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Abstract

The use of active cameras in surveillance is becoming increasingly popular as they try

to meet the demands of capturing high-resolution images/videos of targets in surveillance

for face recognition, target identification, forensic video analysis, etc. These active cam-

eras are endowed with pan, tilt, and zoom capabilities, which can be exploited to provide

high-quality surveillance. In order to achieve effective, real-time surveillance, an efficient

collaborative mechanism is needed to control and coordinate these cameras’ actions, which

is the focus of this thesis. The central problem in surveillance is to monitor a set of targets

with guaranteed image resolution. Controlling and coordinating multiple active cameras

to achieve this surveillance task is non-trivial and challenging because: (a) presence of in-

herent uncertainties in the surveillance environment (target’s motion, location, and noisy

camera observation); (b) there exist a non-trivial trade-off between number of targets and

the resolution of observing these targets; and (c) more importantly, the coordination frame-

work should be scalable with increasing number of targets and cameras.

In this thesis, we formulate a novel decision-theoretic multi-agent planning approach

for controlling and coordinating multiple active cameras in surveillance. Our decision-

theoretic approach offers advantages of (a) accounting the uncertainties using probabilistic

models; (b) the non-trivial trade-off is addressed by coordinating the active cameras’ ac-

tions to maximize the number of targets with guaranteed resolution; and (c) the scalability

in number of targets and cameras is achieved by exploiting the structures and properties that

iv



are present in our surveillance problem. We focus on two novel problems in active camera

surveillance: (a) maximizing observations of multiple targets (MOMT), i.e., maximizing

the number of targets observed in active cameras with guaranteed image resolution; and (b)

improving fairness in observation of multiple targets (FOMT), i.e., no target is “starved” of

observation by active cameras for long duration of time.

We propose two formal decision-theoretic frameworks (a) Markov Decision Process

(MDP) and (b) Partially Observable Markov Decision Process (POMDP) frameworks for

coordinating active cameras in surveillance. MDP framework controls active cameras in

fully observable surveillance environments where the active cameras are supported by one

or more wide-view static/fixed cameras to observe the entire surveillance environment

at low-resolution. POMDP framework controls active cameras in partially observable

surveillance environments where it is impractical to observe the entire surveillance envi-

ronment using static/fixed cameras due to occlusions caused by physical infrastructures.

Hence the POMDP framework do not have a complete view of the surveillance environ-

ment.

Specifically, we propose (a) MDP frameworks to solve MOMT problem and FOMT

problem in fully observable surveillance environment; and (b) POMDP framework to solve

MOMT problem in partially observable surveillance environment. As proven analytically,

our MDP and POMDP frameworks incurs time that is linear in number of targets to be

observed during surveillance. We have used max-plus algorithm with our MDP framework

to improve its scalability in number of cameras for MOMT problem. Empirical evalu-

ation through simulations in realistic surveillance environment reveals that our proposed

approach can achieve high-quality surveillance in real time. We also demonstrate our pro-

posed approach with real Axis 214 PTZ cameras to show the practicality of our approach

in real world surveillance. Both the simulations and real camera experiments show that

our decision-theoretic approach can control and coordinate active cameras efficiently and

hence contributes significantly towards improving the active camera surveillance research.
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Chapter 1

Introduction

1.1 Motivation

Surveillance security is becoming a part of the building infrastructures due to recent se-

curity threats like the Mumbai terrorist attack and Boston bomb blasts. Central to the

problem of surveillance is that of monitoring, tracking, and observing multiple mobile

targets of interest distributed over a large-scale obstacle-ridden environment (e.g., airport

terminals, railway and subway stations, bus depots, shopping malls, school campuses, mil-

itary bases, etc.). It is often necessary to acquire high-resolution videos/images of these

targets for supporting real-world surveillance applications like activity/intention tracking

and recognition [IBM, 2012], biometric analysis like target identification and face recogni-

tion [GE, 2009], surveillance video mining [MER, 2009], forensic video analysis/retrieval

[IBM, 2012], among others. Traditional surveillance systems consists of large number of

fixed/static analogue CCTV (Closed Circuit Television) cameras that are placed to con-

stantly focus at the selected important locations in the buildings like entrance/exit, lobby,

etc. Unfortunately, the maximum resolution of these cameras is limited to 720×480 pixels.

So, they cannot capture high-resolution images/videos of the targets, especially when the

1



Chapter 1. Introduction

targets are far away from the cameras. As a result, they perform poorly in acquiring the

close-up views of the targets and their activities. HD-CCTV/Megapixel IP cameras have

recently been introduced to overcome this resolution issue. Similar to traditional CCTV

cameras, these fixed/static HD-CCTV/Megapixel IP cameras are placed to constantly fo-

cus at specific locations in the environment. A relatively large network of such cameras

has to be installed in order to observe the targets in any region of the environment at high-

resolution, which is impractical in terms of equipment, installation, and maintenance costs.

The use of active PTZ (Pan/Tilt/Zoom) cameras is becoming an increasingly popular

alternative to that of fixed/static cameras for surveillance because the active cameras are

endowed with pan-tilt-zoom capabilities that can be exploited to focus on and observe the

targets at high image/video resolution. Hence, fewer active cameras need to be deployed

to be able to capture high-resolution images/videos of the targets in any region of the envi-

ronment. Most of the activities of interests are sporadic in nature and are scattered across

the surveillance environment. Therefore, the active cameras can be steered and zoomed

to focus on these activities at a high-resolution. Manual control of these cameras in the

above applications becomes difficult, especially when the number of targets and cameras

increases. Figure 1.1 shows the images of Axis 214 PTZ cameras that are widely used in

research and commercial purposes.

Motivations 

Axis 214 PTZ Cameras 2 

 Active Pan-Tilt-Zoom (PTZ) cameras  
 Pan-Tilt-Zoom capabilities can be exploited to provide 

high quality surveillance  

 Manual control of these cameras is not possible - large 
number of targets and cameras 

 We need an efficient automated mechanism to 
coordinate and control these cameras’ actions 

8/7/2013 Prabhu Natarajan 

Figure 1.1: Axis 214 PTZ cameras.

In order to achieve effective real-time surveillance, an efficient collaborative mecha-

2



Chapter 1. Introduction

nism is required to control and coordinate these cameras’ actions, which is the main focus

of this thesis. Figure 1.2 illustrates an example scenario to depict the grand vision of this

research with 5 PTZ cameras.

Controlling and Coordinating 
 Active Cameras – An Example Scenario 

Ok Cam1… 

I will focus 

on  him… 

Cam1 Cam2 Cam3 Cam4 Cam5 

Cam2 can 

leave this 

object to 

me!!! 

I am         

free…What 

shall I do 

now??? 

Cam5, you 

can focus on 

the door !!! 

11/24/2013 Prabhu Natarajan - PhD Defense 6 Figure 1.2: Multiple active camera control and coordination.

1.2 Objective

This thesis aims to address the following central problem in surveillance:

How can a network of active cameras be coordinated to monitor a set

of moving targets with a guaranteed image resolution?

Monitoring a set of targets with a guaranteed resolution is an important surveillance task.

Coordinating active cameras in order to observe these targets with a guaranteed image

resolution is challenging and non-trivial. This is due to the following practical issues in

designing a coordination framework for active cameras in surveillance:

3
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• Multiple sources of uncertainties: The surveillance environment is fraught with mul-

tiple sources of uncertainties such as targets’ stochastic motion, unknown targets’ loca-

tions, noisy camera observations, etc. These uncertainties in the surveillance environ-

ment make it difficult for the active cameras to know where to observe in order to keep

the targets within their fields of view (fov). Consequently, they may also lose track of

the observed targets.

• Camera - Target ratio: In practice, the number of targets to be observed is usually

much greater than the number of available active cameras. When the number of targets1

increases, the camera coordination framework, if poorly designed, tends to incur expo-

nentially increasing computational time, which degrades the performance of the entire

surveillance system.

• Trade-off between maximizing the expected number of targets and the resolution

of these observed targets: Increasing the resolution of observing some targets through

panning, tilting, or zooming may result in the loss of other targets being tracked and

increasing the number of targets to be observed by decreasing the zoom level, may result

in the decrease of the resolution of these targets. Therefore, it is necessary to address

this trade-off in the underlying camera coordination framework.

• Scalability: The camera coordination framework should be scalable with an increasing

number of targets and cameras. The computational time required for calculating optimal

control decisions for the cameras should be made in polynomial time for increasing

number of targets and cameras. In addition, coordination framework should be scalable

to the communication overhead among the cameras.

• Real-time: The control decisions for these cameras should be made proactively in real-

time.

• Occlusions: Many real-world surveillance environments contain obstacles like pillars,

1In the rest of the thesis, the term ”number of targets” will be referred to ”number of targets to be observed”
in the active cameras.

4



Chapter 1. Introduction

walls and barriers that occlude the fov of some or perhaps even all of the cameras. This

can also be due to privacy issues in monitoring certain regions of the environment. There-

fore, it is highly impractical for the cameras to persistently track the observed targets in

such environments. The regions where the targets cannot be observed by any of the

cameras due to obstacles or privacy issue are referred as blind regions and the surveil-

lance environment with blind regions is called as partially observable environments (see

Figure 1.3). Hence when the targets are in the blind regions, the camera coordination

framework has no information about these targets which causes performance degrada-

tion of the surveillance system.

• Fairness property: Fairness is a vital property in active camera surveillance where the

active cameras are coordinated to observe the targets in the surveillance environment

such that no target is “starved” of observation by the cameras for a long time. When

there is no fairness in coordinating active cameras, then one or more targets may not be

observed (starved) for long duration which may lead to a loophole in surveillance, i.e.,

the behavior of those targets will neither be monitored nor recorded in high-resolution.

Hence it is necessary to incorporate fairness property in the coordination framework.

Therefore, the problem of controlling and coordinating a network of active cameras in order

to monitor a set of targets is challenging and needs significant research attention.

1.3 Contributions

1.3.1 A Decision-Theoretic Formulation of Camera Coordina-

tion Framework for Surveillance

A novel decision-theoretic multi-agent formulation has been proposed for controlling and

coordinating multiple active cameras in surveillance [Natarajan, 2012a; Natarajan, 2012b].

Decision-theoretic approach provides formal and principled frameworks to coordinate the

5



Chapter 1. Introduction

planning of active cameras’ control decisions under stochastic and partially observable

environments (e.g., uncertainty in targets motion and locations) in achieving the desired

surveillance objective/task. It models the surveillance task as a stochastic optimization

problem in which optimal actions of the cameras are determined such that the utility of the

surveillance is increased. The utility of the surveillance can be modeled as formal objective

functions, such that the active cameras are coordinated to achieve this high-level surveil-

lance goal. The first goal of the surveillance system is to maximize the number of targets

observed with guaranteed image resolution. We refer to this surveillance task as maxi-

mizing observations of multiple targets (MOMT) problem. That is, a network of active

cameras coordinating to obtain images/videos of the moving targets in the surveillance en-

vironment with guaranteed image resolution. A drawback of this surveillance goal is that

one or more targets may not be observed by the active cameras for long duration as the cam-

eras are coordinated to focus or observe locations where there are more number of targets in

the environment. To overcome this limitation, we propose fairness in observation of targets

as our second goal of surveillance. That is, no target is “starved” of observation by active

cameras for long duration. We refer to this problem as fairness in observation of multiple

targets (FOMT) problem. The proposed decision-theoretic formulation exploits the inher-

ent properties and structures that are present in our surveillance problems, in order to scale

the framework for increasing number of targets and cameras. That is, the assumption that

the motion of each target is conditionally independent of other targets and cameras in the

environment given the current position, direction and speed of that target. Specifically, we

propose the following novel decision-theoretic frameworks to control and coordinate mul-

tiple active cameras: (a) Markov Decision Process (MDP) framework to solve the MOMT

problem in fully observable surveillance environment, (b) Markov Decision Process (MDP)

framework to solve the FOMT problem in fully observable surveillance environment, and

(c) Partially Observable Markov Decision Process (POMDP) to solve MOMT problem in

partially observable surveillance environment.

6
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1.3.2 Markov Decision Process (MDP) Framework for Coordi-

nating Cameras

A novel Markov Decision Process (MDP) framework has been proposed to control active

cameras in a fully observable surveillance environment, i.e., the location, direction and

speed of the moving targets are estimated from a set of wide-view static cameras that are

calibrated site-wide. In this environment, the targets are assumed to be visible to the static

cameras at every instance of time and based on the observations from the static cameras,

the proposed MDP framework directs the active cameras to observe the targets in high-

resolution. In order to direct the active cameras to the predicted locations of the target,

greedy solution (i.e., one step look-ahead of target’s motion) has been proposed to solve

the underlying MDP. Specifically, the MDP framework resolves some of the above men-

tioned issues (Section 1.2) in the following ways: (a) the motion of the targets are modeled

probabilistically; (b) the non-trivial trade-off between maximizing the expected number

of targets and the resolution of these observed targets has been addressed by controlling

the active cameras to maximize the number of targets by guaranteeing the predefined im-

age/video resolution; (c) the scalability in number of targets has been improved by exploit-

ing the properties that are present in our surveillance problem; and (d) in order to compute

optimal control decisions for cameras in real-time, we pre-compute the solutions off-line

and do a look-up operation on our stored solutions during the surveillance. We have also

shown that the finite horizon planning (i.e., more than one step look-ahead of uncertainty

in target’s motion) solution is equivalent to our greedy solution due to the properties that

are present in our surveillance system.

One key problem faced by existing multi-camera multi-target surveillance approaches

is that of scalability with increasing number of targets. We exploit the structure and prop-

erties of our MOMT problem to improve the scalability in number of targets. In order

to improve the scalability in number of cameras, we use the concept of Coordination

7
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Graph (CG) [Guestrin et al., 2002] over the active camera network and solve the under-

lying coordination problem approximately using max-plus algorithm [Vlassis et al., 2004;

Kok and Vlassis, 2006]. As shown in simulation, our MDP framework can achieve high-

quality surveillance of up to 50 cameras and 60 targets in real-time.

In the above mentioned MDP frameworks, the active cameras are controlled in order

to maximize the number of targets observed with guaranteed resolution. A drawback of

this task is the lack of fairness in the observation of targets. Therefore, we formally realize

a popular fairness metric in resource allocation problems known as max-min fairness, for

achieving fairness in active camera surveillance. We extend our MDP framework to opti-

mize this max-min metric, such that no target is “starved” of observation by active cameras

for long time.

1.3.3 Partially Observable Markov Decision Process (POMDP)

Framework for Coordinating Cameras

A novel Partially Observable Markov Decision Process (POMDP) framework has been

proposed to control active cameras in a partially observable surveillance environment, i.e.,

the case where we do not have static cameras that can observe the entire surveillance en-

vironment at a low-resolution. Hence, the targets’ information are observed only through

the active cameras. In such partially observable environment, the targets may not be con-

tinuously observed in any of the active cameras due to blind regions in the surveillance

environment. This setup is more realistic because, many real world environments (like

airports, railway and subway stations, schools and university campuses, etc.) have occlu-

sions due to physical structures like walls and pillars, and also restricted regions where the

cameras cannot be placed. Figure 1.3 shows an example of overhead view of a partially

observable surveillance setup with 6 active cameras and the occlusion caused by pillars and

non-overlapping active cameras.
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Occluded/Blind region 

Issues in Controlling and  
Coordinating  Active cameras 

Figure 1.3: An example of partially observable surveillance setting.

This framework resolves the above surveillance issues in the following ways: (a) we

model the belief over the targets’ states (i.e., locations, directions and speeds) and update

the belief using the Bayesian paradigm based on the probabilistic models for targets’ mo-

tion and active cameras’ observations; (b) the actions of the active cameras are coordinated

to simultaneously improve the belief over the targets states and maximize the expected

number of targets observed with a guaranteed pre-defined resolution; (c) the targets’ mo-

tion uncertainty is modeled by a probabilistic motion model; (d) the noisy camera obser-

vation is modeled by having a probabilistic observation model; (e) the non-trivial trade-off

between maximizing number of targets and the image resolution of observing these targets

is addressed by coordinating the cameras’ action such that the expected number of targets

is maximized while maintaining a guaranteed image/video resolution; (f) the scalability in

number of targets is improved by exploiting the properties in our MOMT problem and (g)

the optimal cameras’ actions are computed in real-time by using sparse data structures to

store and manipulate the probabilities. In this framework, we proposed a greedy solution

for MOMT problem in partially observable surveillance environment that is scalable in

number of targets. As shown in simulations, our POMDP framework can scale up to 20

targets in real-time.

9
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The real camera experiments of our MDP and POMDP frameworks, show the feasibility

of our decision-theoretic approach in real world surveillance. The related works on existing

camera coordination approaches in the literature related to our contribution in Section 1.3.1

are discussed in Section 2.1. And the related works pertaining to our contributions in

Section 1.3.2 and 1.3.3 are discussed in Section 2.2.

1.3.4 Summary of Contributions

To summarize, this thesis has the following novel contributions:

1. We have proposed a novel decision-theoretic approach to control and coordinate mul-

tiple active cameras in surveillance system [Natarajan, 2012a; Natarajan, 2012b].

Specifically we have formulated (a) novel surveillance tasks of maximizing obser-

vation of multiple targets with guaranteed image resolution both in fully observable

and partially observable surveillance environments; and (b) a novel task of achieving

fairness in observation of targets in active camera surveillance under fully observable

surveillance environment. (see Chapter 2)

2. We have proposed a novel Markov Decision Process (MDP) framework [Natarajan

et al., 2012a] to control and coordinate multiple active cameras in a fully observable

surveillance environment. In this work, we have accounted for targets’ motion uncer-

tainty, trade-off between number of targets and the resolution of observing them, and

the scalability in number of targets. We have derived a greedy solution for MOMT

problem that is scalable with an increasing number of targets. We have also shown

in theory, that the finite horizon planning solution for MOMT problem is equivalent

to our greedy solution. (see Chapter 3)

3. We have proposed a scalable MDP framework to coordinate active cameras for a

large number of cameras. This framework is based on the concepts of coordination

10
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graph and the max-plus algorithm. We decompose the centralized coordination prob-

lem involving all cameras into many local coordination problems involving only few

cameras. The max-plus algorithm has been used to solve the coordination problem

through message passing between cameras. (see Chapter 4)

4. We have proposed a novel MDP framework to control and coordinate active cameras

in fully observable surveillance environment such that, all the targets are observed by

active cameras in a fair manner. To achieve this, we have used max-min fairness met-

ric for observing targets in our coordination framework. The scalability in number

of targets is achieved by exploiting the structures and properties in the FOMT prob-

lem. We have derived a greedy solution for our FOMT problem in fully observable

environment that is scalable in the number of targets. (see Chapter 5)

5. A novel Partially Observable Markov Decision Process (POMDP) framework [Natara-

jan et al., 2012b] has been proposed to control active cameras in a partially observ-

able surveillance environment. This framework addresses a key challenge of coordi-

nating multiple active cameras in surveillance when the targets cannot be observed at

every time step due to occlusions in the environment. In this framework, we account

for the uncertainties due to noisy camera observation, targets’ motion, location and

its direction. We also eliminate the strong assumption of having many static wide-

view cameras that can always observe the targets in the surveillance environment.

We have derived a greedy solution for our MOMT problem in partially observable

environment that is scalable in number of targets. (see Chapter 6)

1.4 Thesis Organization

This thesis is organized as follows: Chapter 2 reviews the existing camera coordination

approaches in the literature (Section 2.1) and previous works related to our MOMT and

11
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FOMT problems (Section 2.2). In Chapter 3, we formalize the MDP framework for MOMT

problem in fully observable surveillance environment that can scale for increasing number

of targets. In Chapter 4, we extend the MDP framework in Chapter 3 using the coordination

graph and max-plus algorithm to improve the scalability in number of cameras. Chapter 5

discusses the MDP framework for FOMT problem in fully observable surveillance environ-

ment. In Chapter 6, we discuss the POMDP framework for MOMT problem in partially

observable surveillance environment. Finally in Chapter 7, we summarize the thesis and

discuss some of the future works.

12
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Literature Review

In this chapter, we review the existing multi-camera coordination methodologies by orga-

nizing them into (a) camera coordination approaches and (b) the work related to MOMT

and FOMT surveillance problems. Firstly, in Section 2.1 we briefly explore the exist-

ing camera control and coordination approaches, and provide their evolution in the past

decades. Secondly, in Section 2.2 we compare and contrast the existing methods that are

related to our decision-theoretic solutions for MOMT and FOMT surveillance problems.

2.1 Camera Coordination Approaches

In this section, we provide a brief overview on the related work on multi-camera control

and coordination. We present the time-line of these coordination approaches along with

their applications in surveillance as shown in Figure 2.1. It can be seen from Figure 2.1,

the initial work on multiple cameras were started in the 1990s to solve computer vision

problems like object detection, recognition, etc. Researchers started using multi-modal

cameras to increase the efficiency of their vision algorithms and no coordination between

the cameras were considered. For example, [Nandhakumar and Aggarwal, 1988] has used

visual images and thermal images for object detection and classification. In [Nandhakumar,

13



Chapter 2. Literature Review

1992], a robust method for object recognition has been proposed in multi-sensory computer

vision systems which overcomes the limitations in measuring the thermal features of the

object.

1995 - 2000 

Object detection & tracking; Wide-area 

coverage; Occlusion handling; 

No coordination; 

Only sensor fusion; 

2000 - 2005 

Tracking targets in high-resolution; 

Multi-agent architectural design; 

Manual control; Simple 

static + PTZ cameras 

coordination; 

2005 - present 
Cooperative tracking; Handling 

uncertainties;  Smart cameras;  

State machine; Game-

theory; Control theory; 

Decision-theory; 

Year Works & Development Coordination Approaches 

Figure 2.1: Timeline of research and development in multi-camera control and
coordination in surveillance.

Later in 2000s, due to the developments in embedded systems, the cost of cameras and

other sensors dropped significantly. It was realized that the surveillance coverage area could

be increased by adding additional cameras. Object detection and tracking across wide-area

was the main focus of using multiple cameras. There was no coordination among the

cameras, and only fusion of data from multiple cameras were considered. Hence multi-

camera fusion played a major role in multi-camera systems. Multiple cameras were used

for extending the coverage area and then the tracking data were combined from multiple

cameras at a central server. For example, in [Yuan et al., 2003; Petrushin et al., 2006;

Kerhet et al., 2007; Alahi et al., 2008; Fiore et al., 2008], the authors have used multiple

cameras to increase the coverage area for object detection and to distribute the processing
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power across the camera nodes. In [Fukuda et al., 2000; Mittal and Davis, 2001; Scheunert

et al., 2004; Hayet et al., 2005; Cavallaro, 2005; Paek et al., 2007; Muoz-Salinas et al.,

2009a; Muoz-Salinas et al., 2009b; Krumm et al., 2000; Chang and Gong, 2001; Hu et al.,

2006; Guler et al., 2003; Muller and Anido, 2004; Ko and Berry, 2005; Prati et al., 2005;

Arsic et al., 2008], the single camera tracking algorithms have been replicated in multiple

cameras and the tracking data were fused at the central server. The main motivation of

these methods was to increase the tracking area geographically and handle occlusion.

Until early 2000s, most work on object detection/tracking were done with static wide-

view cameras, where the cameras are fixed and hence they cannot capture the targets in

high-resolution, especially when the targets are far away from the cameras. After the

development of PTZ cameras, capturing high-resolution images of targets and their ac-

tivities became popular. Initially, these PTZ cameras were controlled manually by the

user, using the joy-stick and other hardware devices. Based on the videos from static

cameras, the user in the security office controls the PTZ cameras to focus on regions

of interests in high-resolution [Collins et al., 2001]. For example, [Liu et al., 2002;

Lu and Payandeh, 2008] developed a surveillance system know as FLYSPEC system that

converts the user selected region of interest in the wide-view cameras into the correspond-

ing PTZ control signals and sends it to the PTZ cameras.

The above setup was improved by controlling the PTZ cameras to automatically gaze

the targets that are observed in the static cameras [Micheloni et al., 2005; Ahmedali and

Clark, 2006] and omni-directional cameras [Khoshabeh et al., 2007]. These static wide-

view cameras and omni-directional cameras are calibrated with the PTZ cameras on a

common ground plane coordinates. Based on this simple setup (i.e., coupling static wide-

view cameras and PTZ cameras), there has been many work that have been explored in

multi-camera control and coordination (see Table 2.1). They are based on the following

approaches:
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1. Control Theoretic Approach

2. Game Theoretic Approach

3. Heuristic Approach

4. Multi-Agent System Approach

2.1.1 Control Theoretic Approach

Control theory deals with the behavior of dynamic systems that consists of system, sen-

sor measurements and a controller. The control theory induce a feedback mechanism in

which the system is controlled based on its measured or observed state. The desired output

of the system is called as reference. In a typical feedback control mechanism, the con-

troller computes the error between the measured output and the reference, and selects the

optimal control signals to minimize the error. Some of the feedback control mechanisms

are P (proportional), PI (proportional, integral), PID (proportional, integral and derivative)

controllers, etc.

For example, [Wang, 2003] have used proportional feedback controller to control the

PTZ camera to center the human face through experiential sampling. Since a proportional

controller has a slow response time and is sensitive to noise, [Wang et al., 2011] have

adopted the PID feedback controller for centering and tracking the human face to obtain its

best-view. [Singh et al., 2008] developed an active and cooperative multi-camera frame-

work that uses Model Predictive Controller as feedback mechanism that allows the cameras

to react based on past and future events.

2.1.2 Game Theoretic Approach

Game theory is a branch of decision theory that deals with the interdependent decisions

while optimizing the desired goal. It provides a theoretical basis for multi-agent system.
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Table 2.1: List of representative works in multi-camera control and coordination.

The work Coordination
Approaches Cameras Highlights

[Singh et al., 2008] Control Theoretic PTZ Model Predictive Controller for coopetitive tracking.

[Wang, 2003] Control Theoretic PTZ Proportional Controller for face tracking.

[Wang et al., 2011] Control Theoretic PTZ PID Controller for best-view selection.

[Song et al., 2008a] Game Theoretic PTZ Focus one target in high-resolution and track other tar-
gets in wide-view.

[Jones and Mitter, 2006] Game Theoretic generic
sensors Players as sensors and action of players as sensor tasks.

[Li and Bhanu, 2011] Game Theoretic PTZ Focus one target in high-resolution and track other tar-
gets in wide-view.

[Ding et al., 2012a] Game Theoretic PTZ Prioritize tasks for cooperative tracking of targets.

[Ding et al., 2012b] Game Theoretic PTZ Maximize tracking accuracy, best-shot and image reso-
lution.

[Qureshi and Terzopoulos, 2008] State Machine static+PTZ Scheduling active cameras; ContractNet protocol for
group formation.

[Qureshi, 2010] State Machine static+PTZ Collaborative sensing tasks; Negotiation decision mak-
ing.

[Starzyk and Qureshi, 2011b] State Machine static+PTZ Behavior based camera controller.

[Starzyk and Qureshi, 2011a] State Machine static+PTZ Learning camera control strategies based on past actions.

[Ilie and Welch, 2011] Constrained
Optimization PTZ Stochastic performance metric and constrained optimiza-

tion for target tracking.

[Piciarelli et al., 2009] EM algorithm static+PTZ Camera control for event/activity; Expectation Maxi-
mization algorithm to choose PTZ parameters.

[Dieber et al., 2011] EM algorithm static+PTZ Coverage optimization and resource allocation.

[Sommerlade and Reid, 2010] Probabilistic
measure static+PTZ Scene exploration and tracking.

[Krahnstoever et al., 2008] Probabilistic
measure static+PTZ Asynchronous optimization and combinatorial search.

[Collins et al., 2001] User Control static+PTZ GUI for controlling the sensors; 2D and 3D output visu-
alization.

[Fleck et al., 2006] User Control static+PTZ Master-slave configuration; GUI for controlling the cam-
eras.

[Hodge and Kamel, 2003] Agent-based static Surface coverage and feature extraction of targets.

[Castanedo et al., 2006] Agent-based static Increase accuracy of tasks and accomplish tasks that can-
not be done by single camera.

[Garcia et al., 2005] Agent-based static Solve a surveillance tasks; two-roles: camera-role and
fusion role; cueing and handoff tasks.

[Matsuyama and Ukita, 2002] Agent-based static Layered architecture with active vision-agents.

[Bustamante et al., 2013] Agent-based PTZ Integrated fusion architecture for collaborative camera
control.
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A Game in game theoretic model is a mathematical object that consists of set of players,

moves for the players and the utility for the combination of the moves of the player.s Solv-

ing the game is to identify the sequence of moves that the players should use. A sequence

of moves is called a strategy, so an optimal strategy is a sequence of moves that results

in the best outcome. Each player in the game, makes their own best move taking into the

consideration of the best moves of every other players. This concept is known as Nash

equilibrium. Game theory is used in many surveillance problems in order to solve cooper-

ative and competitive target tracking, where the cameras are modeled as players and utility

of the game is to track the targets. The optimal strategy of the game is to choose actions of

the active cameras such that the surveillance goal is achieved.

[Song et al., 2008b] have demonstrated the guidelines for adopting game theoretic

framework for integrated sensing and analysis in a distributed multi-camera network. They

try to maximize the area coverage in each of the cameras using game-theory based dis-

tributed optimization and consensus algorithms. [Li and Bhanu, 2011] had proposed a

game theoretic framework for camera assignment and hand-off in video network. [Jones

and Mitter, 2006] adopted game theoretic approach for sensor coordination, to determine

optimal computation and communication necessary for group coordination among the sen-

sors. [Song et al., 2008a] presented a decentralized camera control algorithms for accurate

and efficient target acquisition using game theory approach which was then evaluated by

[Zongjie and Bhattacharya, 2011] for different camera configurations. [Soto et al., 2009]

proposed a game theoretic control of PTZ cameras to track targets at high-resolution and

also observe the other parts of the environment in acceptable resolution. [Ding et al.,

2012b] have proposed an integrated analysis and control framework for PTZ camera net-

work in order to maximize various scene understanding objectives like tracking accuracy,

best-shot, and image resolution. [Ding et al., 2012a] proposed a method to prioritize tasks

for a distributed camera network to co-operatively track and acquire high-resolution im-

ages of the targets. [Morye et al., 2013] proposed a camera control mechanism to obtain
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opportunistic high-resolution facial images through distributed constrained optimization

techniques.

2.1.3 Heuristic Approach

The camera control framework which does not fall into above frameworks are classified

as heuristic frameworks. These frameworks are based on ad-hoc optimization techniques,

state machine approaches, probabilistic approach, etc. These works are tailored specifically

to address their own surveillance task and is not obvious to adopt for other surveillance

tasks.

[Sommerlade and Reid, 2010] has given a probabilistic framework for controlling mul-

tiple active cameras based on mutual information of the scene. [Ilie and Welch, 2011]

proposed a stochastic optimization method for controlling the active cameras for tracking

targets. They explore on the optimal camera configurations over time, predicted trajecto-

ries and the underlying image processing algorithms. [Piciarelli et al., 2009] has proposed

an optimization technique to determine the optimal pan/tilt/zoom parameters of the active

cameras to investigate a particular event based on activity map. [Dieber et al., 2011] has

proposed an expectation-maximization (EM) algorithm for optimizing the coverage for a

given set of regions-of-interests and allocate resources efficiently in PTZ camera networks.

[Krahnstoever et al., 2008] has presented a system that controls a set of PTZ cameras to

acquire the close-up video of the people in the surveillance environment. They use set of

static cameras to localize the people in the environment and assign each of the pedestrian

to freely available PTZ cameras. [Micheloni et al., 2010] discussed the video analysis in

PTZ camera networks and mainly focus on the signal processing techniques for tracking

and localizing targets using cooperative PTZ cameras.

[Qureshi and Terzopoulos, 2008] has presented a distributed camera control strategy

for a smart camera network that consists of uncalibrated static and active cameras. The

19



Chapter 2. Literature Review

authors had presented the preliminary work of scheduling smart cameras in [Qureshi and

Terzopoulos, 2005]. In these works, the camera node behavior has been modeled using a

finite state machine. The ContractNet protocol has been used to model the group formation

among the camera nodes in distributed control strategy. When the user selects a target

to track, the sensors coordinate among themselves to form a dynamic group to fulfill the

task. [Qureshi, 2010] has given a negotiation protocol for collaborative sensing tasks of

PTZ cameras in a distributed manner. [Qureshi and Terzopoulos, 2009] has proposed a

classical planning approach to control active cameras in order to get high-resolution video

of pedestrians supported by static wide-view cameras. This classical planning approach

predicts the future trajectories of targets and assigns PTZ cameras to track the targets, such

that there are few camera assignments and hand-offs in future.

[Starzyk and Qureshi, 2011b] try to learn the control strategy of the PTZ cameras based

on the previous control actions and in [Starzyk and Qureshi, 2011a] they proposed a be-

havior based camera controller in a distributed surveillance system to handle multiple ob-

servation tasks simultaneously.

2.1.4 Multi-Agent System Approach

Multi-agent framework consists of multiple agents that perceive and act upon the environ-

ment. These agents interact among each other to solve a problem which cannot be solved

by individual agents. The agents in Multi-Agent System (MAS) refers to many entities

including software components, humans, human teams, robots, sensors, etc. In surveil-

lance applications, individual camera or set of cameras refers to an agent. MAS provides

a control framework for controlling distributed autonomous cameras in many wide-area

surveillance problems. The BDI mode (belief, desire, intention) of MAS assists in incor-

porating high-level application goals of the surveillance system into the agents (cameras).

The belief represents the agents’ information about the state of the environment, the desire
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is the motivational state of the agents and intentions are the current actions of the agents.

As the starting point, the previous work in multi-camera systems provided a high-

level agent-based architectures to model the control and coordination between each camera

agent. For example, [Matsuyama and Ukita, 2002] presented a three-layered dynamic in-

teraction architecture for cooperative multi-target tracking system that consists of group

of Active Vision Agents (AVA) distributed across the environment. [Bramberger et al.,

2005] integrated multi-camera tracking into an agent-based dynamic task allocation sys-

tem for traffic surveillance. They have used distributed embedded system with limited

resources that consists of smart camera1 nodes. [Garcia et al., 2005] have presented an

agent based architecture to solve the camera coordination problem for surveillance tasks.

In this approach, each agent is an autonomous software module that controls the operation

of a camera based on the video frames and the messages from its neighboring agents. [Cas-

tanedo et al., 2006] presented an architecture for Cooperative Sensor Agents (CSA) and a

coalition protocol for coordination of these CSA. In this work, each CSA is an autonomous

agent and collaborate with other CSAs to achieve better performance in completing a task.

[Bustamante et al., 2013] proposed a high-level MAS architecture to coordinate multiple

active cameras based on the users’ inputs. They have integrated fusion architecture to com-

bine data from multiple cameras and control them to achieve the users’ desired goals. It

can be seen that, the authors have provided agent-based architectures for generic sensors

and smart cameras. They have not explored in detail on control and coordination of active

cameras which is the focus of this thesis.
1The smart cameras consists of hardware and software framework with inbuilt dedicated Digital Signal

Processing and Network processor. The smart cameras are embedded with video-sensing, high-level video
analysis, compression and communication capabilities (see [Rinner and Wolf, 2008]).
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2.1.5 Summary of Camera Coordination Approaches

From the survey, we can see that researchers have adopted different approaches to control

and coordinate multiple active cameras like control theory, game theory, state machine,

MAS approach, probabilistic approach, and many other ad-hoc approaches as well. In this

thesis, we propose a novel decision-theoretic approach to control and coordinate multi-

ple active cameras in surveillance. The nature of the surveillance problem (i.e., choosing

optimal actions of active cameras in presence of uncertainties) makes decision-theoretic ap-

proach an appropriate choice to control and coordinate active cameras in stochastic surveil-

lance environment. [Spaan and Lima, 2009] have proposed a decision-theoretic approach

to select cameras in the surveillance system. Their work is purely based on selecting one

or more static cameras which is different from our work on controlling active cameras to

accomplish a desired surveillance task. Our decision-theoretic approach offers some of the

following advantages in surveillance:

• Decision-theoretic approach models the interaction between active camera network and

the surveillance environment effectively. Specifically, it models the surveillance task as a

stochastic optimization problem in which optimal actions of the cameras are determined

such that the utility of the surveillance is increased.

• It provides formal, principled and rich mathematical models like Markov Decision Pro-

cess (MDP), Partially Observable Markov Decision Process (POMDP), etc. for planning

optimal control actions for cameras in presence of uncertainties like targets’ motion and

location, noisy camera observations, occlusions, etc.

• Multiple high-level surveillance goals can be defined formally as mathematical objective

functions.

When decision-theoretic models are poorly designed or used naively for a surveillance

problem, the state space explodes and hence computing optimal actions for these cameras

becomes intractable. For example, [Spaan and Lima, 2009] has serious limitation in terms
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of scalability in number of targets and cameras. Whereas in our thesis, we exploit the

structures and properties of the underlying surveillance problem to improve the scalability

both in number of targets and cameras.

2.2 Related Works on MOMT and FOMT Problems

In this section, we compare and contrast previous work in active camera network that are

related to our proposed methodologies: (a) MDP for MOMT (Chapter 3), (b) MDP for

FOMT (Chapter 5) and (c) POMDP for MOMT (Chapter 6). Table 2.2 provides the com-

parison with the existing works in key terms of:

• Camera - Target ratio: The ratio of number n of active cameras to number m of targets

that is used. This ratio is further classified into n� m, n� m and n = m. The camera -

target ratio plays a crucial role in controlling the active cameras because, camera control

becomes interesting and more challenging when n � m, i.e., more number of targets

should be monitored by few active cameras.

• Primary criterion: The primary criterion reflects the goal of the surveillance system in

which the active cameras are controlled. This is further classified into (a) maximizing

the number of observed targets with certain guaranteed resolution, (b) Focusing and

tracking individual target in high-resolution and (c) observing the targets in a fair manner

so that no target is “starved” of observation by active cameras for long duration. In this

thesis, the goal of the surveillance is to maximize the number of targets observed with

guaranteed image resolution in Chapter 3, 4 and 6, whereas in Chapter 5 our surveillance

goal is to observe all the targets in active cameras in a fair manner.

• Uncertainty: Whether the uncertainty of targets’ motion and location are accounted

in the camera coordination framework. The targets’ motion is stochastic in nature and

hence needs to be predicted and subsequently exploited for coordinating the cameras in a

typical surveillance system. Similarly, the locations determined by the cameras are often
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not accurate due their poor resolution and the underlying calibration model. In partially

observable surveillance environment, the locations of targets are highly uncertain when

these targets are in blind regions. Hence it is necessary to model and account for the

target’s location uncertainty in the coordination framework.

• Surveillance environment: The surveillance environment in which the camera coor-

dination framework can work is classified into (a) fully observable and (b) partially

observable. In fully observable environment, the states of the targets (i.e., location, di-

rection and speeds) are always observed by having many static wide-view cameras or

making one or more active cameras to zoom out. Whereas in partially observable envi-

ronment, the cameras can observe only part of the surveillance environment and cannot

observe all the targets at every time step due to blind regions and privacy issues as stated

in Chapter 1.

2.2.1 Related Work on MOMT Problem

In this section, we first discuss the difference between our MDP framework in Chapter 3

and existing camera control approaches. Then we discuss the difference between our MDP

framework in Chapter 4 and other related work on large-scale active camera networks.

Finally we discuss the difference between our POMDP framework in Chapter 6 and other

related work in active camera network.

As shown in Table 2.2, when the camera-target ratio is either n = m [Banerjee et

al., 2010] or n � m [Banerjee et al., 2010; Costello and Wang, 2005; Krahnstoever et

al., 2008; Qureshi and Terzopoulos, 2009; Soto et al., 2009; Sommerlade and Reid, 2010;

Huang and Fu, 2011; El-Alfy et al., 2009; Ward and Naish, 2009a; Collins et al., 2001;

Hampapur et al., 2003; Starzyk and Qureshi, 2011b; Starzyk and Qureshi, 2011a], the pri-

mary criterion is to focus and track one or more targets in a close-up view. In contrast,
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Table 2.2: Comparison of previous work related to MOMT and FOMT problems (n: number of active cameras;
m: number of targets; MN: Maximizing number of targets, FT: Focus and Track few targets, FP: Fairness
Property, UM: uncertainty model for targets’ motion, UL: uncertainty model for targets’ location, FO: Fully
observable environment (static and PTZ cameras), PO: Partially observable environment (only PTZ cameras)).

Surveillance/tracking strategy n� m n� m n = m MN FT FP UM UL FO PO

[Banerjee et al., 2010] × × ×

[Costello and Wang, 2005] × × ×

[Krahnstoever et al., 2008] × × ×

[Qureshi and Terzopoulos, 2009] × × ×

[Soto et al., 2009] × × ×

[Sommerlade and Reid, 2010] × × ×

[Huang and Fu, 2011] × × ×

[El-Alfy et al., 2009] × × ×

[Ward and Naish, 2009a] × × ×

[Collins et al., 2001] × × ×

[Hampapur et al., 2003] × × ×

[Starzyk and Qureshi, 2011b] × × ×

[Starzyk and Qureshi, 2011a] × × ×

MDP for MOMT (Chapter 3) × × × ×

MDP for FOMT (Chapter 5) × × × ×

POMDP for MOMT (Chapter 6) × × × × × ×

25



Chapter 2. Literature Review

when the camera-target ratio is n � m, the primary criterion is to maximize the number

of observed targets in the environment as we consider in Chapter 3. In either criterion,

the targets’ motion is inherently non-deterministic. But, none of the previous work have

accounted for the motion uncertainty in their optimization framework by a suitable prob-

abilistic model. These works use heuristic approaches to select the best actions for the

active cameras. Such approaches are therefore tailored specifically to their own objectives

and cannot be modified to achieve other objectives. In contrast, our approach is a general

framework in which different surveillance goals can be modeled as formal objective func-

tions. Many previous works ([Krahnstoever et al., 2008; Qureshi and Terzopoulos, 2009;

Sommerlade and Reid, 2010; Spaan and Lima, 2009], etc.) face scalability issue in terms

of the number of targets to be observed. Whereas in our MDP framework in Chapter 3

[Natarajan et al., 2012a], we have exploited the structure of our surveillance problem in

order to make it scalable for increasing number of targets.

In Chapter 4, we address the scalability in number of cameras along with the other is-

sues addressed in Chapter 3. Now, we discuss the works related to our MDP framework in

Chapter 4 that is scalable for large number of active cameras. [Bustamante et al., 2012] de-

scribes the distributed architecture for coordinated operations of multiple sensors based on

centralized fusion and decision making system. [Qureshi and Terzopoulos, 2008] proposed

a camera control framework that distributes the processing to each of the cameras and re-

solves the conflicts by using Constraint Satisfaction Problem in a central server. These

works are mainly focused on architecture level of PTZ camera coordination, and more over

their coordination framework uses rule-based approach. As mentioned in Section 2.1.2,

Game theory based distributed control of active cameras has been explored in [Song et al.,

2011c; Song et al., 2011b; Ding et al., 2012a; Ding et al., 2012b]. They formulate the co-

ordination problem as a multi-player game, where each camera is a player and interested in

optimizing only its own utility by exchanging their current PTZ settings with all other cam-

eras in the network and try to obtain Nash equilibrium. In contrast, our work in Chapter 4
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is based on concepts of Coordination Graph and Max-plus algorithm. Coordination graph

is an undirected graph that is used to express the coordination structure of active camera

network. In max-plus algorithm, each camera exchanges the messages (which is the utility

function) only with their neighboring cameras and improves the approximate global utility

function iteratively.

Max-plus algorithm has been explored in image processing and robotics communities.

In [Freeman and Liu, 2011; Lan et al., 2006; Duchi et al., 2007], the max-product al-

gorithm (which is analogous to max-plus) has been used to estimate MAP (maximum a

posteriori) through belief propagation techniques. Belief propagation operates by passing

messages between the nodes in the Markov random fields and are used in image restora-

tion, denoising and super-resolution applications. In [Kok and Vlassis, 2006; Vlassis et al.,

2004], max-plus algorithm has been extensively studied and applied to coordinate multi-

ple robots in RoboCup, and also used in optimizing the behavior of traffic lights in urban

cities [Medina and Benekohal, 2012; Kuyer et al., 2008]. The message passing strategy

and the decomposition of global utility function into sum of local utility functions based on

the Coordination Graph structure, makes the max-plus algorithm an appropriate choice to

extend our MDP framework in Chapter 3 to improve the scalability in number of cameras

in Chapter 4.

The MDP frameworks discussed in Chapter 3 and 4 have constrain of having static

cameras to fully observe and track targets in low-resolution. Whereas in Chapter 6, we re-

lax this constrain by extending our MDP framework in Chapter 3 to a POMDP framework.

Now we will discuss the difference between our POMDP framework in Chapter 6 and other

camera control approaches in the literature. Existing camera control approaches work in a

constrained environment where all the targets should be observed in any of the cameras’

fov. We term such surveillance environments as fully observable environments. In order

to achieve this, they use additional static cameras and sensors ([Costello and Wang, 2005;

Krahnstoever et al., 2008; Qureshi and Terzopoulos, 2009; Starzyk and Qureshi, 2011b;
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Starzyk and Qureshi, 2011a; Hampapur et al., 2003; Ward and Naish, 2009a]), or con-

figure one or more active cameras to zoom-out in a wide-view ([Banerjee et al., 2010;

Sommerlade and Reid, 2010; Huang and Fu, 2011; Soto et al., 2009; Song et al., 2008a])

and determine the locations of the targets in the environment. Based on their locations,

they estimate the targets’ directions and speeds. They use this targets’ information to pre-

dict their trajectories in order to schedule or control the active cameras to focus on these

targets. The major drawback of these approaches are: (a) their camera coordination ap-

proaches cannot be deployed in real world surveillance environments that have occlusions

due to external barriers. In this case, the camera coordination frameworks are not aware

of the targets that are in the blind region and hence limits the active cameras’ capability;

(b) the static cameras cannot always return the accurate locations of the targets as they are

low-resolution wide-view cameras. This in turn induces errors in targets directions and

speeds, and consequently affects the prediction capability of the active cameras. Whereas

in our POMDP framework in Chapter 6, we track the targets in the belief space which

is a probability distribution over targets’ locations, directions and speeds. We observe the

targets’ location only in high-resolution active cameras and update the belief of targets con-

stantly using probabilistic targets’ motion model and cameras’ observation model. Similar

to Chapter 3, we exploit the structures and properties in our surveillance problem to im-

prove the scalability in number of targets for our POMDP framework.

2.2.2 Related Work on FOMT Problem

The active cameras in Chapters 3 and 4 are controlled to observe where there is maximum

number of targets in the environment. But in Chapter 5, the cameras are controlled to

observe the targets in a fair manner such that no target is “starved” of observation by active

cameras. In this section, we discuss the previous works in active camera networks that are

related to our FOMT problem.

28



Chapter 2. Literature Review

In active camera literature, the cameras are controlled and coordinated either to focus

& track one or more targets at desired resolution [Krahnstoever et al., 2008; Qureshi and

Terzopoulos, 2009; Sommerlade and Reid, 2010; Song et al., 2011a] or to maximize the

number of targets with guaranteed resolution (see Table 2.2). As mentioned previously,

the major issue in these methods is that, one or more targets may be observed for long

durations, whereas the remaining targets may be observed for short durations or in the

worst case, they may not be observed at all. Such bias of the cameras towards few targets

would be unfair to the remaining ones. This is due to the following facts: (a) there are

more number of targets to be observed than the available active cameras in surveillance

environment, (b) targets may pass through the blind regions and (c) the active cameras

may only partially cover the surveillance environment. [Costello and Wang, 2005] and

[Ward and Naish, 2009b] have evaluated different scheduling policies to observe targets in

PTZ cameras. They define the order in which the targets to be observed in active cameras

based on scheduling policies like random, first-come-first-served, earliest-deadline-first,

etc. But they do not consider the fairness property in target observation. To the best of our

knowledge, there is no notion of the fairness property that has been used in observation of

targets in multi-camera surveillance. We extend our previous work in Chapter 3 to improve

scalability in number of targets to achieve fairness in observation of multiple targets.

2.3 Summary

To summarize, our proposed works are different from the existing works in the follow-

ing ways: (a) we use formal, principled decision-theoretic frameworks (i.e., MDPs and

POMDP) to select the optimal actions for active cameras to maximize the expected number

of targets observed and to preserve fairness in observation of targets; (b) we have n � m

which is challenging and address a non-trivial trade-off between number of targets and their

resolution to be observed; (c) we account for the uncertainty in target’s motion by integrat-
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ing a probabilistic motion model and the uncertainty of target’s locations by integrating

a probabilistic observation model into our optimization framework; and (d) we provide a

scalable camera coordination framework in terms of number of targets for both fully ob-

servable and partially observable surveillance environments, and scalable in number of

cameras for fully observable surveillance environment.

30



Chapter 3

MOMT Problem in Fully Observable

Surveillance Environment

3.1 Introduction

This chapter presents a novel principled decision-theoretic approach to control and co-

ordinate the active cameras for maximizing observations of multiple targets (MOMT)

under fully observable surveillance environment. That is, the static cameras monitor the

entire surveillance environment and track the targets in low-resolution at every time step.

Based on this tracking information, the surveillance system controls and coordinates the

active cameras in order to maximize the number of targets with guaranteed resolution. This

approach is based on the Markov Decision Process (MDP) framework, which allows the

surveillance task to be framed formally as a stochastic optimization problem (Sections 3.2

and 3.3). In particular, our MDP-based approach resolves some of the issues mentioned in

Chapter 1: (a) the motion of the targets can be modeled probabilistically (Section 3.3.2),

and (b) to address the trade-off between the number of targets observed in active cameras

and the resolution of observing them, the active cameras’ actions are coordinated to maxi-
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mize the expected number of observed targets while guaranteeing a pre-defined resolution

of these observed targets (Section 3.3.3), and (c) the scalability in number of targets has

been improved by exploiting the problem structure: as proven analytically (Section 3.4),

our MDP-based approach incurs time that is linear in the number of targets to be observed

during surveillance. One key problem faced by existing multi-camera multi-target surveil-

lance approaches is that of scalability with increasing number of targets (Chapter 2). As

demonstrated empirically through simulations (Section 3.5.2), our MDP-based approach

can achieve high-quality surveillance of up to 50 targets in real-time and its surveillance

performance degrades gracefully with an increasing number of targets. The real-world ex-

periments (Section 3.5.3) show the practicality of our decision-theoretic approach to control

and coordinate cameras in surveillance systems.

3.2 System Overview

The proposed surveillance framework consists of a supervised surveillance environment

and an MDP controller. The environment consists of targets, static cameras, and active

cameras. The targets are the moving objects (e.g., people, vehicles, robots, etc.) in the

surveillance environment whose motions are stochastic in nature. The static cameras are

wide-view cameras that can fully observe the surveillance environment at low-resolution.

These cameras are assumed to be calibrated and can obtain the 3D location, direction, and

speed information of the targets at every instance of time. The active cameras are PTZ

(pan/tilt/zoom) cameras that can get high-resolution images of the targets in the environ-

ment. The MDP controller models the interaction between the active cameras and the

environment, and provides a platform to choose optimal actions for these cameras in order

to achieve high-quality surveillance tasks.

Figure 3.1 shows the top view of a representative surveillance environment where the

full fov’s of the active cameras are shown in dotted lines and the current active fov’s are
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Figure 3.1: System overview of active camera networks in MDP framework. (The
static cameras are assumed to be placed at the ceiling and are not shown in the
figure for simplicity.)

shaded. The static cameras are assumed to be placed at the ceiling and are not shown in

the figure for simplicity. The active cameras are placed such that they can observe the

complete environment by pan/tilt/zoom operations but cannot observe all locations of the

environment simultaneously. This makes the problem more practical and challenging, thus

emphasizing the need to control these active cameras. The static cameras determine the

location, direction, and speed of targets and pass these information to the MDP controller.

Based on these information, the MDP controller computes the optimal actions of active

cameras such that the expected utility of the surveillance system is maximized. The MDP

framework for controlling active cameras is shown in Figure 3.2. The utility of the surveil-

lance system corresponds to the high-level application goal that can be defined formally

using a real-valued objective function, as described in Section 3.3.3.

Formally, the MDP framework is defined as a tuple (S,A, R, Tf ) consisting of:
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Figure 3.2: MDP framework for controlling active cameras.

• a set S of discrete states of active cameras and targets in the surveillance environment

(Section 3.3.1),

• a set A of joint actions of active cameras (Section 3.3.1),

• a transition function Tf : S × A × S → [0, 1] denoting the probability P (S ′|S,A) of

switching from the current state S ∈ S to the next state S ′ ∈ S using the joint action

A ∈ A (Section 3.3.2),

• a real-valued reward function R : S → R representing the high-level surveillance goal

(Section 3.3.3).

In the MDP framework, the policy function π : S → A maps from each state to a joint

action of the cameras. Solving the MDP involves choosing the policy that maximizes the

expected reward for any given state. The optimal greedy policy, denoted by π∗g , maximizing
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the expected utility of the system in the next time step is given by

π∗g(S) = arg max
A∈A

∑
S′∈S

R(S ′) P (S ′|S,A) . (3.1)

The main challenge in the MDP is managing the state space S and action space A. This

is because the state space grows exponentially in the number of active cameras and tar-

gets. Hence, the policy computation time for our surveillance problem is exponential. In

practice, the structure of the problem and environment can usually be exploited to reduce

the number of states and the time required to compute the optimal policy. We will show

in Section 3.4 how the state space can be managed for our surveillance problem, thus al-

lowing the MDP to be solved more efficiently. The following assumptions are made in our

surveillance task:

• The targets are oblivious to the cameras, in particular, non-evasive (i.e., they do not try

to escape from the cameras’ fields of view) and their motion cannot be controlled nor

influenced;

• The static cameras are calibrated such that the 3D positioning errors of the targets are

minimal. This can be achieved by placing the cameras at high altitude;

• The total number of targets in the environment can be obtained from static cameras.

3.3 Problem Formulation

Given a set of cameras and targets in a surveillance system, the MDP controller determines

the optimal actions for these cameras such that the expected utility of the surveillance sys-

tem is maximized. In this section, we describe how an MDP framework can be applied

to a generic active camera surveillance in order to maximize the expected utility of the

surveillance system. We enumerate each component of the MDP framework and show how

these components can be formulated for a typical surveillance system. In this work, the
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objective/reward function of the MDP modeling the high-level surveillance goal measures

the total number of targets observed by active cameras with a guaranteed resolution. Max-

imizing the number of observed targets with a guaranteed resolution is a mandatory task

in surveillance because we need to obtain the high-resolution images of targets for bio-

metric and forensic tasks like target detection, recognition, etc. In this work, we present

a decision-theoretic approach for maximizing the expected number of targets observed by

the active cameras. Table 3.1 summarizes the mathematical notations and its descriptions

used in this formulation.

Table 3.1: Mathematical notations and its descriptions used in Chapter 3.

Notation Description

n Number of active cameras.

m
Number of targets to be monitored by n active cameras, such
that n� m.

T = Tl × Td × Tv
State space of a target represented by a set of tuples of loca-
tion, direction and speed.

Tl
Set of all possible discretized locations of the target in the
surveillance environment.

Td Set of all possible discretized directions of target.

Tv Set of discretized speeds of the target.

tk=(tlk , tdk , tvk)
State of a target k is a tuple consisting of its location tlk ∈ Tl,
direction tdk ∈ Td and speed tvk ∈ Tv.

T ∈ T m Joint state of m targets represented by T = (t1, t2, . . . , tm).

C
State space of a camera that consists of finite set of dis-
cretized poses of camera. Each pose of camera is given by
its pan, tilt and zoom value.

ci ∈ C
State of camera i, which is given by the discretized pan, tilt
and zoom value.

C ∈ Cn Joint state of n cameras represented by C = (c1, c2, . . . , cn).
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fov(ci) ⊂ Tl
Subset of target locations lying within the field of view (fov)
of camera i in its state ci.

fov(C) ⊂ Tl
Subset of target locations lying within the joint fov of all
cameras in state C, i.e. fov(C) =

⋃n
i=1 fov(ci).

S = T m × Cn State space of MDP which consists set of tuples of joint state
of m targets and n active cameras.

S = (T,C) ∈ S A state of MDP that consists of joint state of m targets and n
active cameras.

ai
Action of camera i is a PTZ command to move the camera
to the specified state.

A
Joint action of all active cameras represented by a tuple
A = (a1, a2, . . . , an).

A Set of joint actions of all active cameras.

3.3.1 States and Actions

A state of the MDP comprises the states of active cameras and targets in the surveillance

environment. The passive static cameras are first calibrated based on common ground plane

coordinates and then used to obtain the targets’ approximate 3D location, speed, and the

direction information. Let n be the number of active cameras and m be the number of

targets in the environment such that n � m. In this manner, the surveillance problem

becomes more challenging and interesting since there are more targets to be monitored by

fewer active cameras.

Let the set of possible states of each active camera in the environment be denoted by C

such that each state ci ∈ C corresponds to a discretized pan/tilt/zoom position of camera i.

For example, in Figure 3.3(a), the set of possible states of camera i based on discretized pan

angles is given by C = {+90 ◦,+45 ◦, 0 ◦,−45 ◦,−90 ◦} and the current state ci is +45 ◦.

Let the state space of a target be represented by a set of tuples of location, direction and

speed, and denoted by T = Tl ×Td ×Tv where Tl denotes a set of all possible locations of
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Figure 3.3: (a) Camera states and (b) target locations.

the target in the environment, Td denotes a set of all possible discretized directions between

all pairs of locations in Tl, and Tv denotes a set of discretized speeds of the target. The

surveillance environment is discretized into grid cells such that the centers of the grid cells

represent the possible locations of a target, as shown in Figure 3.3(b). The approximate

3D location of the target observed by static cameras will be mapped to the center of the

nearest grid cell. The direction and speed of the target are determined based on its current

and previous locations. The static cameras detect the targets in their fov’s and report their

locations, directions, and speeds to the MDP controller.

By calibrating the active cameras, the possible target locations in the environment that

lie within the fov of each active camera in its various states can be pre-computed. For each

state ci ∈ C of active camera i, the subset of locations lying within its corresponding fov is

denoted by fov(ci) ⊂ Tl. For example, Figure 3.4 illustrates the fov (i.e., shaded polygon)

of active camera 1 in its current state c1; the subset of locations that are observed by camera

1 is given by fov(c1) = {(0, 1), (0, 2), . . . , (2, 3), (2, 4)}.

To observe targets with a guaranteed resolution, the zoom parameter of an active camera

can be adjusted to focus its fov so that imageries of the targets detected within its fov
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Figure 3.4: fov(c1) of camera 1.

satisfy a pre-defined resolution. This requires limiting the depth of its fov, as depicted by

the horizontal line in Figure 3.4. As a result, if a target is located within fov(ci) of any

camera i, then it is observed with a guaranteed resolution. For example, the minimum

resolution of the human face should be 24× 24 pixels, which is the base resolution for face

detection [Viola and Jones, 2004]. The resolution of the targets should be higher than 24×

24 pixels for other tasks like face recognition and expression analysis, vehicle number plate

detection and identification, etc. Let the vector C = (c1, c2, . . . , cn) be the joint state of n

active cameras in the environment and the vector T = (t1, t2, . . . , tm) be the joint state ofm

targets in the environment where tk ∈ T is the state of target k. A state S ∈ S = T m × Cn

of the MDP is therefore of the form S = (T,C).

The actions of an active camera are pan/tilt/zoom commands to move the camera to a

specified state. Let ai be an action of camera i corresponding to a pan/tilt/zoom command.

We assume that the delay in moving the camera to a specified state is negligible as the

state-of-the-art cameras are capable of panning at a speed of 360◦/sec [Axi, 2011]. The
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joint action of all cameras at any given time is a vector A = (a1, a2, . . . , an) ∈ A. Since

we assume that the targets’ motion cannot be controlled, no action can be specified by the

MDP controller to influence their motion in the surveillance environment.

3.3.2 Transition Function Tf

Recall that the transition function Tf of the MDP denotes the probability P (S ′|S,A) of

moving from the current state S to the next state S ′ using the joint action A. In this subsec-

tion, we will show how this transition probability can be factored into transition probabil-

ities of individual active cameras and targets using the conditional independence property,

which is inherent in the state transition dynamics of the surveillance environment. As a

result, the computation time of our optimal policy is significantly reduced (i.e., from ex-

ponential to linear in the number m of targets), hence alleviating the scalability issue (see

Theorem 4).

Firstly, the transition probability P (S ′|S,A) can be factored into the transition proba-

bilities of the active cameras and targets (i.e., respectively, P (C ′|C,A) and P (T ′|T )) due to

conditional independence (see first equality of (3.2)). Specifically, the transition probability

P (C ′|C,A) of the active cameras is conditionally independent of the targets’ states. Since

the targets are assumed to be oblivious to the cameras, the transition probability P (T ′|T )

(i.e., motion model) of the targets is conditionally independent of the active cameras’ states

and actions.

Next, the transition probability P (C ′|C,A) of the active cameras can also be factored

into transition probabilities of individual active cameras due to conditional independence.

The transition probability of an individual camera i is P (c′i|ci, ai) where ci, c′i ∈ C are,

respectively, its current and next states, and ai is its action. Since the transition probability

of each active camera is conditionally independent of the other cameras given its current

state and action, P (C ′|C,A) can be factored into P (c′i|ci, ai)’s for i = 1, . . . , n (see second
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equality of (3.2)). Modern active cameras are equipped with advanced functionalities that

enable them to move to the desired pan/tilt/zoom positions accurately [Axi, 2011]. Hence,

it is practical to assume the transition of camera i to be deterministic and consequently

represented by a deterministic function τ , that moves the camera from its current state ci

to the next state c′i by the action ai, i.e., c′i = τ(ci, ai). Therefore the transition probability

P (c′i|ci, ai) evaluates to either 0 or 1.

Similarly, the transition probability P (T ′|T ) of the targets can be factored into transi-

tion probabilities (i.e., motion models) of individual targets by assuming conditional inde-

pendence. The transition probability of target k is P (t′k|tk) where tk, t′k ∈ T are, respec-

tively, its current and next states. Since the transition probability of each target is condi-

tionally independent of the other targets given its current state, P (T ′|T ) can be factored

into P (t′k|tk)’s for k = 1, . . . ,m (see second equality of (3.2)). Although this assumption

does not hold in practice, we gain significant computational efficiency and performance by

having this assumption in our coordination framework.

As discussed above, the transition probability P (S ′|S,A) of the MDP can be factored

into transition probabilities of individual active cameras and targets after repeatedly apply-

ing the conditional independence property:

P (S ′|S,A) = P (C ′|C,A) P (T ′|T )

=
n∏
i=1

P (c′i|ci, ai)
m∏
k=1

P (t′k|tk)

=


m∏
k=1

P (t′k|tk) if P (c′i|ci, ai) = 1 for i = 1, . . . , n,

0 otherwise.

(3.2)
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3.3.2.1 Transition Probability P (t′k|tk) of a Target

To calculate the transition probability of a target, we first predict a target’s movement in

a surveillance environment using a general direction-speed motion model [Thrun et al.,

2005; Bruce and Gordon, 2004; Hightower and Borriello, 2004]. Specifically, this model

comprises two Gaussian distributions for the speed v and direction d of the target: v ∼

N (µv, σv) and d ∼ N (µd, σd) where the mean parameters µv and µd are obtained from

the static cameras at every time step based on the previous location of the target, and the

variance parameters σv and σd are learned from a dataset of targets’ trajectories in the given

supervised surveillance environment.

Then, in every time step t, we draw paired samples of speed v and direction d of the

target from the Gaussian distributions, compute its corresponding predicted location (xt, yt)

in the environment using

xt = xt−1 + v × cos(d)× dt

yt = yt−1 + v × sin(d)× dt

(3.3)

and determine the proportion of samples in each grid cell to produce the transition prob-

ability P (t′k|tk) of the target. Figure 3.5 shows the transition probability distribution of

a target that is located at (xt−1, yt−1) = (5, 5) with µv = 2 cells per time step and µd =

45◦. The probability distribution of the neighboring locations that the target will move to

in time step t is shown as black dots. Since the possible locations, directions, and speeds of

the target are finite, we can pre-compute the transition probabilities of the target and store

them off-line. This helps to reduce the on-line policy computation time, as discussed in

Theorem 2.
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Figure 3.5: Transition probability distribution of a target.

3.3.3 Objective/Reward Function R

The advantage of using MDPs in surveillance systems is that any high-level surveillance

goal can be defined formally using a real-valued objective/reward function. In this work,

the goal of the surveillance system is to maximize the number of observed targets with

a guaranteed resolution. Supposing the states of all targets are known, such a goal can

be achieved by defining a reward function that measures the total number of targets lying

within the fov of any of the active cameras:

R(S) = R((T,C)) ,
m∑
k=1

R̃(tk, C) (3.4)
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R̃(tk, C) ,


1 if target k’s location lies in fov(C),

0 otherwise;

(3.5)

where fov(C) =
⋃n
i=1 fov(ci) denotes a set of target locations in the environment, each

of which lies within the fov of at least one active camera when the cameras are in state C.

So, if the location of target k lies within fov(C), then it is guaranteed to be observed at a

predefined image resolution, as discussed in Section 3.3.1, and R̃(tk, C) = 1 results.

3.4 Policy Computation

3.4.1 Greedy policy

The states of the targets in the next time step are uncertain due to stochasticity of their

motion. Therefore, the optimal greedy policy π∗g (i.e., one step look-ahead) has to instead

maximize the expected total number of targets that lie within the fov of any of the active

cameras in the next time step:

π∗g(S) = π∗g((T,C)) = arg max
A∈A

V (T,C,A). (3.6)

The value function for the greedy case is defined as follows:

V (T,C,A) =
∑
T ′∈T m

R((T ′, C ′)) P (T ′|T ) (3.7)

where T ′ and C ′ are, respectively, the joint states of the targets and active cameras in the

next time step. The next joint state C ′ of the cameras can be determined deterministically

from their current joint state C and action A using the function c′i = τ(ci, ai) for i =

1, . . . , n (Section 3.3.2).
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Computing the policy π∗ (3.6) for a given state S incurs O(|A||T |m) time, which is

exponential in the numberm of targets1. Its time complexity can be significantly reduced by

exploiting the inherent structure of our surveillance problem, in particular, the conditional

independence property in the transition model of the MDP (Section 3.3.2.1). As a result, the

value function V (3.7) of joint state of m targets can be reduced to sum of value functions

Ṽ of individual targets as follows:

V (T,C,A) =
m∑
k=1

Ṽ (tk, C
′) (3.8)

Ṽ (tk, C
′) ,

∑
t′k∈T

R̃(t′k, C
′) P (t′k|tk) . (3.9)

For a detailed derivation of (3.8), see Appendix A.1. Computing the policy π∗g for a given

state S consequently incurs linear time in the number m of targets, as shown in the result

below:

Theorem 1. If (3.2) holds, then computing policy π∗g (3.6) for a given state S incurs

O(|A||T |m) time.

To improve the real-time computation of policy π∗g , the values of Ṽ (tk, C
′) (3.9) for

all tk ∈ T and C ′ ∈ Cn can be pre-computed and stored off-line. To do this, the values

of P (t′k|tk) for all tk, t′k ∈ T have to be pre-computed first, which incurs O(|T |2) time.

The values of R̃(t′k, C
′) for all t′k ∈ T and C ′ ∈ Cn also have to be pre-computed, which

incurs O(|T ||C|n) time. Consequently, the values of Ṽ (tk, C
′) (3.9) for all tk ∈ T and

C ′ ∈ Cn can be pre-computed in O(|T |2|C|n) time. Hence, the total off-line computa-

tion time is O(|T |2|C|n). The on-line computation time to derive policy π∗g can then be

reduced to O(|A|m), which includes the time taken to look up the values of Ṽ (tk, C
′) for

m targets (3.8) and over |A| possible joint actions (3.6). The result below summarizes the

1The number of actions of MDP |A| is still exponential in number of cameras and hence our work has its
limitation on scalability in number of cameras.
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computation time incurred by the on-line and off-line processing steps:

Theorem 2. If (3.2) holds, then computing policy π∗g (3.6) for a given state S incurs off-line

computation time of O(|T |2|C|n) and on-line computation time of O(|A|m).

3.4.2 Planning Policy

The policy for a given state S ∈ S associated with finite h-horizon planning (i.e., more

than one step look-ahead) is given by,

π∗h(S) = π∗h((T,C)) = arg max
A∈A

V h(T,C,A) (3.10)

where the value function V h(T,C,A) is defined as follows:

V h(T,C,A) =
∑
T ′∈T m

 R((T ′, C ′))︸ ︷︷ ︸
expected reward

+γmax
A′∈A

V h−1(T ′, C ′, A′)︸ ︷︷ ︸
future reward

P (T ′|T ). (3.11)

where γ is the discount factor and 0 < γ < 1.

It can be seen that for our MOMT problem, the finite horizon planning policy and the

greedy policy are equivalent, i.e., the finite planning policy π∗h(S) and the greedy policy

π∗(S) for the given state S ∈ S , returns the same optimal action A. This is due to the

deterministic state transition of active cameras and their action space. The detailed proof is

shown below:

Proof: Proof by induction on h that π∗h(S) = π∗g(S) for finite positive value of h.

Base case (h = 1): Greedy policy is a special case of finite horizon planning policy when

h = 1, i.e., π∗1(S) = π∗g(S).

Consider,

π∗1(S) = arg max
A∈A

V 1(T,C,A)
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where the value function V 1(T,C,A) for horizon h = 1 is given by,

V 1(T,C,A) =
∑
T ′∈T m

[
R((T ′, C ′)) + γmax

A′∈A
V 0(T ′, C ′, A′)

]
P (T ′|T )

=
∑
T ′∈T m

R((T ′, C ′))P (T ′|T )

= V (T,C,A).

The second equality follows because V 0(T ′, C ′, A′) = 0 for all A′ ∈ A. Therefore, the

base case π∗1(S) = π∗g(S) is true.

Base case (h = 2): We have to prove that π∗2(S) = π∗g(S), given π∗1(S) = π∗g(S) is true.

Consider,

π∗2(S) = arg max
A∈A

V 2(T,C,A)

where the value function V 2(T,C,A) for horizon h = 2 is given by,

V 2(T,C,A) =
∑
T ′∈T m

[
R((T ′, C ′)) + γmax

A′∈A
V 1(T ′, C ′, A′)

]
P (T ′|T )

where T and C are the current joint states of targets and cameras. As stated previously, the

next joint state C ′ of the cameras can be determined deterministically from their current

joint state C and action A using the function c′i = τ(ci, ai) for the cameras i = 1, . . . n.

The value function V 1(T ′, C ′, A′) is given by,

V 1(T ′, C ′, A′) =
∑

T ′′∈T m

R((T ′′, C ′′))P (T ′′|T ′).

Similarly, the new state of the cameras C ′′ can be determined from C ′ and A′ by the deter-

ministic function c′′i = τ(c′i, a
′
i) for the cameras i = 1, . . . , n.
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It can be seen from the value functions V 2 and V 1, that the action A in V 2 is inde-

pendent of the future rewards, i.e., ∀A ∈ A in V 2, the future reward max
A′∈A

V 1(T ′, C ′, A′)

returns the same value. This is due to:

1. The state transition of active cameras P (C ′|C,A) in V 2 is deterministic and is given

by the deterministic function c′i = τ(ci, ai) for the cameras i = 1, . . . , n.

2. There exists a joint action A ∈ A for the cameras to move from any of the current

states C ∈ Cn to any of the next states C ′ ∈ Cn, i.e., there is always an action ai for

a camera i, such that it can pan/tilt/zoom to any of the next states c′i ∈ C from any of

its current states c ∈ C by the function c′i = τ(ci, ai).

3. The above two reasons are due to the practical assumption that the active cameras

can move accurately and at faster rate, as todays active cameras can pant/tilt/zoom at

the rate of 360◦/sec [Axi, 2011].

The future reward term max
A′∈A

V 1(T ′, C ′, A′) is constant with respect to the action A in V 2.

Therefore, for all the action A ∈ A in calculating the policy π∗2(S), the future reward is

constant and only the expected reward R((T ′, C ′)) varies, which implies π∗2(S) = π∗g(S).

This shows that the base case for h = 2 is also true.

Inductive case: Suppose that, π∗i−1(S) = π∗g(S) for h = (i − 1) is true for some finite

value of i such that h > 2. We have to show that π∗i (S) = π∗g(S) is also true. The policy

for h = ith horizon is given by,

π∗i (S) = arg max
A∈A

V i(T,C,A)

where the value function V i(T,C,A) for horizon h = i is given by,

V i(T,C,A) =
∑
T ′∈T m

[
R((T ′, C ′)) + γmax

A′∈A
V i−1(T ′, C ′, A′)

]
P (T ′|T ).

48



Chapter 3. MOMT Problem in Fully Observable Surveillance Environment

In the above equation, ∀A ∈ A in V i, the future reward term max
A′∈A

V i−1(T ′, C ′, A′) is a

constant with respect to A. This is because, the current action A does not influence the

future reward term as stated in the base case (h = 2). Therefore, for all A ∈ A, the policy

π∗i (S) also returns the same future rewards and varies only the expected rewardR((T ′, C ′))

which implies π∗i (S) = π∗g(S) is also true. Therefore, for our MOMT problem, planning

actions for active cameras over finite horizon step is equivalent to the greedy solution,

which is one step look-ahead solution.

3.5 Experiments and Discussion

In this section, we present empirical evaluation of our MDP-based approach (given by

(3.6)) for maximizing the number of targets observed by active cameras. Our proposed

approach is simulated in Player/Stage simulator [Gerkey et al., 2003] to perform exten-

sive experimentations and implemented using real Axis 214 PTZ cameras to demonstrate

its feasibility in real surveillance system. Before describing them, it is important to point

out that there is no standard benchmark surveillance environments and datasets for active

camera networks to compare our proposed approach with the other systems in the liter-

ature (e.g., [Krahnstoever et al., 2008; Qureshi and Terzopoulos, 2009; Sommerlade and

Reid, 2010]). While the primary criterion of these systems is to focus and track one or

more targets at high-resolution, our objective function is to maximize the number of targets

observed in high-resolution images (see Table 2.2). These existing systems use heuristic

approaches that can optimize only their respective objective function and cannot be used

for other objective functions. These systems also suffer from scalability issue when the

number of targets is increased. Therefore our MDP-based approach (denoted as MDP in

the Figures 3.8, 3.9 and 3.10) is empirically compared with the following existing heuristic

methods:

• Without prediction of targets’ trajectories (WoP ): The active cameras are controlled to
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Figure 3.6: Setups of corridor and hall environments in Stat approach.

observe the targets based on the location of the targets in the current time step rather than

their predicted locations in the next time step;

• Systematic Approach (Sys) : The active cameras pan automatically in a round robin

fashion such that every camera pans to each of its states for a finite duration;

• Static Approach (Stat): The active cameras are fixed at specific states such that they can

cover maximum area to get high-resolution imageries of the targets (see Figure 3.6).

Our approach and the above heuristic methods are evaluated using the following perfor-

mance metric:

PercentObs =
100

τMtot

τ∑
i=1

M i
obs

where τ (i.e., set to 100 in simulations) is the total number of time steps taken in our

experiments, M i
obs is the total number of targets observed by the active cameras at a given

time step i, and Mtot is the total number of targets present in the environment. That is,

the PercentObs metric averages the percentage of targets being observed by the active

cameras over the entire duration of τ time steps. We will first discuss the environmental

setup for the simulated experiments and analyze the experimental results. Then, we will

show the results of the real camera experiments. Interested readers can view our demo

video2.
2http://www.comp.nus.edu.sg/˜lowkh/camera.html
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camera 2 

camera 1 camera 3 

camera 4 

camera 4 camera 3 

camera 1 camera 2 

Figure 3.7: Setups of corridor and hall environments.

3.5.1 Simulated Experiments: Setup

In Player/Stage simulator, we have designed an active camera model with functionalities

to simulate real active cameras by configuring the number of states across pan angles,

as discussed in Section 3.3.1. Targets’ trajectories are generated automatically using the

Player/Stage simulator based on direction-speed motion model (see (3.3)). In order to

make the trajectories more stochastic, we manually draw the trajectories in the simulator.

The locations of the targets are determined by a static camera, which is the simulator itself.

We have conducted our experiments for two environmental setups (Figure 3.7): corridor

and hall. The sizes of the corridor and hall environments are, respectively, 40 × 5 grid

cells and 20 × 10 grid cells such that |Tl| = 200. The size of a grid cell in the simulator

is approximately mapped to 1 m2 in real world. We have used up to n = 4 active cameras

with |C| = 3, 5, and tested up to m = 50 targets. We have also conducted experiments for

the camera resolutions |fov(ci)| ≈ 25, 16 by reducing the size of the camera’s fov polygon

in the simulator. The set fov(ci) of target locations that are observed by each active camera

is determined by calibrating the active cameras in each of its state.
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Figure 3.8: Graphs of PercentObs vs. number m of targets for corridor setup: (a)
non-clustered targets with |fov(ci)| ≈ 25 cells, |C| = 3 and clustered targets with
(b) |fov(ci)| ≈ 25 cells, |C| = 3, (c) |fov(ci)| ≈ 16 , |C| = 3, (d) |fov(ci)| ≈ 16 ,
|C| = 5.
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Figure 3.9: Graphs of PercentObs vs. number m of targets for hall setup: (a) non-
clustered targets with |fov(ci)| ≈ 25 cells, |C| = 3 and clustered targets with (b)
|fov(ci)| ≈ 25 cells, |C| = 3, (c) |fov(ci)| ≈ 16 , |C| = 3, (d) |fov(ci)| ≈ 16 , |C| = 5.
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3.5.2 Simulated Experiments: Results

Figures 3.8 and 3.9 show the performance of our MDP-based approach for corridor and

hall setups with n = 4, |Tl| = 200, mean of the target’s speed µv = 3 cells per time

step, and with varying m, |fov(ci)|, |C|, and sizes of clusters of targets that follow the

Poisson distribution (λ = 3). The rest of this subsection describes the observations from

our experiments.

Our MDP-based approach performs better for any µv = 1, 2, and 3 cells per time step.

This is because the cameras are controlled based on the predicted locations of a target by

matching its corresponding transition probabilities with respect to its observed state. It

can be observed from the experiments that the performance of MDP is much better that the

other approaches when (a) the speed of the targets is higher, (b) the targets move in clusters,

and (c) when the resolution of the cameras is increased (i.e., |fov(ci)| is decreased). This

is because when the speed of the targets is high (i.e., µv = 2.5, 3 cells per time step), all

the targets will almost certainly move out of the fov’s of the cameras in WoP approach

as the cameras are controlled based on the current location of the targets, hence producing

worse performance (see Figures 3.8(a) and 3.9(a)). When the targets move in clusters,

then the WoP approach suffers even more performance degradation because it has high

tendency to lose clusters of targets. On the other hand, since the MDP has the correct

transition model, it gives superior performance even when the targets move in high speed.

By increasing the resolution of the active cameras (i.e., by reducing |fov(ci)| ≈ 25 to 16), it

can be observed that the MDP performs much better when compared to the WoP approach

(Figures 3.8(c), 3.8(d), 3.9(c), and 3.9(d)). This is because when the targets are moving at a

speed whose µv = 3 cells per time step and are observed at higher resolution (i.e., |fov(ci)|

is smaller), the chance of losing the targets is high when the cameras are controlled based

on current observed locations of the targets. Since MDP has transition model that predicts

the next locations of the targets, it outperforms the other approaches when the targets are
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clustered and the resolution of the cameras is high.

The Sys and Stat approaches perform worse in almost all cases except when |fov(ci)| ≈

16 (Figures 3.8(c), 3.8(d), 3.9(c), and 3.9(d)) where the Sys approach performs better than

WoP approach. This is due to the fact that the cameras are controlled independently of the

targets’ information in both Sys and Stat approaches. This shows that the targets’ infor-

mation (e.g., location, direction, etc) play a vital role in achieving high-quality surveillance.

But, when |fov(ci)| ≈ 16, the Sys approach performs slightly better than WoP because

the chance of targets moving out of the fov is higher in WoP approach if µv = 3 cells per

time step and the fov is reduced to |fov(ci)| ≈ 16. In all cases, the MDP outperforms the

Sys and Stat approaches.

When the number of states of each camera is increased from |C| = 3 (Figures 3.8(c)

and 3.9(c)) to |C| = 5 (Figures 3.8(d) and 3.9(d)), the performance improves because more

targets can be observed due to the additional camera states. The MDP-based approach

performs better than the other approaches even when the transition model is inaccurate.

This is tested by moving the targets at a speed whose µv = 3 cells per time step and

matching the transition probabilities computed with speeds whose µv = 2, 2.5, 3 cells per

time step (Figures 3.8(c), 3.8(d), 3.9(c), and 3.9(d)). The performance of MDP computed

with inaccurate transition probabilities is still much better than the other approaches. This

is because the reward function is optimized with respect to the expected locations of the

targets.

When the number of cameras is increased from n = 2, 3 to 4, the increase in perfor-

mance of MDP is much better than the other approaches form < 10 targets and comparable

to (if not better than) other approaches for m > 10. This is because the prediction capabil-

ity of our approach outperforms the other approaches with every addition of a new camera.

The graph with increasing number of cameras is shown in Figure 3.10.

From these observations, we find that our MDP-based approach performs better than

the other tested approaches in all the cases due to its prediction capability. Specifically, it
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Figure 3.10: Graphs of PercentObs vs. number m of targets in corridor setup for
number of active cameras n = 2, 3 and 4.

outperformsWoP approach when the speed of the targets and the resolution of the cameras

are high.

In order to test our MDP framework with real human trajectories, we have used stan-

dard PETS dataset [pet, 2013] and manually extracted the human trajectories for m = 14

targets. We have created the simulation environment in the Player/Stage simulator based

on the ground truth data from the dataset and virtually setup up to n = 4 active cameras

each with |C| = 8 states in that environment. Figure 3.11(a) shows the results of MDP

framework with the real human trajectory data and the target’s transition probabilities are

computed based on direction-speed motion model (see Section 3.3.2.1). Figure 3.11(b)

shows the results of our MDP framework for the same human trajectory data where the

target’s transition probabilities are computed based on Brownian motion model. Our MDP

based approach outperforms other approaches in this setup with the real human trajectory

data.
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Figure 3.11: Graphs of PercentObs vs. number m of targets for real human trajec-
tories from PETS dataset with transition probabilities of targets calculated based
on (a) direction-speed motion model and (b) Brownian motion model.

3.5.3 Real Camera Experiments

We have conducted real experiments with n = 3 Axis 214 PTZ cameras to monitor up to

m = 6 Lego robots (targets) in an environment with the size of |Tl| = 11×9 grid cells. The

size of each grid cell is 0.5 m2. Each camera has |C| = 3 states. The states of the cameras

are determined such that all the cells of the environment can be observed at high-resolution

by at least one camera. Given any joint state C of the cameras, only a subset of cells in

the environment can be observed by these cameras, i.e., fov(C) ⊂ Tl. This makes the

problem challenging for the active cameras to maximize the number of observed robots.

We have a static camera that can track these robots based on OpenCV Camshift tracker.

The static camera is calibrated using [Tsai, 1986] to obtain the approximate locations of

the robots at every time step. The direction and speed of the robots are determined based

on their previous and current locations. The fov(C) is determined by calibrating the active

cameras in each of its state and determining the grid cells of the environment in which the

robots can be observed at a high-resolution. We guarantee the resolution of the robots that
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are observed by the active cameras to be approximately more than 40 × 40 pixels. We

pre-computed the transition probabilities of an individual target for all possible locations,

directions, and speeds whose µv = 1 and 2 cells per time step. The robots are moved based

on the direction-speed motion model and are programmed to turn back or stop when they

hit the wall or cross other robots. Each robot is initialized with a Camshift tracker in the

static camera and is tracked to get its approximate 3D location, direction, and speed.

We have tested our implementation up to m = 6 robots but we keep one of the robots

static. It can be observed that cameras 2 and 3 coordinate to observe the brown static

robot (Figure 3.12). Camera 2 pans to another state (see bottom two rows of Figure 3.12)

only when camera 3 takes over the observation of the static target (see top two rows of

Figure 3.12). This static target can be replaced by a portion of the surveillance environment

like the entrance/exit or reception where we need to pay more attention. Table 5.2 shows

the PercentObs performance for the real experiments over τ = 50 time steps.

Table 3.2: Performance of MDP framework in real camera experiments.

Number m of targets 1 2 3 4 5 6

PercentObs 99.2 97 95.3 93.5 88 85.1

3.6 Summary

In this chapter, a novel decision-theoretic approach to control and coordinate multiple

active cameras for maximizing the observations of multiple targets (MOMT) under

fully observable surveillance environment has been presented. Specifically, it utilizes the

Markov Decision Process framework, which accounts for the stochasticity of targets’ mo-

tion via a probabilistic motion model and addresses the trade-off by maximizing the ex-

pected number of observed targets with a guaranteed resolution via stochastic optimization.

The conditional independence property, which is inherent in our surveillance problem, is
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exploited in the transition model of the MDP to reduce the exponential policy computation

time to linear time. As shown in simulations, our approach can scale up to 50 targets in

real-time. We have also implemented our proposed decision-theoretic approach using real

Axis 214 PTZ cameras to demonstrate its feasibility in real surveillance system. The MDP

framework presented in this chapter is scalable only in number of targets, but incurs ex-

ponential computation time for increasing number of cameras. Therefore, we address this

scalability issue in number of cameras in Chapter 4.
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Figure 3.12: Results of real experiments: columns 1 to 3 show the high-resolution
images of Lego robots captured by cameras 1, 2, and 3 while column 4 shows the
targets’ trajectories tracked by the static camera.
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Chapter 4

MOMT Problem using Coordination

Graph and Max-plus Algorithm

4.1 Introduction

This chapter presents a novel decision-theoretic approach to control and coordinate active

cameras for maximizing the observations of multiple targets (MOMT) in large-scale

fully observable surveillance environment. In Chapter 3, we have addressed the scalability

in number of targets, but the policy computation incurs exponential computational time

when the number of cameras increases. In this chapter, we extend our MDP framework

in Chapter 3 using the concepts of coordination graphs (CG) [Guestrin et al., 2002] and

max-plus algorithm [Vlassis et al., 2004; Kok and Vlassis, 2006] in order to address this

scalability issue.

In addition to the issues addressed in Chapter 3, there are other practical issues in

controlling and coordinating PTZ cameras that are specific to large-scale active camera

network: (a) each camera should have a mechanism to gather information from relevant

cameras to aggregate the knowledge about the decisions of other cameras and make their
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decisions locally, (b) It is important to reduce the communication overhead between the

cameras during course of making decisions. (c) Importantly, the coordination framework

should be fault-tolerant to camera/communication failures. When there is a failure of a

camera or a communication link between cameras, then the performance of entire camera

network should not be affected. This is important, especially when there are many cameras

that are distributed across the environment.

In this chapter, we apply the concepts of CG (Section 4.3.4) and max-plus algorithm

(Section 4.3.5) to extend our MDP framework (Section 4.2) in Chapter 3 to address the

scalability issue in number of cameras. In max-plus algorithm, each camera repeatedly

exchange messages with their neighboring cameras and computes its individual optimal

action locally over the received messages. Since the computation is distributed to individ-

ual cameras rather than to a centralized controlled in Chapter 3, our approach can improve

the scalability in number of cameras. This approach addresses the above mentioned is-

sues in the following ways: (a) The max-plus algorithm operates on CG which integrates

the coordination structure of underlying active camera network. Each camera, which is a

node in the CG, exchanges messages only with its immediate neighboring cameras without

broadcasting to other cameras in the network. (b) A message that a camera sends/receives

is a locally optimized payoff function and the size of the messages exchanged is very small

when compared to the size of image frames. (c) In max-plus algorithm, each camera com-

putes its optimal action on its received messages. When there is a failure of a camera or

a communication link between cameras, then it will not affect the entire camera network,

instead there is a trade-off in quality of solution produced. We demonstrate empirically

through simulations, that our proposed approach can scale up to 60 targets and 50 cameras

in real-time (Section 4.4).
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Figure 4.1: System overview for distributed active camera networks. (The static
cameras are assumed to be placed at the ceiling and are not shown in the figure
for simplicity.)

4.2 System Overview

The proposed framework consists of a supervised surveillance environment and a set of

camera controllers known as agents. The surveillance environment consists of targets, ac-

tive cameras and static cameras. Each active camera is controlled by an agent. The number

n of active cameras is much lesser when compared to the numberm of targets, i.e., n� m.

The physical surveillance environment is same as described in Chapter 3. In our previous

setup, we have a centralized camera controller that computes optimal joint actions of the

active cameras. When the number of cameras increases, the joint action space increases

exponentially, and hence computing optimal joint action becomes intractable. Whereas in

this framework, individual agents will compute the actions only for the respective active

camera through message passing. Figure 4.1 shows the overview of the proposed surveil-

lance system with 8 active cameras. We redefine the MDP framework from Chapter 3 as a
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tuple (S,A, R, Tf ) that consists of:

• a set S of discrete states of targets and the active cameras in the surveillance environment

(Section 4.3.1),

• a set A of joint actions of active cameras such that A = A1 ×A2 × . . .×An, where Ai
is the action space of camera i and ai ∈ Ai is the action of camera i (Section 4.3.1),

• a transition function Tf : S × A × S → [0, 1] denoting the probability P (S ′|S,A) of

switching from the current state S ∈ S to the next state S ′ ∈ S using the joint action

A ∈ A (Section 4.3.2),

• a real-valued reward function R : S → R representing the high-level surveillance goal

(Section 4.3.3).

The global value function V (S,A) and the optimal policy π∗ of the MDP framework de-

fined in Chapter 3 (3.7) is given by

V (S,A) = V (T,C,A) =
m∑
k=1

∑
t′k∈T

R̃(t′k, C
′) P (t′k|t′k) (4.1)

π∗(S) = argmax
A∈A

V (S,A). (4.2)

The joint action space A is exponential in number of cameras and computing optimal joint

action in (4.2) incurs exponential computation time and is computationally intractable for

large number of cameras. For example, when there are n = 50 active cameras with |Ai| = 8

actions, then the joint action space is 850 = 1.43 × 1045 which is computationally expen-

sive and intractable. Therefore, we decompose the centralized coordination problem into

individual local sub-problems using the concept of CG and solve the coordination problem

approximately using max-plus algorithm.
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4.3 Problem Formulation

The problem is to coordinate a set of active cameras to maximize the expected number

of targets observed with guaranteed resolution in large-scale camera networks. In this

section, we discuss each component of the MDP framework and how we decompose the

value function of the centralized MDP controller into sum of value functions of individual

agents using CG. Later, we show how the value functions of individual agents are used to

compute the approximate optimal actions using the max-plus algorithm. The notations and

symbols used in this chapter is summarized in Table 4.1.

Table 4.1: Mathematical notations and its descriptions used in Chapter 4.

Notation Description

n Number of active cameras.

m
Number of targets to be monitored by n active cameras, such
that n� m.

T = Tl × Td × Tv
State space of a target represented by a set of tuples of loca-
tion, direction and speed.

Tl
Set of all possible discretized locations of the target in the
surveillance environment.

Td Set of all possible discretized directions of target.

Tv Set of discretized speeds of the target.

tk=(tlk , tdk , tvk)
State of a target k is a tuple consisting of its location tlk ∈ Tl,
direction tdk ∈ Td and speed tvk ∈ Tv.

T ∈ T m Joint state of m targets represented by T = (t1, t2, . . . , tm).

C
State space of a camera that consists of finite set of dis-
cretized poses of camera. Each pose of camera is given by
its pan, tilt and zoom value.

ci ∈ C
State of camera i, which is given by the discretized pan, tilt
and zoom value.
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C ∈ Cn Joint state of n cameras represented by C = (c1, c2, . . . , cn).

fov(ci) ⊂ Tl
Subset of target locations lying within the field of view (fov)
of camera i in its state ci.

fov(C) ⊂ Tl
Subset of target locations lying within the joint fov of all
cameras in state C, i.e., fov(C) =

⋃n
i=1 fov(ci).

S = T m × Cn State space of MDP which consists set of tuples of joint state
of m targets and n active cameras.

S = (T,C) ∈ S A state of MDP that consists of joint state of m targets and n
active cameras.

Ai Action space of camera i.

ai Action of camera i such that ai ∈ Ai.

A Joint action of all active cameras.

A Set of joint actions of all active cameras.

G(Q, E) Coordination Graph with |Q| = n nodes and |E| edges.

Γ(i) Set of neighboring nodes of i.

µij A message sent from node i to node j in CG.

4.3.1 States and Actions

The state S ∈ S of the MDP framework consists of joint states of m targets T ∈ T m

and n active cameras C ∈ Cn such that S = T m × Cn represents the state space of MDP

framework. T and C represents the state space of each target and active camera respectively.

A state S = (T,C) represents a tuple that consists of joint state of targets and joint state

of cameras such that T = (t1, t2, . . . , tm) and C = (c1, c2, . . . , cn). A state of target k is a

tuple tk = (tlk , tdk , tvk) ∈ Tl × Td × Tv that consists of target’s location tlk ∈ Tl, direction

tdk ∈ Td and speed tvk ∈ Tv such that the state space of a target is T = Tl × Td × Tv. The

state space of active camera C is a finite set of discrete pan/tilt/zoom positions. The set of

target locations that lies within the fov of camera i in state ci is denoted by fov(ci) ∈ Tl.
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Therefore the joint fov of all the cameras is given by fov(C) =
⋃n
i=1 fov(ci). The depth of

fov of the active cameras is limited such that, the images of the targets detected within the

fov of each active camera satisfy a pre-defined resolution. The targets’ states and cameras’

states are fully observable to the agents. The joint actions of the active camera is defined as

A = (a1, a2, . . . , an) where ai ∈ Ai is the action of camera i and Ai is the action space of

camera i which is the set of PTZ commands to move the camera to the specified position.

The joint action space is denoted as A = A1 ×A2 × . . .×An.

4.3.2 Transition Model Tf

The transition probability P (S ′|S,A) of the MDP can be factored into transition proba-

bilities of individual active cameras and targets after repeatedly applying the conditional

independence property as discussed in Section 3.3.2 in Chapter 3. That is,

P (S ′|S,A) = P (C ′|C,A) P (T ′|T )

=
n∏
i=1

P (c′i|ci, ai)
m∏
k=1

P (t′k|tk)

=


m∏
k=1

P (t′k|tk) if P (c′i|ci, ai) = 1 for i = 1, . . . , n,

0 otherwise.

(4.3)

The transition probability P (t′k|tk) of target k is calculated using Gaussian distributions as

discussed in Section 3.3.2.1 in Chapter 3.

4.3.3 Objective/Reward Function R

As mentioned previously, the goal of the surveillance system is to maximize the number

of targets observed in active cameras with a guaranteed image resolution. This goal is
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Figure 4.2: Coordination graph for the active camera network in Figure 4.1.

achieved by defining the reward function for pair of cameras (i, j) ∈ E . We will see in the

next section, that the global value function is decomposed into sum of pair of local value

functions in the CG. Therefore, the reward function for a pair of cameras i and j given the

states of all targets and states of camera i and j, is defined as follows:

Rij((T, ci, cj)) ,
m∑
k=1

R̃ij(tk, ci, cj) (4.4)

R̃ij(tk, ci, cj) ,


1 if target k’s location lies in fov(ci) OR fov(cj),

0 otherwise.

(4.5)

where R̃ij is the reward function of single target for a pair of cameras i and j. If the location

of target k lies within fov(ci) or fov(cj), then the target k is guaranteed to be observed at

a predefined image resolution, as discussed in Section 4.3.1, and R̃ij(tk, ci, cj) = 1 results.
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4.3.4 Coordination Graph Concepts

In multi-agent systems, the structure of the agents is often specified by the concept of Coor-

dination Graph (CG) [Guestrin et al., 2002]. The CG is an undirected graph represented as

G = (Q, E) where each node i ∈ Q represents the agent that controls the ith active camera

and an edge (i, j) ∈ E represents the dependency between the nodes i and j. An agent i

coordinates its actions only with the set of neighboring agents Γ(i) that are connected to

agent i in the CG. In active camera networks, the CG is constructed based on the proximity

of fov of the cameras, i.e., (a) when the fov of two active cameras i and j are overlapping

and (b) there is a non-zero transition probability for a target to transit between the fov of

cameras i and j, then there can be an edge between the cameras i and j in the CG. The

CG for the active camera network in Figure 4.1 is shown in Figure 4.2. In this CG, there

is no edge between the cameras 2 and 6 because their fov is non-overlapping and it is not

possible for a target to leave fov of camera 2 and enter immediately into the fov of camera

6 and vice-versa.

As mentioned previously, we use the CG to decompose the global coordination problem

into number of local coordination problems each involving fewer cameras. In general, the

global function V (S,A) can be decomposed into sum of pair-wise local value functions. In

our surveillance problem of maximizing the expected number of targets in active cameras,

we approximate the decomposition of value function to gain the computational efficiency

as follows:

V (S,A) ≈
∑

(i,j)∈E

Vij((T, ci, cj), ai, aj) (4.6)

where ai and aj are the actions of cameras i and j respectively, Vij((T, ci, cj), ai, aj) 1 is

1Vij((T, ci, cj), ai, aj) is a symmetric function.

68



Chapter 4. MOMT Problem using Coordination Graph and Max-plus Algorithm

µ76(a6) µ65(a5) 

µ32(a2) µ21(a1) 

µ
1

7
(a

7
)  

µ67(a7) 

µ12(a2) 
µ

7
1
(a

1
)  

µ23(a3) 

µ56(a6) 

1 2 3 

4 

5 6 7 

8 

Figure 4.3: Message passing mechanism in max-plus algorithm for the active cam-
era network in Figure 4.1.

the decomposed local value function for the pair of cameras i and j which is given by

Vij((T, ci, cj), ai, aj) =
∑
T ′∈T m

Rij(T
′, c′i, c

′
j)P (T ′|T ). (4.7)

The local value function in (4.7) is the expected number of targets observed in cameras

i and j, and incurs computational time in the order of O(|T |m) which is exponential in

number of targets. As discussed in Chapter 3, by exploiting the conditional independence

property in the transition model, we can simplify (4.7) as sum of expected observation of

each targets as shown below:

Vij((T, ci, cj), ai, aj) =
m∑
k=1

∑
t′k∈T

R̃ij(t
′
k, c
′
i, c
′
j)P (t′k|tk). (4.8)

The computational time in (4.8) incurs O(|T |m) which is linear in number m of targets.

The proof of (4.8) is given in Appendix A.2. It is assumed that the states of the targets are

fully observable to all the agents, and also any agent i knows the state of its own camera

and its neighboring cameras.
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4.3.5 Max-plus algorithm

The optimal action a∗i for each camera i can be estimated from the CG using the max-plus

algorithm [Vlassis et al., 2004; Kok and Vlassis, 2006]. In max-plus algorithm, each agent

i repeatedly sends the message µij(aj) to its neighboring agents j ∈ Γ(i) (see Algorithm 1).

For a given state of targets T and cameras C, a message µij(aj) in max-plus algorithm is

considered as a locally optimized value function between the agents i and j and is given by

µij(aj) = max
ai∈Ai

Vij((T, ci, cj), ai, aj) +
∑

k∈Γ(i)\j

µki(ai)

− cij (4.9)

Input: State of targets T = (t1, t2, . . . , tm).
Output: Optimal actions of cameras A∗ = (a′1, a

′
2, . . . , a

′
n).

/* Initialize the messages and variables */
µij = µji = 0 for (i, j) ∈ E , iterCount = 0;
while (fixed-point = false ∨ iterCount < κ) do

/* run one iteration */
fixed-point=true, iterCount++;
for every agent i do

for all neighbors j = Γ(i) do
Send j message µij(aj) computed by (4.9)
if µij(aj) differs from previous message by a small threshold then

fixed-point=false
end
Determine a′i = argmax

ai∈Ai

∑
j∈Γ(i)

µji(ai)

end
end

end
/* return the actions of all the agents */
return A∗ = (a′1, a

′
2, . . . , a

′
n) ;

Algorithm 1: Policy computation algorithm for MDP framework (MOMT) using
max-plus algorithm.
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where Γ(i)\j is a set of neighboring agents of i except j, Vij((T, ci, cj), ai, aj) is the local

value function of cameras i and j, and
∑

k∈Γ(i)\j

µki(ai) is the sum of messages that are

received from the neighboring agents of i except j. The term cij =
1

|Ai|
∑
ai∈Ai

µ̂ij(aj) is

the normalization vector that prevents the explosion of values of the messages when there

is a cycle in the graph and µ̂ij(aj) is the unnormalized version of message µij(aj). Each

message µij(aj) can be regarded as a local value function that maps an action aj of camera

j to a real number, i.e., aj → µij(aj). The messages are exchanged with their neighbors as

shown in Figure 4.3, until they converge. That is, the values of the current messages does

not vary too much from the previous messages. For tree structured graphs, the messages

converge after a finite number of iterations [Pearl, 1988; Wainwright et al., 2004]. For

graphs with cycles, there is no theoretical guarantee for the messages to converge within a

finite number of iterations and hence stop the algorithm after a finite κ iterations. However,

the max-plus algorithm has been applied to many graphs with cycles in [Crick and Pfeffer,

2003; Kok and Vlassis, 2006]. At convergence, the optimal action for an agent i can be

computed as follows:

a∗i = argmax
ai∈Ai

∑
j∈Γ(i)

µji(ai) (4.10)

and also the following holds [Pearl, 1988; Wainwright et al., 2004]:

∑
j∈Γ(i)

µji(ai) = max
{A∈A|a′i=ai}

∑
(i,j)∈E

Vji((T, ci, cj), a
′
i, aj). (4.11)

Note that the optimal joint action computed by centralized MDP (4.2) may not be same as

that of joint action (a∗1, a
∗
2, . . . , a

∗
n) computed by (4.10). This is because (a) we decompose

the global value function into sum of pair-wise local value functions and (b) max-plus al-

gorithm computes the local optimal actions for each agent through exchanging messages
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until it converges or for a finite number of iterations. However, we have shown in exper-

iments, that the performance of max-plus algorithm in active camera network is closer to

the optimal solution given by (4.2) for different surveillance settings with n = 6 cameras.

4.4 Experiments and Discussion

This section evaluates our proposed work (denoted as MP in Figure 4.4, 4.7 and 4.8) to

show that (a) its performance is close to the centralized MDP approach for CG with cycles

for n = 6 cameras and (b) also performs well for increasing number of cameras simulated

up to n = 50 cameras. We have simulated active camera networks in realistic setup using

the Player/Stage simulator [Gerkey et al., 2003] as described in Section 3.5.1 in Chapter 3.

Our proposed work is empirically compared with some of the existing baseline camera

control approaches and with our previous work in Chapter 32 as follows:

• Centralized MDP framework (MDP ): The active cameras are controlled by the cen-

tralized MDP framework described in Chapter 3. We use this approach to evaluate the

performance of our work when there are cycles in the CG.

• Systematic approach (Sys): The active cameras are panned systematically to each of its

states in a round robin fashion for every time step; and

• Static approach (Stat): The active cameras are placed at a particular state such that they

observe the maximum area of the environment.

We use the same performance metric PercentObs as in Chapter 3 to evaluate the above

approaches. It is given by,

PercentObs =
100

τMtot

τ∑
i=1

M i
obs

2We were able compute the solutions for centralized MDP (denoted as MDP in Figures 4.7 and 4.8) up
to n = 6 cameras each having |C| = |Ai| = 8 states and actions.
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where τ (i.e., set to 50 in simulations) is the total number of time steps taken in our ex-

periments, M i
obs is the total number of targets observed by the active cameras at a given

time step i, and Mtot is the total number of targets present in the environment. That is,

the PercentObs metric averages the percentage of targets being observed by the active

cameras over the entire duration of τ time steps. We will discuss the experimental setups

followed by detailed analysis of experimental results.

4.4.1 Simulation Experiments: Setup

The proposed approach is evaluated for corridor, hall setup and a more complex large

environment. The size of the corridor, hall and the complex setups are 40 × 7, 20 × 10

and 40× 60 target locations respectively. We have tested up to n = 6 cameras and m = 25

targets in the corridor and hall setups, and also n = 50 cameras and m = 60 targets in

the complex setup. The CGs for these setups are constructed manually based on the fov of

cameras and their proximities as discussed in Section 4.3.4. The corridor and hall setups

are used to evaluate the performance of our approach when the CG of the active cameras

has varying number of cycles. This is done by adding additional edges to CGs for the hall

and corridor setups. Whereas, the complex setup is used to evaluate performance when

the number of cameras increases. Since we were able to compute the centralized MDP

solution in real-time for only up to n = 6 cameras, the size of the hall and corridor setups

are relatively small, and the number of cameras is relatively less when compared to the

complex setup. We empirically determined that the algorithm converges within κ = 10

iterations for all most all the setups in our experiments. When they don’t converge due to

cycles in the graphs, we stop the algorithm after κ = 10 iterations. The active cameras and

targets are simulated in the these environments as described in Section 3.5.1 in Chapter 3.

The simulator itself acts as static cameras and provides the targets’ location information.
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4.4.2 Simulation Experiments: Results

Figure 4.4 (a) - (c) shows the performance of our approach for large complex setup with

n = 40, 45, and 50 cameras. The simulation environment with n = 50 cameras is shown in

Figure 4.5. We have simulated up to m = 60 targets in this environment and used the same

set of target trajectories for surveillance settings with n = 40, 45, and 50 cameras. We have

compared the performance of our approach with baseline Sys and Stat approaches. The

observations from this experiments are as follows:

In general, the percentage of targets observed is much better than the baseline ap-

proaches. Although the MP approach is an approximate solution, the average percentage

of observation of targets over the results in Figure 4.4 (a)-(c) is around 80%. The Sys and

Stat approaches performs poorly because they are controlled independent of the targets’

information. When we increase the number of cameras from n = 40 to 50, the performance

of MP approach improves gradually as shown in Figure 4.4 (a)-(c). This is because, when

new cameras are added to the same surveillance environment, the cameras overlaps each

other and increases the probability of observing more number of targets. Hence the per-

formance improves with increase in cameras. At the same time, when new cameras are

added, the edges and the cycles in respective CG increases. This in turn increases the num-

ber of messages computed in each iteration and hence there is an increase in the average

computation time of actions as shown in Figure 4.4(d).

We have also tested the robustness of our approach when there is a failure of cameras

due to hardware malfunctioning. Figure 4.6 shows the performance of our approach when

the number of cameras that fails (denoted as nf in the graph) ranges from nf = 0 to 5.

It can be seen that, the performance of our approach is better than other approaches even

when there is failure of few cameras. This is because, when a camera fails to send/receive

messages from its neighboring cameras, then the remaining cameras can still coordinate

with their neighbors to achieve the surveillance task. Failure of a camera will not affect the
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Figure 4.5: Complex camera setup (|Tl|=40 × 60 target locations) simulated in
Player/Stage simulator.
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Figure 4.6: Robustness of max-plus algorithm for complex setup with n = 40 cam-
eras and number of failure cameras nf = 1, 2, 3, 4 and 5.

coordination of entire camera network, instead only the performance of the surveillance

degrades gracefully as shown in the Figure 4.6.

Figure 4.7 and 4.8 shows the performance of our MP approach compared with MDP ,

Sys and Stat approaches in corridor and hall setups, respectively. In both these setups,

we have positioned the cameras such that the cameras overlap and have more cycles in the

CGs. The CGs for corridor setup in Figure 4.7(a) and (d) has 7 and 9 edges, respectively,

and the CGs for hall setup in Figure 4.8(a) and (d) has 8 and 10 edges, respectively. The

observations from this experiments are as follows:

When there are cycles in the CG, the performance of our approach is close to theMDP

approach and much better than the Sys and Stat approaches. This is because the Sys and

Stat approaches are controlled independent of the targets’ information. It is expected that

the performance of MP approach to be slightly less than the MDP approach because,

MP approach is an approximate solution (see Section 4.3.5), whereas MDP approach is

the centralized solution. It is observed that the performance of MP approach is better,

when there are less cycles in the CG (see Figure 4.7(b) and 4.8(b)). When the cycles in

the CG is increased by adding additional edges, the performance of MP approach drops

gradually (see Figure 4.7(e) and 4.8(e)). In practice, there is less chance of having many

cycles in CGs for active camera networks (as in Figure 4.7(d) and 4.8(d)) because, it is less
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likely that many active cameras will be placed close to each others. It is also observed

that the Stat approach performs better than Sys approach because, the cameras are placed

close to each other in order to have cycles in the CG. In such settings, when the cameras

are fixed at a position where they can cover maximum area, then almost half of the total

surveillance area is covered by the 6 cameras. Hence Stat approach observes more number

of targets than Sys approach.

We have also compared the average computation time incurred to compute the actions

in MP and MDP approach (see Figure 4.7(c), (f) and 4.8(c), (f)). When the number of

targets increases, the computation time for MDP approach increases at a higher rate than

MP approach. This is because, the expected number of targets is calculated for all possible

joint action space in MDP approach. Whereas in MP approach, the expected number of

targets is calculated only for the action space of each individual cameras separately.

Below we summarize the observations from our experiments:

• The message passing mechanism and the decomposed value function (4.8), helps to com-

pute the actions of individual cameras, which makes our MP approach scalable for in-

creasing number of cameras and targets.

• The performance of our MP approach is much better than baseline approaches even for

n = 50 cameras and robust for camera or communication failures.

• Although theMP approach is an approximate solution, its average performance is about

80% for our large setup with n = 40, 45 and 50 cameras.

• Performance of our approach is closer to the centralized MDP solution and much better

than Sys and Stat approaches for n = 6 cameras and CGs with cycles. When the

number of targets increases, the average computation time of centralized MDP increases

at a higher rate than our approach due to exponential size of in joint action space.
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Figure 4.7: Comparison of PercentObs and average computation time with number
m of targets for corridor setup (|Tl|=40× 7 target locations) whose CG has 7 edges
in (a) - (c) and 9 edges in (d) - (f).

79



Chapter 4. MOMT Problem using Coordination Graph and Max-plus Algorithm

1 

3 5 

2 4 

6 

1 3 5 

2 4 6 

1 

3 5 

2 4 

6 

1 3 5 

2 4 6 

(a) Coordination Graph (d) Coordination Graph

5 10 15 20 25
50

60

70

80

90

100

m

P
er
ce
n
tO

bs

 

 

MP MDP Sys Stat

5 10 15 20 25
40

50

60

70

80

90

m

P
er
ce
n
tO

bs

 

 

MP MDP Sys Stat

(b) PercentObs vs m (e) PercentObs vs m

5 10 15 20 25
0

0.5

1

1.5

2

m

A
v
g.

co
m
p
.
ti
m
e
(s
ec
)

 

 

MP
MDP

5 10 15 20 25
0

0.5

1

1.5

2

m

A
v
g.

co
m
p
.
ti
m
e
(s
ec
)

 

 

MP
MDP

(c) Avg. comp. time vs m (f) Avg. comp. time vs m

Figure 4.8: Comparison of PercentObs and average computation time with number
m of targets for hall setup (|Tl|=20× 10 target locations) whose CG has 8 edges in
(a) - (c) and 10 edges in (d) - (f).
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4.5 Summary

In this chapter, we have extended the centralized MDP framework in Chapter 3 to improve

the scalability in number of cameras. We have used the concept of coordination graph to

decompose the centralized coordination problem into sum of local coordination problems

for each pair of active cameras. Then we have used the max-plus algorithm to solve the

coordination problem approximately through message passing across the edges of the co-

ordination graph. In this work, the proposed camera coordination framework is scalable

in number of cameras because each camera repeatedly exchanges the messages with their

neighbors in the coordination graph and computes their individual optimal action over the

received messages. Since we extend our previous work in Chapter 3, we exploit the same

conditional independence properties in transition model to decompose the value function

for pair of cameras to improve the scalability in number of targets to be observed. We have

empirically evaluated the proposed approach for different surveillance settings with cycles

in the CGs. The experimental results show that the our proposed work can scale up to 50

cameras and 60 targets in real-time.
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Chapter 5

FOMT Problem in Fully Observable

Surveillance Environment

5.1 Introduction

This chapter presents a novel decision-theoretic approach to control and coordinate active

cameras for achieving the fairness in observation of multiple targets (FOMT) under fully

observable surveillance environment. In Chapter 3 and 4, the active cameras are controlled

to maximize the number of targets observed with guaranteed resolution. But there is no

notion of fairness property in observing the targets in active cameras.

Fairness in active camera surveillance is an important property in which the active cam-

eras (resources) are scheduled or allocated to observe the targets (jobs) in the environment

such that no target is “starved” of observation by the cameras for long time. This prop-

erty is important in many real-world surveillance of industrial sites, airport terminals, train

stations, schools and university campuses, etc. The lack of fairness in active camera surveil-

lance may lead to situations where few targets may not be observed for long duration of

time. When targets are not observed for long duration, their activities will not be cap-
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Figure 5.1: Example scenario of targets starved of observation by active cameras
and their respective observation times.

tured/monitored in the active cameras. This leads to a loophole in surveillance, where

the suspicious or anti-social behavior of the targets will neither be captured in the active

cameras for biometric tasks, nor recorded in videos for future forensic investigations.

Existing multi-camera coordination algorithms lacks this property of fairness in obser-

vation of multiple targets (see Table 2.2) and hence “starve” some targets of observation

by the active cameras for a prolonged period of time (e.g., see Figure 5.1), especially those

isolated ones with low likelihood of observing them. In the worst case, those targets may

not be observed at all. Surprisingly, this issue of starvation has not been tackled by the

multi-camera surveillance community. It motivates the need to design and develop a co-

ordination framework that can coordinate the actions of the active cameras to observe all

targets fairly. Intuitively, this implies prioritizing the observation of targets with the least

observation time such that a fair observation of all the targets is achieved if and only if

increasing the observation of any target necessarily results in a decrease in observation of
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some other target with equal or lower observation time. Such a notion of fairness is often

known as the max-min fairness in resource allocation problems (e.g., bandwidth allocation

in networking).

Achieving fair observation of targets in active camera surveillance is challenging and

non-trivial because: (a) real-world physical constraints such as the spatial localities of the

active cameras (i.e., resources) and moving targets (i.e., users) restrict their interactions.

For example, some cameras may not be able to observe any target at times because all the

targets are beyond their possible fields of view (fov’s). On the other hand, some targets may

occasionally move into regions that are occluded from observations by the active cameras;

(b) the stochastic motion of the targets entail uncertain (hence, less predictable) trajectories,

which complicate how the active cameras are to be coordinated to keep possibly multiple

targets of the least observation time within their fov’s at a guaranteed predefined image

resolution; and (c) the proposed coordination framework, if poorly designed, incurs expo-

nential time in the number of targets to be observed during surveillance, thus degrading its

real-time performance. Therefore it is necessary to address these issues in the coordination

framework in order to preserve fairness in observation of targets.

In this chapter, we propose a novel, principled decision-theoretic approach to control

and coordinate active cameras to achieve max-min fairness under uncertainty in the obser-

vation of multiple moving targets (Section 2.2). Our decision-theoretic approach is based

on Markov Decision Process (MDP) framework (Section 5.3) that addresses the above-

mentioned issues in the following ways: (a) the notion of fairness in multi-target observa-

tion can be formally realized in the domain of multi-camera surveillance for the first time

by exploiting the max-min fairness metric (Section 5.4.3) to formalize our surveillance ob-

jective, that is, to maximize the expected minimum observation time over all targets while

guaranteeing a predefined image resolution of observing them (Section 5.5); (b) the uncer-

tainty in the motion and observation times of the targets can be modeled probabilistically

(Section 5.4.2); and (c) the structural properties and assumptions of a surveillance environ-
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ment can be exploited to improve the scalability of our coordination framework to linear

time in the number of targets to be observed during surveillance (Section 5.5). Our pro-

posed MDP framework is empirically evaluated in various realistic surveillance environ-

mental setups through extensive simulations and real Axis 214 PTZ cameras (Section 5.6).

5.2 Background

In this section, we will study some of the fairness metrics that are used in the networking

and scheduling literatures. Jain’s fairness index [Jain et al., 1984] is a popular metric used

to measure whether the users or applications receive fair share of the system bandwidth and

the resources. The value of the Jain’s index lies between 0 and 1, such that the system is

perfectly fair, if the index is 1 and the system is unfair, if the index is 0. Another popular

fairness metric that is used in networking systems is the max-min index [Tassiulas and

Sarkar, 2002], which maximizes the minimum share by a user, where the resources are

allocated based on the order of increasing demand. This index evenly divides the resources

among the users such that a user does not receive more resources if it results in reducing

the resources of the least serviced user. Proportional fairness tries to maximize the total

network throughput, while at the same time allowing all users to access at least a minimal

level of resources. This index assigns each user a weight that is inversely proportional

to the anticipated resource consumption of that user [Liu and Leung, 2008]. Proportional

fairness is equivalent to weighted fairness queuing [Lee et al., 2007] when the weight of

ith channel is inverse of cost per data bit of data flow in that channel. Resource Allocation

Queueing Fairness Measure [Raz et al., 2004] is used in allocating resources in queues,

where at every point in time, every job in the queue deserves an equal service rate. Fairness

of the policy is determined based on the variations of the service rate of the jobs.

However, fairness in surveillance is different from the networking and scheduling do-

mains. Our fairness problem in surveillance is more general than a typical resource allo-
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cation problem, i.e., when some resource is allocated to a certain job, it is assumed that,

this same resource cannot be exploited by other jobs. But whereas in surveillance, when a

camera (i.e., resource) is allocated to observe certain target (i.e., job), the same camera can

be exploited to observe other targets that are residing in the fov of that camera.

5.3 System Overview

The proposed surveillance framework consists of a supervised surveillance environment

and a MDP camera controller, similar to the setup in Chapter 3. The surveillance environ-

ment consists of targets, static and active cameras. The targets are moving objects whose

motion is stochastic in nature. The static cameras are wide-view cameras and observe the

surveillance environment only at low-resolution. The PTZ cameras are controlled by MDP

controller to achieve max-min fairness in observing the targets. Formally, the proposed

MDP framework is defined as a tuple (S,A, Tf ,R) consisting of:

• a set S of joint states of active cameras and targets in the surveillance environment (Sec-

tion 5.4.1);

• a set A of joint actions of active cameras (Section 5.4.1 );

• a transition function Tf : S × A × S → [0, 1] denoting the probability P (S ′|S,A) of

going from the current joint state S ∈ S to the next joint state S ′ ∈ S using the joint

action A ∈ A (Section 5.4.2 ); and

• a real-valued objective/reward function R : S → R representing a high-level surveil-

lance goal (Section 5.4.3).

A policy function π in MDP maps every state S to a joint action of cameras A, i.e.,

π : S → A. We need to compute optimal policy π∗ that maximizes the expected reward for

a given state. This is computed by a greedy algorithm as described in Section 5.5. At ev-

ery time step of surveillance, the MDP controller computes an optimal policy (i.e., optimal

action) based on the observed state of the surveillance environment (from the static cam-
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eras), such that the max-min fairness is achieved. When the number of targets increases,

the state space grows exponentially and hence the policy computation incurs exponential

computation time. But, in our current work, we exploit the structure of our surveillance

problem to reduce the exponential computation into linear time. Its important to mention

the reader that the trade-off between the fairness and coverage of the system has not been

considered in this work at this point of time. Therefore, in our current work, the cameras

are controlled only to improve the fairness property in the active camera surveillance and

not the coverage.

5.4 Problem Formulation

5.4.1 States and Actions

A joint state S ∈ S of our MDP controller is defined as a pair of joint states TM ∈ T m

of m targets and C ∈ Cn of n active cameras where T and C denote sets of all possible

states of each target and active camera, respectively and M = {k ∈ N : 1 ≤ k ≤

m | ’k’ is an index of a target}. That is, S , (TM, C) and S = T m × Cn. Let TM ,

(t1, t2, . . . , tm) ∈ T m and C , (c1, c2, . . . , cn) ∈ Cn where tk ∈ T and ci ∈ C denote

the corresponding states of target k and camera i, and M = {1, 2, . . . ,m}. Let tk ,

(tlk , tdk , tvk , tok) ∈ Tl × Td × Tv × To where tlk , tdk , tvk , and tok denote target k’s location,

direction, speed, and observation time, respectively. That is, T = Tl × Td × Tv × To. The

state space C of an active camera is a finite set of discrete pan/tilt/zoom positions. Let

fov(ci) ⊂ Tl be a subset of target locations lying within the fov of camera i in its state ci.

The joint fov of all cameras in joint stateC is defined as fov(C) =
⋃n
i=1 fov(ci). The depth

of fov of each active camera is limited such that imageries of the targets detected within its

fov satisfy a pre-defined resolution. This is done by adjusting the zoom parameter of each

camera based on its position. The joint actions of the camera controller are PTZ commands
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that move the corresponding cameras to their specified states. Let a joint action of the n

cameras be denoted by A , (a1, a2, . . . , an) ∈ A where ai denotes the PTZ command of

camera i. It is worth to note that in Chapters 3, 4 and 6, the state of a target comprise of its

location, direction and speed. In this chapter, the observation time of a target is included in

its state, in addition to its location, direction and speed. The notations and symbols used in

this chapter are summarized in Table 5.1.

Table 5.1: Mathematical notations and its descriptions used in Chapter 5.

Notation Description

n Number of active cameras.

m
Number of targets to be monitored by n active cameras, such that
n� m.

T = Tl × Td × Tv × To
State space of a target represented by a set of tuples of location,
direction, speed and observation time.

Tl
Set of all possible discretized locations of the target in the surveil-
lance environment.

Td Set of all possible discretized directions of target.

Tv Set of discretized speeds of the target.

To Set of discretized observation time of the target.

tk=(tlk , tdk , tvk , tok)
State of a target k is a tuple consisting of its location tlk ∈ Tl,
direction tdk ∈ Td, speed tvk ∈ Tv and observation time tok ∈ To.

M Set of indices of targets.

TM ∈ T m
Joint state of m targets represented by TM = (t1, t2, . . . , tm)
whereM = {1, 2, . . . ,m}.

C
State space of a camera that consists of finite set of discretized
poses of camera. Each pose of camera is given by its pan, tilt and
zoom value.

ci ∈ C
State of camera i, which is given by the discretized pan, tilt and
zoom value.

C ∈ Cn Joint state of n cameras represented by C = (c1, c2, . . . , cn).
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fov(ci) ⊂ Tl
Subset of target locations lying within the field of view (fov) of
camera i in its state ci.

fov(C) ⊂ Tl
Subset of target locations lying within the joint fov of all cameras
in state C, i.e. fov(C) =

⋃n
i=1 fov(ci).

S = T m × Cn State space of MDP that consists of set of tuples of joint state of
m targets and n active cameras.

S = (TM, C) ∈ S
A state of MDP that consists of joint state ofm targets and n active
cameras.

ai
Action of camera i is a PTZ command to move the camera to the
specified state.

A
Joint action of all active cameras represented by a tuple A =
(a1, a2, . . . , an).

A Set of joint actions of all active cameras.

Y
Set of indices of targets whose observation time is minimum of all
other targets such that y = |Y|, Y ⊆ M and ∀i ∈ Y : toi =
min
j=1...m

(toj ).

TK
Joint state of k targets whose indices are in the set K, i.e., TK =
(ti)i∈K and TK ∈ T k where T k is a set of joint states of k targets.

TK

Joint state of (m− k) targets whose indices are in K = (M\K) ,
i.e., TK = (ti)i∈K such that TK ∈ T (m−k) where T (m−k) is a set
of joint states of (m− k) targets.

TC
Set of states of a target whose locations lies in the fov(C), i.e.,
∀ti ∈ TC we have tli ∈ fov(C).

T kC
Set of joint states of k targets whose locations lies in the fov(C),
i.e., ∀TK ∈ T kC we have TK = (ti)i∈K such that ∀ti =
(tli , tdi , tvi , toi) in TK we have tli ∈ fov(C).

(T k\T kC )

Set of joint states of k targets where at least one of the target
does not lies in the fov(C), i.e., ∀TK ∈ (T k\T kC ) we have
TK = (ti)i∈K such that ∃ti = (tli , tdi , tvi , toi) in TK such that
tli ∈ fov(C).
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5.4.2 Transition Model Tf

By exploiting the following structural assumptions in the state transition dynamics of the

surveillance environment:

• camera i’s next state c′i is conditionally independent of the other n−1 cameras’ states and

actions and the m targets’ states given its current state ci and action ai for i = 1, . . . , n

and

• target k’s next state t′k is conditionally independent of other m − 1 targets’ states (i.e.,

every target moves independently) given its current state tk for k = 1, . . . ,m and the

cameras’ next joint state C ′,

the transition model Tf can be factored into transition models of individual targets and ac-

tive cameras, hence significantly reducing the time incurred to compute the optimal policy

π∗ for a given state S (Section 5.5). Furthermore, since the modern active cameras are

able to move to their specified positions accurately [Axi, 2011], it is practical to assume

the transition model of each individual camera to be deterministic and consequently repre-

sented by a function τ that moves camera i from its current state ci to its next state τ(ci, ai)

by the action ai. Then, the transition model of the camera controller can be simplified to

P (S ′|S,A) = P (T ′|T,C ′)P (C ′|C,A)

=
m∏
k=1

P (t′k|tk, C ′)P (C ′|C,A)

=


m∏
k=1

P (t′k|tk, C ′) if P (c′i|ci, ai) = 1 for i = 1, . . . , n,

0 otherwise.

(5.1)

Derivation of (5.1) is followed from Section 3.3.2 in Chapter 3. The state transition of tar-

get k from tk to t′k includes stochastic transitions of its location from tlk to t′lk , its direction

from tdk to t′dk , its speed from tvk to t′vk , and its observation time from tok to t′ok . So, the
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transition probability of target k can be factored into transition probabilities of its location,

direction, speed and observation time:

P (t′k|tk, C ′) = P (t′lk |tlk , t
′
dk
, t′vk)P (t′dk |tdk)P (t′vk |tvk)P (t′ok |t

′
lk
, tok , C

′) .

The transition probabilities P (t′dk |tdk) and P (t′vk |tvk) of the target’s direction and speed

are, respectively, modeled as Gaussian distributions N (µd, σd) and N (µv, σv) with the

means µd and µv being the current direction and speed of the target, and σd and σv being

the variance parameters which are learned from a dataset of the targets’ trajectories in the

environment. The transition probability P (t′lk |tlk , t
′
dk
, t′vk) of the target’s next location is

constructed using the general direction-speed motion model, as described in Section 3.3.2.1

in Chapter 3. The observation time tok of a target k is increased to t′ok = (tok + 1), if the

target is observed in fov of any of the active cameras, else the observation time remains the

same, i.e., t′ok = tok . Therefore, the transition probability P (t′ok |t
′
lk
, tok , C

′) is defined as

follows,

P (t′ok = (tok + 1)|t′lk , tok , C
′) =


1 if t′lk ∈ fov(C ′),

0 otherwise.

(5.2)

P (t′ok = tok |t′lk , tok , C
′) =


1 if t′lk /∈ fov(C ′),

0 otherwise.

(5.3)

5.4.3 Objective/Reward function R

Supposing the transition models of all targets are deterministic (i.e., the states of all targets

in the next time step are known), the surveillance objective can be defined directly in terms

of the max-min fairness metric, that is, to maximize the minimum observation time over
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all targets while guaranteeing a predefined image resolution of observing them. Such a

surveillance objective can be achieved by defining an objective/reward function R that

measures the minimum observation time over all targets:

R(S) = R((TM, C)) , min
k∈M

tok . (5.4)

It is noteworthy to point out the usefulness of other popular fairness metrics to the

domain of multi-camera surveillance such as the Jain’s fairness index [Jain et al., 1984].

Jain’s fairness index measures whether the users receive their fair share of the resources.

This index is revised to reflect our notations and given below:

(
∑

k∈M tok)2

|M|
∑

k∈M t2ok
.

The value of Jain’s fairness index lies between 0 and 1. The observation of all targets is

perfectly fair if the index is 1. It is unfair if the index is 0. Jain’s fairness index is not

suitable for measuring fairness in the observation of multiple targets in active multi-camera

surveillance: For example, when 999 targets are always observed by any active camera

and only 1 target is not being observed at all, Jain’s fairness index yields 0.999, which is

close to perfect. However, the single target is not observed at all and may potentially be a

suspicious target that is critical to be observed by surveillance.

5.5 Policy Computation

As stated earlier, we need to compute the optimal policy π∗ that maximizes the expected

reward for a given state. In practice, the states of the targets in the next time step are

uncertain due to stochasticity of their motion. Therefore, the optimal policy π∗ has to

instead maximize the expected minimum observation time over all targets in the next time
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step:

π∗((TM, C)) = A∗ = arg max
A∈A

V (TM, C, A) (5.5)

V (TM, C, A) ,
∑

T ′M∈T m

R((T ′M, C
′))P (T ′M|TM, C ′) (5.6)

where T ′M and C ′ are, respectively, the joint states of the targets and active cameras in the

next time step. The next joint state C ′ of the cameras can be determined deterministically

from their current joint state C and joint action A using the function c′i = τ(ci, ai) for

i = 1, . . . , n (Section 5.4.2).

Computing an optimal policy π∗ (5.5) incurs O(|A||T |m) time that is exponential in

number m of targets. This exponential time complexity can be significantly reduced by

exploiting the structural property and assumptions of the surveillance environment, that is,

the conditional independence property in the transition model (Section 5.4.2). As a result,

the value function V (5.6) can be simplified to

V (TM, C, A) = tmin +
∏
k∈Y

∑
t′k∈TC′

P (t′k|tk, C ′) (5.7)

where Y ⊆ M denotes the set of indices of all targets with minimum observation time in

the current time step (i.e., Y , {j ∈ M | toj = mink∈M tok}), TC′ denotes the set of a

target’s states whose locations are observed by the active cameras in their joint stateC ′ (i.e.,

TC′ , {t′k ∈ T | t′lk ∈ fov(C ′)}), and tmin = mink∈M tok denotes a constant representing

the minimum observation time over all targets in the current time step. The derivation of

(5.7) is given in Appendix A.3. By plugging (5.7) into (5.6), (5.5) reduces to

π∗((TM, C)) = A∗ = arg max
A∈A

∏
k∈Y

∑
t′k∈TC′

P (t′k|tk, C ′). (5.8)

The policy given by (5.8) chooses a joint action A ∈ A that maximizes the product of
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likelihoods of observing, in the next time step, all targets with minimum observation time

in the current time step by active cameras in their joint state C ′.

The following result indicates that an optimal joint action A∗ (5.8) can be derived using

linear time in the number m of targets to be observed during surveillance:

Theorem 3. If (5.1) holds, then computing the optimal joint action A∗ (5.8) incurs

O(|A||T |m) time.

In (5.8), computing the likelihood of observing a target with minimum observation time

(i.e., sum of probabilities) incurs O(|T |) time. Computing the product of |Y| likelihoods

then incurs O(|T |m) time since the size of Y can be m in the worst case and Theorem 3

follows.

As mentioned above, computing an optimal policy π∗ (5.8) only needs to consider

all targets with minimum observation time. These targets may be beyond the fov’s of

some active cameras due to their spatial localities, which is an issue stated in Section 5.1.

Consequently, multiple possible optimal joint actions are possible because any action of

such a camera is optimal. In the worst case, all targets with minimum observation time

are beyond the fov’s of all active cameras (i.e., V (TM, C, A
∗) = tmin), thus causing all the

cameras to be in “limbo”.

To remedy this, the key idea is to repeatedly refine the set of optimal joint actions by

preserving fairness in the observation of the remaining targets using (5.8) after ignoring

those with minimum observation times. To elaborate, the first step is to compute the set

A∗ of optimal joint actions of the active cameras satisfying (5.8). Then, ignore the targets

with minimum observation time by removing Y fromM, that is,M ←M \ Y . Finally,

consider A∗ to be the new joint action space in (5.8), that is, A ← A∗. These steps are

repeated until there is a unique optimal joint action A∗ or the number |M| of remaining

targets after ignoring those with minimum observation times is 0 (see Algorithm 2).
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Input: State of targets T = (t1, t2, . . . , tm).
Output: Optimal actions of cameras A∗ = (a′1, a

′
2, . . . , a

′
n).

while (|A| > 1 ∨ |M| > 0) do
/* Compute the optimal joint action set */

Compute A∗ , {A∗} by (5.8)
/* Eliminate targets whose indices are in Y */
M←M\Y
/* Update the joint action set */
A ← A∗

end
/* Optimal action for improving fairness */
return A∗ = (a′1, a

′
2, . . . , a

′
n)

Algorithm 2: Policy computation algorithm of MDP framework to achieve FOMT.

5.6 Experiments and Discussion

This section empirically evaluates the performance of our proposed MDP framework in

different realistic surveillance environmental setups in simulation and also in real Axis 214

PTZ cameras to demonstrate its feasibility in real-world surveillance. Interested readers

can view our demo video here1. We have used Player/Stage simulator [Gerkey et al., 2003]

to evaluate the proposed approach in realistic surveillance setups. As stated in Chapter 2,

the existing works on control and coordination of active cameras either focus & track one

or more targets or try to maximize the number of targets. Hence it is fair to compare and

contrast our framework with the existing fairness metrics and with baseline camera control

approaches. Our MDP approach that is based on max-min fairness metric (denoted asMM

in Figure 5.3 and 5.4) is compared against the following existing fairness metrics and the

baseline camera control approaches:

• Max-min fairness without prediction of targets’ motion and observation time (MMWP ):

This algorithm is based on optimizing the reward function (5.4) without accounting for

the uncertainty in the targets’ motion and observation time;

1http://www.comp.nus.edu.sg/˜lowkh/camera.html
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• M-M approach (M − M ): This approach is based on optimizing the expected differ-

ence between the maximum and minimum observation times of the targets. That is,

the cameras are controlled such that the expected difference between the maximum and

minimum observation times of the targets are minimized;

• Round robin approach (RRB): In this approach, all the targets are given priorities in a

round robin fashion. The active cameras are controlled to observe the targets based on

their priorities;

• Maximizing coverage of targets (COV ) : In this approach, the active cameras are con-

trolled to maximize the expected number of targets observed in their fov’s (Chapter 3);

• Systematic approach (AUTO): This is a baseline approach in which the active cameras

are panned to each of their states in a round robin fashion;

• Static approach (STAT ): This is a baseline approach in which the active cameras are

fixed at a particular state such that their fov’s can maximize the coverage.

The above approaches are evaluated based on the following two performance metrics:

AvgMinIndex ,
1

τ

τ∑
j=1

min
k∈M

tjok

AvgCoverage ,
1

τ

τ∑
j=1

N j
obs

where τ is the total number of time steps taken in our experiments, which is set to 50,

tjok is the observation time of target k at time step j, and N j
obs is the total number of tar-

gets observed by the active cameras at time step j. That is, AvgMinIndex measures the

average of minimum observation time over all |M| targets in the environment during the

τ time steps and AvgCoverage measures the average number of targets observed by the

active cameras during the τ time steps. We will first discuss the experimental setup for the

simulated experiments and analyze the results.
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Figure 5.2: Experiment setups: (a) Hall (|Tl| = 20× 8 target locations), (b) Corridor
(|Tl| = 40×5 target locations), (c) Parking lot setup (|Tl| = 168 target locations) and
its corresponding real-world map in (d).
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5.6.1 Simulated Experiments: Setup

The proposed approach has been extensively evaluated in the three realistic setups: (a)

corridor, (b) hall, and (c) parking lot, as shown in Figure 5.2. The real-world map of

the parking lot setup is shown in Figure 5.2(d). We have used the Player/Stage simulator

to simulate the above surveillance environments with static cameras, active cameras, and

moving targets. The simulator itself acts as the static camera that is used to observe the

locations of the moving targets. The active cameras are simulated using our custom PTZ

camera models that are configured across various pan angles. There are up to m = 20

targets whose motions are generated manually and automatically based on direction-speed

motion model in the simulator as discussed in Section 5.4.2. The target’s direction is taken

from the following discrete set of angles {0◦, 45◦, . . . , -45◦}. Each active camera is cali-

brated across its pan angles and the corresponding set fov(ci) of target locations observed

by each active cameras in their states is pre-computed. In all three experimental setups,

we use n = 4 active cameras and each active camera has |C| = 8 states configured across

pan angles. The positions and states of the cameras are chosen such that there are some

target locations (known as occluded regions) in the environment, which cannot be observed

by any active camera. Fairness is extremely essential in such surveillance setup because,

when the target enters into those locations, the observation time of these targets will be

necessarily less and hence there is a compromise in fairness in observation of targets.

5.6.2 Simulated Experiments: Results

Figures. 5.3 and 5.4 show the results of the AvgMinIndex and AvgCoverage metrics

evaluated over the three setups with n = 4 active cameras (each camera has |C| = 8 states)

and up to m = 20 targets. Our observations from the simulation results are as follows:

Uncertainty in motion and observation time: Figure 5.3 shows the AvgMinIndex per-

formance of our MDP framework based on max-min fairness metric (denoted by MM )
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Figure 5.3: Graphs of AvgMinIndex of (a) corridor, (b) hall, and (c) parking lot
setup for n = 4, |C| = 8, and varying number of targets m = 5, 10, 15, 20.
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Figure 5.4: Graphs of AvgCoverage of (a) corridor, (b) hall, and (c) parking lot setup
for n = 4, |C| = 8, and varying number of targets m = 5, 10, 15, 20.

over the MMWP approach, the latter of which controls the cameras without accounting

for the uncertainty of targets’ motion and observation times. As seen in the result, our

MM approach performs better than the MMWP approach in all the three setups. This is

because, in our approach, the cameras are controlled based on the predicted positions and

observation times of the targets. But, in the MMWP approach, the cameras are controlled

based on the current location and observation times of the targets. When the targets are

at the edge of the fov’s of active cameras, MM approach tries to keep the targets in the

center of the fov based on the predicted positions of the targets. In contrast, the MMWP

approach loses the targets in the next time step, which causes the loss of observation of
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the targets with minimum observation time. Hence, the AvgCoverage of the MMWP

approach is also less when compared to ourMM approach (see Figure 5.4). TheMMWP

approach performs worse in the hall setup because the uncertainty of targets’ motion is

larger in hall setup than other setups.

Fairness in observation of the targets: Our MM approach achieves better fairness when

compared to other approaches like minimizing the difference between maximum and min-

imum observation times of the targets (M −M ) and round robin method (RRB) in all the

three setups. In the M −M approach, the cameras are controlled to minimize the differ-

ence between maximum and minimum observation times of the targets. In certain cases,

this will cause the cameras not to observe any targets in order to minimize the difference.

Hence, the targets with minimum observation times will be starved of observation by the

cameras. Therefore, the M −M approach performs poorly both in AvgMinIndex (Fig-

ure 5.3) and AvgCoverage (Figure 5.4). The RRB approach performs poorly in fairness

as the number of targets increases (see Figure 5.3). This is because when priorities of cer-

tain targets are increased in round robin fashion, the rest of the targets are starved until

their turns are reached. The COV approach, which maximizes the expected number of

targets, performs poorly in the AvgMinIndex metric because in order to maximize the

expected number of observed targets, some targets are kept unobserved for long duration.

In contrast to the above approaches, our MM approach maximizes the observation of the

targets in increasing order of their observation time, i.e., the priority of a target increases

with decreasing observation time. Hence, for ourMM approach, the targets are not starved

of observation. The baseline AUTO and STAT approaches suffer a lot more degradation

in fairness because they do not exploit the targets’ information.

Scalability in the number of targets: Figures 5.3 and 5.4 show the results for varying

number of targets from m = 5 to 20. They reveal that our MDP framework performs

better in fairness than the other approaches with an increasing number of targets and its
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performance degrades gracefully.

To summarize our observations from the simulation experiments,

• When ourMM approach accounts for the uncertainty of targets’ motion and observation

time, the fairness in the observation of the targets with the least observation time will be

significantly improved;

• The M −M approach performs poorly in achieving the fairness because the cameras

controlled by theM−M approach at times try not to observe targets in order to minimize

the difference between maximum and minimum observation times of the targets;

• The COV approach has a serious limitation of starving some targets of observation by

active cameras for long duration;

• The RRB approach performs poorly because the low-priority targets are not observed

until their turns to be observed by the active cameras are reached;

• Our MDP framework can scale for up to 20 targets in real-time and its fairness degrades

gracefully as the number of targets increases.

5.6.3 Real Camera Experiments

We have tested the feasibility of deploying our MDP framework on real Axis 214 PTZ

cameras. The experimental setup of our indoor lab environment is shown in Figure 5.5.

The surveillance environment is of size |Tl| = 14× 13 grid cells with few cells that cannot

be observed by any PTZ camera (i.e., red shaded cells in Figure 5.5). We have purposely

included this occluded region in our setup in order to vary the observation times of the

targets when they move into these regions. There are n = 3 PTZ cameras, each of which

has |C| = 3 states. The fov’s of the PTZ cameras are configured manually based on the

resolution of the observed targets. The static camera, which is placed opposite to PTZ

camera 3, can observe the entire surveillance environment at a low resolution. The static

camera and 3 PTZ cameras are calibrated on a common ground plan. The targets are the
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Figure 5.5: Real camera experimental setup.
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Figure 5.6: Snapshots of the observation time of m = 5 targets in real camera
experiments.

102



Chapter 5. FOMT Problem in Fully Observable Surveillance Environment

Lego robots that are moved based on a direction-speed motion model and are programmed

to turn back or stop when they hit the wall or cross other robots. The robots are tracked

in the static camera based on color properties using OpenCV libraries. Using the location,

direction, and speed information of the targets observed in the static camera, the 3 PTZ

cameras are coordinated to observe the targets to improve fairness.

We have tested our algorithm for up to m = 5 targets with different interesting scenar-

ios. For example, in the case of m = 2 targets, we have programmed one of the targets

to move into the occluded region and wait there for a few time steps. When that target

re-enters the observable region, the PTZ cameras try to focus and observe it because the

observation time of that target is less than the other target. In the case of m = 5 targets,

we have made three targets move from the occluded region to the observable region so that

their observation time remain zero for a few time steps. The snapshots of the observation

time of these 5 targets are shown in Figure 5.6. As mentioned, at time step 2, targets 1,

2, and 3 are inside the occluded region and hence their observation time are zero. When

these targets move forward into the observable region, the cameras try to observe them and

hence their observation time increase at time step 7. At time step 9, the observation time of

all targets become equal and our MDP approach alternates the active cameras’ observation

over all the targets in order to maintain a fair observation time of them. TheAvgMinIndex

for our real camera experiment taken over 50 time steps is shown in Table 5.2. The demo

video2 explains the interesting observations from our experiments.

Table 5.2: Performance of MDP framework in real camera experiments.

m 2 3 4 5

AvgMinIndex 23 25 27 30

2http://www.comp.nus.edu.sg/˜lowkh/camera.html
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5.7 Summary

In this chapter, we have proposed a novel decision-theoretic approach to control and co-

ordinate multiple active cameras to achieve fairness in observation of multiple targets

(FOMT) under fully observable surveillance environment. As a result, the issue of star-

vation that plagues the existing multi-camera surveillance can be resolved. Our proposed

approach is based on MDP framework that accounts for the uncertainty in the motion and

observation times of the targets by modeling them probabilistically. Through our work in

this chapter, the notion of fairness in multi-target observation is formally realized in the

domain of multi-camera surveillance for the first time. We have exploited the conditional

independence property in the targets’ transition models to significantly reduce the expo-

nential policy computation time to that of linear time in the number of targets. Empirical

evaluation through simulations reveals that our approach outperforms the state-of-the-art

and baseline camera coordination approaches. We have also implemented our proposed

framework on real Axis 214 PTZ cameras to demonstrate its practical feasibility in a real

surveillance system.
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Chapter 6

MOMT Problem in Partially

Observable Surveillance

Environment

6.1 Introduction

In this chapter, we present a novel principled decision-theoretic approach to control and

coordinate active cameras for maximizing observations of multiple targets (MOMT)

under partially observable surveillance environment. That is, we do not assume that the

targets’ information can be observed at every time step using low-resolution static cameras

as in Chapters 3, 4 and 5. In partially observable environment, we have only the active

cameras and the targets’ information are observed only through the active cameras.

Our proposed framework is the result of framing the surveillance problem formally

using a rich class of decision making under uncertainty models called the Partially Observ-

able Markov Decision Process (POMDP) (Section 6.2). Specifically, it resolves the issues

mentioned in Chapter 1 by (a) modeling a belief of the targets’ states (i.e., locations, direc-
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tions, and speeds) and performing Bayesian updates of the belief (Section 6.3.4) using the

probabilistic motion model of the targets (Section 6.3.2) and the probabilistic observation

model of the active cameras (Section 6.3.3); (b) coordinating the active cameras’ actions

to simultaneously improve the belief of the targets’ states and maximize the number of ob-

served targets (Sections 6.3.5 and 6.4) while observing them at a guaranteed pre-defined

resolution (Section 6.3.1); and (c) exploiting the inherent structure of our surveillance prob-

lem to improve its scalability such that it incurs linear time in the number of targets to be

observed during surveillance (Section 6.4). Our proposed POMDP-based framework is

empirically evaluated in simulation in various realistic surveillance environments and can

achieve high-quality surveillance of up to 20 targets in real-time (Section 6.5.2). The real-

world experiments with Axis 214 PTZ cameras demonstrate the practical feasibility of our

POMDP-based framework in active multi-camera control and coordination (Section 6.5.3).

Our POMDP framework in this chapter is different from the existing approaches and our

previous work in Chapter 3 in the following ways:

• We do not assume that each and every target in the environment is completely observed

at every instance in any of the cameras. We indeed model belief over the target state in

order to keep track of the target when they are not observed in any of the active cameras;

• We observe targets in high-resolution active cameras in order to keep the location errors

minimal;

• Most of the existing camera control approaches have serious drawbacks in scalability of

number of targets. We extend our previous work in Chapter 3 to achieve scalability to

increasing number of targets in a partially observable environments.

6.2 System Overview

The system architecture consists of POMDP controller and a supervised surveillance en-

vironment which is partially observable, i.e., targets cannot be always observed in the
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Figure 6.1: System overview of active camera network in POMDP framework.

environment due to occlusions. The environment consists of multiple targets and active

cameras that are calibrated and can obtain the 3D location of targets when they are ob-

served in their field of view. Figure 6.1 shows the top view of the surveillance environment

where the full fov’s of the active cameras are shown in dotted lines and the current active

fov’s are shaded. At any given time, the active cameras can observe only a portion of the

surveillance environment. This is true in most of the real-world environments where the

active cameras cannot be installed to observe the entire surveillance environment due to

occlusions caused by barriers like walls, pillars, etc. This realistic setup makes the problem

more challenging and practical, thus emphasizing the need for camera control framework

for partially observable environments.

As shown in Figure 6.2, the POMDP controller models the interaction between the

active cameras and the partially observable environment. It provides a platform to choose

optimal actions for these active cameras in order to achieve high-quality surveillance. The

active cameras can determine the location of the targets that are observed in its fov and

passes the information to the controller. The controller determines the optimal actions of
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Figure 6.2: POMDP framework for controlling active cameras.

these cameras, such that the expected utility of the surveillance is maximized. The utility

of the surveillance system corresponds to high-level surveillance goals that can be defined

formally using real-valued objective functions as described in Section 6.3.5. The following

assumptions are made in our surveillance task:

• The targets are non-evasive (i.e., they do not try to escape from the cameras’ fields of

view) and hence their motion cannot be controlled or influenced by the cameras.

• The targets correspondences across multiple cameras is resolved by distinct features like

color, texture, etc.

Formally, a POMDP controller is defined as a tuple (S, A, Z , Tf , Of , R) consisting

of

• a set S of joint states of active cameras and targets in the surveillance environment (Sec-

tion 6.3.1);

• a set A of joint actions of active cameras (Section 6.3.1);

• a set Z of joint observations of the targets taken by the cameras (Section 6.3.1);

• a transition function Tf : S × A × S → [0, 1] denoting the probability P (S ′|S,A) of
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going from the current joint state S ∈ S to the next joint state S ′ ∈ S using the joint

action A ∈ A (Section 6.3.2);

• an observation function Of : S → [0, 1] denoting the probability P (Z|S) of observing

the joint observation Z ∈ Z given the joint state S ∈ S (Section 6.3.3); and

• a real-valued objective/reward function R : S → R representing a high-level surveil-

lance goal (Section 6.3.5).

At any given time, the exact state of the environment is not fully observable to the POMDP

controller. Instead, it maintains a belief B over the set S of all possible states (Sec-

tion 6.3.4), that is, B(S) is the probability that the environment is in the state S ∈ S

such that
∑

S∈S B(S) = 1. As shown in Figure 6.2, at every time step, the POMDP con-

troller issues an action A ∈ A and makes an observation Z ∈ Z from the environment.

Based on the action A and observation Z, the prior belief B is updated by Bayes’ rule to

the posterior belief B′ as follows:

B′(S ′) = η P (Z|S ′)
∑
S∈S

P (S ′|S,A)B(S) (6.1)

where η , 1/P (Z|B,A) is a normalizing constant. A policy π for the POMDP controller

is defined as a mapping from each beliefB to an action A (Section 6.4). Solving a POMDP

involves choosing the optimal policy π∗ that maximizes the expected reward for any given

belief B:

π∗(B) = arg max
A∈A

∑
Z′∈Z

R(B′)P (Z ′|B,A) .

When the number of targets and active cameras increases, the state space and hence the

belief space of the POMDP grow exponentially (Section 6.3.1). Therefore, computing

the optimal policy incurs exponential time. Fortunately, by exploiting the structure of our

surveillance problem (Sections 6.3.2 and 6.3.3), the optimal policy for a given belief B can

be computed efficiently (Section 6.4).
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6.3 Problem Formulation

In this section, we extend the problem formulation in Chapter 3 to POMDP framework.

Similar to Section 3.3, we enumerate each components of POMDP framework and for-

mally describe how the surveillance problem is modeled using the conventional POMDP

framework. Essentially, we consider the set of targets with stochastic motion as part of the

environment, and the active cameras’ controller as our agent. Since these active cameras,

due to their limited fields of view, may not be able to observe the whole surveillance area,

the environment is only partially observable to our controller. Table 6.1 shows the summary

of mathematical notations and its descriptions used in this section.

Table 6.1: Mathematical notations and its descriptions used in Chapter 6.

Notation Description

n Number of active cameras.

m
Number of targets to be monitored by n active cameras, such
that n� m.

T = Tl × Td × Tv
State space of a target represented by a set of tuples of loca-
tion, direction and speed.

Tl
Set of all possible discretized locations of the target in the
surveillance environment.

Td Set of all possible discretized directions of target.

Tv Set of discretized speeds of the target.

tk=(tlk , tdk , tvk)
State of a target k is a tuple consisting of its location tlk ∈ Tl,
direction tdk ∈ Td and speed tvk ∈ Tv.

T ∈ T m Joint state of m targets represented by T = (t1, t2, . . . , tm).

C
State space of a camera that consists of finite set of dis-
cretized poses of camera. Each pose of camera is given by
its pan, tilt and zoom value.

110



Chapter 6. MOMT Problem in Partially Observable Surveillance Environment

ci ∈ C
State of camera i, which is given by the discretized pan, tilt
and zoom value.

C ∈ Cn Joint state of n cameras represented by C = (c1, c2, . . . , cn).

fov(ci) ⊂ Tl
Subset of target locations lying within the field of view (fov)
of camera i in its state ci.

fov(C) ⊂ Tl
Subset of target locations lying within the joint fov of all
cameras in state C, i.e. fov(C) =

⋃n
i=1 fov(ci).

S = T m × Cn State space of POMDP which consists set of tuples of joint
state of m targets and n active cameras.

S = (T,C) ∈ S A state of POMDP that consists of joint state of m targets
and n active cameras.

ai
Action of camera i is a PTZ command to move the camera
to the specified state.

A
Joint action of all active cameras represented by a tuple
A = (a1, a2, . . . , an).

A Set of joint actions of all active cameras.

Ż = Tl ∪ {φ}

Set of observations of single target from active cameras
which consists of possible locations of target in the envi-
ronment Tl, and a null observation φ when the target is not
observed in any of the cameras.

zk ∈ Ż Observation of target k from active cameras.

Z = Żm Set of observations of POMDP which consists of set of tu-
ples of joint observation of m targets.

Z ∈ Żm Joint observation of m targets, represented by a tuple
Z = (z1, z2, . . . , zm).

6.3.1 States, Actions, and Observations

A joint state S ∈ S of the POMDP controller is defined as a pair of joint states T ∈ T m of

m targets and C ∈ Cn of n active cameras where T and C denote sets of all possible states
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of each target and active camera, respectively. That is, S , (T,C) and S = T m × Cn. Let

T , (t1, t2, . . . , tm) ∈ T m and C , (c1, c2, . . . , cn) ∈ Cn where tk ∈ T and ci ∈ C denote

the corresponding states of target k and camera i. Let tk , (tlk , tdk , tvk) ∈ Tl × Td × Tv
where tlk , tdk , and tvk denote target k’s location, direction, and speed, respectively. That is,

T = Tl × Td × Tv.

The state space C of an active camera is a finite set of discrete pan/tilt/zoom positions.

Let fov(ci) ⊂ Tl be a subset of target locations lying within the fov of camera i in its state

ci. The joint fov of all cameras in joint state C is defined as fov(C) =
⋃n
i=1 fov(ci). The

depth of fov of each active camera is limited such that (a) imageries of the targets detected

within its fov satisfy a pre-defined resolution, and (b) the observed locations of the targets

detected within its fov are of minimal location error. This is done by adjusting the zoom

parameter of each camera based on its position.

The joint actions of the POMDP controller are PTZ commands that move the corre-

sponding cameras to their specified states. Let a joint action of the n cameras be denoted

by A , (a1, a2, . . . , an) ∈ A where ai denotes the PTZ command of camera i.

Let Ż , Tl∪{φ} denote a set of all possible observations of a target comprising the set

Tl of all possible locations of the target in the environment and a null observation φ when

the target is not observed by any of the cameras. Let an observation of target k be denoted

by zk ∈ Ż and a joint observation of the m targets be denoted by Z , (z1, z2, . . . , zm) ∈

Żm. That is, Z = Żm.

6.3.2 Transition Model Tf

By exploiting the following structural assumptions in the state transition dynamics of the

surveillance environment:

• camera i’s next state c′i is conditionally independent of the other n−1 cameras’ states and

actions and the m targets’ states given its current state ci and action ai for i = 1, . . . , n
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and

• target k’s next state t′k is conditionally independent of the n cameras’ states and actions

(i.e., target’s motion is not affected by the cameras’ states and actions) and the other

m−1 targets’ states (i.e., every target moves independently) given its current state tk for

k = 1, . . . ,m,

the transition model Tf can be factored into transition models of individual targets and ac-

tive cameras, hence significantly reducing the time incurred to compute the optimal policy

π∗ for a given belief B (Section 6.4). Furthermore, since the modern active cameras are

able to move to their specified positions accurately [Axi, 2011], it is practical to assume

the transition model of each individual camera to be deterministic and consequently repre-

sented by a function τ that moves camera i from its current state ci to its next state τ(ci, ai)

by the action ai. Then, the transition model of the POMDP controller can be simplified to

P (S ′|S,A) =
m∏
k=1

P (t′k|tk)
n∏
i=1

δτ(ci,ai)(c
′
i) (6.2)

where δx(x′) is a Kronecker delta function of value 1 if x′ = x, and 0 otherwise. Details

on the derivation of (6.2) are reported in Section 3.3.2 in Chapter 3. The state transition

of target k from tk to t′k includes stochastic transitions of its location from tlk to t′lk , its

direction from tdk to t′dk , and its speed from tvk to t′vk . So, the transition probability of

target k can be factored into transition probabilities of its location, direction, and speed:

P (t′k|tk) = P (t′lk |tlk , t
′
dk
, t′vk)P (t′dk |tdk)P (t′vk |tvk) .

The transition probabilities P (t′dk |tdk) and P (t′vk |tvk) of the target’s direction and speed

are, respectively, modeled as Gaussian distributions N (µd, σd) and N (µv, σv) with the

means µd and µv being the current direction and speed of the target, and σd and σv being

the variance parameters which are learned from a dataset of the targets’ trajectories in the
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environment. The transition probability P (t′lk |tlk , t
′
dk
, t′vk) of the target’s next location is

constructed using the general direction-speed motion model, as described in Section 3.3.2.1

in Chapter 3.

6.3.3 Observation Model Of

Similar to the factorization of the transition model Tf , the observation model Of can also

be factored into observation models of individual targets using the following structural

assumption: The observed location zk ∈ Ż of target k is conditionally independent of the

observed and true states of the other m− 1 targets and its true direction tdk ∈ Td and speed

tvk ∈ Tv given its true location tlk ∈ Tl and the joint state C ∈ Cn of the n active cameras

for k = 1, . . . ,m. As a result, the time incurred to compute the optimal policy π∗ for a

given belief B can be significantly reduced (Section 6.4). Then, the observation model of

the POMDP controller can be simplified to

P (Z|S) =
m∏
k=1

P (zk|tlk , C) . (6.3)

The derivation of (6.3) is reported in Appendix A.4. The observation probability P (zk|tlk , C)

of target k depends on whether the target lies within the joint fov of the active cameras.

When the target lies within the cameras’ joint fov corresponding to their joint state C (i.e.,

zk 6= φ), the observation model of target k becomes deterministic:

P (zk|tlk , C) =


1 if zk = tlk ∧ tlk ∈ fov(C),

0 otherwise.

On the other hand, when target k does not lie within the joint fov of the active cameras

corresponding to their joint state C, the observation probability of target k is uniformly
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distributed over the locations not covered by the joint fov (i.e., fov(C)):

P (zk = φ|tlk , C) =


1

|fov(C)|
if tlk /∈ fov(C),

0 otherwise.

6.3.4 Bayesian Belief Update

By making use of independence assumptions similar to that in the transition model (Sec-

tion 6.3.2), a belief B can be factored into beliefs of individual targets and cameras:

B(S) = P ((T,C)) = P (T )P (C)

=
m∏
k=1

P (tk)
n∏
i=1

P (ci) =
m∏
k=1

bk(tk)
n∏
i=1

δĉi(ci)

(6.4)

where bk denotes a belief over the set T of all possible states of target k (i.e., bk(tk) is the

probability that target k is in state tk) and ĉi is the current state of camera i that, unlike a

target’s state, is fully observable to the POMDP controller since its position can be directly

read from its port. Hence, the probability P (ci) of a state ci of camera i can be represented

by a Kronecker delta δĉi(ci) and the last equality in (6.4) follows.

The POMDP controller issues a joint actionA to move each camera i from current state

ĉi to next state ĉ′i, receives an observation zk of each target k, and then updates the prior

belief B to the posterior belief B′ using Bayes’ rule (6.1). Similar to the factorization of

the prior belief B above, the posterior belief B′ can also be factored into posterior beliefs

of individual targets and cameras:

B′(S ′) =
m∏
k=1

b′k(t
′
k)

n∏
i=1

δĉ′i(c
′
i) (6.5)
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where the posterior belief b′k of target k is defined as

b′k(t
′
k) , ηkP (zk|t′lk , C

′)
∑
tk∈T

P (t′k|tk)bk(tk) , (6.6)

C ′ , (c′1, . . . , c
′
n), and ηk , 1/P (zk|bk, C ′) is a normalizing constant. The derivation of

(6.5) is reported in Appendix A.5.

6.3.5 Objective/Reward Function R

The goal of the surveillance system is to maximize the number of targets observed with a

guaranteed resolution. This can be achieved by defining a reward function that measures

the total number of targets lying within the joint fov of the active cameras corresponding to

their joint state C:

R(S) = R((T,C)) ,
m∑
k=1

R̃(tk, C) (6.7)

where

R̃(tk, C) ,


1 if tlk ∈ fov(C),

0 otherwise.

Since the exact locations of the targets may not be fully observable to the cameras at all

times, the POMDP controller has to track the joint belief B of the targets and consider the

expected reward with respect to this belief instead:

R(B) ,
∑
S∈S

R(S)B(S) =
m∑
k=1

R̃(bk, Ĉ) (6.8)
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where Ĉ , (ĉ1, . . . , ĉn) and

R̃(bk, C) ,
∑
tk∈T

R̃(tk, C)bk(tk) . (6.9)

The derivation of (6.8) is reported in Appendix A.6.

6.4 Policy Computation

Recall that a policy π for the POMDP controller is a mapping from each belief B to a joint

action A ∈ A of the n cameras. At every time step, the POMDP controller determines

the optimal policy π∗ for the belief B such that the expected number of observed targets

in the next time step is maximized. Since the observations of the m targets taken by the

cameras in the next time step are not known to the POMDP controller, it has to consider

the expected reward with respect to these future observations. Then, the optimal policy π∗

for a given belief B becomes

π∗(B) = arg max
A∈A

V (B,A) (6.10)

where

V (B,A) =
∑
Z∈Z

R(B′)P (Z|B,A) . (6.11)

Computing the policy π∗ (6.10) for a given belief B incurs O(|A||Ż|m|T |) time which is

exponential in the number m of targets. Fortunately, by exploiting simplified transition and

observation models due to conditional independence assumptions (i.e., (6.2) and (6.3)), this

computational cost can be significantly reduced. In particular, it is derived in Appendix A.7

that the value function V (B,A) of m targets can be simplified to comprise a sum of value
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function Ṽ (bk, C
′) of individual target k for k = 1, . . . ,m:

V (B,A) =
m∑
k=1

Ṽ (bk, (τ(ĉ1, a1), . . . , τ(ĉn, an))) (6.12)

where

Ṽ (bk, C
′) ,

∑
zk∈fov(C′)

∑
t′k∈T

R̃(t′k, C
′)b̂′k(t

′
k) (6.13)

and b̂′k is the unnormalized belief of target k (i.e., b̂′k(t
′
k) = b′k(t

′
k)/ηk). Using (6.12) and

(6.13), we obtain the following result:

Theorem 4. If (6.2) and (6.3) hold, then computing policy π∗ (6.10) for a given belief B

incurs O(|A||Ż||T |m) time.

Computing the value function Ṽ (bk, C
′) (6.13) for a single target k incurs O(|Ż||T |) time.

For m targets, the value function V (B,A) (6.12) therefore incurs O(|Ż||T |m) time. Fi-

nally, computing the optimal policy π∗ (6.10) for a given belief B incurs O(|A||Ż||T |m)

time which is linear in number m of targets.

6.5 Experiments and Discussion

This section evaluates the performance of our proposed POMDP controller over the existing

approaches in partially observable environments. We have used Player/Stage simulator

[Gerkey et al., 2003] to evaluate the proposed approach and implemented in real Axis 214

PTZ cameras to show the feasibility in real-camera surveillance. Its important to note that

the existing camera control approaches in the literature are proposed for the fully observable

environments where the states of the targets are always observed by either static cameras

or PTZ cameras in wide-view (see Table 2.2). To make the evaluation fair, we compare

these works in a partially observable environments. Our POMDP approach (denoted as P
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in Figure 6.4, 6.5, and 6.6) which uses only active (i.e. PTZ) cameras is compared against

the following existing approaches:

• MDP with only PTZ cameras (MP ): This approach uses MDP framework in Chapter 3

to control and coordinate the active cameras. There are no static cameras to directly

observe the targets’ locations and hence they are observed only from the active cameras’

fov.

• MDP with Static and PTZ cameras (MSP ): This approach uses MDP framework in

Chapter 3 to control and coordinate the active cameras that are supported by wide-view

static cameras. These static cameras are used to observe the targets’ location, direction

and speed information. A Gaussian noise is added to the location of each target observed

by the static cameras such that the Gaussian variance increases with greater distance of

the target from the static camera.

• Systematic Approach (Sys): The active cameras are panned automatically to each of its

states in a round robin fashion for every time step.

• Static Approach (Stat): The active cameras are fixed at a particular state such that they

observe maximum area of the environment with the pre-defined image resolution.

We use the same performance metric PercentObs as in Chapter 3 to evaluate the above

approaches. It is given as

PercentObs =
100

τMtot

τ∑
i=1

M i
obs

where τ (i.e., set to 100 in simulations) is the total number of time steps taken in our

experiments, M i
obs is the total number of targets observed by the active cameras at a given

time step i, and Mtot is the total number of targets present in the environment. That is,

the PercentObs metric averages the percentage of targets being observed by the active

cameras over the entire duration of τ time steps. First we will discuss the experimental

setups followed by detailed analysis of experimental results. Then we will show the results

119



Chapter 6. MOMT Problem in Partially Observable Surveillance Environment

camera 4 camera 3 

camera 1 camera 2 

camera 2 

camera 1 camera 3 

camera 4 

(a) (b)

camera 4 camera 1 

camera 2 camera 3 

pillar 

(c) (d)

Figure 6.3: Experiments setups: (a) Hall (|Tl| = 20× 10 target locations), (b) Corri-
dor (|Tl| = 40× 5 target locations), (c) Parking lot setup (|Tl| = 168 target locations)
and its corresponding real-world map in (d).

of real camera experiments. Interested readers can look into our demo video1.

6.5.1 Simulated Experiments: Setup

The proposed approach is evaluated against the above approaches in three different se-

tups as shown in Figure 6.3: (a) a corridor (|Tl| = 40 × 5 target locations), (b) a hall

(|Tl| = 20 × 10 target locations) and (c) a parking lot setup (|Tl| = 168 target locations).

As mentioned in Chapter 5, the parking lot setup has been taken from the real world map (as

1http://www.comp.nus.edu.sg/˜lowkh/camera.html
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shown in Figure 6.3(d)) of our university space which consists of obstacles (black shades in

Figure 6.3(c)) like buildings, walls, etc. In order to introduce more occlusions in the envi-

ronment, we have added a virtual pillar in the center of the parking lot setup (Figure 6.3(c)).

The active cameras are simulated in Player/Stage simulator by configuring the states of

the cameras across the pan angles as discussed in Section 6.3.1. There are n = 4 active

cameras with |C| = 3 states each. These position and states of the cameras are chosen

such that there are some target locations in the environment which cannot be observed by

any of the active cameras, in order to generate the blind regions. For example, in corridor

setup (Figure 6.3(b)), the cameras 1 and 2 are separated far apart, so that when the targets

move in between these cameras, the targets are not observed. This is true in many real

world environments and simulates the partial observability in the experimental setups. The

targets’ trajectories are generated as discussed in Section 3.5.1 in Chapter 3.

6.5.2 Simulated Experiments: Results

Figure 6.4 and 6.5 show the comparison of performance of different approaches for up to

m=20 targets for all the three setups. It can be seen from the graphs, our POMDP approach

(denoted as P in the graph) outperforms other approaches in all three camera setups. The

detailed observations from the experiments are as follows:

The observations from our experiments with MP approach are as follows: (a) Firstly,

when the targets leave the fov of any of the cameras and enters the blind regions, the MP

approach have no idea on where the targets will be moving in the next few time steps.

This is because, the MP approach can control the cameras to focus the targets only when

the states of the targets are observed in any of the active cameras, and have no notion

of the targets that are not observed in any of the cameras. In contrast, our POMDP based

approach predicts the belief of the targets based on the targets’ transition model and updates

the belief based on the cameras’ observation model. So when the targets leave the fov of the
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Figure 6.4: Graphs of PercentObs vs. number m of targets with n=4 active cam-
eras, whose |fov(ci)| ≈ 14 cells for the environments: (a) corridor, (b) hall and (c)
parking lot.

cameras and enters the blind region, the belief of the targets are updated at every time step.

Since in our POMDP approach, we determine actions of the cameras based on the expected

belief of the targets, the cameras are panned in advance to observe the incoming targets.

(b) Secondly, the MP approach determines the cameras’ action based on the locations and

directions of the targets that are observed in the active cameras. When the targets enters into

any of the active cameras from the blind regions, the direction of the targets are wrongly

interpreted by the MDP controller. This is one of the serious limitation of theMP approach

where there is no notion of knowing the direction of the targets when they are in the blind

region. Whereas in our POMDP approach, the direction of the targets are modeled by its

transition model in the belief update step. Thus belief filtering process in our POMDP

approach helps in tracing the locations and directions of the targets, even when they are not

observed in any of the cameras.

The observations from our experiments with MSP approach are as follows: When

the static cameras observes the targets that are far away, they obtain the noisy locations of

the targets. This in turn induce the errors in direction and speed of the targets. In MSP

approach, the active cameras are controlled to observe the predicted locations of the targets
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Figure 6.5: Graphs of PercentObs vs. number m of targets with n=4 active cam-
eras, whose |fov(ci)| ≈ 20 cells for the environments: (a) corridor, (b) hall and (c)
parking lot.

in the next time step, based on the targets’ information (i.e., location, direction and speed)

obtained from the static cameras. When the noisy targets’ information are used in MDP

controller, it causes miss predictions in the expected locations of the targets, which conse-

quently affects the performance of the MSP approach. In contrast, in our POMDP based

approach, the targets locations are observed at a high-resolution active cameras whose cal-

ibration error is bounded by limiting the depth of its fov (see Section 6.3.1). Since the

observations (i.e., locations of the targets) for POMDP are more accurate than in MSP

approach, the predictions of the targets’ locations and directions through belief filtering

process are also accurate. Hence, our POMDP approach outperforms the MSP approach

as shown in the Figure 6.4 and 6.5.

The observations from our experiments with Sys and Stat approaches: Our POMDP

approach performs much better than the Sys and Stat baseline approaches because, in

our approach, the active cameras are controlled based on the targets’ predicted motion

and the observations from the active cameras. Whereas in Sys approach, the cameras are

panned without accounting the targets information like locations, direction, etc., and in

Stat approach, the cameras are placed static in one of the states.
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Figure 6.6: Graphs of PercentObs vs. number m of targets in parking lot setup with
n=4 active cameras with (a) camera 1 is made static and (b) camera 1 and 3 are
made static in one of their respective states.

We have tested the robustness of our approach when one or more active cameras fails

to do pan/tilt/zoom operations and may get stuck in one of its state. This can happen

in real surveillance systems due to hardware malfunctioning of active cameras. We have

evaluated our approach by keeping one or more active cameras to be static in one of the

states. Figure 6.6(a) shows the results of having camera 1 as static in the parking lot setup

and Figure 6.6(b) shows the results of having both camera 1 and camera 3 to be static in one

of their states. From these results, we can see that the performance of our approach is much

better than the other approaches because: (a) When one or more active cameras gets stuck

on any of their states, the number of target locations that can be observed by these cameras

by pan/tilt/zoom operations, will be reduced significantly. Since our POMDP approach

has the ability to keep track of the unobserved targets’ locations and directions through

its belief filtering process, it performs better than other approaches. (b) In our POMDP

approach, when the targets pass through camera 1 or 3 in the parking lot setup, the belief

filtering process predicts the incoming targets and hence the camera 2 or 4 is panned in

advance to observed these targets.

We have also experimented our approach with existing approaches for different resolu-

tion of the active cameras. The resolution of the active cameras in the simulator are adjusted

by modifying the fov polygon. When the average fov of active cameras is decreased from
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|fov(ci)| ≈ 20 (Figure 6.5) to |fov(ci)| ≈14 (Figure 6.4), the over all performance of our

approach is much better than other approaches. This is because, when the targets are ob-

served at high-resolution (i.e., |fov(ci)| ≈ 14), then the number of targets’ locations that

are not observed by any of the active cameras increases. In such situations, our POMDP

approach performs better than other approaches because, the POMDP approach is aware of

the targets locations and directions through its belief filtering process even when they are

not visible in any of the active cameras.

We summarize the observations from our simulation experiments:

• Our POMDP based approach performs better than MP approach because of the ability

of POMDP to keep track of targets’ locations and directions through its belief update

process.

• The POMDP approach outperforms MSP approach because the observations (i.e., tar-

get’s location) made from active cameras in high-resolution in our POMDP approach

is accurate when compared to the noisy observations from static cameras of MSP ap-

proach.

• The Sys and Stat approaches suffers performance degradation because, the cameras are

controlled independent of targets’ information.

• Our POMDP approach is robust even when one or more active cameras get struck in one

of their state.

• The performance of our POMDP approach is much better than other approaches when

the resolution of the active cameras is increased.

6.5.3 Real Camera Experiments

We have tested the feasibility of our POMDP controller in real Axis 214 PTZ cameras in

order to monitor Lego robots (targets) over the environment of size |Tl| = 10 × 8 grid

cells. We have n = 3 PTZ cameras whose number of states of each camera is |C| = 3.
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The cameras are placed such that, at any given time, only a subset of targets’ locations are

observed in the active cameras. The experimental setup for our real camera experiments

is shown in Figure 6.7. These cameras are calibrated in each of its state [Tsai, 1986] and

the depth of the fov of these cameras are determined empirically for each of the cameras.

The Lego robots are programmed to move based on the direction-speed motion model. The

transition model, observation model and objective function for a single target are computed

and are stored off line for the above setup.

Individual videos from each of the cameras are processed using OpenCV image pro-

cessing libraries in order to detect and differentiate the targets in its view. Initially, back-

ground images for each states of the active cameras are captured and the color histogram of

individual targets are stored off line. We call this color histogram of the targets as knowl-

edge base. The robots are mounted with color markers to support the target detection and

recognition process. We have used color histogram of the robots to differentiate and dis-

criminate the targets. Targets are detected using the background subtraction and morpho-

logical operations. The target recognition is done by matching the color histogram of the

targets with the color histogram of the robots in the knowledge base. We use Bhattacharyya

distance to match their color histograms.

The POMDP controller is initialized with the initial belief of the robots based on the

locations of the targets. In every time step, we capture the images from all the active

cameras and process to detect and recognize the targets and their observed 3D location.

The belief of individual robots are updated based on observation of each robot from the

active cameras and the cameras’ action. The state of the cameras are directly read from the

individual cameras. Based on the belief of all the targets, we compute the optimal actions

for the cameras, such that expected number of targets in maximized. Table 6.2 shows the

performance of our approach in real camera experiments. Visual results of our real-camera

experiments are demonstrated in our video2

2http://www.comp.nus.edu.sg/˜lowkh/camera.html
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Figure 6.7: (a) Real experiment setup containing three Axis 214 PTZ cameras
(marked with dotted circle), the colored Lego targets on the surveillance environ-
ment of size 10× 8 grid cells. (b) Corresponding overhead view of the setup.
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Table 6.2: Performance of POMDP framework in real camera experiments.

Number m of targets 1 2 3 4 5

PercentObs 98.2 96.6 93.3 91.5 87

6.6 Summary

In this chapter, we have presented a novel decision-theoretic approach to control and co-

ordinate multiple active cameras in order to maximize the number of targets observed in

an uncertain and partially observable surveillance environments. Specifically, we have de-

signed a POMDP framework that helps to eliminate the dependency of wide-view static

cameras for tracking targets’ location, and simultaneously performs the tracking and ob-

serving targets at high-resolution. We have exploited the conditional independence prop-

erty of targets’ motion and observation in our surveillance problem, in order to reduce the

exponential policy computation to linear in increasing number of targets. The experimental

evaluation shows that our proposed camera control approach is robust and performs better

than the existing approaches . The real experiments in Axis 214 PTZ cameras show the

practicality of our approach in real surveillance systems.
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Conclusions and Future Works

In this thesis, we have studied the following central problem in surveillance:

How can a network of active cameras be coordinated to monitor a set

of moving targets with a guaranteed image resolution?

7.1 Summary of Contributions

To address the above question in surveillance, this thesis has provided the following novel

contributions:

1. Decision-theoretic formulation [Natarajan, 2012a; Natarajan, 2012b]: We have

presented a novel decision-theoretic multi-agent formulation to control and coordi-

nate multiple active cameras in surveillance. We have modeled the surveillance task

as stochastic optimization problem, where the active cameras are controlled and co-

ordinated to achieve the desired surveillance goals in presence of uncertainties. Our

proposed decision-theoretic frameworks, coordinates active cameras under fully ob-

servable and partially observable surveillance environments. Specifically, we have
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provided decision-theoretic formulations for two novel problems in active camera

surveillance: maximizing observations of multiple targets (MOMT) in fully ob-

servable and partially observable surveillance environments; and fairness in obser-

vation of multiple targets (FOMT) in fully observable surveillance environment.

2. MDP framework for MOMT [Natarajan et al., 2012a]: We have proposed a novel,

principled MDP framework that accounts for the targets’ motion uncertainty through

probabilistic motion model. The trade-off between the number of targets observed

and the resolution of observing them is addressed by coordinating the actions of the

cameras to maximize the expected number of targets with guaranteed resolution. In

particular, the fov of active cameras are adjusted to guarantee the desired resolution

of targets. By exploiting the conditional independence property of transition model

in our surveillance problem, we reduced the exponential policy computation time to

linear time in number of targets. Therefore, our MDP framework can achieve high-

quality surveillance of up to 50 targets in real-time. We have also found that our

greedy solution is equivalent to finite horizon planning solution, when the transition

model of the active cameras is deterministic.

3. MDP framework for MOMT in large-scale camera network: We have extended

the MDP framework for MOMT task to large camera networks using the concepts

of coordination graph and max-plus algorithm. We have achieved computational ef-

ficiency by decomposing the global coordination problem into set of pair-wise local

coordination problems, approximately, using the coordination graph. Then we have

used max-plus algorithm to solve the local coordination problems efficiently, through

message passing mechanism. Our experimental results show that the proposed co-

ordination approach performs better than the other baseline approaches even for 50

cameras and 60 targets. Our experiments with 6 cameras and varying number of

cycles in the coordination graph shows that our solution is closer to the centralized
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MDP solution when there are less cycles in the coordination graph.

4. MDP framework for FOMT: We have proposed a novel, principled MDP frame-

work that optimizes the max-min fairness metric to control and coordinate active

cameras in order to observe the targets fairly. As a result, the issue of “starvation” of

observation of targets by active cameras is resolved. Through this work, the notion

of fairness in multi-target observation has been realized formally in the domain of

multi-camera surveillance for the first time. The uncertainty in motion and obser-

vation times of the targets is model by probabilistic transition model. By exploit-

ing the conditional independence property of the transition model, we have reduced

the exponential policy computation time to linear in number of targets. Our sim-

ulation results shows that our proposed framework outperforms the state-of-the-art

camera control approaches and other baseline approaches. Our real camera experi-

ments demonstrates the practical feasibility of our approach and notion of fairness in

real surveillance system.

5. POMDP framework for MOMT [Natarajan et al., 2012b]: We have proposed a

novel, principled POMDP framework for MOMT problem in partially observable

surveillance environment. This framework models the belief of the targets’ states

and performs Bayesian updates of the belief using probabilistic transition model of

targets and probabilistic observation model of cameras. Specifically, our approach

helps to eliminate the strong dependency of wide-view static cameras to track the

targets’ locations and simultaneously performs the tracking and observation of tar-

gets at high-resolution. We have exploited the conditional independence property

in the transition model and the observation model to reduce the exponential policy

computation time to linear in number of targets. Our experiments show that our

POMDP approach can perform better than the other approaches in partially observ-

able environments. We have also demonstrated that our approach is robust and can
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perform better than other approaches even when one or more active cameras fail to

pan/tilt/zoom due to hardware malfunctioning. The real camera experiments show

the practicality of our POMDP approach in real surveillance environment.

7.2 Limitations and Future Works

This section enumerates some of the future works that can be continued along the direction

of this thesis.

1. Parallelizing the MDP framework based on Max-plus algorithm. In Chapter 4,

our MDP framework has been implemented in a centralized manner. In order to avoid

central point failure and make each camera to coordinate autonomously, we will par-

allelize our MDP framework using MPI or Hadoop parallel programming framework.

We would like to improve the quality of the solution further, by removing cycles in

the coordination graph and dynamically constructing it at every time step based on

the targets’ information. When there is no target that can be observed in a camera’s

possible fov, then the edges to that camera can be removed in the coordination graph.

Alternatively, a real valued weight can be added to each edge of the coordination

graph and remove the edges with low weights in order to remove cycles in the coor-

dination graph. The weights can be calculated based on the expected observation of

targets in each active cameras.

2. Improving scalability in number of cameras for MDP framework to solve FOMT

task. Currently, our MDP framework in Chapter 5 can scale well for increasing num-

ber of target, but has its limitation in scalability in number of cameras. Therefore, we

will extend our work in Chapter 4 to improve scalability in number of cameras for

FOMT surveillance task.
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3. Addressing the trade-off between coverage and fairness in the active camera

surveillance. Our work in Chapter 5, addresses only the fairness in observation of

targets. When these cameras are controlled to improve only fairness in observation

of targets, there is a compromise in coverage of active cameras. On the other hand,

when the cameras are controlled to maximize only the coverage or the number of

targets as in Chapter 3, then there is lack of fairness in observation of targets. We will

investigate and model this interesting and non-trivial trade-off between fairness and

coverage of active cameras in future. Particularly, this can done in two steps: First,

determine the joint actions of cameras that guarantees certain coverage or expected

number of targets to be observed in active cameras. In the next step, use the same

joint actions of cameras to improve the fairness. The resultant optimal action will

guarantee certain coverage and at the same time improves fairness.

4. Other fairness metrics for active camera surveillance. Our fairness metric defined

in Chapter 5 has advantage of being reduced to an expression that can be computed

efficiently. Nevertheless, there can be other fairness metrics in the literature that can

be used in surveillance. We will investigate other metrics like entropy of observation

time, average throughput of surveillance, etc. to measure fairness in observation of

targets.

5. Improving scalability in number of cameras for POMDP framework to solve

MOMT task. Our work in Chapter 6, scales well only in number of targets and scales

poorly with increase in number of cameras. Therefore, we will investigate on how

to use the coordination graph concepts to decompose the centralized coordination

problem in partially observable environment into set of local coordination problems

and solve them approximately using max-plus algorithm.

6. Study more realistic motion models for human motion and test in our MDP

and POMDP frameworks. In this thesis, the transition probabilities of targets are
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computed based on simple direction-speed motion model that follows Gaussian dis-

tribution for target’s direction and speed. But in practice, real human motions in the

surveillance environment can be more complex and may need a better motion model.

We would like to explore on more recent works in human motion models like human

steering model [Tastan, 2013], human motion predictions from social forces [Luber

et al., 2010], etc. to calculate our target’s transition probabilities.

7. Model uncertainty in vision algorithms. In the whole thesis, we have assumed that

the vision algorithms for tracking and recognizing targets are near perfect which is

not always true in real world environments. In future, we would like to account for

the uncertainties in the underlying vision algorithms in our coordination framework.

One possible way to encode these uncertainties is to modify the observation model

of our POMDP framework in Chapter 6 based on the underlying vision algorithms.
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Proofs

A.1 Value function decomposition in MDP framework

for MOMT problem

The value function V (3.7) is given by

V (T,C,A) =
∑
T ′∈T m

R((T ′, C ′)) P (T ′|T )

=
∑

t′1∈T ,...,t′m∈T

m∑
k=1

R(t′k, C
′)

m∏
i=1

P (t′i|ti)

=
m∑
k=1

∑
t′k∈T

R(t′k, C
′) P (t′k|tk)

∑
T ′−k∈T m−1

∏
i 6=k

P (t′i|ti)

=
m∑
k=1

∑
t′k∈T

R(t′k, C
′) P (t′k|tk)

=
m∑
k=1

Ṽ (tk, C
′)
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where T ′−k = (t′1, . . . , t
′
k−1, t

′
k+1, . . . , t

′
m). The second equality is obtained using (3.2) and

(3.4). The fourth equality follows from

∑
T ′−k∈T m−1

∏
i 6=k

P (t′i|ti) =
∑

T ′−k∈T m−1

P (T ′−k|T−k) = 1 .

A.2 Decomposition of value function of pair of cam-

eras in max-plus algorithm

The proof of (4.8) follows from Section A.1, except the joint states of cameras in Sec-

tion A.1 is replaced by states of pair of cameras. The local value function Vij in (4.7) for a

pair of cameras i and j is given by

Vij((T, ci, cj), ai, aj) =
∑
T ′∈T m

Rij((T
′, c′i, c

′
j)) P (T ′|T )

=
∑

t′1∈T ,...,t′m∈T

m∑
k=1

R̃ij(t
′
k, c
′
i, c
′
j)

m∏
i=1

P (t′i|ti)

=
m∑
k=1

∑
t′k∈T

R̃ij(t
′
k, c
′
i, c
′
j) P (t′k|tk)

∑
T ′−k∈T m−1

∏
i 6=k

P (t′i|ti)

=
m∑
k=1

∑
t′k∈T

R̃ij(t
′
k, c
′
i, c
′
j) P (t′k|tk)

where T ′−k = (t′1, . . . , t
′
k−1, t

′
k+1, . . . , t

′
m). The second equality is obtained using (4.3) and

(4.4). The fourth equality follows from

∑
T ′−k∈T m−1

∏
i 6=k

P (t′i|ti) =
∑

T ′−k∈T m−1

P (T ′−k|T−k) = 1 .
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A.3 Value function decomposition in MDP framework

for FOMT problem

The value function V (5.6) is given by,

V (TM, C,A) =
∑

T ′M∈T m

R((T ′M, C
′))P (T ′M|TM, C ′)

=
∑

T ′M∈T m

min
k∈M

t′okP (T
′
M|TM, C ′)

=
∑

T ′Y∈T y

min
k∈Y

t′okP (T
′
Y |TY , C ′)

∑
T ′
Y
∈T m−y

P (T ′Y |TY , C
′)

=
∑

T ′Y∈T y

min
k∈Y

t′okP (T
′
Y |TY , C ′)

=
∑

T ′Y∈T y\T y

C′

min
k∈Y

t′okP (T
′
Y |TY , C ′) +

∑
T ′Y∈T

y

C′

min
k∈Y

t′okP (T
′
Y |TY , C ′)

=
∑

T ′Y∈T y\T y

C′

tminP (T
′
Y |TY , C ′) +

∑
T ′Y∈T

y

C′

(tmin + 1)P (T ′Y |TY , C ′)

=
∑

T ′Y∈T y\T y

C′

tminP (T
′
Y |TY , C ′) +

∑
T ′Y∈T

y

C′

tminP (T
′
Y |TY , C ′)

+
∑

T ′Y∈T
y

C′

P (T ′Y |TY , C ′)

=
∑

T ′Y∈T y

tminP (T
′
Y |TY , C ′) +

∑
T ′Y∈T

y

C′

P (T ′Y |TY , C ′)

continued in next page...
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= tmin

∑
T ′Y∈T y

P (T ′Y |TY , C ′) +
∑

T ′Y∈T
y

C′

P (T ′Y |TY , C ′)

= tmin +
∑

T ′Y∈T
y

C′

P (T ′Y |TY , C ′)

= tmin +
∏
k∈Y

∑
t′k∈TC′

P (t′k|tk, C ′) .

The first and second equalities are due to (5.6) and (5.4), respectively. The third equality follows

by partitioning TM into TY , (tk)k∈Y and TY , (tk)k∈Y whereM = Y ∪ Y and y = |Y|. The

fourth equality follows from the law of total probability:
∑

T ′
Y
∈T m−y P (T ′Y |TY , C

′) = 1. The fifth

equality is due to T y = (T y\T yC′) ∪ T
y
C′ where T yC′ denotes the set of joint states of the y targets in

Y whose locations all lie within fov(C ′), i.e., T yC′ , {T
′
Y ∈ T y | ∀t′k ∈ T ′Y t′lk ∈ fov(C

′)}. To

obtain the sixth equality, for a given T ′Y = (t′k)k∈Y ,

min
k∈Y

t′ok =


tmin if T ′Y ∈ T y\T

y
C′ ,

tmin + 1 if T ′Y ∈ T
y
C′ ;

where tmin is a constant with respect to the expectations. The second last equality follows from the

law of total probability:
∑

T ′Y∈T y P (T ′Y |TY , C ′) = 1. The last equality is due to the conditional

independence property in the transition model (5.1).
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A.4 Observation model factorization in POMDP frame-

work

P (Z|S) = P (Z|T,C)

= P (z1, z2, . . . , zm|t1, t2, . . . , tm, C)

=
m∏
k=1

P (zk|tk, C)

=
m∏
k=1

P (zk|tlk , C) .

The last two equalities are due to the conditional independence assumption in the observation model

(Section 6.3.3).
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A.5 Posterior belief decomposition in POMDP frame-

work

B′(S′) = η P (Z|S′)
∑
S∈S

P (S′|S,A)B(S)

= η
m∏
k=1

P (zk|t′lk , C
′)
∑
T∈T m

∑
C∈Cn

m∏
k=1

P (t′k|tk)

n∏
i=1

δτ(ci,ai)(c
′
i)

m∏
k=1

bk(tk)
n∏
i=1

δĉi(ci)

= η
m∏
k=1

P (zk|t′lk , C
′)

( ∑
T∈T m

m∏
k=1

P (t′k|tk)
m∏
k=1

bk(tk)

)
(∑
C∈Cn

n∏
i=1

δτ(ci,ai)(c
′
i)

n∏
i=1

δĉi(ci)

)

= η
m∏
k=1

P (zk|t′lk , C
′)

m∏
k=1

∑
tk∈T

P (t′k|tk)bk(tk)
n∏
i=1

δτ(ĉi,ai)(c
′
i)

=
∑
C′∈Cn

m∏
k=1

ηk

n∏
i=1

δĉ′i(c
′
i)

m∏
k=1

P (zk|t′lk , C
′)
∑
tk∈T

P (t′k|tk)bk(tk)
n∏
i=1

δĉ′i(c
′
i)

=
m∏
k=1

ηkP (zk|t′lk , C
′)
∑
tk∈T

P (t′k|tk)bk(tk)
n∏
i=1

δĉ′i(c
′
i)

=

m∏
k=1

b′k(t
′
k)

n∏
i=1

δĉ′i(c
′
i) .

The first equality is due to (6.1). The second equality follows from (6.2), (6.3), and (6.4). The fifth

equality follows from η =
∑
C′∈Cn

m∏
k=1

ηk

n∏
i=1

δĉ′i(c
′
i) (see proof in Section A.8). The last equality is

due to (6.6).
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A.6 Reward function decomposition in POMDP frame-

work

R(B) =
∑
S∈S

R(S)B(S)

=
∑

(T,C)∈S

R((T,C))B((T,C))

=
∑
C∈Cn

∑
T∈T m

m∑
k=1

R̃(tk, C)

m∏
k=1

bk(tk)

n∏
i=1

δĉi(ci)

=

m∑
k=1

∑
tk∈T

R̃(tk, Ĉ)bk(tk)
∑

T−k∈T m−1

∏
j 6=k

bj(tj)

=
m∑
k=1

∑
tk∈T

R̃(tk, Ĉ)bk(tk)

=

m∑
k=1

∑
tk∈T

R̃(tk, Ĉ)bk(tk)


=

m∑
k=1

R̃(bk, Ĉ)

where T−k = (t1, . . . , tk−1, tk+1, . . . , tm). The third equality is due to (6.4) and (6.7). The fifth

equality follows from our independence assumption similar to that in (6.4) and the law of total

probability: ∑
T−k∈T m−1

∏
j 6=k

bj(tj) =
∑

T−k∈T m−1

P (T−k) = 1 .
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A.7 Value function decomposition in POMDP frame-

work

V (B,A) =
∑
Z∈Z

R(B′)P (Z|B,A)

=
∑
Z∈Z

m∑
k=1

R̃(b′k, Ĉ
′)

m∏
j=1

P (zj |bj , Ĉ ′)

=
m∑
k=1

∑
Z∈Z

R̃(b′k, Ĉ
′)

m∏
j=1

P (zj |bj , Ĉ ′)

=

m∑
k=1

∑
zk∈Ż

R̃(b′k, Ĉ
′)P (zk|bk, Ĉ ′)

∑
Z−k∈Żm−1

∏
j 6=k

P (zj |bj , Ĉ ′)

=
m∑
k=1

∑
zk∈fov(Ĉ′)

R̃(b′k, Ĉ
′)P (zk|bk, Ĉ ′)

=
m∑
k=1

∑
zk∈fov(Ĉ′)

∑
t′k∈T

R̃(t′k, Ĉ
′)b′k(t

′
k)P (zk|bk, Ĉ ′)

=
m∑
k=1

∑
zk∈fov(Ĉ′)

∑
t′k∈T

R̃(t′k, Ĉ
′)b̂′k(t

′
k)

=
m∑
k=1

Ṽ (bk, Ĉ
′) =

m∑
k=1

Ṽ (bk, (τ(ĉ1, a1), . . . , τ(ĉn, an)))

where Ĉ ′ , (ĉ′1, . . . , ĉ
′
n) and Z−k = (z1, . . . , zk−1, zk+1, . . . , zm). The first equality is due to

(6.11). The second equality is obtained using (6.8) and η−1 =
∑
C′∈Cn

m∏
k=1

η−1
k

n∏
i=1

δĉ′i(c
′
i) (Sec-

tion A.8). The fifth equality follows from P (Z−k|B−k, A) =
∏
j 6=k

P (zj |bj , Ĉ ′) where B−k(S) =

∏
j 6=k

bj(tj)

n∏
i=1

δĉi(ci) and then the law of total probability:
∑

Z−k∈Żm−1

∏
j 6=k

P (zj |bj , Ĉ ′) = 1. Also,

note that when zk /∈ fov(Ĉ ′), R̃(b′k, Ĉ ′) = 0. The sixth equality is due to (6.9). Since the normal-

izing constant of b′k(t
′
k) is 1/P (zk|bk, Ĉ ′), the seventh equality follows.
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A.8 Derivation of η in POMDP framework

The proof of η =
∑
C′∈Cn

m∏
k=1

ηk

n∏
i=1

δĉ′i(c
′
i) is as follows:

η−1 = P (Z|B,A)

=
∑
S′∈S

P (Z|S′)P (S′|B,A)

=
∑
S′∈S

P (Z|S′)
∑
S∈S

P (S′|S,A)P (S|B)

=
∑
S′∈S

P (Z|S′)
∑
S∈S

P (S′|S,A)B(S)

=
∑
C′∈Cn

∑
T ′∈T m

m∏
k=1

P (zk|t′lk , C
′)

∑
C∈Cn

∑
T∈T m

(
m∏
k=1

P (t′k|tk)
n∏
i=1

δτ(ci,ai)(c
′
i)

)(
m∏
k=1

bk(tk)

n∏
i=1

δĉi(ci)

)

=
∑
C′∈Cn

∑
T ′∈T m

m∏
k=1

P (zk|t′lk , C
′)

( ∑
T∈T m

m∏
k=1

P (t′k|tk)
m∏
k=1

bk(tk)

)
(∑
C∈Cn

n∏
i=1

δτ(ci,ai)(c
′
i)

n∏
i=1

δĉi(ci)

)

=
∑
C′∈Cn

∑
T ′∈T m

m∏
k=1

P (zk|t′lk , C
′)

m∏
k=1

∑
tk∈T

P (t′k|tk)bk(tk)
n∏
i=1

δτ(ĉi,ai)(c
′
i)

=
∑
C′∈Cn

∑
T ′∈T m

m∏
k=1

P (zk|t′lk , C
′)

m∏
k=1

∑
tk∈T

P (t′k|tk)bk(tk)
n∏
i=1

δĉ′i(c
′
i)

=
∑
C′∈Cn

m∏
k=1

∑
t′k∈T

P (zk|t′lk , C
′)
∑
tk∈T

P (t′k|tk)bk(tk)
n∏
i=1

δĉ′i(c
′
i)

=
∑
C′∈Cn

m∏
k=1

η−1
k

n∏
i=1

δĉ′i(c
′
i)
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where η−1
k =

∑
t′k∈T

P (zk|t′lk , C
′)
∑
tk∈T

P (t′k|tk)bk(tk) = P (zk|bk, C ′). The fourth equality follows

from (6.2), (6.3), and (6.4). It follows that η =
∑
C′∈Cn

m∏
k=1

ηk

n∏
i=1

δĉ′i(c
′
i).
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