, we change the inputs to
Algorithm 1 to use κick, κiok, and κiZk for each party k ∈ N .

Update to Gibbs sampling (varying τi). We change the inputs to Algorithm 1: To generate party
i’s posterior samples, instead of using ok and the DP noise distribution of Zk for every party k ∈ N ,
we use tik and Zi +N (0, 0.5 λ ∆2

2(gk) τi I) instead.

Update to MCMC sampling for generalized linear models (GLMs). In GLMs, the log-likelihood
of observing y given its corresponding linear model φ : x⊤θ, y 7→ log p(y|x⊤θ) may be intractable.
Hence, [21] approximate φ with a polynomial approximation φM using the monomials of yx as the
approximate sufficient statistic. This results in an exponential family model similar to a linear model.

Tempering the likelihood and using pκi(y|x⊤θ) instead will scale the output of φ by κi. Thus, as
in the linear model, the polynomial approximation φM should be similarly scaled by scaling the
approximate SS si by κi.

For each party k ∈ N , as the true approximate SS sk is not directly accessible, we scale the perturbed
ok, the data quantity ck, and the DP noise distribution of Zk by κi (i.e., the DP mechanism noise
variance changes by κi2) and use the scaled values as inputs to the MCMC sampling algorithm.

22This second derivative is the variance of the sufficient statistic of θ. It is non-negative and often positive.
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F Time Complexity

Algorithm 2 An overview of our collaborative ML problem setup.
The computational complexity is given in App. F.

Require: Rényi DP λ parameter, Noise-aware inference algorithm, Shared prior p(θ) of model
parameters and prior p(ω) of data parameters, ρ-Shapley fairness scheme parameter.

// Party’s actions (ensure DP)
1: for each party i ∈ N do
2: Compute exact SS si from dataset Di.
3: Choose DP guarantee (λ, ϵi)-Rényi DP.
4: Sample zi from the Gaussian distribution p(Zi) = N (0, 0.5 (λ/ϵi) ∆

2
2(g) I).

5: Compute perturbed SS oi ≜ si + zi.
6: Submit (i) number ci ≜ |Di| of data points in its dataset Di, (ii) perturbed SS oi and (iii)

Gaussian distribution p(Zi) to the mediator.
7: end for

// Mediator’s actions
// 1. Compute valuation of perturbed SS needed for Shapley value. The choice of v ensures a

privacy-valuation trade-off.
8: Draw m samples from p(θ).
9: for each coalition C ⊆ N do

10: Draw m samples from the posterior p(θ|oC) by applying the noise-aware inference algorithm.
The algorithm requires the perturbed SS oC ≜ {oi}i∈C , data quantities {ci}i∈C and noise
distributions {Zi}i∈C .

11: Compute vC by using the nearest-neighbors method [45] to estimate the KL divergence
DKL(p(θ|oC); p(θ)) from the samples.

12: end for

// 2. Decide the target reward values using ρ-Shapley value [47] which ensure efficiency (P2),
fairness (P3), rationality (P4) and control group welfare (P6).

13: for each party i ∈ N do
14: Compute Shapley value ϕi = (1/n)

∑
C⊆N\i

[(
n−1
|C|
)−1 (

vC∪{i} − vC
)]

.
15: end for
16: Identify the maximum Shapley value ϕ∗ = maxk∈N ϕk.
17: for each party i ∈ N do
18: Compute ρ-Shapley fair target reward r∗i for party i using the formula r∗i = vN × (ϕi/ϕ∗)

ρ

19: end for

// 3. Generate model reward qi(θ) with value ri = r∗i that preserves similarity (P5) with the
grand coalition’s model and privacy for others (P1).

20: for each party i ∈ N do
21: Initialize Kr = ().
22: while True do
23: Select κi ∈ [0, 1] using a root finding algorithm and Kr.
24: Draw m samples from the normalized posterior qi(θ) (Eq. 1 by applying the noise-aware

inference algorithm. Use the scaled perturbed SS {κioi}i∈N , data quantities {κici}i∈N

and noise distributions {κiZi}i∈N .
25: Compute the reward value ri by using the nearest-neighbors method [45] to estimate the

KL divergence DKL(qi(θ); p(θ)) from the samples.
26: if attained reward value ri = r∗i then
27: Reward party i with the m posterior samples from qi(θ).
28: break
29: end if
30: Update Kr← Kr+ ((κi, ri), )
31: end while
32: end for
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The main steps of our scheme are detailed in Algo. 2 and the time complexity of the steps are as
follows:

1. Local SS si computation (Line 2 in Algo 2). Party i will need to sum the SS for its
ci data points. Subsequent steps will not depend on the number ci of data points. The
(approximate) SS is usually an O(d2) vector where d is the number of regression model
features. Therefore, this step incurs O(cid2) time.

2. Perturbed SS oi computation (Lines 4-5 in Algo 2). Each party will need to use the
Gaussian mechanism to perturb si. Therefore, this step incurs O(d2) time.

A

Valuation of Perturbed SS (Sec. 3). The valuation of oN requires us to draw m posterior
samples of model parameters using DP noise-aware inference (refer to App. A.3 and the
cited references for the exact steps). As the methods of [27] and [4] incur O(md4) time for
a single party, inference based on Fig. 4 will take n times longer to consider n parties. KL
estimation using k-nearest neighbor will incur O(m log(m)dim(θ)) time to value multiple
(scaled) perturbed SS. Therefore, valuation incurs O(nmd4 +m log(m) dim(θ)) time.

3. Deciding target reward value r∗i for every i ∈ N (Sec. 4, Lines 9-19 in Algo 2)).
Computing the Shapley values exactly involves valuing oC for each subset C ⊆ N , hence,
repeating Step A O(2n) time. When the number of parties is small (e.g., < 6), we can
compute the Shapley values exactly. For larger n, we can approximate the Shapley values
(ϕi)i∈N with bounded ℓ2-norm error using O(n(log n)2) samples [25, 53]. Moreover, the
value of different coalitions can be computed in parallel. Therefore, this step incursO(2n)
or O(n(log n)2) times the time in Step A.

4. Solving for κi to generate model reward (Sec. 5.2, Lines 21-31 in Algo 2). During
root-finding, the mediator values different model rewards qi(θ) generated by scaling the
perturbed SS ok, data quantity ck and DP noise distribution Zk of each party k ∈ N by
different κi, hence, repeats Step A. As we are searching for the root in a fixed interval [0, 1]
and to a fixed precision, Step A is repeated a constant (usually < 10) number of times.
Therefore, this step incurs O(nmd4 +m log(m) dim(θ)) time per party.
The mediator can further reduce the number of valuation of model rewards (repetitions
of Step A) by using the tuples of (κi, ri) obtained when solving for κi to narrow the
root-finding range for other parties after i.

Therefore, the total incurred time depends on the number of valuations performed in Step A. The
time complexity may vary for other inference and KL estimation methods.
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G Comparison of Reward Control Mechanisms via Noise Addition (Sec. 5.1)
vs. Likelihood Tempering (Sec. 5.2)

See Fig. 7.
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Figure 7: We contour plot the distribution of the regression model weights w1 and w2 for the prior,
the grand coalition N ’s posterior, and the model reward’s posterior to attain the target reward value r∗2
utilizing noise addition (Sec. 5.1) vs. likelihood tempering (Sec. 5.2) as the reward control mechanism
for the Syn dataset where ρ = .5. The tempered posterior interpolates the prior and grand coalition
N ’s posterior better as its mean/mode lies along the line connecting the prior’s and grand coalition
N ’s posterior mean and the variance is scaled by the same extent for both weights.

H Experiments

The experiments are performed on a machine with Ubuntu 20.04 LTS, 2× Intel Xeon Gold 6230
(2.1GHz) without GPU. The software environments used are Miniconda and Python. A full list of
packages used is given in the file environment.yml attached.

H.1 Experimental Details

Synthetic BLR (Syn). The BLR parameters θ consist of the weights for each dimension of the 2D
dataset, the bias, and the variance σ2. The normal inverse-gamma distribution used (i) to generate the
true regression model weights, variance, and a 2D dataset and (ii) as our model prior is as follows:
σ2 ∼ Γ−1(α0 = 5, β0 = 0.1) where α0 and β0 are, respectively, the inverse-gamma shape and scale
parameters, and y|x, σ2 ∼ N (0, σ2Λ−1

0 ) where Λ0 = 0.025 I .

We consider three parties 1, 2, and 3 with c0 = 100, c1 = 200, and c2 = 400 data points, re-
spectively. We fix ϵ1 = ϵ3 = 0.2 and vary ϵ2 from the default 0.1. As ϵ2 increases (decreases),
party 2 may become the most (least) valuable. We allow each party to have a different Gaus-
sian distribution p(xi) by maintaining a separate conjugate normal inverse-Wishart distribution
p(ωi = (µω,i,Σω,i)) for each party. We set the prior Σω,i ∼ W−1(ψ0 = I, ν0 = 50) where ψ0 and
ν0 are the scale matrix and degrees of freedom (i.e., how strongly we believe the prior), respectively.
Then, µω,i ∼ N (0, (1/λ0 = 1)Σω,i). The ℓ2-sensitivity is estimated using [26]’s analysis based on
the norms/bounds of the dataset.

One posterior sampling run generates 16 Gibbs sampling chains in parallel. For each chain, we discard
the first 10000 burn-in samples and draw m = 30000 samples. To reduce the closeness/correlation
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between samples which will affect the nearest-neighbor-based KL estimation, we thin and only keep
every 16-th sample and concatenate the thinned samples across all 16 chains. For the experiment on
reward control mechanisms, we use 5 independent runs of posterior sampling and KL estimation.

Californian Housing dataset (CaliH). As the CaliH dataset may contain outliers, we preprocess
the “public” dataset (60% of the CaliH data) by subtracting the median and scaling by the interquartile
range for each feature. We train a neural network (NN) of 3 layers with [48, 24, 6] hidden units and
the rectified linear unit (ReLU) as the activation function to minimize the mean squared error, which
we will then use as a “pre-trained NN”. The outputs of the last hidden layer have 6 features used as
the inputs for BLR. We intentionally reduce the number of features in the BLR model by adding more
layers to the pre-trained NN and reduce the magnitude of the BLR inputs by adding an activation
regularizer on the pre-trained NN hidden layers (i.e., ℓ2 penalty weight of 0.005). These reduce the
computational cost of Gibbs sampling/KL estimation and the ℓ2-sensitivity of the inputs to BLR
(hence the added DP noise), respectively. We also add a weights/bias regularizer with an ℓ2 penalty
weight of 0.005 for the last layer connected to the outputs. Lastly, we standardize the outputs of the
last hidden layer to have zero mean and unit variance.

We preprocess the private dataset for valuation and the held-out validation set (an 80-20 split) using
the same pre-trained NN/transformation process. To reduce the sensitivity and added DP noise,
we filter and exclude any data point with a z-score > 4 for any feature. There are 6581 training
data points left. We divide the dataset randomly among 3 parties such that parties 1, 2, and 3 have,
respectively, 20%, 30% and 50% of the dataset and ϵ1 = ϵ3 = 0.2 while ϵ2 is varied from the default
0.1.

The BLR parameters θ consist of the weights for each of the 6 features, the bias, and the variance
σ2. We assume θ has a normal inverse-gamma distribution and set the prior as follows. The prior
depends on the MLE estimate based on the public dataset, and we assume it has the same significance
as n0 = 10 data points. Hence, we set σ2 ∼ Γ−1(α0 = n0/2, β0 = n0/2 ×MLE estimate of σ2)
and y|x, σ2 ∼ N (0, σ2Λ−1

0 ) where Λ0 is the estimate of n0 x⊤x.

We assume that each party has the same underlying Gaussian distribution for p(x) and maintain
only one conjugate normal inverse-Wishart distribution p(ω = (µω,Σω)) shared across parties.
We initialize the prior p(ω) to be weakly dependent on the prior dataset [39]. The ℓ2-sensitivity is
estimated using [26]’s analysis based on the norms/bounds of the private transformed dataset.

One posterior sampling run generates 16 Gibbs sampling chains in parallel. For each chain, we discard
the first 10000 burn-in samples and draw m = 30000 samples. To reduce the closeness/correlation
between samples which will affect the nearest-neighbor-based KL estimation, we thin and only keep
every 16-th sample and concatenate the thinned samples across all 16 chains. For the experiment on
reward control mechanisms, we use 5 independent runs of posterior sampling and KL estimation.

PIMA Indian Diabetes classification dataset (Diab). This dataset has 8 raw features such as age,
BMI, number of pregnancies, and a binary output variable. Patients with and without diabetes are
labeled y = 1 and y = −1, respectively. We split the training and the validation set using an 80-20
split. There are 614 training data points. There are 35.6% and 31.8% of patients with diabetes in the
training and validation sets, respectively. Hence, random guessing would lead to a cross-entropy loss
of 0.629.

We preprocess both sets by (i) subtracting the training set’s median and scaling by the interquartile
range for each feature, (ii) using principal component analysis (PCA) to select the 4 most important
components of the feature space to be used as new features, and lastly, (iii) centering and scaling the
new features to zero mean and unit variance. To reduce the effect of outliers and the ℓ2-sensitivity,
we clip each training data point’s feature values at ±2.2.

We divide the 614 training data points such that parties 1, 2, and 3 have, respectively, 20%, 30%,
and 50% of the dataset and ϵ1 = ϵ3 = 0.2 while ϵ2 is varied from the default 0.1. We compute the
approximate SS [21] and perturb them for each party to achieve the selected ϵi [27]. The ℓ2-sensitivity
is also estimated based on the dataset.

We consider a Bayesian logistic regression model, and its parameters θ consist of the bias and the
weights for each of the 4 features. Like that of [27], we set an independent standard Gaussian prior for
θ but rescale it such that the squared norm ∥θ∥22 has a truncated Chi-square prior with d = 4 degrees
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of freedom. Truncation prevents sampling θ with a norm larger than 2.5 times the non-private/true
setting’s θ∗ squared norm during inference.

We assume each party has the same distribution for p(x). Our data prior p(x) has mean 0 and
covariance Σ = diag(ι) Ω diag(ι) where ι ∼ N (1, I), ι ∈ [0, 2], and Ω ∼ LKJ(2).

We use the No-U-Turn [19] sampler. We run 25 Markov chains with 400 burn-in samples and draw
m = 2000 samples with a target Metropolis acceptance rate of 0.86. We discard chains with a low
Bayesian fraction of missing information (i.e., < .3) and split the concatenated samples across chains
into 5 groups to estimate KL divergence. As sampling is slower and the generated samples tend to be
less correlated, we can use fewer samples.

Remark. For the CaliH dataset, the preprocessing is based on the “public” dataset, but for the Diab
dataset, the preprocessing (i.e., standardization, PCA) is based on the private, valued dataset. We
have assumed that the data is preprocessed. However, in practice, before using our mechanism, the
parties may have to reserve/separately expend some privacy budget for these processing steps. The
privacy cost is ignored in our analysis of the privacy-valuation trade-off.

KL estimation. We estimate KL divergence using the k-nearest-neighbor-based KL estimator [45].
To reduce the bias due to the skew of the distribution, we apply a whitening transformation [54]
where each parameter sample is centered and multiplied by the inverse of the sample covariance
matrix based on all samples from θ and θ | o. As a default, we set k = 4 and increase k until the
distance to the k-th neighbor is non-zero.

H.2 Utility of Model Reward

The mean negative log probability (MNLP) on a test dataset D∗ given the perturbed SS oi is defined
as follows:

MNLP ≜
1

|D∗|
∑

(x∗,y∗)∈D∗

− log p(y∗|x∗,oi) .

We prefer MNLP over the model accuracy or mean squared error metric. MNLP additionally
measures if a model is uncertain of its accurate predictions or overconfident in inaccurate predictions.
In contrast, the latter metrics penalize inaccurate predictions equally and ignore the model’s confidence
(which is affected by the DP noise).

Regression. Approximating the predictive distribution, p(y∗|x∗,oi), for test input x∗ as Gaussian,
the MNLP formula becomes

MNLP ≜
1

|D∗|
∑

(x∗,y∗)∈D∗

1

2

(
log(2πσ̂2(x∗)) +

(µ̂(x∗)− y∗)2

σ̂2(x∗)

)

where µ∗ and σ̂2(x∗) denote the predictive mean and variance, respectively. The first term penalizes
large predictive variance while the second term penalizes inaccurate predictions more strongly when
the predictive variance is small (i.e., overconfidence).

• The predictive mean µ̂(x∗) is the averaged prediction of y∗ (i.e., w⊤x∗, where w is part of the
model parameters θ) over all samples of the model parameters θ.

• The predictive variance σ̂2(x∗) is computed using the variance decomposition formula, i.e., the
sum of the averaged σ2 (the unknown variance parameter within θ) and the computed variance in
predictions over samples, i.e., = m−1

∑m
j=1 σ

2
j + µ̂2(x∗)− µ̂(x∗)

2.

Classification. We can estimate p(y∗|x∗,oi), for test input x∗ using the Monte Carlo approximation
[39] and reusing the samples θ from p(θ|oi). Concretely, p(y = 1|x∗,oi) ≊ m−1

∑m
j=1 σ(θ

⊤x∗).
The MNLP is equivalent to the cross-entropy loss.
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H.3 Baselines

This section will discuss if empirical comparisons with works mentioned in Sec. 7 are possible and
meaningful. To plot all the figures in Sec. 6, the baseline DP and collaborative ML works must

1. work for similar models, i.e., Bayesian linear and logistic regression;
2. not use additional information to value coalitions and generate model rewards (to preserve

the DP post-processing property); and
3. decide feasible model reward values and suggest how model rewards can be generated.

Work of [59]. Valuation by volume is model-agnostic (satisfying criteria 1). Each party i ∈ N can
submit the noisy version of X⊤

i Xi with DP guarantees to the mediator who can sum them to value
coalitions (satisfying criteria 2). The work does not propose a model reward scheme to satisfy criteria
3.

Work of [47]. [47] only considered Bayesian linear regression (with known variance) and it is not
straightforward to compute information gain on model parameters for Bayesian linear regression
(with unknown variance) and Bayesian logistic regression. Thus, the work does not satisfy criteria 1.
For Bayesian linear regression (with known variance), each party i ∈ N can submit the noisy version
of X⊤

i Xi with DP guarantees to the mediator who can sum them to value coalitions (satisfying
criteria 2). The work proposed a model reward scheme which involves adding noise to the outputs y
( satisfying criteria 3 but has to be adapted to ensure DP).

DP-FL works. A promising approach is to use DP-FedAvg/DP-FedSGD [36] to learn any model
parameters (satisfying criteria 1) in conjunction with FedSV [55] to value coalitions without additional
information (satisfying criteria 2). However, to our knowledge, these works will not satisfy criteria 3
as they do not suggest how to generate model rewards of a target reward value without retraining
(that incurs privacy costs).

As no existing work satisfies all criteria, we compare against

• using non-noise-aware inference instead of noise-aware inference, all else equal (see Sec. H.5);
• an adapted variant of the reward control via noise addition (see Sec. 5.1, Sec. 6, and App. G).

H.4 Valuation Function

In Sec. 6, we only vary the privacy guarantee ϵi of one party i. In this subsection, we will analyze
how other factors such as the coverage of the input space and the number of posterior samples on the
valuation vi.

Coverage of input space. We vary the coverage of the input space by only keeping those data points
whose first feature value is not greater than the 25, 50, 75, 100-percentile. Across all experiments
in Table 1, it can be observed that as the percentile increases (hence, data quantity and coverage
improve), the surprise elicited by the perturbed SS oN increases in tandem with the surprise elicited
by the exact SS sN .

Feature 0’s Percentile Range [0, 25] [0, 50] [0, 75] [0, 100]

Syn
Surprise of sN 12.030 12.698 13.322 14.183
Surprise of oN 6.007 6.775 7.410 8.438
CaliH
Surprise of sN 21.261 22.401 26.578 28.422
Surprise of oN 9.282 10.212 12.121 17.959
Diab
Surprise of sN 5.450 6.279 7.019 7.258
Surprise of oN 1.854 2.712 3.909 5.394

Table 1: We report the surprise elicited by sN and oN (with ϵ = 1) when using the subset of data
with first feature value not exceeding the 25, 50, 75, 100-percentile for all datasets.
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Number of posterior samples. For a consistent KL estimator, the bias/variance of the KL estimator
should decrease with a larger number of posterior samples.

Gibbs sampling. We compare the estimated surprise using various degrees of thinning (i.e., keeping
only every t-th sample) to generate 30000 samples for the CaliH dataset. In Table 2, it can be observed
that although the total number of samples is constant, the surprise differs significantly. Moreover,
as t increases, the surprise decreases at a decreasing rate and eventually converges. This may be
because consecutive Gibbs samples are highly correlated and close, thus causing us to underestimate
the distance to the k-th nearest-neighbors within θ | oN (see discussion in App. C.3). Increasing t
reduces the correlation and closeness and better meets the i.i.d. samples assumption of the nearest-
neighbor-based KL estimation method [45].

Thin every t-th sample Surprise vN
1 14.849± 0.036
2 12.839± 0.033
4 11.626± 0.018
8 11.038± 0.022
16 10.834± 0.033
20 10.790± 0.032
30 10.793± 0.011

Table 2: Thinning factor t vs. surprise vN for CaliH dataset.

NUTS logistic regression. After drawing 10000 samples for the Diab dataset using the default
setting, we analyze how using a subset of the samples will affect the estimated surprise. In particular,
we consider using (i) the first m samples or (ii) thinned m samples where we only keep every
10000/m-th sample.

In Table 3, it can be observed that as the number m of samples increases, the standard deviation of
the estimated surprise decreases. Moreover, there is no significant difference between using the first
m samples or the thinned m samples. This suggests that the samples are sufficiently independent and
thinning is not needed.

No. m of Samples Surprise vN
First 1000 2.227± 0.051

Thinned 1000 2.211± 0.034
First 2000 2.117± 0.049

Thinned 2000 2.117± 0.045
First 5000 2.145± 0.037

Thinned 5000 2.119± 0.038
All 10000 2.128± 0.030

Table 3: Number m of samples vs. surprise vN for Diab dataset.
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H.5 Additional Experiments on Valuation, Privacy-valuation Trade-off, and Privacy-reward
Trade-off

−2 −1 0 1
log10 ε2

2

4

φ1

φ2

φ3

−2 −1 0 1
log10 ε2

0

2

4

6

8

φ1

φ2

φ3

−2 −1 0 1
log10 ε2

1

2

3

φ1
φ2

φ3

(a) Syn (b) CaliH (c) Diab

Figure 8: Graphs of Shapley value ϕi of parties i = 1, 2, 3 vs. party 2’s privacy guarantee ϵ2 for
various datasets.

Shapley value. In Fig. 8, it can be observed that as party 2 weakens its privacy guarantee (i.e., ϵ1
increases), its Shapley value ϕ2 increases while other parties’ Shapley values (e.g., ϕ3) decrease.
When party 2 adds less noise to generate its perturbed SS o2, others add less value (i.e., make lower
marginal contributions (MC)) to coalitions containing party 2. Party 2 changes from being least
valuable to being most valuable, even though it has more data than party 1 and less data than party 3.
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Figure 9: Graphs of party 2’s valuation v2, Shapley value ϕ2, and attained reward value r2 vs. privacy
guarantee ϵ2 for various datasets when performing non-noise-aware (i.e., noise-naive) inference, i.e.,
p(θ|SN = oN ) and treating oN as though it is sN .

Without DP noise-aware inference. In Fig. 9a, it can be observed that as ϵ2 increases, vi and ϕi
for party i = 2 do not strictly increase. In Figs. 9b-c, it can be observed that as ϵ2 increases, vi and
ϕi for party i = 2 decrease instead. The consequence of non-noise-aware inference is undesirable
for incentivization — party 2 unfairly gets a lower valuation and reward for using a weaker privacy
guarantee, i.e., a greater privacy sacrifice. Moreover, when ϵ2 is small (i.e., under a strong privacy
guarantee), party 2 is supposed to be least valuable. However, the significantly different o2 causes
party 2 to have the highest valuation and be rewarded with the grand coalition N ’s model (i.e., ri
close to vN ) instead.

Lastly, we also observe that without DP noise-aware inference, the utility of the model reward is
small. For example, the naive posterior for the Syn dataset results in an MNLP larger than 100.

Conditions for larger improvement in MNLP. In Fig. 3, it seems that the utility of party i = 2’s
model reward measured by MNLPr cannot improve significantly over over that of its individually
trained model when ϵ2 is large. However, party i’s MNLPr can be improved by a larger extent when
(i) any other party j ̸= i selects a weaker privacy guarantee (i.e., a larger ϵj), thus improving the
utility of the collaboratively trained model or (ii) party i and others have lower data quantity (i.e.,
smaller ck for all k ∈ N ) and are unable to individually train a model of high utility. Figs. 10a, 10b,
and 10c are examples of (i), (ii), and (i+ii), respectively. In Fig. 10a, the MNLPN of grand coalition
N ’s collaboratively trained model is lower than that in Fig. 3a. In Fig. 10b, the MNLPi of party i’s
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model is higher due to less data. In these examples, we observe that a party can still gain a significant
improvement MNLPi −MNLPr when ϵi > 1.

Condition (i) for a larger improvement in MNLPr is satisfied when the trade-off deters parties from
selecting excessive DP guarantees, i.e., it incentivizes parties to select weaker DP guarantees that
still meet their legal and customers’ requirements. Condition (ii) should be satisfied in most real-life
scenarios where a party wants to participate in collaborative ML and federated learning. The party
(e.g., bank) is unable to achieve its desired utility with its individually trained model due to limited
data and collaborates with others to unlock any improvement in the utility of a collaboratively trained
model.
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Figure 10: Graphs of utility of party i = 2’s model reward qi(θ) measured by MNLPr vs. privacy
guarantee ϵ2 for Syn dataset (a) when ϵ1 = ϵ3 = 2 instead of 0.2, and (b) when only a subset of ck/2
data points is available for every party k = 1, 2, 3. (c) Graph of utility of party i = 1’s model reward
qi(θ) measured by MNLPr vs. privacy guarantee ϵ1 for Diab dataset when ϵ2 = ϵ3 = 2 instead of
0.2 and only a subset of ck/2 data points is available for every party k = 1, 2, 3.

Higher λ = 10. In Fig. 11, the privacy-valuation, privacy-reward, and privacy-utility trade-offs are
still observed when parties select a higher λ = 10 when enforcing the Rényi DP guarantee. Moreover,
the utility of party 2’s model reward is higher (i.e., lower MNLP) than that of its individually trained
model.
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Figure 11: Graphs of party 2’s (a-c) valuation v2, Shapley value ϕ2, and attained reward value r2,
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datasets when enforcing (λ = 10, ϵi)-Rényi DP guarantee.
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H.6 Additional Experiments on Reward Control Mechanisms

For the CaliH dataset, there is a monotonic relationship between ri vs. both κi and τi, as shown in
Fig. 12a. However, it can be observed from Figs. 12b-c that for the same attained reward value ri,
adding scaled noise variance τi will lead to a lower similarity r′i to the grand coalition N ’s posterior
p(θ|oN ) and utility of model reward (higher MNLPr) than tempering the likelihood by κi.
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Figure 12: (a) Graph of attained reward value ri vs. κi (Sec. 5.2) and τi (Sec. 5.1), (b) graph of
similarity r′i to the grand coalition N ’s posterior p(θ|oN ) vs. ri, and (c) graph of utility of party
i = 2’s model reward qi(θ) measured by MNLPr vs. ri for CaliH dataset.

For Diab dataset, there is a monotonic relationship between ri vs. both κi and τi, as shown in Fig. 13a.
However, it can be observed from Fig. 13b-c that for the same attained reward value ri, tempering
the likelihood by κi leads to a higher similarity r′i to the grand coalition N ’s posterior p(θ|oN ) and
utility of model reward (lower MNLPr) than adding scaled noise variance τi.
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Figure 13: (a) Graph of attained reward value ri vs. κi (Sec. 5.2) and τi (Sec. 5.1), (b) graph of
similarity r′i to the grand coalition N ’s posterior p(θ|oN ) vs. ri, and (c) graph of utility of party
i = 2’s model reward qi(θ) measured by MNLPr vs. ri for Diab dataset.

Problematic noise realization. We will show here and in Fig. 14a that some (large) noise realization
can result in a non-monotonic relationship between the attained reward value ri vs. the scaled
additional noise variance τi. As a result, it is hard to bracket the smallest root τi that solves for
ri = r∗i (e.g., = 2 or = 3). Moreover, it can be observed from Figs. 14b-c that the model reward’s
posterior qi(θ) has a low similarity r′i to the grand coalition N ’s posterior p(θ|oN ) and a much higher
MNLPr than the prior. This suggests that injecting noise does not interpolate well between the prior
and the posterior. In these cases, it is not suitable to add scaled noise variance τi and our reward
control mechanism via likelihood tempering with κi, is preferred instead.
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similarity r′i to the grand coalition N ’s posterior p(θ|oN ) vs. ri, and (c) graph of utility of party
i = 2’s model reward qi(θ) measured by MNLPr vs. ri for Syn dataset corresponding to (a).

I Other Questions

Question 1: Are there any ethical concerns we foresee with our proposed scheme?

Answer: Our privacy-valuation trade-off (V3) should deter parties from unfetteredly selecting
excessively strong DP guarantees. Parties inherently recognize the benefits of stronger DP guarantees
and may prefer such benefits in collaboration out of overcaution, mistrust of others, and convenience.
The trade-off counteracts (see Fig. 1) the above perceived benefits by explicitly introducing costs (i.e.,
lower valuation and quality of model reward). Consequently, parties will carefully select a weaker
yet satisfactory privacy guarantee they truly need.

However, a potential concern is that parties may opt to sacrifice their data’s privacy to obtain a
higher-quality model reward. The mediator can alleviate this concern by enforcing a minimum
privacy guarantee (i.e., maximum ϵ) each party must select. The model rewards will preserve this
minimum privacy guarantee due to P1. The mediator can also decrease the incentive by modifying
vC .

Another potential concern is that if parties have data with significantly different quan-
tity/quality/privacy guarantees, the weaker party k with fewer data or requiring a stronger
privacy guarantee will be denied the best model reward (i.e., trained on the grand coalition’s SS) and
instead rewarded with one that is of lower quality for fairness. The mediator can alleviate the concern
and at least ensure individual rationality (P4) by using a smaller ρ so that a weaker party k can obtain
a higher-quality model reward with a higher target reward value r∗k.

Question 2: Is it sufficient and reasonable to value parties based on the submitted information
{ci,oi, p(Zi)}i∈N instead of ensuring and incentivizing truthfulness? Would parties strategi-
cally declare other values to gain a higher valuation and reward?

Answer: An ideal collaborative ML scheme should additionally incentivize parties to be truthful and
verify the authenticity of the information provided. However, achieving the “truthfulness” incentive
is hard and has only been tackled by existing works to a limited extent. Existing work cannot
discern if the data and information declared are collected or artificially created (e.g., duplicated) and
thus, this non-trivial challenge is left to future work. The work of [32] assigns and considers each
client’s reputation from earlier rounds, while the works of [29, 31] measure the correlation in parties’
predictions and model updates. The work of [7] proposes a payment rule based on the log point-
wise mutual information between a party’s dataset and the pooled dataset of others. This payment
rule guarantees that when all other parties are truthful (i.e., a strong assumption), misreporting a
dataset with an inaccurate posterior is worse (in expectation) than reporting a dataset with accurate
posterior.23

Thus, like the works of [18, 17, 25, 40, 47, 51] and others, we value data as-is and leave achieving the
“truthfulness” incentive to future work. In practice, parties such as hospitals and firms will truthfully
share information as they are primarily interested in building and receiving a model reward of high

23The payment rule may be unfair as when two parties are present, they will always be paid equally.
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quality and may additionally be bound by the collaboration’s legal contracts and trusted data-sharing
platforms like Ocean Protocol [43]. For example, with the use of X-road ecosystem,24 parties can
maintain a private database which the mediator can query for the perturbed SS. This ensures the
authenticity of the data (also used by the owner) and truthful computation given the uploaded private
database.

Lastly, a party k who submits fake SS will also reduce its utility from the collaboration. Party k’s
fake SS will affect the grand coalition’s posterior of the model parameters given all perturbed SS
and is also used to generate k’s model reward. As party k only receives posterior samples, k cannot
replace the fake SS with its exact SS locally. As party k have to bear the consequences of the fake SS,
it would be more likely to submit true information.

Question 3: Why do we only consider Bayesian models with SS?

Answer: See App A.1 for a background on SS. Our approach would also work for Bayesian models
with approximate SS, such as Bayesian logistic regression, and latent features extracted by a neural
network.

1. The exact SS si captures all the information (i.e., required by the mediator) within party
i’s dataset Di. Thus, the mediator can do valuation and generate model rewards from the
perturbed SS {oi}i∈N without requesting more information from the parties. This limits the
privacy cost and allows us to rely on the DP post-processing property.

2. In Sec. 3, the proof that Def. 3.1 satisfies a privacy-valuation trade-off (V3) uses the
properties of SS.

Our work introduces privacy as an incentive and simultaneously offers a new perspective that
excessive DP can and should be deterred by introducing privacy-valuation and privacy-reward
trade-offs and accounting for the DP noise. We use Bayesian models with SS as a case study to
show how the incentives and trade-offs can be achieved. It is up to the future work to address
the non-trivial challenge of ensuring privacy-valuation and privacy-reward trade-offs for other models.

Question 4: Can alternative fair reward schemes be used in place of ρ-Shapley fair reward
scheme [47]?

Answer: Yes, if they satisfy P3 and P4. For example, if the exchange rate between the perturbed SS
quality and monetary payment is known, then the scheme of [40] can be used to decide the reward
instead. Our work will still ensure the privacy-valuation trade-off and provide the mechanism to
generate the model reward qi(θ) to attain any target reward value r∗i while preserving similarity to
the grand coalition N ’s model (P5).

Question 5: What is the difference between our work here and that of [47]?

Answer: We clearly outlined our contributions in bullet points at the end of the introduction section
(Sec. 1) and in Fig. 1.

At first glance, our work seems to only add a new privacy incentive. However, as discussed in the
introduction section (Sec. 1), privacy is barely considered by existing collaborative ML works and
raises significant challenges. The open questions/challenges in [64]’s survey on adopting DP in game-
theoretic mechanism design (see Sec. 7.1 therein) inspire us to ask the following questions:

• How can DP and the aims of cooperative game theory-inspired collaborative ML be compatible?
Will DP invalidate existing properties like fairness?
• How should parties requiring a strong DP guarantee be prevented from unfairly and randomly

obtaining a high-quality model reward?

We propose to enforce a provable privacy-valuation trade-off to answer the latter. The enforcement
involves novelly selecting and combining the right valuation function and tools, such as DP noise-
aware inference.

24https://joinup.ec.europa.eu/collection/ict-security/solution/
x-road-data-exchange-layer/about, https://x-road.global/
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Additionally, we propose a new reward control mechanism that involves tempering the likelihood
(practically, scaling the SS) to preserve similarity to the grand coalition’s model (P5) and hence
increase the utility of the model reward.

Question 6: Will a party with high-quality data (e.g., a large data quantity, less need for DP
guarantee) be incentivized to participate in the collaboration?

Answer: From Fig. 3, it may seem that a rich party i with ample data and a weak privacy guarantee
(i.e., large ϵi) has a lower utility of model reward to gain from the collaboration. However, it
may still be keen on a further marginal improvement in the utility of its model reward (e.g.,
increasing the classification accuracy from 97% to 99% and predicting better for some sub-groups)
and can reasonably expect a better improvement as other parties are incentivized by our scheme
(through enforcing a privacy-valuation trade-off and fairness F4) to contribute more data at a
weaker yet satisfactory DP guarantee (see App. H.5). Moreover, a rich party does not need to
be concerned about others unfairly benefiting from its contribution as our scheme guarantees
fairness through Shapley value. In Fig. 8, as a party selects a weaker DP guarantee (and all
else being held constant), the Shapley values of others, which determine their model rewards, decrease.

Question 7: What is the impact of varying other hyperparameters?

Answer: The work of [47] proposes ρ-Shapley fairness and theoretically and empirically show that
any ρ > 0 guarantees fairness across parties and a smaller ρ will lead to a higher attained reward
value ri for all other parties which do not have the largest Shapley value. These properties apply to
our problem setup, and using a larger ρ will worsen/reduce ri and the utility of party i’s model reward
qi(θ) measured by MNLPr. The work of [47] has empirically shown that the number of parties does
not impact the scheme’s effectiveness. However, it affects the time complexity to compute the exact
and approximate SV.

More importantly, the extent to which party i can benefit from its contribution depends on the
quantity/quality of its data relative to that of the grand coalition N (and the suitability of the model or
informativeness of the prior).

Party i’s DP guarantee ϵi is varied in Sec. 6 while the DP guarantee ϵk of the other party k and its
number ck of data points for k ∈ N are varied in App. H.5. The privacy order λ is varied in App. H.5.
Across all experiments, we observe that the privacy-valuation trade-off holds. Moreover, when (i) a
party i has lower-quality data in the form of fewer data points or smaller ϵi, or (ii) another party k
has higher-quality data such as a larger ϵk, the improvement in the utility of its model reward over
that of its individually trained model is larger.

Question 8: Can privacy be guaranteed by using secure multi-party computation and homo-
morphic encryption in model training/data valuation?

Answer: These techniques are designed to prevent direct information leakage and prevent the
computer from learning anything about the data. However, as the output of the computation is
correct, any mediator and collaborating party with access to the final model can query the model for
predictions and infer private information/membership of a datum (indirect privacy leakage). In our
work here, every party can access a model reward. Hence, the setup should prevent each party from
inferring information about a particular instance in the data beyond what can be learned from the
underlying data distribution through strong DP guarantees.

Question 9: In Sec. 4, we mention that (i) it is possible to have negative marginal contributions
(i.e., vC∪i < vC) in rare cases and (ii) adding some noise realizations may counter-intuitively
create a more valuable model reward (e.g., ri > vN ). Why and what are the implications?

Answer: For our choice of valuation function via Bayesian surprise, the party monotonicity (V2) and
privacy-valuation trade-off (V3) properties involve taking expectations, i.e., on average/in most cases,
adding a party will not decrease the valuation (i.e., the marginal contribution is non-negative), and
strengthening DP by adding more noise should decrease the reward value. However, in rare cases, (i)
and (ii) can occur. We have never observed (i) in our experiments, but a related example of (ii) is
given in Fig. 14a: A larger τi surprisingly increased the valuation.
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The implication of (i) is that the Shapley value ϕi may be negative, which results in an unusable
negative/undefined r∗i . However, this issue can be averted while preserving P3 by upweighting
non-negative MCs, such as to the empty set, as mentioned in Footnote 10. The implication of (ii)
is that some (large) noise realization can result in a more valuable model reward than the grand
coalition’s model, i.e., ri > vN . However, collaborating parties still prefer p(θ|oN ) valued at vN as
the more surprising model reward is not due to observations and information. This motivates us to
define more specific desiderata (P1 and P2) for our reward scheme.

Lastly, one may question if we should change the valuation function. Should we use the information
gain I(θ;oC) = EoC

[vC ] on model parameters θ given perturbed SS oC instead to eliminate (i) and
(ii)? No, the information gain is undesirable as it disregards the observed perturbed SS oC and will
not capture a party’s preference for higher similarity of its model reward to the grand coalition N ’s
posterior p(θ|oN ).
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