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Abstract

The exploration-exploitation trade-off is a fundamental dilemma in many interactive learning sce-

narios which include both aspects of reinforcement learning (RL) and active learning (AL): An

autonomous agent, situated in an unknown environment, has to actively extract knowledge from

the environment by taking actions (or conducting experiments) based on its previously collected

information to make accurate predictions or to optimize some utility functions. Thus, to make the

most effective use of their resource-constrained budget (e.g., processing time, experimentation cost),

the agent must choose carefully between (a) exploiting options (e.g., actions, experiments) which

are recommended by its current, possibly incomplete model of the environment, and (b) exploring

the other ostensibly sub-optimal choices to gather more information.

For example, an RL agent has to face a dilemma between (a) exploiting the most-rewarding action

according to the current statistical model of the environment at the risk of running into catastrophic

situations if the model is not accurate, and (b) exploring a sub-optimal action to gather more in-

formation so as to improve the model’s accuracy at the potential price of losing the short-term

reward. Similarly, an AL algorithm/agent has to consider between (a) conducting the most infor-

mative experiments according to its current estimation of the environment model’s parameters (i.e.,

exploitation), and (b) running experiments that help improving the estimation accuracy of these

parameters (i.e., exploration).

More often, learning strategies that ignore exploration will likely exhibit sub-optimal performance

due to their imperfect knowledge while, conversely, those that entirely focus on exploration might

suffer the cost of learning without benefitting from it. Therefore, a good exploration-exploitation

trade-off is critical to the success of those interactive learning agents: In order to perform well, they

must strike the right balance between these two conflicting objectives. Unfortunately, while this

trade-off has been well-recognized since the early days of RL, the studies of exploration-exploitation

have mostly been developed for theoretical settings in the respective field of RL and, perhaps sur-

prisingly, glossed over in the existing AL literature. From a practical point of view, we see three

limiting factors:

1. Previous works addressing the exploration-exploitation trade-off in RL have largely focused on

simple choices of the environment model and consequently, are not practical enough to accommo-
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date real-world applications that have far more complicated environment structures. In fact, we

find that most recent advances in Bayesian reinforcement learning (BRL) have only been able to

analytically trade off between exploration and exploitation under a simple choice of models such as

Flat-Dirichlet-Multinomial (FDM) whose independence and modeling assumptions do not hold for

many real-world applications.

2. Nearly all of the notable works in the AL literature primarily advocate the use of greedy/myopic

algorithms whose rates of convergence (i.e., the number of experiments required by the learning

algorithm to achieve a desired performance in the worst case) are provably minimax optimal for

simple classes of learning tasks (e.g., threshold learning). While these results have greatly ad-

vanced our understanding about the limit of myopic AL in worst-case scenarios, significantly less

is presently known about whether it is possible to devise nonmyopic AL strategies which optimize

the exploration-exploitation trade-off to achieve the best expected performance in budgeted learning

scenarios.

3. The issue of scalability of the existing predictive models (e.g., Gaussian processes) used in AL has

generally been underrated since the majority of literature considers small-scale environments which

only consist of a few thousand candidate experiments to be selected by single-mode AL algorithms

one at a time prior to retraining the model. In contrast, large-scale environments usually have a

massive set of million candidate experiments among which tens or hundreds of thousands should

be actively selected for learning. For such data-intensive problems, it is often more cost-effective

to consider batch-mode AL algorithms which select and conduct multiple experiments in parallel

at each stage to collect observations in batch. Retraining the predictive model after incorporating

each batch of observations then becomes a computational bottleneck as the collected dataset at each

stage quickly grows up to tens or even hundreds of thousand data points.

This thesis outlines some recent progresses that we have been able to make while working toward

satisfactory answers to the above challenges, along with practical algorithms that achieve them:

1. In particular, in order to put BRL into practice for more complicated and practical problems, we

propose a novel framework called Interactive Bayesian Reinforcement Learning (I-BRL) to integrate

the general class of parametric models and model priors, thus allowing the practitioners’ domain
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knowledge to be exploited to produce a fine-grained and compact representation of the environment

as often required in many real-world applications. Interestingly, we show how the nonmyopic Bayes-

optimal policy can be derived analytically by solving I-BRL exactly and propose an approximation

algorithm to compute it efficiently in polynomial time. Our empirical studies show that the proposed

approach performs competitively with the existing state-of-the-art algorithms.

2. Then, to establish a theoretical foundation for the exploration-exploitation trade-off in single-

mode active learning scenarios with resource-constrained budgets, we present a novel ε-Bayes-optimal

Decision-Theoretic Active Learning (ε-BAL) framework which advocates the use of differential en-

tropy as a performance measure and consequently, derives a learning policy that can approximate

the optimal expected performance arbitrarily closely (i.e., within an arbitrary loss bound ε). To meet

the real-time requirement in time-critical applications, we then propose an asymptotically ε-optimal,

branch-and-bound anytime algorithm based on ε-BAL with performance guarantees. In practice,

we empirically demonstrate with both synthetic and real-world datasets that the proposed approach

outperforms the state-of-the-art algorithms in budgeted scenarios.

3. Lastly, to facilitate the future developments of large-scale, nonmyopic AL applications, we further

introduce a highly scalable family of anytime predictive models for AL which provably converge

toward a well-known class of sparse Gaussian processes (SGPs). Unlike the existing predictive

models of AL which cannot be updated incrementally and are only capable of processing middle-

sized datasets (i.e., a few thousands of data points), our proposed models can process massive

datasets in an anytime fashion, thus providing a principled trade-off between the processing time

and the predictive accuracy. The efficiency of our framework is then demonstrated empirically on a

variety of large-scale real-world datasets which contains hundreds of thousand data points.
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Chapter 1

Introduction

1.1 Motivation

Interactive learning has recently emerged as an increasingly important focal theme in

machine learning which investigates how autonomous agents (e.g., robots, software

programs) may come to operate intelligently by interacting (or experimenting) with

their unknown physical (virtual) environments (Fig. 1.1) and possibly, other self-

interested entities (e.g., humans). This includes both aspects of active learning (AL)

and reinforcement learning (RL) in which an intelligent agent strives to learn the

hidden structure of the environment to conceive effective operating policies given a

resource-constrained budget of interaction (e.g., experimentation cost, mission time).

Therefore, to learn efficiently within the allowed budget, the agent must be proactive

in planning its actions (or conducting its experiments) to extract the most informative

feedbacks from the environment. Specifically, these feedbacks are usually provided

in terms of empirical observations, corrective evaluations (e.g., active learning) or

numerical rewards (e.g., reinforcement learning) that encourage or discourage the
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Figure 1.1: Interactive learning system.

agents’ current behaviors and hence, provide more information to help them adjust

and decide on the next course of actions. Consequently, this motivates an optimiza-

tion approach to the original learning problem: In order to achieve its goal effectively

subject to practical resource constraints, the learning agent needs to compute an

interactive policy that maximizes its expected performance in terms of the total re-

wards given by the environment or some internal performance metrics which are used

to measure its learning progress (e.g., entropy-based active sampling).

2
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Interestingly, to maximize its expected performance, an interactive learning agent has

to face an exploration-exploitation dilemma: Exploiting options recommended by its

current and possibly incomplete knowledge vs. exploring sub-optimal options that

could possibly lead to the discovery of new knowledge. In particular, exploitative ap-

proaches that always take actions which are most rewarding (or conduct experiments

which are most informative) according to the current statistical model of the environ-

ment are often inadequate and sub-optimal as they are exposed to the risk of running

into catastrophic situations (or wasting resource on uninformative experiments) if the

model is inaccurate. On the other hand, approaches which are too vigorous in ex-

ploring the other sub-optimal choices of actions or experiments will most likely suffer

the cost of learning without benefitting from it: If the agent uses too much resource

on redundant exploration, the remaining budget might not be sufficient to exploit

what it has successfully learnt. Thus, this trade-off is therefore critical to the success

of such interactive learning agent: In order to perform well, it must strike the right

balance between these two resource-competing objectives.

To elaborate, let us consider, for example, reinforcement learning (RL) scenarios in

which an agent strives to learn the latent dynamics of the environment to maximize

its accumulated reward [Poupart et al., 2006] by sequentially planning which action

to take at each step. The RL agent then has to choose between (a) taking the best

action according to the current statistical model of the environment at the risk of

losing an opportunity to recognize a better action if the model is not accurate (i.e.,

exploitation) vs. (b) choosing other sub-optimal actions to explore and consequently

improving the model’s accuracy at the potential price of losing the short-term re-

wards (i.e., exploration). Similarly, in environmental sensing, an active learning (AL)

algorithm has to sequentially decide the most informative locations to be sampled for

minimizing the predictive uncertainty of the unobserved areas of a phenomenon given

3
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a sampling budget [Low et al., 2008; Low et al., 2009]. In particular, if the model

parameters of the phenomenon are not known a priori, the learning algorithm’s pre-

dictive performance then depends on how informative the collected observations are

for both parameter estimation as well as prediction given the true parameters. How-

ever, it has also been revealed in previous studies that sampling data that is efficient

for parameter estimation is not necessarily efficient for prediction [Müller, 2007; Mar-

tin, 2001]. This consequently leads to a potential trade-off between exploration and

exploitation which bears a striking resemblance to the above exploration-exploitation

dilemma in RL: (a) sampling at the most informative location according to the cur-

rent, possibly inaccurate estimation of the model’s parameters (i.e., exploitation) vs.

(b) choosing locations that provide more information about the latent parameters

(i.e., exploration).

Examples of such interactive learning systems include:

• Reinforcement Learning (RL). An autonomous vehicle that learns to ad-

just its acceleration and steering behavior properly depending on its obser-

vations of the other human-driven vehicles [Wang et al., 2012; Hoang and Low,

2013a], a team of robots playing soccer that learns to coordinate their ball

kicks with respect to the locations of their opponents [Stone et al., 2005; Ried-

miller et al., 2009], spoken dialog management systems where software agents

interactively participate in conversation with human users [Williams, 2006;

Li et al., 2009], and online recommendation systems (e.g., ads, news, music)

[Li et al., 2010] that learn to decide which content to show to maximize the

revenue/reward over time based on the previously collected user statistics (e.g.,

users’ clicks).
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• Active Learning (AL). Environmental sensing and monitoring applications

(e.g., precision agriculture [Tokekar et al., 2013], mineral prospecting [Low et al.,

2007], monitoring of ocean and freshwater phenomena like harmful algal bloom

[Leonard et al., 2007; Dolan et al., 2009; Podnar et al., 2010], forest ecosystems,

pollution or contamination) where a high-resolution in situ sampling of the spa-

tial phenomenon of interest is impractical due to prohibitively costly sampling

budget requirements (e.g., number of deployed sensors, energy consumption):

For such applications, it is therefore desirable to select and conduct experiments

(e.g., deploying sensors to make observations) at the most informative locations

within the area of interest to model and predict the phenomenon accurately.

Unfortunately, although this trade-off has been recognized since the early days of

RL, the studies of exploration-exploitation have been developed mostly for theoreti-

cal settings in the respective field of RL and almost glossed over in the literature of

AL. To the extent of our knowledge, the only work in AL which explicitly attempt to

address the exploration-exploitation trade-off is that of Krause and Guestrin [2007].

In particular, we can identify the following limiting factors that need to be addressed

to facilitate future developments of interactive learning in general:

1. Previous works addressing the exploration-exploitation trade-off in RL has tacitly

assumed very simple and specific parameterizations of the unknown environments,

thus rendering themselves inapplicable to many practical problems where the cor-

responding environments often have a far more complicated parametric structure

[Hoang and Low, 2013a]. In fact, while there exists a broad range of principled

frameworks addressing this trade-off in Bayesian reinforcement learning (BRL), most
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of these works have been developed for simple choices of environment models such as

Flat-Dirichlet-Multinomial (FDM) [Poupart et al., 2006] which is inadequate to model

the environment in many real-world applications [Chen et al., 2012; Low et al., 2011;

Low et al., 2012; Cao et al., 2013]. For example, in self-interested multi-agent envi-

ronments, the transition dynamics are mainly controlled by the other agent’s stochas-

tic behavior for which FDM’s independence and modeling assumptions do not hold

[Hoang and Low, 2013b; Natarajan et al., 2012a; Natarajan et al., 2012b] and conse-

quently, prevent its behavior from being generalized across different states [Asmuth

and Littman, 2011; A.-Lopez et al., 2012] nor specified precisely using prior domain

knowledge. In addition, the other agent’s behavior often needs to be modeled differ-

ently depending on the specific context [Hoang and Low, 2013a]. Thus, grounding in

the context of existing BRL frameworks, either the domain expert struggles to best fit

his prior knowledge to the supported set of parameterizations or the agent developer

has to re-design the framework to incorporate a new modeling scheme. Arguably,

there is no free lunch when it comes to modeling the agent’s behavior across various

applications.

2. Most of the notable works [Hanneke, 2007; Balcan et al., 2009; Yang et al., 2011;

Dasgupta et al., 2007; Beygelzimer et al., 2009] in the AL literature advocate the use

of greedy/myopic algorithms whose rates of convergence (i.e., the number of experi-

ments required for the learner to achieve a desired performance in the worst case) are

provably minimax optimal with respect to some simple classes of learning tasks (i.e.,

threshold learning) or nonmyopic approaches that tackle exploration and exploitation

separately [Krause and Guestrin, 2007] and consequently, exhibit sub-optimal behav-

ior in the presence of budget constraints. Although these works often come with

competitive worst-case performance guarantees which are theoretically interesting,

significantly less is presently known about how well the existing algorithms perform
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on average: Specifically, how good are their expected performance in practical, com-

plex environmental domains, and more importantly, whether it is possible to to devise

nonmyopic AL strategies which jointly optimize the exploration-exploitation trade-

off to achieve the best expected performance in such budgeted learning scenarios?

Naively, one might be tempted to frame active learning as a sequential decision prob-

lem that jointly and naturally optimizes the above exploration-exploitation trade-off

while maintaining a Bayesian belief over the model parameters. However, such a

nonmyopic Bayes-optimal policy, unlike its counterpart in FDM-based BRL [Poupart

et al., 2006], cannot be analytically derived in AL contexts for which the model pa-

rameters are unknown and the classical RL’s discrete-state, Markov assumptions do

not hold [Solomon and Zacks, 1970].

3. While there exists a clear conscience among researchers on the issue of scalability of

AL algorithms when applying to practical domains, the scalability of their underlying

predictive models has unfortunately been underrated since the majority of literature

has only considered small-scale domains for which each conducted experiment returns

a single observation sample (i.e., single-mode AL). This only amounts to a dataset of

moderate size, assuming the active budget is restricted to a few hundreds of experi-

ments, which can be handled comfortably using the existing ML models. The main

effort of the existing AL literature is, therefore, mainly devoted to devising compu-

tationally efficient learning policies instead of scaling up their underlying learning

models to process larger datasets.

However, there also exists many large-scale practical settings for which retraining

these predictive model (e.g., Gaussian processes) after incorporating new observations

is very computational expensive, especially if they do not support efficient incremental

update. Imagine, for example, an autonomous underwater vehicle which sample a
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batch of observations each time it takes a dive: Its collected dataset thus quickly grows

up to a very large size since each diving action may collect thousands of observations

instead of a single one. Alternatively, in high-throughput experimental designs such

as crowdsourcing annotation [Sabou et al., 2014], product marketing [Kemple et al.,

2003], resource allocation [Golovin and Krause, 2011] and vaccination in epidemiology

[Anshelevich et al., 2009], it is often more cost-effective to choose multiple actions to

be carried out in parallel and receive feedbacks in batch which inform the next set of

actions [Chen and Krause, 2013]. This is typically known as batch-mode AL which

also increases the size of the collected dataset tremendously and as a result, render

the traditional AL predictive models computationally impractical.

1.2 Objective

The main focus of this thesis is thus to address the following question:

Given a resource-constrained budget for interaction, how then does an interac-

tive learning agent optimize the trade off between exploration and exploitation

in practical, complex environmental domains efficiently?

The following critical issues arise in answering this question, all of which reflect the

serious limitations of existing RL and AL algorithms in many practical domains of

applications (Section 1.1):

• Practical Learning Model for RL. How can existing BRL frameworks be refined

to allow a domain expert to freely incorporate his choice of design in modeling

the other agents’ behaviors? This question is significant in putting theory into

practice and, when answered, can additionally bridge the gap between learning

in single- and (self-interested) multi-agent systems.
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• Exploration vs. Exploitation in AL. How can the notion of Bayes-optimality

in RL be exploited for AL problems where the model parameters are unknown

and the classical RL’s discrete-state, Markov assumptions do not hold? More

importantly, is it possible to formulate and tractably derive the Bayes-optimal

policy in such non-Markovian environments to circumvent the exploitation-

exploration dilemma in principle?

• Scalable Learning Model for AL. How do we design scalable learning models

for existing AL algorithms to facilitate its future developments in large-scale,

data-intensive applications? Specifically, is it possible to design models that

efficiently support incremental update in an anytime fashion, thus providing a

principled trade-off between the processing time and the learning accuracy?

The above-mentioned issues are then considered and resolved in the development of

this thesis as described next.

1.3 Contributions

The work in this thesis supports the following statements:

Existing BRL frameworks can be generalized to robustly accommodate any

parametric model and model prior, thus bridging the gap in putting BRL into

practice for more realistic and practical tasks such as learning in self-interested

multi-agent systems.

Using differential entropy as an internal performance measure for an AL agent,

it is then possible to maintain a balance between exploration and exploitation

that guarantees an ε-Bayes-optimal expected performance with respect to an

arbitrary, user-defined loss bound ε.
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It is possible to construct a family of anytime learning frameworks for the

existing AL algorithms which efficiently approximates and provably converges

towards a well-known class of Bayesian non-parametric models (e.g., Gaus-

sian processes). The constructed models are capable of processing massive

datasets containing hundreds of thousand data points in an anytime fashion

which naturally trades off between processing time and learning accuracy.

All of these claims are substantiated by the following novel contributions which are

summarized below:

1. Interactive Bayesian Reinforcement Learning (Chapter 3):

• We present a novel generalization of BRL called Interactive BRL (I-BRL) to

integrate any parametric model and model prior of the environment specified

by domain experts (Section 3.1), consequently yielding two advantages: The

environment can be represented (a) in a fine-grained manner based on the prac-

titioners’ prior domain knowledge, and (b) compactly to be generalized across

different states, thus overcoming the limitations of FDM.

• In particular, we show how the nonmyopic Bayes-optimal policy can be derived

analytically by solving I-BRL exactly (Section 3.2.1) and propose an approxi-

mation algorithm to compute it efficiently in polynomial time (Section 3.2.2).

• Empirically, we demonstrate I-BRL’s performance via a set of benchmark prob-

lems as well as an interesting traffic problem modeled after a real-world situation

(Section 3.3).

• For interested readers, we discuss the existing BRL literature in Section 2.1.

Their strengths and weaknesses are highlighted in comparison to I-BRL.
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2. Nonmyopic ε-Bayes-Optimal Active Learning (Chapter 4):

• We present an efficient decision-theoretic planning approach to nonmyopic ac-

tive sensing/learning that can still preserve and exploit the principled Bayesian

sequential decision problem framework for jointly and naturally optimizing the

exploration-exploitation trade-off (Section 4.2.1) and consequently does not in-

cur the limitations of the algorithm of Krause and Guestrin [2007].

• Although the exact Bayes-optimal policy to the active sensing problem cannot

be derived [Solomon and Zacks, 1970], we show that it is in fact possible to solve

for a nonmyopic ε-Bayes-optimal active learning (ε-BAL) policy (Sections 4.2.2

and 4.2.3) given a user-defined bound ε. In other words, our proposed ε-BAL

policy can approximate the optimal expected active sensing performance arbi-

trarily closely (i.e., within an arbitrary loss bound ε). In contrast, the algorithm

of Krause and Guestrin [2007] can only yield a sub-optimal performance bound1.

• To meet the real-time requirement in time-critical applications, we then propose

an asymptotically ε-optimal, branch-and-bound anytime algorithm based on ε-

BAL with performance guarantee (Section 4.2.4).

• We empirically demonstrate using both synthetic and real-world datasets that,

with limited budget, our proposed approach outperforms state-of-the-art algo-

rithms (Section 4.3).

• For the readers’ reference, we discuss and review the existing AL literature in

Section 2.2 to highlight their strengths and weaknesses in comparison to our

proposed framework’s.

1Its induced policy is guaranteed not to achieve worse than the optimal performance by more
than a factor of 1/e.
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3. Scalable Predictive Modeling Platforms for Active Learning (Chapter 5):

• We introduces a novel framework of inverse variational inference to theoreti-

cally derive a non-trivial, convex objective functional (of distributions) whose

optimum coincides with the predictive distribution of a particular user-specified

SGP model (Section 5.2). This effectively allow us to construct an alternative

anytime numerical computation of the selected SGP model by iteratively fol-

lowing the stochastic gradient of the objective function.

• Specifically, we show that if the selected SGP model exhibits certain conditional

independence structures, the derived stochastic gradient does not depend on the

number of data points, thus making the time complexity of each update iteration

independent of the size of data (Section 5.2.2).

• We further identify and prove that such necessary conditional independence

structures are in fact satisfied by a very well-known class of low-rank covariance

approximation SGP models (Section 5.2.1). This results in an anytime learning

framework capable of processing hundreds of thousands data points in a single-

core machine. For comparison, interested readers are referred to Section 2.3 for

a detailed discussion on the computational efficiency of the existing state-of-

the-art SGP approaches on big data.

• Empirically, we demonstrate the efficiency and scalability of the proposed frame-

work on a wide variety of large-scale real-world datasets which contain hundreds

of thousand data points (Section 5.3).
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Related Works

2.1 Reinforcement Learning (RL)

In reinforcement learning (RL), an agent faces a dilemma between acting optimally

with respect to the current, possibly incomplete knowledge of the environment (i.e.,

exploitation) vs. acting sub-optimally to gain more information about it (i.e., ex-

ploration). Model-based Bayesian reinforcement learning (BRL) circumvents such

a dilemma by considering the notion of Bayes-optimality [Duff, 2003]: A Bayes-

optimal policy selects actions that maximize the agent’s expected utility with re-

spect to all possible sequences of future beliefs (starting from the initial belief) over

candidate models of the environment. Unfortunately, due to the large belief space,

the Bayes-optimal policy can only be approximately derived under a simple choice

of models and model priors. For example, the Flat-Dirichlet-Multinomial (FDM)

prior [Poupart et al., 2006; Ross et al., 2007; Poupart and Vlassis, 2008] assumes

the next-state distributions for each action-state pair to be modeled as indepen-

dent multinomial distributions with separate Dirichlet priors. Notably, Poupart et

al. [2006] shows that it is computationally feasible to analytically derive the ex-
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act Bayes-optimal policy under the FDM parameterization and proposes practical

algorithm to achieve it efficiently. However, despite its common use to analyze

and benchmark algorithms, FDM can perform poorly in practice as it often fails

to exploit the structured information of a problem [Asmuth and Littman, 2011;

A.-Lopez et al., 2012].

To elaborate, a critical limitation of FDM lies in its independence assumption driven

by computational convenience rather than scientific insight. We can identify practical

examples in the context of self-interested multi-agent RL (MARL) where the uncer-

tainty in the transition model is mainly caused by the stochasticity in the other agent’s

behavior (in different states) for which the independence assumption does not hold

(e.g., motion behavior of pedestrians [Natarajan et al., 2012a; Natarajan et al., 2012b;

Natarajan et al., 2014]). Consider, for example, an application of BRL in the prob-

lem of placing static sensors to monitor an environmental phenomenon: It involves

actively selecting sensor locations (i.e., states) for measurement such that the sum of

predictive variances at the unobserved locations is minimized. Here, the phenomenon

is the “other agent” and the measurements are its actions. An important characteri-

zation of the phenomenon is that of the spatial correlation of measurements between

neighboring locations/states [Low et al., 2007; Low et al., 2008; Low et al., 2009;

Low et al., 2011; Low et al., 2012; Chen et al., 2012; Cao et al., 2013], which makes

FDM-based BRL ill-suited for this problem due to its independence assumption.

Secondly, despite its computational convenience, FDM does not permit generalization

across states [Asmuth and Littman, 2011], thus severely limiting its applicability in

practical problems with a large state space where past observations only come from

a very limited set of states. Interestingly, in such problems, it is often possible to

obtain prior domain knowledge providing a more “parsimonious” structure of the
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other agent’s behavior, which can potentially resolve the issue of generalization. For

example, consider using BRL to derive a Bayes-optimal policy for an autonomous

car to navigate successfully among human-driven vehicles [Hoang and Low, 2012;

Hoang and Low, 2013a; Hoang and Low, 2013b] whose behaviors in different situ-

ations (i.e., states) are governed by a small, consistent set of latent parameters, as

demonstrated in the empirical study of Gipps [1981]. By estimating/learning these

parameters, it is then possible to generalize their behaviors across different states.

This, however, contradicts the independence assumption of FDM; in practice, ignor-

ing this results in an inferior performance, as shown in Section 3.3. Note that, by

using parameter tying [Poupart et al., 2006], FDM can be modified to make the other

agent’s behavior identical in different states. But, this simple generalization is too

restrictive for real-world problems like the examples above where the other agent’s

behavior in different states is not necessarily identical but related via a common set

of latent “non-Dirichlet” parameters.

Consequently, there is still a huge gap in putting BRL into practice for interacting

with self-interested agents of unknown behaviors. To the best of our knowledge, this is

first investigated by Chalkiadakis and Boutilier [2003] who offer a myopic solution in

the belief space instead of solving for a Bayes-optimal policy that is nonmyopic. Their

proposed BPVI method essentially selects actions that jointly maximize a heuristic

aggregation of myopic value of perfect information [Dearden et al., 1998] and an aver-

age estimation of expected utility obtained from solving the exact MDPs with respect

to samples drawn from the posterior belief of the other agent’s behavior. Moreover,

BPVI is restricted to work only with Dirichlet priors and multinomial likelihoods (i.e.,

FDM), which are subject to the above disadvantages in modeling the other agent’s

behavior. Also, BPVI is demonstrated empirically in the simplest of settings with

only a few states.
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Furthermore, in light of the above examples, the other agent’s behavior often needs

to be modeled differently depending on the specific application. Grounding in the

context of the BRL framework, either the domain expert struggles to best fit his prior

knowledge to the supported set of models and model priors or the agent developer has

to re-design the framework to incorporate a new modeling scheme. Arguably, there

is no free lunch when it comes to modeling the other agent’s behavior across various

applications. To cope with this difficulty, the BRL framework should ideally allow a

domain expert to freely incorporate his choice of design in modeling the other agent’s

behavior.

In fact, to the best of our knowledge, Monte Carlo BRL (MC-BRL) [Wang et al.,

2012] is the only recent work that does not require conjugate distributions to encode

prior knowledge: It samples a priori a finite set of candidate models to approximately

represent the continuous model spectrum and consequently, cast BRL as a discrete

POMDP problem, which is relatively easy to solve with point-based approximation

algorithms [Pineau et al., 2003; Spaan and Vlassis, 2005; Kurniawati et al., 2008].

That said, using a finite set of candidate models to represent the continuous spec-

trum of models appears rigid and less robust as it effectively assigns zero probability

to the uncovered areas of the spectrum. The performance quality of this approach,

therefore, depends on whether the true model is sufficiently similar to the sampled

candidates [Wang et al., 2012]. This thesis thus introduces an alternative solution

to BRL which also does not require specific parametric modeling to encode the do-

main expert’s prior knowledge and unlike MC-BRL, it does not strictly impose zero

probability on models which are not covered by its samples. More interestingly, we

show that MC-BRL can also be interpreted as a specific instance of our general frame-

work using a simple choice of basis functions, which are detailed later in Chapter 3.2.3.
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Finally, we would like to note that while solving for the Bayes-optimal policy efficiently

has not been addressed explicitly in general prior to this thesis, we can actually avoid

this problem by allowing the agent to act sub-optimally in a bounded number of

steps. In particular, the works of Kolter and Ng [2009], Asmuth and Littman [2011]

andA.-Lopez et al. [2012] all guarantee that, in the worst case, the agent will act

nearly approximately Bayes-optimal in all but a polynomially bounded number of

steps with high probability. Alternatively, another approach is to explicitly modify

the objective reward function by adding a reward bonus for exploration [Sorg et al.,

2010] which also results in similar bounded sample complexity of learning an MDP as

of the above algorithms (e.g., [Kolter and Ng, 2009]). It is thus necessary to point out

the difference between I-BRL and these worst-case approaches: We are interested in

maximizing the average-case performance with certainty rather than the worst-case

performance with some “high probability” guarantee. Comparing their performances

is beyond the scope of this thesis.

Other non-BRL Works in MARL. In self-interested (or non-cooperative) MARL,

there has been several groups of proponents advocating different learning goals, the

following of which have garnered substantial support: (a) Stability − in self-play

or against a certain class of learning opponents, the learners’ behaviors converge

to an equilibrium; (b) optimality − a learner’s behavior necessarily converges to

the best policy against a certain class of learning opponents; and (c) security − a

learner’s average payoff must exceed the maximin value of the game. For example,

the works of Littman [2001], Bianchi et al. [2007], and Akchurina [2009] have focused

on (evolutionary) game-theoretic approaches that satisfy the stability criterion in

self-play. The works of Bowling and Veloso [2001], Suematsu and Hayashi [2002],

and Tesauro [2003] have developed algorithms that address both the optimality and
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stability criteria: A learner essentially converges to the best response if the oppo-

nents’ policies are stationary; otherwise, it converges in self-play. Notably, the work

of Powers and Shoham [2005] has proposed an approach that provably converges to

an ε-best response (i.e., optimality) against a class of adaptive, bounded-memory

opponents while simultaneously guaranteeing a minimum average payoff (i.e., secu-

rity) in single-state, repeated games.

In contrast to the above-mentioned works that focus on convergence, I-BRL directly

optimizes a learner’s performance during its course of interaction, which may termi-

nate before it can successfully learn its opponent’s behavior. So, our main concern

is how well the learner can perform before its behavior converges. From a practical

perspective, this seems to be a more appropriate goal: In reality, the agents may

only interact for a limited period, which is not enough to guarantee convergence, thus

undermining the stability and optimality criteria. In such a context, the existing

approaches appear to be at a disadvantage: (a) Algorithms that focus on stability

and optimality tend to select exploratory actions with drastic effect without consid-

ering their huge costs (i.e., poor rewards) [Chalkiadakis and Boutilier, 2003]; and (b)

though the notion of security aims to prevent a learner from selecting such radical

actions, the proposed security values (e.g., maximin value) may not always turn out

to be tight lower bounds for the optimal performance.

2.2 Active Learning (AL)

Active learning has become an increasingly important focal theme in many environ-

mental sensing and monitoring applications (e.g., precision agriculture [Tokekar et

al., 2013], mineral prospecting [Low et al., 2007], monitoring of ocean and freshwa-
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ter phenomena like harmful algal blooms [Leonard et al., 2007; Dolan et al., 2009;

Podnar et al., 2010], forest ecosystems, or pollution) where a high-resolution in situ

sampling of the spatial phenomenon of interest is impractical due to prohibitively

costly sampling budget requirements (e.g., number of deployed sensors, energy con-

sumption, mission time): For such applications, it is thus desirable to select and

gather the most informative observations/data for modeling and predicting the spa-

tially varying phenomenon subject to some budget constraints, which is the goal of

active learning and also known as the active sensing problem.

To elaborate, solving the active sensing problem amounts to deriving an optimal se-

quential policy that plans/decides the most informative locations to be observed for

minimizing the predictive uncertainty of the unobserved areas of a phenomenon given

a sampling budget. To achieve this, many existing active sensing algorithms [Cao et

al., 2013; Chen et al., 2012; Chen et al., 2013c; Krause et al., 2008; Low et al., 2008;

Low et al., 2009; Low et al., 2011; Low et al., 2012; Singh et al., 2009] have mod-

eled the phenomenon as a Gaussian process (GP), which allows its spatial correlation

structure to be formally characterized and its predictive uncertainty to be formally

quantified (e.g., based on mean-squared error, entropy, or mutual information crite-

rion). However, they have assumed the spatial correlation structure (specifically, the

parameters defining it) to be known, which is often violated in real-world applications,

or estimated crudely using sparse prior data. So, though they aim to select sampling

locations that are optimal with respect to the assumed or estimated parameters, these

locations tend to be sub-optimal with respect to the true parameters, thus degrading

the predictive performance of the learned GP model.

In practice, the spatial correlation structure of a phenomenon is usually not known.

Then, the predictive performance of the GP modeling the phenomenon depends on
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how informative the gathered observations/data are for both parameter estimation

as well as spatial prediction given the true parameters. Interestingly, as revealed

in previous geostatistical studies [Martin, 2001; Müller, 2007], policies that are ef-

ficient for parameter estimation are not necessarily efficient for spatial prediction

with respect to the true model. Thus, the active sensing problem involves a potential

trade-off between sampling the most informative locations for spatial prediction given

the current, possibly incomplete knowledge of the model parameters (i.e., exploita-

tion) vs. observing locations that gain more information about the parameters (i.e.,

exploration):

How then does an active sensing algorithm trade off between these two pos-

sibly conflicting sampling objectives?

To tackle this question, one principled approach is to frame active sensing as a se-

quential decision problem that jointly and naturally optimizes the above exploration-

exploitation trade-off while maintaining a Bayesian belief over the model parameters.

This intuitively means a policy that biases towards observing informative locations for

spatial prediction given the current model prior may be penalized if it entails a highly

dispersed posterior over the model parameters. So, the resulting induced policy is

guaranteed to be optimal in the expected active sensing performance. Unfortunately,

such a nonmyopic Bayes-optimal policy cannot be derived exactly due to an uncount-

able set of candidate observations and unknown model parameters [Solomon and

Zacks, 1970]. As a result, most existing works [Diggle, 2006; Houlsby et al., 2012;

Park and Pillow, 2012; Zimmerman, 2006; Ouyang et al., 2014] have circumvented

the trade-off by resorting to the use of myopic/greedy (hence, sub-optimal) policies.

To the best of our knowledge, the only notable nonmyopic active sensing algorithm

for GPs [Krause and Guestrin, 2007] advocates tackling exploration and exploitation
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separately, instead of jointly and naturally optimizing their trade-off, to sidestep the

difficulty of solving the Bayesian sequential decision problem. Specifically, it performs

a probably approximately correct (PAC)-style exploration until it can verify that the

performance loss of greedy exploitation lies within a user-specified threshold. But,

such an algorithm is sub-optimal in the presence of budget constraints due to the fol-

lowing limitations: (a) It is unclear how an optimal threshold for exploration can be

determined given a sampling budget, and (b) even if such a threshold is available, the

PAC-style exploration is typically designed to satisfy a worst-case sample complexity

rather than to be optimal in the expected active sensing performance, thus resulting

in an overly-aggressive exploration (Section 4.3.1). Notably, Cuong et al. [2014] have

recently introduced alternative AL criteria for which there exists greedy strategies

that achieve a constant factor approximation to the corresponding optimal policy.

This approach, however, focuses on the space of parametric models which tacitly as-

sume that given the true model, the probability of getting a particular observation at

a previously unseen location does not depend on the collected data, thus avoiding the

infamous exploration-exploitation trade-off between sampling for spatial prediction

and parameter estimation. In addition, this work is also grounded in the context of

classification for which the set of candidate observations is finite. In contrast, our

work in this thesis does not assume that the set of candidate observations is finite

and more importantly, we directly address this active sensing problem in the context

of non-parametric model space (Chapter 4).

On a different avenue of development, there also exists other lines of works [Hanneke,

2007; Balcan et al., 2009; Golovin et al., 2010; Yang et al., 2011; Dasgupta et al., 2007;

Beygelzimer et al., 2009] in the AL literature which advocate the use of greedy algo-

rithms whose rates of convergence (i.e., the number of samples (experiments) required

for the learner to achieve a desired performance in the worst case) are provably min-
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imax optimal with respect to some simple classes of learning problems (e.g., binary

classification using parametric hypothesis spaces with finite VC dimensions, assuming

independently and identically distributed observations, etc.). However, these works

do not explicitly consider the trade-off between exploration and exploitation in the

presence of budget constraints as well as problem domains with far more complicated

structures. Thus, despite the milestone contributions they have made in terms of the

convergence rate in active learning, significantly less is presently known about how

well these proposed algorithms balance between exploration and exploitation given a

fixed budget for interaction: Specifically, how good are their expected performance

in practical, complex environmental domains, and more importantly, whether it is

possible to derive a trade off between exploration and exploitation that achieves the

optimal expected performance in such sophisticated environments? In fact, we find

that, unlike its counterpart in RL, the exploration-exploitation trade-off in AL has

not been received much attention from the research community until recently [Krause

and Guestrin, 2007] and is still a research topic in its infancy.

2.3 Sparse Gaussian Process-Based Learning Models

for Big Data

The 21st century marks the beginning of the big data era in which we are facing

the problem of scalability. Existing machine learning (ML) models which are devel-

oped in the previous decades can no longer cope up with the prohibitively expensive

cost of processing massive datasets. As a striking example, while Gaussian Process

(GP) [Rasmussen and Williams, 2006] appears to be one of the most competitive ap-

proaches for Bayesian non-parametric regression, it incurs O(n3) processing time for

datasets of size n. This highly expensive computational cost thus effectively renders
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GP completely useless in handling modern time datasets which may contain hundreds

of thousand data points.

To overcome this computational disadvantage, a wealth of sparse GP (SGP) regression

methods [Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahramani, 2007;

Titsias, 2009; Lázaro-Gredilla et al., 2010] have been proposed and developed by

numerous authors in the past few years. A common trait to many of these ap-

proaches is the assumption of conditional independence between different blocks of

latent variables given a separate, small subset of m inducing latent variables which

are distributed by the same GP: The resulting models are then able to offer a reduced

computational complexity of O(nm2). In fact, this appears to be the main recipe to

derive a class of well-known SGP models [Quiñonero-Candela and Rasmussen, 2005]

which include Subset of Regressors (SoR) [Smola and Bartlett, 2001], Determinis-

tic Training Conditional (DTC) [Seeger et al., 2003], Partially Independent Training

Conditional (PITC) [Schwaighofer and Tresp, 2003] and Fully Independent Train-

ing Conditional (FITC) [Snelson and Gharahmani, 2006] as well as their improved

variants Fully Independent Conditional (FIC) and Partially Independent Conditional

(PIC) [Snelson and Ghahramani, 2007]. Remarkably, Chen et al. [2013a] successfully

exploit the low-rank covariance matrix approximation of FI(T)C and PI(T)C [Snel-

son and Ghahramani, 2007] to introduce an interesting framework of parallel SGPs

which distributes its computational load among parallel machines to achieve better

scalability.

Unfortunately, even these SGP models are impractical for big data as their reduced

computation cost O(nm2) only scales up to middle-size datasets with only tens of

thousand data points1. To the best of our knowledge, the only existing work capa-

1As a matter of fact, the parallel SGPs [Chen et al., 2013b] are evaluated with datasets containing
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ble of processing hundreds of thousand data points has been recently introduced in

[Hensman et al., 2013] which provides an anytime version of DTC for big data. In par-

ticular, Hensman et al. [2013] exploit the fact that DTC can be derived by minimizing

the KL-divergence [Titsias, 2009] between its approximated posterior and the exact

GP posterior over latent variables. This interestingly reveals an alternative numeri-

cal computation process via stochastic gradient ascent (SGA) which asymptotically

converges towards DTC and only incurs O(m3) processing time per iteration. The

proposed approach thus promises a remarkable speed-up if the number of iterations

required for convergence is significantly smaller than n.

This approach, however, focuses on faithfully converging towards DTC rather than

preserving the current state-of-the-art performance of SGP on big data. In fact, the

choice of DTC appears superficially imposed so that one can take advantage of its

readily available SGA-based numerical computation whose complexity per iteration

is independent of n. In terms of predictive performance, PIC [Snelson, 2007] can

be regarded as the current state-of-the-art which, as a matter of fact, is shown to

consistently outperform DTC on a wide range of datasets (Section 5.3). This is ex-

pected because unlike DTC, PIC does not forcibly assume a deterministic relation

between the inducing variables and others which appears to be an overly strong as-

sumption. Furthermore, according to our experiments in Section 5.3, the anytime

version of DTC [Hensman et al., 2013] always performs significantly worse than that

of PIC and in addition, less competitive to PITC during the early stage of the any-

time approximation. Interestingly, in terms of the predictive variance, Snelson and

Ghahramani [2007] previously demonstrated that DTC’s prediction catastrophically

breaks at locations near the inducing point: Its prediction wrongly deviates from

the exact measurements at these locations yet its variance is almost close to zero

less than 50, 000 data points.
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(e.g., high confidence) due to its deterministic assumption2. Thus, when using as

the underlying predictive model for AL algorithms where it is crucially important

to have a good estimation of the predictive variance (Chapter 4), this over-confident

behavior of DTC appears to be harmfully misleading. This essentially boils down

to the question of whether it is possible to construct a similar SGA-based numerical

process which is both computationally efficient and convergent towards a particular

SGP model of our choice since depending on particular situations, one SGP model

might perform better than the others and vice versa. Unfortunately, the alternative

numerical computation processes of the other SGPs, unlike DTC’s, are not readily

available from their derivations which are not based on optimization.

2For more details, please refer to Chapter 2.3.8 of [Snelson and Ghahramani, 2007].
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Chapter 3

Interactive Bayesian Reinforcement

Learning (I-BRL)

Motivated by the practical considerations in Section 2.1, this chapter presents a novel

generalization of BRL, which we call Interactive BRL (I-BRL) (Section 3.2), to inte-

grate any parametric model and model prior of the other agent’s behavior (Section 3.1)

specified by domain experts, consequently yielding two advantages: The other agent’s

behavior can be represented (a) in a fine-grained manner based on the practitioners’

prior domain knowledge, and (b) compactly to be generalized across different states,

thus overcoming the limitations of FDM. We show how the non-myopic Bayes-optimal

policy can be derived analytically by solving I-BRL exactly (Section 3.2.1) and pro-

pose an approximation algorithm to compute it efficiently in polynomial time (Sec-

tion 3.2.2). Empirically, we evaluate the performance of I-BRL against that of BPVI

[Chalkiadakis and Boutilier, 2003] and MC-BRL [Wang et al., 2012] using an inter-

esting traffic problem modeled after a real-world situation (Section 3.3.2). Although

I-BRL tailors towards multi-agent settings, the developed theory is also applicable to

single-agent RL by treating the environment as the other agent.
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3.1 Modeling the Other Agent

In our proposed Bayesian modeling paradigm, the opponent’s1 behavior is modeled as

a set of probabilities pvsh(λ) , Pr(v|s, h, λ) for selecting action v in state s conditioned

on the history h , {si, ui, vi}di=1 of d latest interactions where ui is the action taken

by our agent in the i-th step. These distributions are parameterized by λ, which

abstracts the actual parametric form of the opponent’s behavior; this abstraction

provides practitioners the flexibility in choosing the most suitable degree of parame-

terization. For example, λ can simply be a set of multinomial distributions λ , {θvsh}

such that pvsh(λ) , θvsh if no prior domain knowledge is available. Otherwise, the

domain knowledge can be exploited to produce a fine-grained representation of λ; at

the same time, λ can be made compact to generalize the opponent’s behavior across

different states (e.g., Section 3.3).

The opponent’s behavior can be learned by monitoring the belief b(λ) , Pr(λ) over

all possible λ. In particular, the belief (or probability density) b(λ) is updated at each

step based on the history h ◦ 〈s, u, v〉 of d+ 1 latest interactions (with 〈s, u, v〉 being

the most recent one) using Bayes’ theorem:

bvsh(λ) ∝ pvsh(λ) b(λ) . (3.1)

Let s̄ = (s, h) denote an information state that consists of the current state and the

history of d latest interactions. When the opponent’s behavior is stationary (i.e.,

d = 0), it follows that s̄ = s. For ease of notations, the main results of our work

(in subsequent sections) are presented only for the case where d = 0 (i.e., s̄ = s);

extension to the general case just requires replacing s with s̄. In this case, (3.1) can

1For convenience, we will use the terms the “other agent” and “opponent” interchangeably from
throughout this chapter.
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be re-written as

bvs(λ) ∝ pvs(λ) b(λ) . (3.2)

The key difference between our Bayesian modeling paradigm and FDM [Poupart et

al., 2006] is that we do not require b(λ) and pvs(λ) to be, respectively, Dirichlet prior

and multinomial likelihood where Dirichlet is a conjugate prior for multinomial. In

practice, such a conjugate prior is desirable because the posterior bvs belongs to the

same Dirichlet family as the prior b, thus making the belief update tractable and the

Bayes-optimal policy efficient to be derived. Despite its computational convenience,

this conjugate prior restricts the practitioners from exploiting their domain knowledge

to design more informed priors (e.g., see Section 3.3). Furthermore, this turns out

to be an overkill just to make the belief update tractable. In particular, we show in

Theorem 1 below that, without assuming any specific parametric form of the initial

prior, the posterior belief can still be tractably represented even though they are not

necessarily conjugate distributions. This is indeed sufficient to guarantee and derive a

tractable representation of the Bayes-optimal policy using a finite set of parameters,

as shall be seen later in Section 3.2.1.

Theorem 1. If the initial prior b can be represented exactly using a finite set of pa-

rameters, then the posterior b′ conditioned on a sequence of observations {(si, vi)}n
′
i=1

can also be represented exactly in parametric form. This is achievable, as detailed in

the below proof sketch, because b′ only depends on certain statistics of {(si, vi)}n
′
i=1,

whose storage complexity is independent of n′, instead of the entire sequence itself.
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Proof Sketch. From (3.2), we can prove by induction on n′ that

b′(λ) ∝ Φ(λ)b(λ) (3.3)

Φ(λ) ,
∏
s∈S

∏
v∈V

pvs(λ)ψ
v
s , (3.4)

where ψvs ,
∑n′

i=1 δsv(si, vi) and δsv is the Kronecker delta function that returns

1 if s = si and v = vi, and 0 otherwise2. From (3.3), it is clear that b′ can be

represented by a set of parameters {ψvs}s,v and the finite representation of b. Thus,

belief update is performed simply by incrementing the hyper-parameter ψvs according

to each observation (s, v). �

3.2 Interactive Bayesian Reinforcement Learning

In this section, we first extend the proof techniques used in [Poupart et al., 2006]

to theoretically derive the agent’s Bayes-optimal policy against the general class of

parametric models and model priors of the opponent’s behavior (Section 3.1). In par-

ticular, we show that the derived Bayes-optimal policy can also be represented exactly

using a finite number of parameters. Based on our derivation, a naive algorithm can

be devised to compute the exact parametric form of the Bayes-optimal policy (Sec-

tion 3.2.1). Finally, we present a practical algorithm to efficiently approximate this

Bayes-optimal policy in polynomial time (with respect to the size of the environment

model) (Section 3.2.2).

Formally, an agent is assumed to be interacting with its opponent in a stochastic

environment modeled as a tuple (S, U, V, {rs}, {puvs }, {pvs(λ)}, φ) where S is a finite

2Intuitively, Φ(λ) can be interpreted as the likelihood of observing each pair (s, v) for ψvs times
while interacting with an opponent whose behavior is parameterized by λ.
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set of states, U and V are sets of actions available to the agent and its opponent,

respectively. In each stage, the immediate payoff rs(u, v) to our agent depends on

the joint action (u, v) ∈ U × V and the current state s ∈ S. The environment then

transitions to a new state s′ with probability puvs (s′) , Pr(s′|s, u, v) and the future

payoff (in state s′) is discounted by a constant factor 0 < φ < 1, and so on. Finally,

as described in Section 3.1, the opponent’s latent behavior {pvs(λ)} can be selected

from the general class of parametric models and model priors, which subsumes FDM

(i.e., independent multinomials with separate Dirichlet priors).

Now, let us recall that the key idea underlying the notion of Bayes-optimality [Duff,

2003] is to maintain a belief b(λ) that represents the uncertainty surrounding the

opponent’s behavior λ in each stage of interaction. Thus, the action selected by the

learner in each stage affects both its expected immediate payoff Eλ[
∑

v p
v
s(λ)rs(u, v)|b]

and the posterior belief state bvs(λ), the latter of which influences its future payoff and

builds in the information gathering option (i.e., exploration). As such, the Bayes-

optimal policy can be obtained by maximizing the expected discounted sum of rewards

Vs(b) as detailed below:

Vs(b)
4
= max

u

∑
v

〈pvs , b〉

(
rs(u, v) + φ

∑
s′

puvs (s′)Vs′(b
v
s)

)
, (3.5)

where 〈a, b〉 4=
∫
λ
a(λ)b(λ)dλ. The optimal policy for the learner is then defined as

a function π∗ that maps the belief b to an action u maximizing its expected utility,

which can be derived by solving (3.5). To derive our solution, we first re-state two

well-known results concerning the augmented belief-state MDP in single-agent RL

[Poupart et al., 2006], which also hold straight-forwardly for our general class of

parametric models and model priors.
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Theorem 2. The optimal value function V k for k steps-to-go converges to the optimal

value function V for infinite horizon as k →∞:

‖V − V k+1‖∞ ≤ φ‖V − V k‖∞ . (3.6)

Theorem 3. The optimal value function V k
s (b) for k steps-to-go can be represented

by a finite set Γks of α-functions:

V k
s (b) = max

αs∈Γks

〈αs, b〉 . (3.7)

Simply put, these results imply that the optimal value Vs in (3.5) can be approximated

arbitrarily closely by a finite set Γks of piecewise linear α-functions αs, as shown in

(3.7). Each α-function αs is associated with an action uαs yielding an expected utility

of αs(λ) if the true behavior of the opponent is λ and consequently an overall expected

reward 〈αs, b〉 by assuming that, starting from (s, b), the learner selects action uαs

and continues optimally thereafter. In particular, Γks and uαs can be derived based

on a constructive proof of Theorem 3. However, for the sake of clarity, we only state

the constructive process below. Interested readers are referred to Appendix A for a

detailed proof. Specifically, given {Γks}s such that (3.7) holds for k, it follows (see

Appendix A) that

V k+1
s (b) = max

u,t

〈
αuts , b

〉
, (3.8)

where t
4
= (ts′v)s′∈S,v∈V with ts′v ∈

{
1, . . . ,

∣∣Γks′∣∣}, and

αuts (λ)
4
=

∑
v

pvs(λ)
(
rs(u, v) + φ

∑
s′

α
ts′v
s′ (λ)puvs (s′)

)
, (3.9)

such that α
ts′v
s′ denotes the ts′v-th α-function in Γks′ . Setting Γk+1

s = {αuts }u,t and
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uαuts = u, it follows that (3.7) also holds for k + 1. As a result, the optimal pol-

icy π∗(b) can be derived directly from these α-functions by π∗(b) , uα∗s where α∗s =

arg maxαuts ∈Γk+1
s
〈αuts , b〉 . Thus, constructing Γk+1

s from the previously constructed sets

{Γks}s essentially boils down to an exhaustive enumeration of all possible pairs (u, t)

and the corresponding application of (3.9) to compute αuts . Though (3.9) specifies a

bottom-up procedure constructing Γk+1
s from the previously constructed sets {Γks′}s′ of

α-functions, it implicitly requires a convenient parameterization for the α-functions

that is closed under the application of (3.9). To complete this analytical deriva-

tion, we present a final result to demonstrate that each α-function is indeed of such

parametric form. Note that Theorem 4 below generalizes a similar result proven in

[Poupart et al., 2006], the latter of which shows that, under FDM, each α-function

can be represented by a linear combination of multivariate monomials. A practical

algorithm building on our generalized result in Theorem 4 is presented in Section 3.2.2.

Theorem 4. Let Φ denote a family of all functions Φ(λ) (3.4). Then, the optimal

value V k
s′ can be represented by a finite set Γks′ of α-functions αjs′ for j = 1, . . . , |Γks′ |:

αjs′(λ) =
m∑
i=1

ciΦi(λ) , (3.10)

where Φi ∈ Φ. So, each α-function αjs′ can be compactly represented by a finite set of

parameters {ci}mi=1
3.

Proof Sketch. We will prove (3.10) by induction on k4. Supposing (3.10) holds for

3To ease readability, we abuse the notations {ci,Φi}mi=1 slightly: Each αjs′(λ) should be specified
by a different set {ci,Φi}mi=1.

4When k = 0, (3.10) can be verified by letting ci = 0.
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k. Setting j = ts′v in (3.10) results in

α
ts′v
s′ (λ) =

m∑
i=1

ciΦi(λ) , (3.11)

which is then plugged into (3.9) to yield

αuts (λ) =
∑
v∈V

cvΨv(λ) +
∑
s′∈S

∑
v∈V

(
m∑
i=1

cvs′iΨ
v
s′i(λ)

)
, (3.12)

where Ψv(λ) = pvs(λ), Ψv
s′i(λ) = pvs(λ)Φi(λ), and the coefficients cv = rs(u, v) and

cvs′i = φpuvs (s′)ci. It is easy to see that Ψv ∈ Φ and Ψv
s′i ∈ Φ. So, (3.10) clearly holds

for k+1. We have shown above that, under the general class of parametric models and

model priors (Section 3.1), each α-function can be represented by a linear combination

of arbitrary parametric functions in Φ, which subsume multivariate monomials used

in [Poupart et al., 2006]. �

3.2.1 An Exact Algorithm

Intuitively, Theorems 3 and 4 provide a simple and constructive method for comput-

ing the set of α-functions and hence, the optimal policy. In step k + 1, the sets Γk+1
s

for all s ∈ S are constructed using (3.11) and (3.12) from Γks′ for all s′ ∈ S, the latter

of which are computed previously in step k. When k = 0 (i.e., base case), see the

proof of Theorem 4 above (i.e., footnote 4). A sketch of this algorithm is shown below:

BACKUP(s, k + 1)

1. Γ∗s,u ←

{
g(λ) ,

∑
v

cvΨv(λ)

}

2. Γv,s
′

s,u ←

{
gj(λ) ,

m∑
i=1

cvs′iΨ
v
s′i(λ)

}
j=1,...,|Γk

s′ |
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3. Γs,u ← Γ∗s,u ⊕

(⊕
v,s′

Γv,s
′

s,u

)
5

4. Γk+1
s ←

⋃
u∈U

Γs,u

In the above algorithm, steps 1 and 2 compute the first and second summation

terms on the right-hand side of (3.12), respectively. Then, steps 3 and 4 construct

Γk+1
s = {αuts }u,t using (3.12) over all t and u, respectively. Thus, by iteratively

computing Γk+1
s = BACKUP(s, k+ 1) for a sufficiently large value of k, Γk+1

s can be

used to approximate Vs arbitrarily closely, as shown in Theorem 2. However, this naive

algorithm is computationally impractical due to the following issues: (a) α-function

explosion − the number of α-functions grows doubly exponentially in the planning

horizon length, as derived from (3.8) and (3.9):
∣∣Γk+1

s

∣∣ = O
([∏

s′

∣∣Γks′∣∣]|V | |U |), and

(b) parameter explosion − the average number of parameters used to represent an

α-function grows by a factor of O (|S||V |), as manifested in (3.12). The practicality of

our approach therefore depends crucially on how these issues are resolved, as described

in the next section.

3.2.2 A Practical Approximation Algorithm

In this section, we introduce practical modifications of the BACKUP algorithm by

addressing the above-mentioned issues. We first address the issue of α-function ex-

plosion by generalizing discrete POMDP’s PBVI solver [Pineau et al., 2003] to be

used for our augmented belief-state MDP: Only the α-functions that yield optimal

values for a sampled set of reachable beliefs Bs = {b1
s, b

2
s, · · · , b

|Bs|
s } are computed (see

the modifications in steps 3 and 4 of the PB-BACKUP algorithm). The resulting

algorithm is shown below:

5A⊕B = {a+ b|a ∈ A, b ∈ B}.
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PB-BACKUP(Bs = {b1
s, b

2
s, · · · , b|Bs|s }, s, k + 1)

1. Γ∗s,u ←

{
g(λ) ,

∑
v

cvΨv(λ)

}

2. Γv,s
′

s,u ←

{
gj(λ) ,

m∑
i=1

cvs′iΨ
v
s′i(λ)

}
j=1,...,|Γk

s′ |

3. Γis,u ←

{
g +

∑
s′,v

arg max
gj∈Γv,s

′
s,u

〈
gj, b

i
s

〉}
g∈Γ∗s,u

4. Γk+1
s ←

{
gi , arg max

g∈Γis,u

〈
g, bis

〉}
i=1,...,|Bs|

Secondly, to address the issue of parameter explosion, each α-function is projected

onto a fixed number of basis functions to keep the number of parameters from growing

exponentially. This projection is done after each PB-BACKUP operation, hence al-

ways keeping the number of parameters fixed (i.e., one parameter per basis function).

In particular, since each α-function is in fact a linear combination of functions in Φ

(Theorem 4), it is natural to choose these basis functions from Φ (See Section 3.2.3

for other choices). Besides, it is easy to see from (3.3) that each sampled belief bis can

also be written as

bis(λ) = ηΦi
s(λ)b(λ) , (3.13)

where b is the initial prior belief, η = 1/〈Φi
s, b〉, and Φi

s ∈ Φ. For convenience, these

{Φi
s}i=1,...,|Bs| are selected as basis functions. Specifically, after each PB-BACKUP

operation, each αs ∈ Γks is projected onto the function space defined by {Φi
s}i=1,...,|Bs|.

This projection is then cast as an optimization problem that minimizes the squared

difference J(αs) between the α-function and its projection with respect to the sampled

35



Chapter 3. Interactive Bayesian Reinforcement Learning (I-BRL)

beliefs in Bs:

J(αs)
4
=

1

2

|Bs|∑
j=1

〈αs, bjs〉− |Bs|∑
i=1

ci
〈
Φi
s, b

j
s

〉2

. (3.14)

This can be done analytically by letting
∂J(αs)

∂ci
= 0 and solving for ci, which is equiv-

alent to solving a linear system Ax = d where xi = ci, Aji =
∑|Bs|

k=1

〈
Φi
s, b

k
s

〉 〈
Φj
s, b

k
s

〉
and dj =

∑|Bs|
k=1

〈
Φj
s, b

k
s

〉 〈
αs, b

k
s

〉
. Note that this projection works directly with the

values 〈αs, bjs〉 instead of the exact parametric form of αs in (3.10). This allows for

a more compact implementation of the PB-BACKUP algorithm presented above:

Instead of maintaining the exact parameters that represent each of the immediate

functions g, only their evaluations at the sampled beliefs Bs =
{
b1
s, b

2
s, · · · , b

|Bs|
s

}
need to be maintained. In particular, the values of {〈g, bis〉}i=1,...,|Bs| can be estimated

as follows:

〈
g, bis

〉
= η

∫
λ

g(λ)Φi
s(λ)b(λ)dλ

'
∑n

j=1 g(λj)Φi
s(λ

j)∑n
j=1 Φi

s(λ
j)

, (3.15)

where {λj}nj=1 are samples drawn from the initial prior b. During the online execution

phase, (3.15) is also used to compute the expected payoff for the α-functions evaluated

at the current belief b′(λ) = ηΦ(λ)b(λ):

〈αs, b′〉 '
∑n

j=1 Φ(λj)
∑|Bs|

i=1 ciΦ
i
s(λ

j)∑n
j=1 Φ(λj)

. (3.16)

So, the real-time processing cost of evaluating each α-function’s expected reward

at a particular belief is O(|Bs|n). Since the sampling of {bis}, {λj} and the com-

putation of
{∑|Bs|

i=1 ciΦ
i
s(λ

j)
}

can be performed in advance, this O(|Bs|n) cost is
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further reduced to O(n), which makes the action selection incur O(|Bs|n) cost in

total. This is significantly cheaper as compared to the total cost O(nk|S|2|U ||V |) of

online sampling and re-estimating Vs incurred by BPVI [Chalkiadakis and Boutilier,

2003]. Furthermore, note that since the offline computational costs in steps 1 to 4

of PB-BACKUP(Bs, s, k + 1) and the projection cost, which is cast as the cost of

solving a system of linear equations, are always polynomial functions of the interested

variables (e.g., |S|, |U |, |V |, n, |Bs|), the optimal policy can be approximated in poly-

nomial time.

In addition, Eqs. (3.15) and (3.16) also reveal the difference between MC-BRL [Wang

et al., 2012] and I-BRL. While MC-BRL advocates using the sampled models to ap-

proximately represent the continuous model spectrum (Chapter 2.1), I-BRL instead

uses these models to approximate the evaluation of the basis functions. I-BRL there-

fore appears to be less rigid than MC-BRL in approximating the exact posterior belief:

Unlike MC-BRL which simply assigns zero probability to models that do not belong

to the sample set {λj}nj=1, I-BRL instead uses the samples to estimate the probability

density for those candidate models λ6

b′(λ) =
Φ(λ)b(λ)∫

λ′
Φ(λ′)b(λ′)dλ′

' Φ(λ)b(λ)
1
n

∑n
j=1 Φ(λj)

, (3.17)

and hence, distributes its belief confidence over the model spectrum more flexibly. As

a matter of fact, Eq. (3.19) does not assign zero probability to uncovered areas of the

model spectrum. This flexibility in fact helps I-BRL to behave more cautious than

MC-BRL in complicated and adverse situations, thus achieving better performance

6This is implicitly absorbed in the approximated evaluation of Eqs. (3.15) and (3.16) above.
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(Section 3.3).

3.2.3 Alternative Choice of Basis Functions

This section demonstrates another theoretical advantage of our framework: The flex-

ibility to customize the general point-based algorithm presented in Section 3.2.2 into

more manageable forms (e.g., simple, easy to implement, etc.) with respect to dif-

ferent choices of basis functions. Interestingly, these customizations often allow the

practitioners to trade off effectively between the performance and sophistication of

the implemented algorithm: A simple choice of basis functions may (though not nec-

essarily) reduce its performance but, in exchange, bestows upon it a customization

that is more computationally efficient and easier to implement. This is especially

useful in practical situations where finding a good enough solution quickly is more

important than looking for better yet time-consuming solutions.

As an example, we present such an alternative of the basis functions which concep-

tually (and interestingly) cast I-BRL as MC-BRL [Wang et al., 2012]. In particular,

let {λi}ni=1 be a set of the opponent’s models sampled from the initial belief b. Also,

let Ψi(λ) denote a function that returns 1 if λ = λi, and 0 otherwise. According

to Section 3.2.2, to keep the number of parameters from growing exponentially, we

project each α-function onto {Ψi(λ)}ni=1 by minimizing (3.14) or alternatively, the

unconstrained squared difference between the α-function and its projection:

J(αs) =
1

2

∫
λ

αs(λ)−
|Bs|∑
i=1

ciΦ
i
s(λ)

2

dλ . (3.18)

Now, let us consider (3.9), which specifies the exact solution for (3.5) in Section 3.2.
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Assume that α
ts′v
s′ (λ) is projected onto {Ψi(λ)}ni=1 by minimizing (3.18):

ᾱ
ts′v
s′ (λ) =

n∑
i=1

Ψi(λ)ϕ
ts′v
s′ (i) . (3.19)

where {ϕts′vs′ (i)}i are the projection coefficients. According to the general point-based

algorithm in Section 3.2.2, αuts (λ) is first computed by replacing α
ts′v
s′ (λ) with ᾱ

ts′v
s′ (λ)

in equation (3.9):

αuts (λ) =
∑
v

pvs(λ)

(
rs(u, v) + φ

∑
s′

ᾱ
ts′v
s′ (λ)puvs (s′)

)
. (3.20)

Then, following (3.18), αuts (λ) is projected onto {Ψi(λ)}i by solving for {ϕuts (i)}i that

minimize

J(αuts ) =
1

2

∫
λ

(
αuts (λ)−

n∑
i=1

Ψi(λ)ϕuts (i)

)2

dλ . (3.21)

The back-up operation is therefore cast as finding {ϕuts (i)}i that minimize (3.21). To

do this, let us define

L(λ) =
1

2

(
αuts (λ)−

n∑
i=1

Ψi(λ)ϕuts (i)

)2

and take the corresponding partial derivatives of L(λ) with respect to {ϕuts (j)}j:

∂L(λ)

∂ϕuts (j)
= −

(
αuts (λ)−

n∑
i=1

Ψi(λ)ϕuts (i)

)
Ψj(λ) . (3.22)

From the definition of Ψj(λ), it is clear that when λ 6= λj,
∂L(λ)

∂ϕuts (j)
= 0. Otherwise,
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this only happens when

αuts (λj) =
n∑
i=1

Ψi(λ
j)ϕuts (i)

= ϕuts (j) (by def. of Ψi(λ)) . (3.23)

On the other hand, by plugging (3.19) into (3.20) and using Ψi(λ) = 0 ∀λ 6= λi,

αuts (λj) can be expressed as

αuts (λj) =
∑
v

pvs(λ
j)

(
rs(u, v) + φ

∑
s′

puvs (s′)ϕ
ts′v
s′ (j)

)
. (3.24)

So, to guarantee that
∂L(λ)

∂ϕuts (j)
= 0 ∀λ, j (i.e., minimizing (3.21) with respect to

{ϕuts (j)}j), the values of {ϕuts (j)}j can be set as (from (3.23) and (3.24))

ϕuts (j) =
∑
v

pvs(λ
j)

(
rs(u, v) + φ

∑
s′

puvs (s′)ϕ
ts′v
s′ (j)

)
. (3.25)

Surprisingly, this equation specifies exactly the α-vector back-up operation for the

discrete version of (3.5):

Vs(b̂) = max
u

∑
v

〈
pvs , b̂

〉(
rs(u, v) + φ

∑
s′

puvs (s′)Vs′(b̂
v
s)

)
, (3.26)

where b̂ is the discrete distribution over the set of samples {λj}j (i.e.,
∑

j b̂(λ
j) = 1).

This implies that by choosing {Ψi(λ)}i as our basis functions, finding the correspond-

ing “projected” solution for (3.5) is identical to solving (3.26), which can be easily

implemented using the existing discrete POMDP solvers (e.g., [Pineau et al., 2003]).

This interestingly aligns with the idea of MC-BRL [Wang et al., 2012] where a finite

set of model candidates is sampled in advance to approximate the continuous model
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spectrum and consequently, cast BRL as a discrete POMDP problem.

3.3 Experiments and Discussion

This section evaluates the I-BRL framework using a set of benchmark problems. In

particular, I-BRL is first evaluated in two small yet typical application domains which

are frequently used in many existing single- and multi-agent RL works (Sections 3.3.1).

Then, it is further tested in a more realistic domain modeled after a practical traffic

problem (Section 3.3.2).

1 2 3 54
a : 0 a : 0 a : 0 a : 0

a : 10

b : 2

b : 2

b : 2

b : 2

b : 2

(a)

1 2 3 54
a, a : 0 a, a : 0 a, a : 0 a, a : 0

a, a : 50

b, b : 10

b, b : 10

b, b : 10

b, b : 10

(b)

Figure 3.1: Chain problems: (a) Single-agent and (b) multi-agent versions.
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3.3.1 Chain-World Problems

In this experiment, we consider both the single- [Dearden et al., 1998; Poupart et al.,

2006; Wang et al., 2012] and multi-agent [Chalkiadakis and Boutilier, 2003] versions

of the Chain problem as depicted in Fig. 3.1 below. Specifically, the system consists

of a chain of 5 states and 2 possible actions {a, b} which cause the agent’s forward

and backward transitions between states, respectively. In the single-agent version,

the agent may slip with probability 0.2 while choosing an action and consequently

incurs the effect of the other action (Fig. 3.1a). We experiment with both its Tied

and Full parametric settings [Poupart et al., 2006]: In the former setting, the agent

is fully aware of the chain’s transition structure except its slipping probability while

in the latter setting, the chain’s transition structure is completely unspecified.

Table 3.1: Average total (undiscounted) rewards of I-BRL, MC-BRL, BEETLE and BPVI
(φ = 0.99) for the single-agent Chain problem (Full and Tied versions) over 20 simulations,
each of which lasts 100 steps.

Full Version Total Reward Simulation (sec) Offline Planning (sec)

BEETLE 234.20± 14.75 26.95 220.88
MC-BRL (n = 100) 236.30± 18.81 160.16 300.00 7

I-BRL (n = 100) 244.40± 21.59 8.35 147.77
BPVI 282.80± 19.42 228.3 −
Tied Version Total Reward Simulation (sec) Offline Planning (sec)

BEETLE 371.50± 18.03 3.46 30.24
MC-BRL (n = 300) 371.50± 18.03 434.21 300.00 7

I-BRL (n = 300) 360.60± 17.72 40.23 614.93
BPVI 161.90± 2.22 181.69 −

In the multi-agent Chain problem, the agent can only move one step forward or go

back to the initial state depending on whether it can coordinate with its opponent

on actions a or b at each stage of interaction. If both agents fail to coordinate on the

same action, they remain at the current state and will not be rewarded. Otherwise,
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Table 3.2: Average total (discounted) rewards of I-BRL, MC-BRL, BEETLE and BPVI
for the multi-agent Chain problem (φ = 0.85) over 20 simulations, each of which lasts
100 steps and is averaged over 10 random opponents.

Total Reward Simulation (sec) Offline Planning (sec)

BEETLE 8.19± 1.10 450.42 424.99
MC-BRL (n = 100) 5.87± 1.57 2261.40 300.00 7

I-BRL (n = 100) 8.19± 1.10 78.55 180.39
BPVI 5.32± 1.36 3642.00 −

they will receive an immediate reward of 50 for coordinating on a in the last state

and 10 for coordinating on b in any state except the first one (Fig. 3.1b). After each

step, their payoffs are discounted by a constant factor of 0 < φ < 1.

For evaluation, we compare the performance of I-BRL with the state-of-the-art frame-

works in both single- and (self-interested) multi-agent RL which include BPVI [Chalki-

adakis and Boutilier, 2003], BEETLE [Poupart et al., 2006], and MC-BRL [Wang et

al., 2012]. In particular, we report the average collected reward R as well as the

online simulation and offline planning time of each framework when tested on the

single- (Table 3.1) and multi-agent (Table 3.2) Chain problems for comparison. To

achieve this, we run the offline phase of each algorithm, obtain a policy and simulate

it in an online fashion to measure its performance: I-BRL and BEETLE plan their

corresponding policies for 100 steps ahead while MC-BRL’s anytime offline planner7

is run up to 300 seconds; BPVI computes its policy during runtime and hence, does

not require offline processing. Then, for the single-agent Chain problem, we evaluate

each algorithm using 20 simulations with h = 100 steps in each simulation. For the

multi-agent Chain problem, we additionally report the average performance of these

works when tested against 10 different opponents whose behaviors are modeled as a

7In this paper, the MC-BRL policy is computed offline by running the anytime POMDP solver
of Kurniawati et al. [2008] (SARSOP) up to 300 seconds.
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set of probabilities θs = {θvs}v (i.e., of selecting action v ∈ {a, b} in state s). These

opponents are independently and randomly generated from these Dirichlet distribu-

tions with the parameters (θas , θ
b
s) ∼ Dir(8, 2). Against each such opponent, we run

20 simulations (h = 100 steps each) to evaluate the average (discounted) total reward

R collected by each framework.
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Figure 3.2: Graphs of the average performance, offline planning time and the total online
simulation time (for all simulations) of I-BRL, MC-BRL and BEETLE (vs. the number of
samples drawn during the offline planning phase) in the Full (a-c) and Tied (d-f) settings
of the single-agent Chain problem.

From these results, it can be observed that I-BRL achieves good performance relative

to the existing state-of-the-art algorithms in both settings (i.e., Full and Tied) of the

single-agent Chain problem. Specifically, in the Full setting, I-BRL (n = 100) per-

forms slightly better than both MC-BRL (n = 100) [Wang et al., 2012] and BEETLE
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[Poupart et al., 2006] while incurring significantly less expensive online processing

cost (Table 3.1). Notably, I-BRL also uses less planning time than BEETLE in the

Full setting of the single-agent Chain problem where the transition structure is com-

pletely unspecified which results in a large number of unknown parameters (i.e., larger

belief dimension). This is expected since BEETLE’s unit processing cost generally

depends on the complexity of analytically integrating a basis function with a sampled

belief [Poupart et al., 2006] which increases radically when the number of parameters

increases. In contrast, I-BRL’s processing cost only increases mildly in the number

of parameters since its approximated integration (see Eqs. (3.15) and (3.16)) just in-

volves the computation of {Φi
s(λ

j)} (Eq. 3.15) which can be cached once in advance

for all future uses. Its processing cost, in fact, strongly depends on the number of

samples drawn from the initial prior. Figs. 3.2b and 3.2c show that when we reduce

the number of samples, I-BRL’s offline and online processing cost drop at the cost

of its performance degradation (Fig. 3.2a). Furthermore, Fig. 3.2a also shows that

I-BRL’s performance degrades faster than MC-BRL’s which implies MC-BRL is more

robust in terms of the performance quality when there are less samples. MC-BRL’s

online processing cost is, however, more expensive than both I-BRL and BEETLE

(Fig. 3.2c). We suspect this is due to the difference between I-BRL’s and MC-BRL’s

uses of the samples. While MC-BRL exclusively distributes its confidence probability

among the finite number of sampled candidates and therefore, is less affected by the

lack of samples as long as the true model is in the “proximity” of its samples, I-BRL’s

approximated integration in Eqs. (3.15) and (3.16), however, degrades significantly

when there are not enough samples.

On the other hand, I-BRL’s performance slightly loses to those of MC-BRL and

BEETLE in the Tied version of the single-agent Chain problem in terms of the total

collected reward but its online processing cost is, as expected, significantly less expen-
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sive than both those of MC-BRL and BPVI (Table 3.1). Fig. 3.2d also agrees with our

previous observations that I-BRL and MC-BRL performance gradually approach that

of BEETLE when we increase the number of samples at the cost of more intensive

processing time (Figs. 3.2e and 3.2f). On a separate note, we like to point out that the

reported online processing time of the tested algorithms is accumulated over 20 simu-

lations each of which lasts 100 steps. This amounts to 2000 online execution steps so if

we divide the reported time by this number, the online processing time per step of the

tested algorithms is actually negligible. In addition, we also evaluate I-BRL on the

more commonly used experiment settings of the Chain problem [Poupart et al., 2006;

Wang et al., 2012] to provide statistics easily comparable to the existing RL algo-

rithms which are not covered in this thesis8. The corresponding results are reported

in Table 3.3 below, which is consistent with our previous observations.

Table 3.3: Average total (undiscounted) rewards of I-BRL, MC-BRL, BEETLE and BPVI
(φ = 0.99) for the single-agent Chain problem (Full, Semi-Tied and Tied versions) over
500 simulations, each of which lasts 1000 steps.

Full Version Semi-Tied Version Tied Version

BEETLE 1754.00 ± 42.00 3648.00 ± 41.00 3650.00 ± 41.00
I-BRL 1928.40 ± 09.31 3030.72 ± 11.34 3665.94 ± 12.44
MC-BRL 1630.00 ± 25.00 3603.00 ± 32.00 3672.65 ± 12.44
BPVI 3530.00 ± 13.36 3302.32 ± 11.93 2953.12 ± 10.81

Finally, in the multi-agent Chain problem which adopts a more adverse rewarding

scheme (see detail below), it is observed that I-BRL and BEETLE outperforms both

BPVI and MC-BRL in terms of the total discounted reward (Table 3.2). This is

expected because BPVI and MC-BRL, as mentioned in Section 2.1, appear to under-

estimate the risk of moving forward and forfeiting the opportunity to go backward to

8Our focus in this work is, however, not to compare I-BRL with the existing state-of-the-art RL
algorithms on the Chain problem. Instead, we aim to highlight its efficiency in practical domains
[Wang et al., 2012] which do not admit FDM parameterization.
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get more information and earn the small reward. Therefore, the chance of getting big

reward (before it is severely discounted) is accidentally over-estimated due to BPVI’s

sub-optimal myopic information-gain function [Dearden et al., 1998] and MC-BRL’s

exclusive confidence distribution on the sampled model candidates which hurts its

performance if the majority of its sampled models are highly dissimilar to the true

transition model, as “adversely” constructed for this experiment9. Consequently, this

makes the expected gain of moving forward insufficient to compensate for the risk

of doing so. In terms of the processing cost, it is again noticeable that I-BRL uses

significantly less planning time than BEETLE and makes online decision faster than

both BEETLE and MC-BRL (Table 3.2). This confirms and reinforces our previous

conclusions regarding the performance of BEETLE, MC-BRL and I-BRL.

3.3.2 Intersection Navigation

In this section, we experiment on a realistic RL task of intersection navigation which

is inspired from a near-miss accident during the 2007 DARPA Urban Challenge and

modeled as a stochastic game10 [Wang et al., 2012]. For a brief description, let us

consider the traffic situation illustrated in Fig. 3.3 below where two autonomous

vehicles (marked A and B) are about to enter an intersection (I). The road segments

are discretized into a uniform grid with cell size 5 m × 5 m and the speed of each

vehicle is also discretized uniformly into 5 levels ranging from 0 m/s to 4 m/s. So,

in each stage, the system’s state can be characterized as a tuple {PA, PB, SA, SB}

specifying the current positions (P ) and velocities (S) of A and B, respectively. In

addition, our vehicle (A) can either accelerate (+1 m/s2), decelerate (−1 m/s2), or

9In this multi-agent Chain experiment, both I-BRL and MC-BRL draw the samples {(θas , θbs)}s
from Dir(1, 1) while the simulated opponents are instead drawn from Dir(8, 2) which statistically
suggests the “backward” strategy. MC-BRL’s exclusive distribution of confidence on its sampled
models thus appears less cautious as compared to I-BRL in this adverse scenario.

10The RL formulation used in this section is adapted (by scaling down the problem size) from the
original RL problem described in [Wang et al., 2012].
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maintain its speed (+0 m/s2) in each step while the other vehicle (B) changes its

speed based on the reactive model of Gipps [1981]:

vsafe = SB +
Distance(PA, PB)− τSB

SB/d+ τ

vdes = min(4, SB + a, vsafe)

S
′

B ∼ Uniform(max(0, vdes − σa), vdes) .

In this model, the driver’s acceleration a ∈ [0.5 m/s2, 3 m/s2], deceleration d ∈

[−3 m/s2,−0.5 m/s2], reaction time τ ∈ [0.5s, 2s], and imperfection σ ∈ [0, 1] are the

unknown parameters distributed uniformly within the corresponding ranges. This

parameterization can cover a variety of drivers’ typical behaviors, as shown in a

preliminary study. For a further understanding of these parameters, the readers are

referred to [Gipps, 1981]. Besides, in each time step, each vehicle X ∈ {A,B} moves

from its current cell PX to the next cell P
′
X with probability 1/t and remains in the

same cell with probability 1− 1/t where t is the expected time to move forward one

cell from the current position with respect to the current speed (e.g., t = 5/SX).

Thus, in general, the underlying stochastic game has 6× 6× 5× 5 = 900 states (i.e.,

each vehicle has 6 possible positions and 5 levels of speed), which is significantly larger

than the settings in previous experiments. In each state, our vehicle has 3 actions, as

mentioned previously, while the other vehicle has 5 actions corresponding to 5 levels

of speed according to the reactive model.

The goal for our vehicle in this domain is to learn the other vehicle’s reactive model

and adjust its navigation strategy accordingly such that there is no collision and the

time spent to cross the intersection is minimized. To achieve this goal, we penalize

our vehicle in each step by −1 and reward it with 50 when it successfully crosses the

intersection. If it collides with the other vehicle (at I), we penalize it by −250. The
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B
DA
I DB

A

Figure 3.3: (Left) A near-miss accident during the 2007 DARPA Urban Challenge, and
(Right) the discretized environment: A and B move towards destinations DA and DB

while avoiding collision at I. Shaded areas are not passable.

discount factor is set as 0.99. We evaluate the performance of I-BRL (n = 100) in this

problem against 100 different sets of reactive parameters (for the other vehicle) gener-

ated uniformly from the above ranges. Its policy is obtained by planning offline for 10

steps ahead which incurs 87 minutes. Against each set of parameters, we run 20 sim-

ulations (h = 100 steps each) to estimate our vehicle’s average performance11 R. In

particular, we compare our algorithm’s average performance (over a total number of

2000 simulations) against those of an omniscience vehicle (UPPER-BOUND) who

knows exactly the reactive parameters before each simulation, and two other vehicles

employing MC-BRL (n = 100), which plans offline for 1.5 hours [Wang et al., 2012]

(MC-BRL), and BPVI [Chalkiadakis and Boutilier, 2003] (BPVI), respectively.

11After our vehicle successfully crosses the intersection, the system’s state is reset to the default
state in Fig. 3.3 (Right).
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Reward Travel Time Accident (%) Intersections

UPPER-BOUND 186.88 ± 3.75 09.66 (steps) 2.46 17783
MC-BRL (n = 100) 134.22 ± 4.38 10.32 (steps) 4.53 16660
I-BRL (n = 100) 170.88 ± 3.24 10.10 (steps) 2.80 16924
BPVI 167.43 ± 3.40 10.22 (steps) 2.58 16785

Table 3.4: The number of cleared intersections (in 2000 simulations), accident rates and
average traveling time to navigate through 1 intersection as well as the total discounted
rewards of the I-BRL, BPVI, MC-BRL and omniscience vehicles.

The results are shown in Fig. 3.4a and Table 3.4: It can be observed that our vehicle’s

average performance (over 2000 simulations) is better than both those of the MC-

BRL- and BPVI-based vehicles. In particular, our vehicle manages to significantly

reduce the performance gap (in terms of the total rewards) between the omniscience

and the MC-BRL vehicles by more than half (Fig. 3.4). Remarkably, I-BRL manages

to safely clear more intersections than both MC-BRL and BPVI; its accident rate is

significantly smaller than MC-BRL’s and comparable to both the omniscience and

BPVI vehicles. In addition, I-BRL also uses less time (on average) than MC-BRL

and BPVI to navigate through an intersection (Table 3.4).

In fact, the difference in performance between our vehicle and the omniscience ve-

hicle is expected as the omniscience vehicle always takes the optimal step from the

beginning (since it knows the reactive parameters in advance) while our vehicle has

to take cautious steps (by maintaining a slow speed) before it feels confident with the

information collected during interaction. On the other hand, MC-BRL appears to be

misled by its exclusive confidence on its a priori sampled models which unfortunately

results in a much less competitive performance: Both its average traveling time (per

intersection) and its accident rate are highest among the tested vehicles (Table 3.4).

Besides, since the uniform prior over the reactive parameters λ = {a, d, τ, σ} is not
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Figure 3.4: (a) Performance comparison between our vehicle (I-BRL), the omniscience
(UPPER) vehicle and two other vehicles which employ BPVI and MC-BRL, respectively
(φ = 0.99); (b) I-BRL’s offline planning time up to 100 steps ahead.

a conjugate prior for the other vehicle’s behavior model θs(v) = p(v|s, λ), the BPVI-

based vehicle has to directly maintain and update its belief using FDM: λ = {θs}s
with θs = {θvs}v ∼ Dir({nvs}v) (Section 3.1), instead of λ = {a, d, τ, σ}. However,

FDM implicitly assumes that {θs}s are statistically independent, which is not true

in this case since all θs are actually related by {a, d, τ, σ}. Unfortunately, BPVI can-

not exploit this information to generalize the other vehicle’s behavior across different

states due to its restrictive FDM (i.e., independent multinomial likelihoods with sep-

arate Dirichlet priors), thus performing marginally worse than I-BRL in terms of the

expected total reward.
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Chapter 4

Nonmyopic ε-Bayes-Optimal Active

Learning (ε-BAL)

This chapter presents a novel nonmyopic ε-Bayes-optimal (ε-BAL) approach to op-

timize the fundamental exploration-exploitation trade-off in active learning of Gaus-

sian processes (Section 4.2.1). Unlike the existing works in the literature which have

primarily developed myopic/greedy algorithms [Diggle, 2006; Houlsby et al., 2012;

Park and Pillow, 2012; Zimmerman, 2006; Ouyang et al., 2014] or performed explo-

ration and exploitation separately [Krause and Guestrin, 2007], ε-BAL preserves and

exploits the principled Bayesian sequential decision framework to jointly optimize the

trade-off and consequently does not incur their limitations (Section 2.2). In particu-

lar, although the exact Bayes-optimal policy to the active sensing problem cannot be

derived [Solomon and Zacks, 1970], we show that it is in fact possible to solve for a

nonmyopic ε-Bayes-optimal active learning (ε-BAL) policy (Sections 4.2.2 and 4.2.3)

given a user-defined bound ε, which is the main contribution of our work here. In

other words, our proposed ε-BAL policy can approximate the optimal expected ac-

tive sensing performance arbitrarily closely (i.e., within an arbitrary loss bound ε).
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In contrast, the algorithm of Krause and Guestrin [2007] can only yield a sub-optimal

performance bound1. To meet the real-time requirement in time-critical applications,

we then propose an asymptotically ε-optimal, branch-and-bound anytime algorithm

based on ε-BAL with performance guarantee (Section 4.2.4). We empirically demon-

strate using both synthetic and real-world datasets that, with limited budget, our

proposed approach outperforms state-of-the-art algorithms (Section 4.3).

4.1 Modeling Spatial Phenomena with Gaussian Pro-

cesses (GPs)

The GP can be used to model a spatial phenomenon of interest as follows: The

phenomenon is defined to vary as a realization of a GP. Let X denote a set of

sampling locations representing the domain of the phenomenon such that each lo-

cation x ∈ X is associated with a realized (random) measurement zx (Zx) if x is

observed/sampled (unobserved). Let ZX , {Zx}x∈X denote a GP, that is, every

finite subset of ZX has a multivariate Gaussian distribution [Chen et al., 2013b;

Rasmussen and Williams, 2006]. The GP is fully specified by its prior mean µx ,

E[Zx] and covariance σxx′|λ , cov[Zx, Zx′ |λ] for all x, x′ ∈ X , the latter of which

characterizes the spatial correlation structure of the phenomenon and can be defined

using a covariance function parameterized by λ. A common choice is the squared

exponential covariance function:

σxx′|λ , (σλs )2 exp

(
−1

2

P∑
i=1

(
[sx]i − [sx′ ]i

`λi

)2
)

+ (σλn)2δxx′ (4.1)

1Its induced policy is guaranteed not to achieve worse than the optimal performance by more
than a factor of 1/e.
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where [sx]i ([sx′ ]i) is the i-th component of the P -dimensional feature vector sx (sx′),

the set of realized parameters λ ,
{
σλn, σ

λ
s , `

λ
1 , . . . , `

λ
P

}
∈ Λ are, respectively, the

square root of noise variance, square root of signal variance, and length-scales, and δxx′

is a Kronecker delta that is 1 if x = x′ and 0 otherwise. Supposing λ is known and a

set zD of realized measurements is available for some set D ⊂ X of observed locations,

the GP can exploit these observations to predict the measurement for any unobserved

location x ∈ X\D as well as provide its corresponding predictive uncertainty using the

Gaussian predictive distribution p(zx|zD, λ) ∼ N (µx|D,λ, σxx|D,λ) with the following

posterior mean and variance, respectively:

µx|D,λ , µx + ΣxD|λΣ
−1
DD|λ(zD − µD) (4.2)

σxx|D,λ , σxx|λ − ΣxD|λΣ
−1
DD|λΣDx|λ (4.3)

where, with a slight abuse of notation, zD is to be perceived as a column vector in

(4.2), µD is a column vector with mean components µx′ for all x′ ∈ D, ΣxD|λ is a

row vector with covariance components σxx′|λ for all x′ ∈ D, ΣDx|λ is the transpose

of ΣxD|λ, and ΣDD|λ is a covariance matrix with components σux′|λ for all u, x′ ∈ D.

When the spatial correlation structure (i.e., λ) is not known, a probabilistic belief

bD(λ) , p(λ|zD) can be maintained/tracked over all possible λ and updated using

Bayes’ rule to the posterior belief bD∪{x}(λ) given a newly available measurement zx:

bD∪{x}(λ) ∝ p(zx|zD, λ) bD(λ) . (4.4)

Using belief bD, the predictive distribution p(zx|zD) can be obtained by marginalizing

out the unknown parameters λ:

p(zx|zD) =
∑
λ∈Λ

p(zx|zD, λ) bD(λ) . (4.5)
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4.2 Nonmyopic ε-Bayes-Optimal Active Learning

4.2.1 Problem Formulation

To cast active sensing as a Bayesian sequential decision problem, let us first define a

sequential active sensing/learning policy π given a budget of N sampling locations:

Specifically, the policy π , {πn}Nn=1 is structured to sequentially decide the next

location πn(zD) ∈ X \ D to be observed at each stage n based on the current obser-

vations zD over a finite planning horizon of N stages. Recall from Section 2.2 that

the active sensing problem involves planning/deciding the most informative locations

to be observed for minimizing the predictive uncertainty of the unobserved areas of a

phenomenon. To achieve this, we use the entropy criterion [Cover and Thomas, 1991]

to measure the informativeness and predictive uncertainty. Then, the value under a

policy π is defined to be the joint entropy of its selected observations when starting

with some prior observations zD0 and following π thereafter:

V π
1 (zD0) , H [Zπ|zD0 ] , −

∫
p(zπ|zD0) log p(zπ|zD0) dzπ (4.6)

where Zπ (zπ) is the set of random (realized) measurements taken by policy π and

p(zπ|zD0) is defined in a similar manner to (4.5). To solve the active sensing prob-

lem, the notion of Bayes-optimality2 is exploited for selecting observations of largest

possible joint entropy with respect to all possible induced sequences of future be-

liefs (starting from initial prior belief bD0) over candidate sets of model parameters

λ, as detailed next. Formally, this entails choosing a sequential policy π to maxi-

mize V π
1 (zD0) (4.6), which we call the Bayes-optimal active learning (BAL) policy

π∗. That is, V ∗1 (zD0) , V π∗
1 (zD0) = maxπ V

π
1 (zD0). When π∗ is plugged into (4.6),

2Bayes-optimality is previously studied in reinforcement learning whose developed theories
[Poupart et al., 2006; Hoang and Low, 2013a] cannot be applied here because their assumptions
of discrete-valued observations and Markov property do not hold.
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the following N -stage Bellman equations result from the chain rule for entropy:

Q∗n(zD, x) , H [Zx|zD] + E
[
V ∗n+1 (zD ∪ {Zx}) |zD

]
V ∗n (zD) , max

x∈X\D
Q∗n(zD, x) (4.7)

with H [Zx|zD] , −
∫
p(zx|zD) log p(zx|zD)dzx for stage n = 1, . . . , N where p(zx|zD)

is defined in (4.5) and the expectation terms are omitted from the right-hand side

(RHS) expressions of V ∗N and Q∗N at stage N . At each stage, the belief bD(λ) is needed

to compute Q∗n(zD, x) in (4.7) and can be uniquely determined from initial prior belief

bD0 and observations zD\D0 using (4.4)3.

To understand how π∗ jointly and naturally optimizes the exploration-exploitation

trade-off, its selected location π∗n(zD) = arg maxx∈X\DQ
∗
n(zD, x) at each stage n af-

fects both the immediate payoff H
[
Zπ∗n(zD)|zD

]
given current belief bD (i.e., exploita-

tion) as well as the posterior belief bD∪{π∗n(zD)}, the latter of which influences expected

future payoff E[V ∗n+1(zD ∪ {Zπ∗n(zD)})|zD] and builds in the information gathering op-

tion (i.e., exploration). Interestingly, the work of Low et al. [2009] has revealed that

the above recursive formulation (4.7) can be perceived as the sequential variant of

the well-known maximum entropy sampling problem [Shewry and Wynn, 1987] and

established an equivalence result that the maximum-entropy observations selected by

π∗ achieve a dual objective of minimizing the posterior joint entropy (i.e., predictive

uncertainty) remaining in the unobserved locations of the phenomenon. Unfortu-

nately, the BAL policy π∗ cannot be derived exactly because the stage-wise entropy

and expectation terms in (4.7) cannot be evaluated in closed form [Huber et al., 2008]

due to an uncountable set of candidate observations and unknown model parameters

3For practical implementation, bD(λ) can instead be updated incrementally at each stage and
included as a component of the state to be passed on to the next stage.
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λ (Section 2.2). To overcome this difficulty, we show in the next subsection how it

is possible to solve for an ε-BAL policy πε, that is, the joint entropy of its selected

observations closely approximates that of π∗ within an arbitrary loss bound ε > 0.

4.2.2 ε-BAL Policy

The key idea underlying the design and construction of our proposed nonmyopic ε-

BAL policy πε is to approximate the entropy and expectation terms in (4.7) at every

stage using a form of truncated sampling to be described next:

Definition 1 (τ -Truncated Observation). Define random measurement Ẑx by trun-

cating Zx at −τ̂ and τ̂ as follows:

Ẑx ,


−τ̂ if Zx ≤ −τ̂ ,

Zx if − τ̂ < Zx < τ̂,

τ̂ if Zx ≥ τ̂ .

Then, Ẑx has a distribution of mixed type [Soong, 2004] with its continuous com-

ponent defined as f(Ẑx = zx|zD) , p(Zx = zx|zD) for −τ̂ < zx < τ̂ and its dis-

crete component defined as f(Ẑx = τ̂ |zD) , P (Zx ≥ τ̂ |zD) =
∫∞
τ̂
p(Zx = zx|zD)dzx

and f(Ẑx = −τ̂ |zD) , P (Zx ≤ −τ̂ |zD) =
∫ −τ̂
−∞ p(Zx = zx|zD)dzx. Let µ(D,Λ) ,

maxx∈X\D,λ∈Λ µx|D,λ, µ(D,Λ) , minx∈X\D,λ∈Λ µx|D,λ, and

τ̂ , max
(∣∣µ(D,Λ)− τ

∣∣ , |µ(D,Λ) + τ |
)

(4.8)

for some 0 ≤ τ ≤ τ̂ . Then, a realized measurement of Ẑx is said to be a τ -truncated

observation for location x.

Specifically, given that a set zD of realized measurements is available, a finite set

of S τ -truncated observations {zix}Si=1 can be generated for every candidate location
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x ∈ X \ D at each stage n by identically and independently sampling from p(zx|zD)

(4.5) and then truncating each of them according to zix ← zix min (|zix|, τ̂) /|zix|. These

generated τ -truncated observations4 can be exploited for approximating V ∗n (4.7)

through the following Bellman equations:

V ε
n (zD) , max

x∈X\D
Qε
n(zD, x)

Qε
n(zD) ,

1

S

S∑
i=1

(
− log p

(
zix|zD

)
+ V ε

n+1

(
zD ∪

{
zix
}))

(4.9)

for stage n = 1, . . . , N such that there is no V ε
N+1 term on the RHS expression of

Qε
N at stage N . Like the BAL policy π∗ (Section 4.2.1), the location πεn(zD) =

arg maxx∈X\DQ
ε
n(zD, x) selected by our ε-BAL policy πε at each stage n also jointly

and naturally optimizes the trade-off between exploitation (i.e., by maximizing im-

mediate payoff S−1
∑S

i=1− log p(ziπεn(zD)|zD) given the current belief bD) vs. explo-

ration (i.e., by improving posterior belief bD∪{πεn(zD)} to maximize average future payoff

S−1
∑S

i=1 V
ε
n+1(zD ∪ {ziπεn(zD)})). Unlike the deterministic BAL policy π∗, our ε-BAL

policy πε is stochastic due to its use of the above truncated sampling procedure.

4.2.3 Theoretical Analysis

The main difficulty in analyzing the active sensing performance of our stochastic ε-

BAL policy πε (i.e., relative to that of BAL policy π∗) lies in determining how its

ε-Bayes optimality can be guaranteed by choosing appropriate values of the truncated

sampling parameters S and τ (Section 4.2.2). To achieve this, we have to formally

understand how S and τ can be specified and varied in terms of the user-defined

loss bound ε, budget of N sampling locations, domain size |X | of the phenomenon,

4The reason for using truncation may not be obvious to a reader at this time because it is
motivated by a technical necessity for theoretically guaranteeing the performance of our ε-BAL
policy πε (see Remark 1 after Lemma 2 in Section 4.2.3) rather than a conceptual intuition.

58



Chapter 4. Nonmyopic ε-Bayes-Optimal Active Learning (ε-BAL)

and properties/parameters characterizing the spatial correlation structure of the phe-

nomenon (Section 4.1), as detailed below.

The first step is to show that Qε
n (4.9) is in fact a good approximation of Q∗n (4.7)

for some chosen values of S and τ . There are two sources of error arising in such an

approximation: (a) In the truncated sampling procedure (Section 4.2.2), only a finite

set of τ -truncated observations is generated for approximating the stage-wise entropy

and expectation terms in (4.7), and (b) computing Qε
n does not involve utilizing the

values of V ∗n+1 but that of its approximation V ε
n+1 instead. To facilitate capturing the

error due to finite truncated sampling described in (a), the following intermediate

function is introduced:

W ∗
n(zD, x) ,

1

S

S∑
i=1

(
− log p

(
zix|zD

)
+ V ∗n+1

(
zD ∪ {zix}

))
(4.10)

for stage n = 1, . . . , N such that there is no V ∗N+1 term on the RHS expression of W ∗
N

at stage N . The first lemma below reveals that if the error |Q∗n(zD, x) −W ∗
n(zD, x)|

due to finite truncated sampling can be bounded for all tuples (n, zD, x) generated

at stage n = n′, . . . , N by (4.9) to compute V ε
n′ for 1 ≤ n′ ≤ N , then Qε

n′ (4.9) can

approximate Q∗n′ (4.7) arbitrarily closely:

Lemma 1. Suppose that a set zD′ of observations, a budget of N − n′ + 1 sampling

locations for 1 ≤ n′ ≤ N , S ∈ Z+, and γ > 0 are given. If

|Q∗n(zD, x)−W ∗
n(zD, x)| ≤ γ (4.11)

for all tuples (n, zD, x) generated at stage n = n′, . . . , N by (4.9) to compute V ε
n′(zD′),
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then, for all x′ ∈ X \ D′,

|Q∗n′(zD′ , x′)−Qε
n′(zD′ , x

′)| ≤ (N − n′ + 1)γ . (4.12)

Its proof is given in Appendix B.1. The next two lemmas show that, with high

probability, the error |Q∗n(zD, x) −W ∗
n(zD, x)| due to finite truncated sampling can

indeed be bounded from above by γ (4.11) for all tuples (n, zD, x) generated at stage

n = n′, . . . , N by (4.9) to compute V ε
n′ for 1 ≤ n′ ≤ N :

Lemma 2. Suppose that a set zD′ of observations, a budget of N − n′ + 1 sampling

locations for 1 ≤ n′ ≤ N , S ∈ Z+, and γ > 0 are given. For all tuples (n, zD, x)

generated at stage n = n′, . . . , N by (4.9) to compute V ε
n′(zD′),

P
(
|Q∗n(zD, x)−W ∗

n(zD, x)| ≤ γ
)
≥ 1− 2 exp

(
−2Sγ2

T 2

)

where T , O
(
N2κ2Nτ 2

σ2
n

+N log
σo
σn

+ log |Λ|
)

by setting5

τ = O

σo
√

log

(
σ2
o

γ

(
N2κ2N + σ2

o

σ2
n

+N log
σo
σn

+ log |Λ|
))

with κ, σ2
n, and σ2

o defined as follows:

κ , 1 + 2 max
x′,u∈X\D:x′ 6=u,λ∈Λ,D

∣∣σx′u|D,λ∣∣ /σuu|D,λ, (4.13)

σ2
n , min

λ∈Λ
(σλn)2, and σ2

o , max
λ∈Λ

(σλs )2 + (σλn)2. (4.14)

Refer to Appendix B.2 for its proof.

5To simplify notations, the constants involved in computing the exact values of T , S, & τ are
omitted; they are straightforward to obtain, albeit tedious, by following the derivation in our proofs.
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Remark 1. Deriving such a probabilistic bound in Lemma 2 typically involves the

use of concentration inequalities for the sum of independent bounded random vari-

ables like the Hoeffding’s, Bennett’s, or Bernstein’s inequalities. However, since the

originally Gaussian distributed observations are unbounded, sampling from p(zx|zD)

(4.5) without truncation will generate unbounded versions of {zix}Si=1 and conse-

quently make each summation term − log p(zix|zD) + V ∗n+1(zD ∪ {zix}) on the RHS

expression of W ∗
n (4.10) unbounded, hence invalidating the use of these concentration

inequalities. To resolve this complication, our trick is to exploit the truncated sam-

pling procedure (Section 4.2.2) to generate bounded τ -truncated observations (Def-

inition 1) (i.e., |zix| ≤ τ̂ for i = 1, . . . , S), thus resulting in each summation term

− log p(zix|zD) + V ∗n+1(zD ∪ {zix}) being bounded (Appendix B.2). This enables our

use of Hoeffding’s inequality to derive the probabilistic bound.

Remark 2. It can be observed from Lemma 2 that the amount of truncation has

to be reduced (i.e., higher chosen value of τ) when (a) a tighter bound γ on the er-

ror |Q∗n(zD, x)−W ∗
n(zD, x)| due to finite truncated sampling is desired, (b) a greater

budget of N sampling locations is available, (c) a larger space Λ of candidate model

parameters is preferred, (d) the spatial phenomenon varies with more intensity and

less noise (i.e., assuming all candidate signal and noise variance parameters, respec-

tively, (σλs )2 and (σλn)2 are specified close to the true large signal and small noise

variances), and (e) its spatial correlation structure yields a bigger κ.

To elaborate on (e), note that Lemma 2 still holds for any value of κ larger than that

set in (4.13): Since |σx′u|D,λ|2 ≤ σx′x′|D,λσuu|D,λ for all x′ 6= u ∈ X \ D due to the

symmetric positive-definiteness of Σ(X\D)(X\D)|D,λ [Rue and Held, 2005], we can set κ
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as following:

κ = 1 + 2 max
x′,u∈X\D,λ∈Λ,D

√
σx′x′|D,λ/σuu|D,λ

Then, supposing all candidate length-scales are specified close to the true length-

scales, a phenomenon with extreme length-scales tending to 0 (i.e., with white-noise

process measurements) or ∞ (i.e., with constant measurements) will produce highly

similar σx′x′|D,λ for all x′ ∈ X \ D, thus resulting in smaller κ and hence smaller τ .

Remark 3. Alternatively, it can be proven that Lemma 2 and the subsequent results

hold by setting κ = 1 if a certain structural property of the spatial correlation struc-

ture (i.e., for all zD (D ⊆ X ) and λ ∈ Λ, ΣDD|λ is diagonally dominant) is satisfied,

as shown in Lemma 10 (Appendix B.3). Consequently, the κ term can be removed

from T and τ .

Lemma 3. Suppose that a set zD′ of observations, a budget of N − n′ + 1 sampling

locations for 1 ≤ n′ ≤ N , S ∈ Z+, and γ > 0 are given. The probability that

|Q∗n(zD, x) −W ∗
n(zD, x)| ≤ γ (4.11) holds for all tuples (n, zD, x) generated at stage

n = n′, . . . , N by (4.9) to compute V ε
n′(zD′) is at least 1 − 2(S|X |)N exp(−2Sγ2/T 2)

where T is previously defined in Lemma 2.

Its proof is found in Appendix B.3.

The first step is concluded with our first main result, which follows from Lemmas 1

and 3. Specifically, it chooses the values of S and τ such that the probability of

Qε
n (4.9) approximating Q∗n (4.7) poorly (i.e., |Q∗n(zD, x) − Qε

n(zD, x)| > Nγ) can be

bounded from above by a given 0 < δ < 1:

Theorem 5. Suppose that a set zD of observations, a budget of N − n+ 1 sampling
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locations for 1 ≤ n ≤ N , γ > 0, and 0 < δ < 1 are given. The probability that

|Q∗n(zD, x)−Qε
n(zD, x)| ≤ Nγ holds for all x ∈ X \ D is at least 1− δ by setting

S = O
(
T 2

γ2

(
N log

N |X |T 2

γ2
+ log

1

δ

))

where T is previously defined in Lemma 2. By assuming N , |Λ|, σo, σn, κ, and |X |

as constants, τ = O(
√

log(1/γ)) and hence S = O

(
(log (1/γ))2

γ2
log

(
log (1/γ)

γδ

))
.

Its proof is provided in Appendix B.4.

Remark. It can be observed from Theorem 5 that the number of generated τ -

truncated observations has to be increased (i.e., higher chosen value of S) when (a)

a lower probability δ of Qε
n (4.9) approximating Q∗n (4.7) poorly (i.e., |Q∗n(zD, x) −

Qε
n(zD, x)| > Nγ) is desired, and (b) a larger domain X of the phenomenon is given.

The influence of γ, N , |Λ|, σo, σn, and κ on S is similar to that on τ , as previously

reported in Remark 2 after Lemma 2.

Thus far, we have shown in the first step that, with high probability, Qε
n (4.9) approx-

imates Q∗n (4.7) arbitrarily closely for some chosen values of S and τ (Theorem 5).

The next step uses this result to probabilistically bound the performance loss in terms

of Q∗n by observing location πεn(zD) selected by our ε-BAL policy πε at stage n and

following the BAL policy π∗ thereafter:

Lemma 4. Suppose that a set zD of observations, a budget of N − n + 1 sampling

locations for 1 ≤ n ≤ N , γ > 0, and 0 < δ < 1 are given. Q∗n(zD, π
∗
n(zD)) −

Q∗n(zD, π
ε
n(zD)) ≤ 2Nγ holds with probability at least 1−δ by setting S and τ according

to that in Theorem 5.

See Appendix B.5 for its proof. The final step extends Lemma 4 to obtain our second
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main result. In particular, it bounds the expected active sensing performance loss of

our stochastic ε-BAL policy πε relative to that of BAL policy π∗, that is, policy πε is

ε-Bayes-optimal:

Theorem 6. Given a set zD0 of prior observations, a budget of N sampling locations,

and ε > 0, V ∗1 (zD0) − Eπε [V πε

1 (zD0)] ≤ ε by setting and substituting γ = ε/(4N2)

and δ = ε/(2N(N log(σo/σn) + log |Λ|)) into S and τ in Theorem 5 to give τ =

O(
√

log(1/ε)) and S = O

(
(log (1/ε))2

ε2
log

(
log (1/ε)

ε2

))
.

Its proof is given in Appendix B.6.

Remark 1. The number of generated τ -truncated observations and the amount of

truncation have to be, respectively, increased and reduced (i.e., higher chosen values

of S and τ) when a tighter user-defined loss bound ε is desired.

Remark 2. The deterministic BAL policy π∗ is Bayes-optimal among all candidate

stochastic policies π since Eπ[V π
1 (zD0)] ≤ V ∗1 (zD0), as proven in Appendix B.7.

4.2.4 Anytime ε-BAL (〈α, ε〉-BAL) Algorithm

Unlike the BAL policy π∗, our ε-BAL policy πε can be derived exactly because its

time complexity is independent of the size of the set of all possible originally Gaussian

distributed observations, which is uncountable. But, the cost of deriving πε is expo-

nential in the length N of planning horizon since it has to compute the values V ε
n (zD)

(4.9) for all (S|X |)N possible states (n, zD). To ease this computational burden, we

propose an anytime algorithm based on ε-BAL that can produce a good policy fast

and improve its approximation quality over time, as discussed next.
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The key intuition behind our anytime ε-BAL algorithm (〈α, ε〉-BAL of Algo. 1) is to

focus the simulation of greedy exploration paths through the most uncertain regions

of the state space (i.e., in terms of the values V ε
n (zD)) instead of evaluating the entire

state space like πε. To achieve this, our 〈α, ε〉-BAL algorithm maintains both lower

and upper heuristic bounds (respectively, V ε
n (zD) and V

ε

n (zD)) for each encountered

state (n, zD), which are exploited for representing the uncertainty of its corresponding

value V ε
n (zD) to be used in turn for guiding the greedy exploration (or, put differently,

pruning unnecessary, bad exploration of the state space while still guaranteeing the

policy optimality).

To elaborate, each simulated exploration path (EXPLORE of Algo. 1) repeatedly

selects a sampling location x and its corresponding τ -truncated observation zix at every

stage until the last stage N is reached. Specifically, at each stage n of the simulated

path, the next states (n+1, zD∪{zix}) with uncertainty |V ε

n+1(zD∪{zix})−V ε
n+1(zD∪

{zix})| exceeding α (line 6) are identified (lines 7-8), among which the one with largest

lower bound V ε
n+1(zD ∪ {zix}) (line 10) is prioritized/selected for exploration (if more

than one exists, ties are broken by choosing the one with most uncertainty, that is,

largest upper bound V
ε

n+1(zD ∪ {zix}) (line 11)) while the remaining unexplored ones

are placed in the set U (line 12) to be considered for future exploration (lines 3-6 in

〈α, ε〉-BAL). So, the simulated path terminates if the uncertainty of every next state

is at most α; the uncertainty of a state at the last stage N is guaranteed to be zero

(4.15). Then, the algorithm backtracks up the path to update/tighten the bounds of

previously visited states (line 7 in 〈α, ε〉-BAL and line 14 in EXPLORE) as follows:

V
ε

n(zD) ← min

(
V
ε

n(zD), max
x∈X\D

Q
ε

n(zD, x)

)
V ε
n(zD) ← max

(
V ε
n(zD), max

x∈X\D
Qε

n
(zD, x)

)
(4.15)
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where we define Q
ε

n(zD, x) and Qε

n
(zD, x) as

Q
ε

n(zD, x) ,
1

S

S∑
i=1

(
− log p

(
zix|zD

)
+ V

ε

n+1

(
zD ∪

{
zix
}))

Qε

n
(zD, x) ,

1

S

S∑
i=1

(
− log p

(
zix|zD

)
+ V ε

n+1

(
zD ∪

{
zix
}))

for n = 1, . . . , N such that there is no V
ε

N+1 (V ε
N+1) term on the RHS of Q

ε

N (Qε

N
) at

stage n = N . When the planning time runs out, we provide the greedy policy induced

by the lower bound: π
〈α,ε〉
1 (zD0) , arg maxx∈X\D0 Q

ε

1
(zD0 , x) (line 8 in 〈α, ε〉-BAL).

Central to the anytime performance of our 〈α, ε〉-BAL algorithm is the computational

efficiency of deriving informed initial heuristic bounds V ε
n (zD) and V

ε

n (zD) where

V ε
n (zD) ≤ V ε

n (zD) ≤ V
ε

n (zD). Due to the use of the truncated sampling procedure

(Section 4.2.2), computing informed initial heuristic bounds for V ε
n (zD) is infeasible

without expanding from its corresponding state to all possible states in the subsequent

stages n+ 1, . . . , N , which we want to avoid. To resolve this issue, we instead derive

informed bounds V ε
n (zD) and V

ε

n (zD) that satisfy

V ε
n (zD) ≤ V ε

n (zD) ≤ V
ε

n (zD) . (4.16)

with high probability: Using Theorem 1, |V ∗n (zD)−V ε
n (zD)| ≤ maxx∈X\D |Q∗n(zD, x)−

Qε
n(zD, x)| ≤ Nγ, which implies V ∗n (zD) − Nγ ≤ V ε

n (zD) ≤ V ∗n (zD) + Nγ with

probability at least 1 − δ. V ∗n (zD) can at least be naively bounded using the unin-

formed, domain-independent lower and upper bounds given in Lemma 11. In practice,

domain-dependent bounds V ∗n(zD) and V
∗
n(zD) (i.e., V ∗n(zD) ≤ V ∗n (zD) ≤ V

∗
n(zD))

tend to be more informed and we will show in Theorem 7 below how they can be

derived efficiently. So, by setting V ε
n(zD) = V ∗n(zD)−Nγ and V

ε

n(zD) = V
∗
n(zD)+Nγ
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Algorithm 1 〈α, ε〉-BAL(zD0)

〈α, ε〉-BAL(zD0)

1: U ← {(1, zD0)}
2: while |V ε

1 (zD0)− V ε
1 (zD0) | > α do

3: V ← arg max(n,zD)∈U V
ε
n (zD)

4: (n′, zD′)← arg max(n,zD)∈V V
ε

n (zD)
5: U ← U \ {(n′, zD′)}
6: EXPLORE(n′, zD′ ,U) /∗ U is passed by reference ∗/
7: UPDATE(n′, zD′)

8: return π
〈α,ε〉
1 (zD0)← arg maxx∈X\D0

Qε

1
(zD0 , x)

EXPLORE(n, zD,U)

1: T ← ∅
2: for all x ∈ X \ D do
3: {zix}Si=1 ← sample from p(zx|zD) (4.5)
4: for i = 1, . . . , S do
5: zix ← zix min (|zix|, τ̂) /|zix|
6: if |V ε

n+1 (zD ∪ {zix})− V ε
n+1 (zD ∪ {zix}) | > α then

7: T ← T ∪ {(n+ 1, zD ∪ {zix})}
8: parent(n+ 1, zD ∪ {zix})← (n, zD)
9: if |T | > 0 then

10: V ← arg max(n+1,zD∪{zix})∈T V
ε
n+1 (zD ∪ {zix})

11: (n+ 1, zD′)← arg max(n+1,zD∪{zix})∈VV
ε

n+1 (zD ∪ {zix})
12: U ← U ∪ (T \ {(n+ 1, zD′)})
13: EXPLORE(n+ 1, zD′ ,U)
14: Update V

ε

n(zD) and V ε
n(zD) using (4.15)

UPDATE(n, zD)

1: Update V
ε

n(zD) and V ε
n(zD) using (4.15)

2: if n > 1 then
3: (n− 1, zD′)← parent(n, zD)
4: UPDATE(n− 1, zD′)

for n < N and V ε
N(zD) = V

ε

N(zD) = maxx∈X\D S
−1
∑S

i=1− log p(zix|zD), (4.16) holds

with probability at least 1− δ.

Theorem 7. Given a set zD of observations and a space Λ of parameters λ, define

the a priori greedy design with unknown parameters as the set Sn of n ≥ 1 sampling
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locations where

S0 , ∅

Sn , Sn−1 ∪

{
arg max

x∈X

∑
λ∈Λ

bD(λ) H
[
ZSn−1∪{x}|zD, λ

]
−
∑
λ∈Λ

bD(λ) H
[
ZSn−1|zD, λ

]}
.

(4.17)

Similarly, define the a priori greedy design with known parameters λ as the set Sλn of

n ≥ 1 sampling locations where

Sλ0 , ∅

Sλn , Sλn−1 ∪
{

arg max
x∈X

H
[
ZSλn−1∪{x}|zD, λ

]
− H

[
ZSλn−1

|zD, λ
]}

.

(4.18)

Then, it follows that

H
[
Z{π∗i }Ni=N−n+1

|zD
]
≥
∑
λ∈Λ

bD(λ) H [ZSn|zD, λ]

H
[
Z{π∗i }Ni=N−n+1

|zD
]
≤
∑
λ∈Λ

bD(λ)

[
e

e− 1
H
[
ZSλn |zD, λ

]
+

nr

e− 1

]
+ H [Λ]

(4.19)

where

{π∗i }Ni=N−n+1 = arg max
{πi}Ni=N−n+1

H
[
Z{πi}Ni=N−n+1

|zD
]
,

Λ denotes the set of random parameters corresponding to the realized parameters λ,

and r = −min(0, 0.5 log(2πeσ2
n)) ≥ 0.

Remark. V ∗N−n+1(zD) = H[Z{π∗i }Ni=N−n+1
|zD], by definition. Hence, the lower and

upper bounds of H[Z{π∗i }Ni=N−n+1
|zD] (4.19) constitute informed domain-dependent
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bounds for V ∗N−n+1(zD) that can be derived efficiently since both Sn (4.17) and

{Sλn}λ∈Λ (4.18) can be computed in polynomial time with respect to the interested

variables.

Proof. To prove the lower bound,

H
[
Z{π∗i }Ni=N−n+1

|zD
]

= max
{πi}Ni=N−n+1

H
[
Z{πi}Ni=N−n+1

|zD
]

≥ max
{πi}Ni=N−n+1

∑
λ∈Λ

bD(λ) H
[
Z{πi}Ni=N−n+1

|zD, λ
]

≥ max
S⊆X :|S|=n

∑
λ∈Λ

bD(λ) H [ZS |zD, λ]

≥
∑
λ∈Λ

bD(λ) H [ZSn|zD, λ] .

The first inequality follows from the monotonicity of conditional entropy (i.e., “in-

formation never hurts” bound) [Cover and Thomas, 1991]. The second inequality

holds because the optimal set S∗ , arg maxS⊆X :|S|=n
∑

λ∈Λ bD(λ) H [ZS |zD, λ] is an

optimal a priori design (i.e., non-sequential) that does not perform better than the

optimal sequential policy π∗ [Krause and Guestrin, 2007]. The third inequality is due

to definition of Sn.

To prove the upper bound,

H
[
Z{π∗i }Ni=N−n+1

|zD
]
≤

∑
λ∈Λ

bD(λ) max
S⊆X :|S|=n

H [ZS |zD, λ] + H [Λ]

≤
∑
λ∈Λ

bD(λ)

[
e

e− 1
H
[
ZSλn |zD, λ

]
+

nr

e− 1

]
+ H [Λ]

such that the first inequality is due to Theorem 1 of Krause and Guestrin [2007], and

the second inequality follows from Lemma 19. �
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Finally, we provide a theoretical guarantee similar to that of Theorem 6 on the ex-

pected active sensing performance of our 〈α, ε〉-BAL policy π〈α,ε〉 (Section 4.2.5) and

analyze the time complexity of simulating k exploration paths in our 〈α, ε〉-BAL al-

gorithm (Section 4.2.6) to conclude this section.

4.2.5 Performance Guarantee of 〈α,ε〉-BAL Policy π〈α,ε〉

Lemma 5. Suppose that a set zD of observations, a budget of N − n + 1 sampling

locations for 1 ≤ n ≤ N , γ > 0, 0 < δ < 1, and α > 0 are given. Q∗n(zD, π
∗
n(zD)) −

Q∗n(zD, π
〈α,ε〉
n (zD)) ≤ 2(Nγ + α) holds with probability at least 1− δ by setting S and

τ according to that in Theorem 5.

Proof. When our 〈α, ε〉-BAL algorithm terminates, |V ε

1(zD0)− V ε
1(zD0)| ≤ α, which

implies |V ε
1 (zD0) − V ε

1(zD0)| ≤ α. By Theorem 1, since |V ∗1 (zD0) − V ε
1 (zD0)| ≤

maxx∈X\D0 |Q∗n(zD0 , x)−Qε
n(zD0 , x)| ≤ Nγ, |V ∗1 (zD0)−V ε

1(zD0)| ≤ |V ∗1 (zD0)−V ε
1 (zD0)|+

|V ε
1 (zD0)− V ε

1(zD0)| ≤ Nγ + α with probability at least 1− δ. In general, given that

the length of planning horizon is reduced to N − n + 1 for 1 ≤ n ≤ N , the above

inequalities are equivalent to

|V ε
n (zD)− V ε

n(zD)| ≤ α

|V ∗n (zD)− V ε
n(zD)| =

∣∣∣Q∗n(zD0 , π
∗
n(zD))−Qε

n
(zD, π

〈α,ε〉
n (zD))

∣∣∣
≤ Nγ + α (4.20)

by increasing/shifting the indices of V ε
1 , V ε

1, and V ∗1 above from 1 to n so that these
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value functions start at stage n instead.

Q∗n(zD, π
∗
n(zD))−Q∗n(zD, π

〈α,ε〉
n (zD)) = Q∗n(zD, π

∗
n(zD))−Qε

n
(zD, π

〈α,ε〉
n (zD))

+ Qε

n
(zD, π

〈α,ε〉
n (zD))−Qε

n(zD, π
〈α,ε〉
n (zD))

+ Qε
n(zD, π

〈α,ε〉
n (zD))−Q∗n(zD, π

〈α,ε〉
n (zD))

≤ Nγ + α +
1

S

S∑
i=1

(
V ε
n+1(zD ∪ {ziπ〈α,ε〉n (zD)

})

− V ε
n+1(zD ∪ {ziπ〈α,ε〉n (zD)

})
)

+Nγ

≤ 2(Nγ + α)

where the inequalities follow from (4.9), (4.15), (4.20), and Theorem 1. �

Theorem 8. Given a set zD0 of prior observations, a budget of N sampling locations,

α > 0, and ε > 4Nα, V ∗1 (zD0) − Eπ〈α,ε〉
[
V π〈α,ε〉

1 (zD0)
]
≤ ε by setting and substitut-

ing γ = ε/(4N2) and δ = (ε/(2N) − 2α)/(N log(σo/σn) + log |Λ|) into S and τ in

Theorem 5 to give τ = O(
√

log(1/ε)) and S = O

(
(log (1/ε))2

ε2
log

(
log (1/ε)

ε(ε− α)

))
.

Proof Sketch. The proof directly follows from Lemma 5 and is similar to that of

Theorem 6. �

4.2.6 Time Complexity of 〈α, ε〉-BAL Algorithm

Suppose that our 〈α, ε〉-BAL algorithm runs k simulated exploration paths during its

lifetime where k actually depends on the available time for planning. Then, since each

exploration path has at most N stages and each stage generates at most S|X | states,

there will be at most O(kNS|X |) states generated during the whole lifetime of our

〈α, ε〉-BAL algorithm. So, to analyze the overall time complexity of our 〈α, ε〉-BAL

algorithm, the processing cost at each state is first quantified, which, according to

EXPLORE of Algorithm 1, includes the cost of sampling (lines 2-5), initializing (line
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6) and updating the corresponding heuristic bounds (line 14). In particular, the cost

of sampling at each state involves training the GPs (i.e., O(N3)) and computing the

predictive distributions using (4.2) and (4.3) (i.e., O(|X |N2)) for each set of realized

parameters λ ∈ Λ and the cost of generating S|X | samples from a mixture of |Λ|

Gaussian distributions (i.e., O(|Λ|S|X |)) by assuming that drawing a sample from a

Gaussian distribution consumes a unit processing cost. This results in a total sam-

pling complexity of O(|Λ|(N3 + |X |N2 + S|X |)).

Now, let O(∆) denote the processing cost of initializing the heuristic bounds at each

state, which depends on the actual bounding scheme being used. The total processing

cost at each state is therefore O(|Λ|(N3 + |X |N2 + S|X |) + ∆ + S|X |) where the last

term corresponds to the cost of updating bounds by (4.15). In addition, to search

for the most potential state to explore in O(1) at each stage (lines 10-11), the set of

unexplored states is maintained in a priority queue (line 12) using the corresponding

exploration criterion, thus incurring an extra management cost (i.e., updating the

queue) of O(log(kNS|X |)). That is, the total time complexity of simulating k explo-

ration paths in our 〈α, ε〉-BAL algorithm is O(kNS|X |(|Λ|(N3 + |X |N2 + S|X |) +

∆ + log(kNS|X |))). In practice, 〈α, ε〉-BAL’s planning horizon can be shortened to

reduce its computational cost further by limiting the depth of each simulated path to

strictly less than N . In that case, although the resulting π〈α,ε〉’s performance has not

been theoretically analyzed, Section 4.3 demonstrates empirically that it outperforms

state-of-the-art algorithms.

4.3 Experiments and Discussion

This section evaluates the active sensing performance and time efficiency of our 〈α, ε〉-

BAL policy π〈α,ε〉 (Section 4.2) empirically under limited sampling budget using two
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datasets featuring a simple, simulated spatial phenomenon (Section 4.3.1) and a large-

scale, real-world traffic phenomenon (i.e., speeds of road segments) over an urban road

network (Section 4.3.2). All experiments are run on a Mac OS X machine with Intel

Core i7 at 2.66 GHz.

4.3.1 Simulated Spatial Phenomenon

The domain of the phenomenon is discretized into a finite set of sampling locations

X = {0, 1, . . . , 99}. The phenomenon is a realization of a GP (Section 4.1) parame-

terized by λ∗ = {σλ∗n = 0.25, σλ
∗
s = 10.0, `λ

∗
= 1.0}. For simplicity, we assume that

σλ
∗
n and σλ

∗
s are known, but the true length-scale `λ

∗
= 1 is not. So, a uniform prior

belief bD0=∅ is maintained over a set L = {1, 6, 9, 12, 15, 18, 21} of 7 candidate length-

scales `λ. Using root mean squared prediction error (RMSPE) as the performance

metric, the performance of our 〈α, ε〉-BAL policies π〈α,ε〉 with planning horizon length

N ′ = 2, 3 and α = 1.0 are compared to that of the state-of-the-art GP-based ac-

tive learning algorithms: (a) The a priori greedy design (APGD) policy [Shewry and

Wynn, 1987] iteratively selects and adds arg maxx∈X\Sn
∑

λ∈Λ bD0(λ)H[ZSn∪{x}|zD0 , λ]

to the current set Sn of sampling locations (where S0 = ∅) until SN is obtained, (b)

the implicit exploration (IE) policy greedily selects and observes sampling location

xIE = arg maxx∈X\D
∑

λ∈Λ bD(λ)H[Zx|zD, λ] and updates the belief from bD to bD∪{xIE}

over L; if the upper bound on the performance advantage of using π∗ over APGD pol-

icy is less than a pre-defined threshold, it will use APGD with the remaining sampling

budget, and (c) the explicit exploration via independent tests (ITE) policy performs a

PAC-based binary search, which is guaranteed to find `λ
∗

with high probability, and

then uses APGD to select the remaining locations to be observed.
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Figure 4.1: Graphs of (a) RMSPE of APGD, IE, ITE, and 〈α, ε〉-BAL policies with planning
horizon length N ′ = 2, 3 vs. budget of N sampling locations, (b) stage-wise online
processing cost of 〈α, ε〉-BAL policy with N ′ = 3 and (c) gap between the heuristic
upper- and lower-bounds of V ε

1 (zD0) vs. number of simulated paths.

Both nonmyopic IE and ITE policies are proposed by Krause and Guestrin [2007]:

IE is reported to incur the lowest prediction error empirically while ITE is guaran-

teed not to achieve worse than the optimal performance by more than a factor of

1/e. Fig. 4.1a shows results of the active sensing performance of the tested policies

averaged over 20 realizations of the phenomenon drawn independently from the un-

derlying GP model described earlier. It can be observed that the RMSPE of every

tested policy decreases with a larger budget of N sampling locations. Notably, our

〈α, ε〉-BAL policies perform better than the APGD, IE, and ITE policies, especially

when N is small. The performance gap between our 〈α, ε〉-BAL policies and the

other policies decreases as N increases, which intuitively means that, with a tighter

sampling budget (i.e., smaller N), it is more critical to strike a right balance between

exploration and exploitation.

Fig. 4.2 shows the stage-wise sampling designs produced by the tested policies with

a budget of N = 15 sampling locations. It can be observed that our 〈α, ε〉-BAL pol-

icy achieves a better balance between exploration and exploitation and can therefore
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Stages

1 - 5

1 - 9

1 - 13

1 - 15

(b) ITE policy

0 10 20 30 40 50 60 70 80 90 100
Spatial Field

Exploration: Observing closely-spaced 
locations to identify true length-scale
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(c) 〈α, ε〉-BAL policy

Figure 4.2: Stage-wise sampling designs produced by (a) IE, (b) ITE, and (c) 〈α, ε〉-
BAL policy with a planning horizon length N ′ = 3 using a budget of N = 15 sampling
locations. The final sampling designs are depicted in the bottommost rows of the figures.
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discern `λ
∗

much faster than the IE and ITE policies while maintaining a fine spatial

coverage of the phenomenon. This is expected due to the following issues faced by

IE and ITE policies: (a) The myopic exploration of IE tends not to observe closely-

spaced locations (Fig. 4.2a), which are in fact informative towards estimating the true

length-scale, and (b) despite ITE’s theoretical guarantee in finding `λ
∗
, its PAC-style

exploration is too aggressive, hence completely ignoring how informative the poste-

rior belief bD over L is during exploration. This leads to a sub-optimal exploration

behavior that reserves too little budget for exploitation and consequently entails a

poor spatial coverage, as shown in Fig. 4.2b.

Our 〈α, ε〉-BAL policy can resolve these issues by jointly and naturally optimizing

the trade-off between observing the most informative locations for minimizing the

predictive uncertainty of the phenomenon (i.e., exploitation) vs. the uncertainty

surrounding its length-scale (i.e., exploration), hence enjoying the best of both worlds

(Fig. 4.2c). In fact, we notice that, after observing 5 locations, our 〈α, ε〉-BAL policy

can focus 88.10% of its posterior belief on `λ
∗

while IE only assigns, on average,

about 18.65% of its posterior belief on `λ
∗
, which is hardly more informative than

the prior belief bD0(`
λ∗) = 1/7 ≈ 14.28%. Finally, Fig. 4.1b shows that the online

processing cost of 〈α, ε〉-BAL per sampling stage grows linearly in the number of

simulated paths while Fig. 4.1c reveals that its approximation quality improves (i.e.,

gap between V
ε

1(zD0) and V ε
1(zD0) decreases) with increasing number of simulated

paths. Interestingly, it can be observed from Fig. 4.1c that although 〈α, ε〉-BAL

needs about 800 simulated paths (i.e., 400 s) to close the gap between V
ε

1(zD0) and

V ε
1(zD0), V

ε
1(zD0) only takes about 100 simulated paths (i.e., 50 s). This implies the

actual computation time needed for 〈α, ε〉-BAL to reach V ε
1 (zD0) (via its lower bound

V ε
1(zD0)) is much less than that required to verify the convergence of V ε

1(zD0) to

V ε
1 (zD0) (i.e., by checking the gap). This is expected since 〈α, ε〉-BAL explores states
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with largest lower bound first (Section 4.2.4).

4.3.2 Real-World Traffic Phenomenon
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Figure 4.3: (a) Traffic phenomenon (i.e., speeds (km/h) of road segments) over an
urban road network in Tampines area, Singapore, graphs of (b) RMSPE of APGD, IE,
and 〈α, ε〉-BAL policies with horizon length N ′ = 3, 4, 5 and (c) total online processing
cost of 〈α, ε〉-BAL policies with N ′ = 3, 4, 5 vs. budget of N segments, and (d-f) road
segments observed (shaded in black) by respective APGD, IE, and 〈α, ε〉-BAL policies
(N ′ = 5) with N = 60.

Fig. 4.3a shows the traffic phenomenon (i.e., speeds (km/h) of road segments) over an

urban road network X comprising 775 road segments (e.g., highways, arterials, slip

roads, etc.) in Tampines area, Singapore during lunch hours on June 20, 2011. The

mean speed is 52.8 km/h and the standard deviation is 21.0 km/h. Each road seg-

ment x ∈ X is specified by a 4-dimensional vector of features: length, number of lanes,

speed limit, and direction. The phenomenon is modeled as a relational GP [Chen et
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al., 2012] whose correlation structure can exploit both the road segment features and

road network topology information. The true parameters λ∗ = {σλ∗n , σλ
∗
s , `

λ∗} are

set as the maximum likelihood estimates learned using the entire dataset. We as-

sume that σλ
∗
n and σλ

∗
s are known, but `λ

∗
is not. So, a uniform prior belief bD0=∅

is maintained over a set L = {`λi}6
i=0 of 7 candidate length-scales `λ0 = `λ

∗
and

`λi = 2(i+ 1)`λ
∗

for i = 1, . . . , 6.

The performance of our 〈α, ε〉-BAL policies with planning horizon length N ′ = 3, 4, 5

are compared to that of APGD and IE policies (Section 4.3.1) by running each of

them on a mobile probe to direct its active sensing along a path of adjacent road

segments according to the road network topology; ITE cannot be used here as it

requires observing road segments separated by a pre-computed distance during ex-

ploration [Krause and Guestrin, 2007], which violates the topological constraints of

the road network since the mobile probe cannot “teleport”. Fig. 4.3 shows results

of the tested policies averaged over 5 independent runs: It can be observed from

Fig. 4.3b that our 〈α, ε〉-BAL policies outperform APGD and IE policies due to their

nonmyopic exploration behavior.

In terms of the total online processing cost, Fig. 4.3c shows that 〈α, ε〉-BAL incurs

< 4.5 hours given a budget of N = 240 road segments, which can be afforded by

modern computing power. To illustrate the behavior of each policy, Figs. 4.3d-f

show, respectively, the road segments observed (shaded in black) by the mobile probe

running APGD, IE, and 〈α, ε〉-BAL policies with N ′ = 5 given a budget of N = 60.

It can be observed from Figs. 4.3d-e that both APGD and IE cause the probe to

move away from the slip roads and highways to low-speed segments whose measure-

ments vary much more smoothly; this is expected due to their myopic exploration

behavior. In contrast, 〈α, ε〉-BAL nonmyopically plans the probe’s path and can thus
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direct it to observe the more informative slip roads and highways with highly varying

measurements (Fig. 4.3f) to achieve better performance.
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Chapter 5

Scalable Predictive Modeling

Platforms for Active Learning

This chapter introduces a novel framework of inverse variational inference to theoret-

ically derive a non-trivial, convex objective functional (of distributions) whose opti-

mum coincides with the predictive distribution of a chosen SGP model (Section 5.2.1).

This effectively allows us to construct an alternative numerical computation of our

model by iteratively following the stochastic gradient of the objective function. The

proposed framework is then able to process massive datasets containing hundreds of

thousand data points on a single-core machine. More interestingly, we show that the

complexity of each iteration can be made independent of the size of the dataset if the

covariance structure of the given model satisfies certain decomposability conditions

(Section 5.2.2). Examples of such SGP models include those described in [Quiñonero-

Candela and Rasmussen, 2005] and [Snelson, 2007] which profess similar conditional

independence structures. Empirically, we demonstrate the competitive performance

of our proposed framework on a variety of real-world datasets (Section 5.3).
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5.1 Background and Notations

This section briefly summarizes relevant backgrounds of SGP approximations and

variational inference in GP context to introduce notations and derive expressions

which are necessary to understand our main results.

5.1.1 Exact GP Inference

Specifically, let D = {xi, yi}ni=1 denote our dataset which consists of n pairs of vector

input xi and the corresponding noisy observation yi of its latent output f(xi). The

regression problem is then formulated as follows: Given D and an arbitrary input x∗,

we want to predict its latent output f(x∗). GP addresses this problem by assuming

that for any set of inputs X = {xi}ni=1 ⊆ X n, the random vector composing of

their latent outputs fn , [f(x1) . . . f(xn)]T is distributed by a Gaussian distribution

p(fn) , N (fn|0,Knn); its covariance matrix Knn , [k(xi,xj)]ij is commonly specified

by using an anisotropic kernel function [Rasmussen and Williams, 2006]

k(xi,xj) , σ2
s exp

(
−1

2
(xi − xj)

T Λ−1 (xi − xj)

)
(5.1)

with Λ , diag
[
`2

1, . . . , `
2
p

]
and σ2

s being its defining parameters. In addition, we

further assume that given any set of latent outputs fn, the corresponding noisy ob-

servations yn , [y1 . . . yn]T are also distributed by a Gaussian distribution p(yn|fn) ,

N (yn|fn, σ2
nI) where σ2

n denotes our noise parameter. The predictive distribution of

f∗ , f(x∗), p(f∗|yn), can then be analytically evaluated in closed-form:

p(f∗|yn) = N
(
f∗ | K∗n(Knn + σ2

nI)−1yn , K∗n(Knn + σ2
nI)−1Kn∗

)
,
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where K∗n , [k(x∗,xi)]i and Kn∗ , KT
∗n. This, however, incurs O(n3) processing

time [Rasmussen and Williams, 2006] and hence, limits the use of exact GP inference

to less than a few thousands data points.

5.1.2 Sparse GP Review

To reduce the prohibitively expensive cost of exact GP inference, SGPs approximate

p(f∗|yn) using a small set of m inducing variables fm , [f(u1), . . . , f(um)]T which

are drawn from the same GP1 and correspond to an additional set of inducing inputs

U = {ui}mi=1. The term inducing originates from the fundamental assumption of

SGPs [Snelson and Ghahramani, 2007] that given fm, the conditional distribution of

(f∗, fn) factorizes across a pre-defined partition X , ∪pi=1Bi (Bi ∩Bj = ∅) of the

input space X . Thus, suppose x∗ ∈ Bp, it follows that

p (f∗, fn|fm) = p (f∗, fp|fm)

(
p−1∏
i=1

p (fi|fm)

)
, (5.2)

where fi , [f(x)]Tx∈Bi∩X denotes the vector of latent outputs associated with training

inputs in partition Bi. Exploiting this conditional factorization (5.2), we can then

derive (see Remark 1) a general framework to approximate p(f∗|yn) (as detailed

in Eq. (5.4) below), which is capable of interpreting the existing class of low-rank

covariance approximation2 SGPs directly [Titsias, 2009] or indirectly [Quiñonero-

Candela and Rasmussen, 2005; Snelson and Ghahramani, 2007] (see Remark 2):

p(f∗|yn) =

∫
p (f∗|yp, fm) p (fm|yn) dfm (5.3)

'
∫
q∗ (f∗|yp, fm) q∗ (fm) dfm , (5.4)

1p(fm) , N (fm|0,Kmm) with Kmm , [k(ui,uj)]ij
2The term low-rank covariance approximation generally means the exact covariance is approxi-

mated by a lower-rank matrix that helps to evaluate Eq. (5.4) efficiently.

82



Chapter 5. Scalable Predictive Modeling Platforms for Active Learning

where yp ⊆ yn denotes our noisy observation of fp while q∗(f∗|yp, fm) and q∗(fm) spec-

ify the low-rank covariance approximations of p (f∗|yp, fm) and p(fm|yn). In practice,

q∗(f∗|yp, fm) is usually set as the exact conditionals p(f∗|yp, fm) or p(f∗|fm) whose

evaluation and storage complexities are independent of n (Appendix E.4.4). As such,

the majority of research pertaining to this class of SGPs has primarily focused on

approximating p(fm|yn) directly [Titsias, 2009] or indirectly via modifying p(fn|fm)

[Quiñonero-Candela and Rasmussen, 2005]. This generally results in an efficient suite

of low-rank covariance approximations q∗(fm) ' p(fm|yn) that allow (5.4) to be eval-

uated analytically in O(nm2) (Appendix E.4.1).

Remark 1. Note that Eq. (5.3) above is the exact expression of p(f∗|yn) (see

its derivation in Appendix E.3) which is then approximated by replacing p(fm|yn)

and p(f∗|yp, fm) with q∗(fm) and q∗(f∗|yp, fm), respectively. In addition, if f∗ and fn

are conditionally independent given fm [Quiñonero-Candela and Rasmussen, 2005],

Eqs. (5.3) and (5.4) are further simplified by replacing p(f∗|yp, fm) and q∗(f∗|yp, fm)

with p(f∗|fm) and q∗(f∗|fm), respectively.

Remark 2. Eq. (5.4) directly generalizes the approximated equation introduced in

[Titsias, 2009], which can be straight-forwardly recovered by setting q∗(f∗|yp, fm) =

p(f∗|fm). Interestingly, it is also possible to set q∗(fm) and q∗(f∗|yp, fm) so that the re-

sulting predictive distribution in Eq. (5.4) coincides with those of Quiñonero-Candela

and Rasmussen [2005] and Snelson and Ghahramani [2007], thus inducing their GP

low-rank approximation frameworks (Appendix E.4.1).

Lastly, we wrap up our SGP review here with a brief note on the motivation of this

paper which distinguishes our work from the existing literature:
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Motivation. Instead of diverting our effort to structure a new approximation q∗(fm),

we investigate a class of numerical approaches which asymptotically construct the

existing q∗(fm) without having to evaluate them directly in O(nm2). This helps us to

avoid incurring a factor of n in the processing cost which is becoming a computational

bottleneck in this era of big data, thus producing a more powerful suite of anytime

approximated SGP models (Section 5.2.2).

5.1.3 Variational Inference for Sparse GP

As the evaluation and storage complexities of q∗(f∗|yp, fm) is independent of n (Sec-

tion 5.1.2), the computational efficiency of the induced predictive distribution (5.4)

entirely depends on how q∗(fm) ' p(fm|yn) is constructed. In fact, this is conducted

separately with the formulation in Section 5.1.2 except that the resulting q∗(fm) is

plugged into (5.4) to derive p(f∗|yn). This section reviews a principled method to

achieve this using variational inference [Titsias, 2009].

Let us begin by first introducing the fundamental idea of variational inference: An

approximation to the posterior distribution of latent variables (e.g., p(fn, fm|yn)) is

derived analytically by minimizing their KL distance, assuming it factorizes in partic-

ular ways or has specific parametric forms which are inexpensive to evaluate [Bishop,

2006]. In the GP context, Titsias [2009] parameterizes the posterior approximation

q(fn, fm) ' p(fn, fm|yn) as

q(fn, fm) , p(fn|fm) q(fm) , (5.5)

where p(fn|fm) is the exact GP conditional [Rasmussen and Williams, 2006] and

q(fm) , N (fm|µ+,Σ+). This naturally raises the question of how do we specify

µ+ and Σ+ as functions of the training data D = {xi, yi}ni=1 to minimize the KL
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distance KL(q(fn, fm)‖p(fn, fm|yn)). To address this question, we put forward the

following result:

Lemma 6. For any density function q(fn, fm) and an arbitrary joint distribution

p(fn, fm,yn), the corresponding log marginal log p(yn) can be decomposed into func-

tionals of q(fn, fm) as detailed below:

log p(yn) = L(q) + KL (q(fn, fm) ‖ p(fn, fm|yn)) , (5.6)

where we define the auxiliary functional L(q) as

L(q) ,
∫
q(fn, fm) log

p(yn, fn, fm)

q(fn, fm)
dfndfm . (5.7)

Proof. See Appendix E.1 for a detailed proof. �

Lemma 6 thus implies minimizing KL(q(fn, fm)‖p(fn, fm|yn)) is equivalent to maxi-

mizing L(q) since p(yn) is constant with respect to q(fn, fm). Furthermore, using the

parameterization in (5.5), the functional L(q) can be cast as a convex function of

µ+ and Σ+ which maximizes when its gradient equals zero. As a result, q(fm) ,

N (fm|µ+,Σ+) can be optimized by solving for µ+ and Σ+ such that ∂L/∂µ+ = 0

and ∂L/∂Σ+ = 0.

Remark 1. Note that Lemma 6 generally applies to any p(fn, fm,yn) which includes

the induced joint distribution over (fn, fm,yn) of GP. Then, as KL(.‖.) is always non-

negative, it follows that log p(yn) ≥ L(q) which recovers the GP variational lower-

bound of [Titsias, 2009]3 if we set p(fn, fm,yn) as the exact GP joint distribution.

3Titsias [2009] uses Jensen inequality to prove this result directly without using Lemma 6.
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Remark 2. The work of Titsias [2009] is originally intended to jointly optimize

q(fm), the pseudo/inducing inputs U = {ui}mi=1 as well as the hyper-parameters of the

covariance function k(., .) (Section 5.1.1). In the context of our work here, assuming

the inducing inputs and the hyper-parameters are given, the optimal q(fm) ≡ q∗(fm)

induces the exact predictive distribution of DTC [Seeger et al., 2003] if q∗(f∗|yp, fm) =

p(f∗|fm) [Titsias, 2009].

5.2 Inverse Variational Inference

This section introduces a novel, interesting use of variational inference, which we

term inverse variational inference, to theoretically construct a convex functional L(q)

whose maximum coincides with a given distribution q∗(fm) of our choice. The result-

ing functional then reveals an iterative procedure to evaluate q∗(fm) numerically by

initializing an arbitrary estimation and gradually improving it by taking small steps

in the direction of the stochastic gradient of L(q). This iterative procedure can, in

fact, be guaranteed to asymptotically converge towards q∗ if we schedule the step sizes

appropriately [Robbins and Monro, 1951]. In practice, this approach is particularly

useful if the evaluation of the stochastic gradient of L(q) is computationally efficient

(i.e., not incurring a factor of n in its complexity) as it will provide a formal trade-off

between the computing expense and the estimation accuracy of q∗(fm). In general,

this idea is suitable for any SGP model q∗(fm) satisfies the following requirements:

C1. There exists a convex, differentiable functional L(q) which attains its maximum

value at q(fm) ≡ q∗(fm).

C2. The evaluation of its stochastic gradient does not incur a factor of n (i.e., the

size of the dataset) in its complexity.
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In the remaining of this section, we show that for any valid choice of q∗(fm), one

can always construct a convex functional L(q) that satisfies C1 with q∗(fm) using

our inverse variational inference framework (Section 5.2.1). Then, in Section 5.2.2,

we further establish sufficient conditions for q∗(fm) to satisfy C2 which interestingly

creates a powerful suite of scaled-up SGPs to deal with big data.

Remark. While there might exist other trivial functionals L(q) which is maximized

at q∗(fm) , N (fm|µm,Σm) (C1), it is unclear whether one can establish sufficient

conditions for q∗(fm) to satisfy C2 with an arbitrary L(q). For example, one can

trivially parameterize q(fm) , N (fm|µ+,Σ+) and consequently set

L(q) , −1

2
(µ+ − µm)TA1(µ+ − µm)− 1

2
(Σ+ −Σm)TA2(Σ+ −Σm)

to meet C1 although it is not even trivial to derive its stochastic gradient with respect

to µ+ and Σ+, let alone guaranteeing that its computational efficiency meets C2, if

A1 and A2 are given arbitrarily. This motivates the use of our inverse variational

inference here which is well-established to meet both C1 and C2.

5.2.1 Constructing L(q)

Specifically, we assume q(fn, fm) follows the factorization in (5.5) and that q∗(fm) =

N (fm|µm(D),Σm(D)) is given with µm(D) and Σm(D) being represented as func-

tions4 of the data D. To avoid notation cluttering, we refer to them as µm and Σm

hereafter but the readers should keep in mind that they are treated as functions of

the data rather than some constants. Our goal here is to derive p(fn, fm,yn) such

4For most SGPs, evaluating these functions directly incurs O(nm2) processing cost (Ap-
pendix E.4.1).
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that the corresponding L(q) is maximized at q(fm) ≡ q∗(fm). This is in general a

highly non-trivial task except for the special case when q∗(fm) is induced from the

approximated conditional q(fn|fm) of DTC (Appendix E.4.1.3). In that case, it is

well-known that q∗(fm) happens to maximize L(q) when p(fn, fm,yn) coincides with

the exact GP joint distribution [Titsias, 2009].

Discussion. In this regard, Hensman et al. [2013] have taken the first step by point-

ing out that the given L(q) satisfies both C1 and C2 which can consequently be

exploited to derive a numerical computation process for DTC. However, this work

neither extends nor discusses how to derive L(q) for other choices of q∗(fm) and un-

der what conditions they will satisfy C1 and C2. We address both of these issues

in Sections 5.2.1 and 5.2.2, respectively. More critically, their proposed approach to

evaluate DTC numerically also depends heavily on its structural assumptions which

appears to be a special case of our general solution paradigm (Section 5.2.2.2).

Thus, the rest of this section is organized as follow: We first establish auxiliary

results to simplify (Theorem 9) and analytically evaluate (Theorem 10) L(q) with

respect to our factorization of p(fn, fm,yn) and q(fn, fm) in (5.11) and (5.5). Then,

we show how the defining parameters of p(fn, fm,yn) can be appropriately selected

so that the induced L(q) (Lemma 6) is maximized at an arbitrary user-specified

q∗(fm) , N (fm|µm,Σm) (Theorem 11).

Theorem 9. Let q(fn, fm) = q(fn|fm)q(fm) and L(q) as defined in Lemma 6. The

following equality holds:

L(q) =

∫
q(fm)Lm(q)dfm −KL (q(fm)‖p(fm)) , (5.8)
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where the auxiliary functional Lm(q) is defined as

Lm(q) ,
∫
q(fn|fm) log

p(yn, fn|fm)

q(fn|fm)
dfn . (5.9)

Proof. See Appendix E.2 for a detailed proof. �

Using Theorem 9, we are now ready to evaluate L(q) analytically. In particular,

we parameterize q(fm) , N (fm|µ+,Σ+) and factorize q(fn, fm) using (5.5) which

effectively set q(fn|fm) as the exact GP conditional:

q(fn|fm) , p(fn|fm)

= N (fn | Pfm,Knn −Qnn) , (5.10)

where P , KnmK−1
mm and Qnn , KnmK−1

mmKmn. Using (5.10), we can thus analyt-

ically represent Lm(q) as a quadratic function of fm (Theorem 10). Then, to derive

p(fn, fm,yn) so that Lm(q) is maximized at q∗(fm), we factorize:

p(fn, fm,yn) , p(yn|fn)p(fn|fm)p(fm) , (5.11)

where p(yn|fm) and p(fn|fm) denote the exact GP likelihood and conditional [Ras-

mussen and Williams, 2006] while the exact GP prior p(fm) is replaced with p(fm) ,

N (fm|µ∗,Λ−1
∗ ) (Λ∗ denotes the precision matrix). Then, using Theorems 9 and 10,

L(q) can now be represented as a function of µ+,Σ+,µ∗ and Λ∗ (Theorem 11). Inter-

estingly, the obtained function is convex in both µ+ and Σ+. Hence, by differentiating

L(q) with respect to µ+ and Σ+, we will be able to identify the necessary conditions

for µ∗ and Λ∗ which eliminate the derivatives at µ+ = µm and Σ+ = Σm, thus

maximizing L(q) at q(fm) ≡ q∗(fm) (Theorem 12).
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Theorem 10. Given any set of inducing inputs U = {ui}mi=1 along with their latent

outputs fm, the functional Lm(q) can be represented as a quadratic function of fm if

q(fn|fm) is the exact GP conditional [Rasmussen and Williams, 2006]:

Lm(q) = − 1

2σ2
n

fTmPTPfm +
1

σ2
n

fTmPTyn + const (5.12)

where const absorbs all terms which are independent of both fn and fm.

Proof. See Appendix D.1 for a detailed proof. �

Theorem 11. For any set of inducing inputs U = {ui}mi=1 along with their latent

outputs fm, the functional Lm(q) can be represented as a function5 of µ+ and Σ+ if

q(fm) , N
(
fm|µ+,Σ+

)
and p(fm) , N (fm|µ∗,Λ−1

∗ ) as previously assumed:

L(q) = −1

2
µT+Qµ+ −

1

2
tr (QΣ+) +

1

2
log |Σ+|

+ µT+

(
1

σ2
n

PTyn + Λ∗µ∗

)
+ const , (5.13)

where Q , (1/σ2
n)PTP + Λ∗.

Proof. Eq. (5.13) follows immediately by plugging (5.12) into (5.8) which can be

evaluated analytically if q(fm) is Gaussian. See Appendix D.2 for a detailed proof.

�

Theorem 12. If Λ∗ and µ∗ satisfy the following conditions:

Λ∗µ∗ +
1

σ2
n

PTyn =

(
1

σ2
n

PTP + Λ∗

)
µm , (5.14)

Λ∗ = Σ−1
m −

1

σ2
n

PTP . (5.15)

5Note that we only refer to L(q) as a functional when the parametric form of q is undefined.
Otherwise, L(q) can be viewed as a function of the parameters defining q.
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Then, L(q) attains its maximum value when µ+ = µm and Σ+ = Σm.

Proof. Plugging (5.15) into the definition of Q , (1/σ2
n)PTP + Λ∗ (Theorem 11),

we have Q = Σ−1
m . Then, substituting Q = Σ−1

m and (5.14) into (5.13) (Theorem 11),

we can rewrite L(q) as

L(q) = −1

2
µT+Σ−1

m µ+ −
1

2
tr
(
Σ−1
m Σ+

)
+

1

2
log |Σ+|+ µT+Σ−1

m µm + const . (5.16)

Differentiate both sides of (5.16) with respect to µ+ and Σ+, we obtain

∂L
∂µ+

= −Σ−1
m µ+ + Σ−1

m µm , (5.17)

∂L
∂Σ+

= −1

2
Σ−1
m +

1

2
Σ−1

+ . (5.18)

Thus, setting ∂L/∂µ+ = 0 and ∂L/∂Σ+ = 0, it follows that µ+ = µm and Σ+ = Σm.

In addition, since (5.16) is convex in both µ+ and Σ+
6 and there is no cross term,

it is clear that L(q) attains its maximum value when its gradient disappears. This

concludes our proof. �

Remark. Note that (5.14) and (5.15) define the space of feasible pairs (µ∗,Λ∗)

which guarantees that L(q) attains its maximum value at µ+ = µm and Σ+ =

Σm. Interestingly, it is not necessary to explicitly solve for (µ∗,Λ∗) to construct the

desirable L(q) which is maximized at q∗(fm), as demonstrated in (5.16). In fact, even

if (5.14) and (5.15) are infeasible, we can still construct L(q) by forcibly plugging

them in (5.13) though the resulting L(q) cannot be interpreted as the lower bound of

p(yn) which does not exist.

6The readers can verify this by checking that the respective second derivatives are negative semi-
definite.
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5.2.2 Scaling Up Sparse GP for Big Data (SGP+)

Using Theorem 12, a gradient-based numerical computation process which provably

converges towards (µm,Σm) can now be specified. In particular, we initialize µ
(0)
+ =

0m and Σ
(0)
+ = Im and repeat the following gradient ascent update until convergence:

µ
(t+1)
+ = µ

(t)
+ + ρt

∂L
∂µ+

(
µ

(t)
+ ,Σ

(t)
+

)
,

Σ
(t+1)
+ = Σ

(t)
+ + ρt

∂L
∂Σ+

(
µ

(t)
+ ,Σ

(t)
+

)
. (5.19)

Here, ∂L/∂µ+(µ
(t)
+ ,Σ

(t)
+ ) and ∂L/∂Σ+(µ

(t)
+ ,Σ

(t)
+ ) denote the evaluation of (5.17) and

(5.18) at µ+ = µ
(t)
+ and Σ+ = Σ

(t)
+ . The above procedure is in fact guaranteed to

converge if (a)
∑

t ρt = +∞ and (b)
∑

t ρ
2
t < +∞, which is a well-known result in

optimization. For example, one possible schedule is ρt = ρ0/(1 + τρ0t)
κ where τ , κ

and ρ0 are determined empirically.

However, this offers us no computation gain as the cost of computing the exact gradi-

ent includes the cost of evaluating q∗(fm) directly, which is O(nm2) (Appendix E.4.1).

To sidestep this issue, we adopt the stochastic gradient ascent (SGA) approach of Rob-

bins and Monro [1951] which replaces the exact gradient in (5.19) by its stochastic

estimation (∂L̂/∂µ+, ∂L̂/∂Σ+). The idea is to quickly construct (∂L̂/∂µ+, ∂L̂/∂Σ+)

by randomly sampling a mini-batch of m data points whose processing cost is inde-

pendent of n, thus making the computation expense per iteration independent of the

size of data. If E[∂L̂/∂µ+] = ∂L/∂µ+ and E[∂L̂/∂Σ+] = ∂L/∂Σ+, (5.19) is also

guaranteed to converge using the above schedule of {ρt}t (Section 5.2.2.1).

In addition, as the standard gradient of a function (e.g., L(q)) only points in the

direction of the steepest ascent if the space of its parameters (e.g., µ+ and Σ+) is

92



Chapter 5. Scalable Predictive Modeling Platforms for Active Learning

Euclidean [Amari, 1998], the numerical update in (5.19) has tacitly defined the param-

eter space of q(fm) using the Euclidean distance between two candidate parameters,

which unfortunately appears to be a poor measure of the dissimilarity between the

corresponding distributions7 [Hoffman et al., 2013]. To capture a more meaningful no-

tion of dissimilarity, we redefine the parameter space of q(fm) using the symmetrized

KL distance which is a natural measure of the dissimilarity between two probability

distributions [Hoffman et al., 2013]. Then, we derive the natural gradient of L(q)

which corresponds to its standard gradient in this redefined space [Amari, 1998]. The

resulting numerical approximation is therefore termed natural gradient ascent (NGA)

as further detailed in Section 5.2.2.2.

Discussion. As the natural gradient of L(q) (in the Euclidean space) can be equiva-

lently considered its standard gradient in the new parameter space which implements

the symmetrized KL distance [Hoffman et al., 2013], we can intuitively think of NGA

(Section 5.2.2.2) as another version of SGA (Section 5.2.2.1) that corresponds to a

different parameter space defined with a different distance metric. Both of them

thus converge towards the same optimal parameters although NGA is empirically

demonstrated to converge faster than SGA [Amari, 1998] when we are trying to op-

timize an objective function (e.g., L(q)) with respect to a parameterized distribution

(e.g., q(fm)). This is expected since the symmetrized KL distance is more accurate

than the Euclidean distance in measuring the dissimilarity between parameterized

distributions.

5.2.2.1 Approximate SGPs using SGA

This section focuses on deriving the unbiased estimation (∂L̂/∂µ+, ∂L̂/∂Σ+) of the

exact gradient (∂L/∂µ+, ∂L/∂Σ+) for which E[∂L̂/∂µ+] = ∂L/∂µ+ and E[∂L̂/∂Σ+] =

7Interested readers are referred to Section 2.3 of [Hoffman et al., 2013] for a concrete example.
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∂L/∂Σ+. To achieve this, the following decomposability conditions on µm and Σm

are necessary to facilitate the derivation of (∂L̂/∂µ+, ∂L̂/∂Σ+):

Decomposability Conditions. There exists a disjoint partition of the data D =⋃p
i=1 Di where Di = (Xi,yi) with X =

⋃p
i=1 Xi, yn = [yT1 . . .y

T
p ]T such that:

Σ−1
m =

p∑
i=1

F(m, i) + F(m) (5.20)

Σ−1
m µm =

p∑
i=1

G(m, i) + G(m) , (5.21)

where F(m, i) and G(m, i) are arbitrary functions that depend only on U = {ui}mi=1

and Di. Similarly, F(m) and G(m) only depend on U.

Remark 1. While (5.20) and (5.21) appear rather artificial in the view of the mo-

ment parameterization (i.e., µm and Σm) of q∗(fm), they can actually be viewed as

the simple additive decomposability of the natural parameters θ1 , Σ−1
m µm and

θ2 , −(1/2)Σ−1
m which define its canonical parameterization (Appendix E.5).

Remark 2. For any SGP model [Quiñonero-Candela and Rasmussen, 2005; Snelson

and Ghahramani, 2007] which assumes factorization across a pre-defined partition

X , ∪pi=1Bi (Bi ∩Bj = ∅) of the input space (5.2), the corresponding disjoint par-

tition {Di}pi=1 of the data is uniquely determined by setting Xi , Bi ∩X.

Remark 3. Interestingly, this canonical view also reveals a systematic approach of

engineering new SGPs based on the existing SGPs which satisfy (5.20) and (5.21):

Given a set of decomposable SGP models {qi(fm)}pi=1 specified by their canonical

parameterization {θi1,θi2}
p
i=1 of their low-rank covariance approximations q(fm), as-
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suming they share the same approximated conditional q(f∗|yp, fm) in (5.4), any SGP

model constructed with θ̂1 ,
∑p

i=1 αiθ
i
1 and θ̂2 ,

∑p
i=1 αiθ

i
2, where {αi}pi=1 is the

set of linear coefficients, will also satisfy (5.20) and (5.21).

In practice, the above conditions are in fact satisfied by many of the SGP models

which assume the conditional independence between local latent variables given the

global variables fm such as SoR, DTC, FITC and PITC [Quiñonero-Candela and

Rasmussen, 2005] as well as FIC and PIC [Snelson and Ghahramani, 2007]. For

interested readers, the corresponding decompositions F(m),G(m), {F(m, i)}pi=1 and

{G(m, i)}mi=1 of the above SGPs are derived in Appendix E.4.2. Now, suppose that the

above conditions are satisfied by our choice of µm and Σm, the unbiased estimation

(∂L̂/∂µ+, ∂L̂/∂Σ+) of the exact gradient is then established in the following theorem:

Theorem 13. Let S = {il}rl=1 be a set of r i.i.d samples (r > 0) which are drawn

from the uniform distribution over {1, 2, . . . , p}. Then, suppose µm and Σm satisfy

(5.20) and (5.21), the following stochastic estimation of the exact gradient is unbiased:

∂L̂

∂µ+

, G(m)− F(m)µ+ +
p

r

r∑
l=1

(
G(m, il)− F(m, il)µ+

)
, (5.22)

∂L̂

∂Σ+

,
1

2
Σ−1

+ −
1

2
F(m)− p

2r

r∑
l=1

F(m, il) . (5.23)

In other words, we have ES
[
∂L̂/∂µ+

]
= ∂L/∂µ+ and ES

[
∂L̂/∂Σ+

]
= ∂L/∂Σ+.

Proof. See Appendix D.3. �

Since (5.22) and (5.23) do not depend on n, their evaluation complexity is independent

of the size of data (Appendix E.4.3). Thus, if we choose r such that r = O(m) then

95



Chapter 5. Scalable Predictive Modeling Platforms for Active Learning

the processing cost of evaluating (∂L̂/∂µ+, ∂L̂/∂Σ+) only depends on m8. For SGP

models such as SoR, DTC, FITC, PITC, FIC and PIC, it is easy to verify that

the incurred cost of evaluating (5.22) and (5.23) is O(m3) (Appendix E.4.3). In

addition, Appendix E.4.4 shows that if q(fm) has already been evaluated, the cost

of analytically integrating q∗(f∗|fm,yp) with q∗(fm) ≡ q(fm) in (5.4) (i.e., prediction

cost) is independent of n. Thus, if the number of update iterations k is significantly

less than n/m, then we gain an computational advantage over traditional SGP models

which incurs O(nm2) processing cost (Appendix E.4.1).

5.2.2.2 Approximate SGPs using NGA

To derive the natural gradient of L(q), we first replace the moment parameterization

of q(fm) (i.e., µ+ and Σ+) by its canonical counterpart q(fm|θ), as detailed below:

q(fm|θ) = N (fm|µ+,Σ+)

= h(fm) exp
(
θTT(fm)−A(θ)

)
(5.24)

where T(fm) ,
[
fm; vec(fmfTm)

]
, h(fm) , (2π)−m/2 and A(θ) is simply the normalizing

function which guarantees that q(fm) integrates to unity. Most importantly, we define

the natural parameter as θ , [θ1; vec(θ2)] where θ1 = Σ−1
+ µ+ and θ2 = −(1/2)Σ−1

+ .

In particular, the metric distance which defines the parameter space is given by the

Riemannian metric tensor G(θ) [Amari, 1998] which corresponds to the identity

matrix in case the Euclidean metric is used. Otherwise, when the parameter space

implements the symmetrized KL distance, Hoffman et al. [2013] show that G(θ) is

8We assume that each partition has at most m data points.
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defined by the Fisher information matrix [Amari, 1998], as detailed below:

G(θ) , −Efm

[
∂2 log q(fm|θ)

∂θ∂θT

∣∣∣∣∣θ
]

=
∂2A(θ)

∂θ∂θT
, (5.25)

where the last step is formally verified in Appendix E.5.2. Then, let ∂L/∂θ be the

standard gradient of L(q) with respect to θ, its natural gradient ∂L/∂θ is defined as

∂L
∂θ

, G(θ)−1∂L
∂θ

. (5.26)

To express (5.26) in terms of µ+ and Σ+, let η , [η1; vec(η2)] where η1 = µ+ and

η2 = µ+µ
T
+ + Σ+. We can then verify that E[T(fm)] = η (Appendix E.5.1) which

implies ∂η/∂θ = G(θ) (Appendix E.5.3). Using this result, we can rewrite (5.26) as

∂L
∂θ

, G(θ)−1∂L
∂θ

= G(θ)−1∂η

∂θ

∂L
∂η

=
∂L
∂η

, (5.27)

where the last step holds because ∂η/∂θ = G(θ). Thus, we can evaluate the natural

gradient in (5.26) by taking the derivative of L(q) with respect to η as in (5.27). To

simplify the calculation, we take the partial derivatives of L(q) with respect to η1

and η2 instead of differentiating it with η directly. To achieve this, we first cast L(q)

as a function of η1 and η2:

L(q) = −1

2
ηT1 Qη1 −

1

2
tr(Qη2 −Qη1η

T
1 )

+
1

2
log |η2 − η1η

T
1 |+ ηT1 W + const , (5.28)
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with Q , (1/σ2
n)PTP + Λ∗ (Theorem 11) and W , (1/σ2

n)PTyn + Λ∗µ∗. This can

be straight-forwardly verified using (5.13) and η’s definition. The natural gradient of

L(q) is then given by

∂L
∂η1

= −
(
η2 − η1η

T
1

)−1
η1 + W , (5.29)

∂L
∂η2

=
1

2

((
η2 − η1η

T
1

)−1 −Q
)
. (5.30)

Finally, note that if we choose (Λ∗,µ∗) which satisfy (5.14) and (5.15) to guarantee

that L(q) maximizes at q(fm) ≡ q∗(fm) (Theorem 12), it then follows immediately

that Q = Σ−1
m and W = Σ−1

m µm. In addition, note that by definitions, θ1 = (η2 −

η1η
T
1 )−1η1 and θ2 = −(1/2)(η2−η1η

T
1 )−1. Hence, (5.29) and (5.30) are rewritten as

∂L
∂η1

= Σ−1
m µm − θ1 , (5.31)

∂L
∂η2

= −θ2 −
1

2
Σ−1
m . (5.32)

Eqs (5.31) and (5.32) thus reveal that if µm and Σm satisfy the decomposability

conditions (i.e., (5.20) and (5.21)) mentioned in Section 5.2.2.1, then it is also possible

to derive the unbiased stochastic estimation of the exact natural gradient in (5.31)

and (5.32), as formalized in the following theorem.

Theorem 14. Let S = {il}rl=1 be a set of r i.i.d samples (r > 0) which are drawn from

the uniform distribution over {1, 2, . . . , p}. Suppose µm and Σm satisfy (5.20) and

(5.21), the following stochastic estimation of the exact natural gradient is unbiased:

∂L̂
∂η1

,

(
G(m) +

p

r

r∑
l=1

G(m, il)

)
− θ1 , (5.33)

∂L̂
∂η2

, −θ2 −
1

2

(
F(m) +

p

r

r∑
l=1

F(m, il)

)
. (5.34)
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In other words, we have ES [∂L̂/∂η1] = ∂L/∂η1 and ES [∂L̂/∂η2] = ∂L/∂η2.

Proof. See Appendix D.4. �

Theorem 14 thus concludes our theoretical analysis which effectively establishes a

powerful suite of scaled-up SGP models for big data. While the proposed theory

is currently restricted to the class of SGP models which meet the decomposability

conditions in (5.20) and (5.21), it appears that these conditions are in fact satis-

fied by the whole class of low-rank covariance approximation SGPs introduced in

[Quiñonero-Candela and Rasmussen, 2005] and [Snelson, 2007] (see Appendix E.4.2).

More importantly, we have shown that the conditions in (5.20) and (5.21) can also be

exploited to systematically engineer new decomposable SGPs as linear combinations

of the existing SGPs (see Remark 3 of Section 5.2.2.1). As a brief summary, the

update equations in (5.19) can now be rewritten as

θ
(t+1)
1 = θ

(t)
1 + ρt

∂L̂
∂η1

(
θ

(t)
1 ,θ

(t)
2

)
, (5.35)

θ
(t+1)
2 = θ

(t)
2 + ρt

∂L̂
∂η2

(
θ

(t)
1 ,θ

(t)
2

)
, (5.36)

with Σ
(t)
+ = −(1/2)θ

(t)−1

2 and µ
(t)
+ = −(1/2)θ

(t)−1

2 θ
(t)
1 . For initialization, one can start

with θ
(0)
1 = 0m and θ

(0)
2 = Im. In particular, if µm and Σm are selected as those of

DTC [Seeger et al., 2003; Quiñonero-Candela and Rasmussen, 2005], (5.35) and (5.36)

recover the exact numerical computation of DTC [Seeger et al., 2003] as proposed in

[Hensman et al., 2013] which thus appears to be a special case of our work here.
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5.3 Experiments

This section empirically evaluates the efficiency of our proposed framework of any-

time SGP+ models (Section 5.2.2) on a wide range of large-scale real-world datasets:

(a) The AIMPEAK dataset [Chen et al., 2013b] contains n = 41850 traffic observa-

tions which are collected along 775 road segments (including highways, arterials, slip

roads, etc.) of an urban road network in Singapore during morning peak hours (6

- 10:30 a.m.). Each such observation records the traffic speed at a particular road

segment which is represented by a 5-dimensional vector of input features including

length, number of lanes, speed limit, direction and time. The traffic speeds are the

outputs whose mean and standard deviation are 49.5 (km/h) and 21.7 (km/h).

(b) The SARCOS dataset [Vijayakumar et al., 2005; Chen et al., 2013b] contains

n = 48933 data points pertaining to an inverse dynamic problem of a 7-degrees-of-

freedom SARCOS robot arm. Each data point is a tuple of 7 joint positions, 7 joint

velocities, 7 joint accelerations and 7 joint torques for which we split into (a) an in-

put vector which comprises 21 features: 7 joint positions, 7 joint velocities, 7 joint

accelerations; and (b) an output scalar which is selected as one of the 7 joint torques.

The mean output is 13.7 and its standard deviation is 20.5.

(c) The UK Housing Price datasets9 [Hensman et al., 2013] of apartment (n = 104268)

and detached house (n = 147898) price which contains hundreds of thousands entries

of property transactions in England and Wales during 2012. Each entry archives infor-

9The UK Housing Price dataset of apartment monthly transactions is previously used in [Hens-
man et al., 2013] for which the authors only use a subset of 75000 data points in their exper-
iments. For interested readers, these datasets are published at http://data.gov.uk/dataset/

land-registry-monthly-price-paid-data/
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mation about the transaction price and the postal code of the property which is con-

verted to latitude and longitude by cross-referencing against a postal code database.

The input thus comprises a 2-dimensional feature vector (i.e., latitude and longitude)

on which we regress the normalized logarithm of the transaction price (i.e., output).

All datasets are modeled using GPs whose prior covariance is defined using (a) the

anisotropic kernel function (Eq. (5.1)) for the AIMPEAK10 and SARCOS datasets

[Chen et al., 2013b] and (b) the sum of squared exponential covariances [Hensman et

al., 2013] for the UK Housing datasets

k(x,x′) =
2∑
j=1

((
σjs
)2

exp

(
−1

2

2∑
i=1

(
xi − x

′
i

`ji

)2
))

+
(
σ0
s

)2
+ σ2

nδxx′ , (5.37)

which consists of (a) 2 squared exponential terms

{
(σjs)

2
exp

(
−1

2

∑2
i=1

(
xi−x

′
i

`ji

)2
)}2

j=1

to account for the national and regional variations in property prices; (b) a constant

variance (σ0
s)

2
allowed for non-zero mean data; and (c) the observation noise σ2

nδxx′

with δxx′ = 1 if x = x′ and 0 otherwise. The hyper-parameters are learned using a

randomly selected data of size 10000 via maximum likelihood estimation [Rasmussen

and Williams, 2006].

For each experiment, a small subset of the entire dataset is randomly selected and

set aside as test data for predictions (10% for the AIMPEAK and SARCOS datasets,

5% for the UK Housing datasets). The remaining data is then partitioned into p =

k blocks using k-means to assume the conditional independence structure of SGPs

(Section 5.1.2). Our SGP+ models which include PIC+, PITC+ and DTC+ are

10To model this traffic dataset using GPs, the road segment features have to be embedded into
the Euclidean space using multi-dimension scaling [Chen et al., 2012] so that the anisotropic kernel
function (5.1) can be applied.
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then evaluated11 on all these datasets with varying k and m (Section 5.3.2). All

experiments are run on a Mac OS system with Intel Core i7 CPU at 2.66GHz and

4GB memory.

5.3.1 Performance Metrics

The tested anytime SGP+ models (i.e., PIC+, PITC+ and DTC+) are evaluated

using the following performance metrics:

Prediction Error. Suppose the anytime SGP+ model is given by q(fm) = N (fm|µ+,Σ+),

its induced predictive distribution q(f∗) = N (f∗|E[f∗],V[f∗]) for any test input x∗ can

be analytically constructed according to Appendix E.4.4. Its prediction error is de-

fined as the root mean square error (RMSE)

RMSE =

√
|S∗|−1

∑
x∈S∗

(y∗ − E[f∗])
2 ,

which is empirically evaluated on our test set S∗.

Anytime Efficiency. The anytime efficiency of these anytime SGP+ models can

be jointly demonstrated via the trade-off between their (a) Time Efficiency (TE)

which increases as we reduce the number of update iterations vs. (b) Prediction

Efficiency (PE) in comparison to those of their SGP counterparts. Formally, Time

Efficiency is defined as the incurred time of the SGP model divided by that of its

anytime SGP+ counterpart and likewise, Performance Efficiency is defined as the

prediction error of the SGP model divided by that of its anytime SGP+ counterpart.

11We do not consider SoR, FI(T)C because (a) SoR is only different from DTC in terms of their
estimation of predictive variance which will not affect their prediction’s RMSE, and (b) FI(T)C are
special cases of PI(T)C where we allocate one block for each input data.
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In practice, increasing TE reduced the processing cost of SGP+ but in exchange, it

degrades PE.

5.3.2 Results and Analysis

This section reports and analyzes the performance of PIC+, PITC+ and DTC+

on all datasets: (a) AIMPEAK (Figs. 5.1, 5.2, 5.3, 5.5 and 5.4), (b) SARCOS

(Figs. 5.6, 5.7, 5.8, 5.9 and 5.10), and (c) UK Housing Price (Figs. 5.11, 5.12, 5.13, 5.14

and 5.15) with varying support set sizes m and number k of partitions/blocks.

5.3.2.1 AIMPEAK Dataset

Figs. 5.1, 5.2 and 5.3 consistently show that the anytime predictive performance of

PIC+, PITC+ and DTC+ always converge towards those of PIC, PITC and DTC

with varying support set size m = 250, 500, 750, 1000 and number k = 50, 75, 100 of

blocks. This verifies and supports the previously developed theory in Section 5.2.2

that the predictive distributions of the proposed anytime SGP+ models asymptoti-

cally approach those of their SGP counterparts.

Remarkably, it can also be observed from Figs. 5.1, 5.2 and 5.3 that the prediction

errors of PIC+, PITC+ and DTC+ appear to decrease exponentially as the num-

ber of update iterations increases. Fig. 5.4 further investigates this in terms of the

trade-off between prediction vs. time efficiency (Section 5.3.1) which essentially cap-

tures how the prediction efficiency will degrade if we boost the time efficiency of the

SGP+ models to meet the real-time requirements in time-critical applications. For

example, Fig. 5.14c indicates that PIC+ can preserve 80% of PIC’s prediction effi-

ciency (i.e., PE = 0.8), meaning that PIC+’s prediction error is only 1/0.8 = 1.25

times larger than PIC’s, while processing data 10 times as fast as PIC (i.e., TE = 10).
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On the other hand, Fig. 5.5 reveals that PIC+ significantly outperforms PITC+

and DTC+ for all settings of m and k: Its stage-wise prediction error falls below

those of PITC+ and DTC+ by a large margin. This is expected because unlike

PITC [Quiñonero-Candela and Rasmussen, 2005] and DTC [Seeger et al., 2003] which

tacitly assume the conditional independence between the test and training outputs

(i.e., f∗ and fn) given the inducing output fm (see Remark 1 after Eq. (5.4)), PIC

[Snelson, 2007] does not. As a result, it is capable of exploiting both local and

global information (e.g., p(f∗|fm,yp) and q(fm)) to improve its prediction. On the

contrary, PITC and DTC’s conditional independence assumption technically implies

p(f∗|fm,yp) = p(f∗|fm) (see Remark 2 after Eq. (5.4)) and consequently, ignore the

local information yp which comes from the data block that contains x∗. Then, as

PIC+ (PITC+, DTC+) is designed to converge towards PIC (PITC, DTC) (Sec-

tion 5.2.2), it directly inherits the above modeling advantage (disadvantage) of PIC

(PITC, DTC) which empirically results in its superior predictive performance.

5.3.2.2 SARCOS and UK Housing Price Datasets

Similar to the our previous observations of the AIMPEAK dataset (Section 5.3.2.1),

it can be observed from both the SARCOS and UK Housing Price datasets’ empirical

results that:

(a) The predictive performance of PIC+ (Figs. 5.6, 5.11a-c and 5.12a-c), PITC+

(Figs. 5.7, 5.11d-f and 5.12d-f) and DTC+ (Figs. 5.8, 5.11g-i and 5.12g-i) empirically

converges towards those of PIC, PITC and DTC with varying m and k, thus provid-

ing further support for our developed theory in Section 5.2.2.

(b) PIC+ significantly outperforms both PITC+ and DTC+ on all experiment set-
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tings (Figs. 5.9 and 5.13) which is expected since PIC+ can exploit local information

to improve its performance while the others cannot (see Section 5.3.2.1 for a detailed

explanation). In addition, Fig. 5.13 interestingly reveals that PITC+ significantly

outperforms DTC+ on the UK Housing Price datasets while maintaining a compet-

itive performance on both the SARCOS and AIMPEAK datasets (Figs. 5.5, 5.9).

Despite being a little bit more complicated and less straight-forward, this observa-

tion is in fact not unexpected considering that DTC+ inherits DTC’s fundamental

assumption of the deterministic relation between the support and training variables

(i.e., fm and fn) which might seriously affects its prediction when the measurement

noise is low [Snelson and Ghahramani, 2007]: According to our inspection, the mea-

surement noises of the UK Housing Price datasets are significantly lower than those

of the AIMPEAK and SARCOS datasets.

(c) Figs. 5.10, 5.14 and 5.15 illustrate the anytime trade-off curve between the time

vs. prediction efficiency of these SGP+ models (i.e., PIC+, PITC+ and DTC+)

which essentially explains what happens to their predictive performance if their pro-

cessing time is reduced (hence, increasing the time efficiency), thus providing us with

a powerful tool for making good decisions in time-critical, data-intensive applications.

Besides, in most of the cases, we notice that the anytime curves of PIC+ and PITC+

appears less steep than that of DTC+ which suggests that PIC+ and PITC+ might

achieve better speedup than DTC+ given the same level of predictive efficiency to

maintain.

5.3.3 Summary

Finally, to conclude our empirical analysis, this section provides a brief summary of

the most important observations that we have presented and analyzed in the previous
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sections: (a) The predictive performance of PIC+, PITC+ and DTC+ consistently

converges towards those of PIC, PITC and DTC when evaluated on all datasets with

various SGP settings; (b) PIC+ significantly outperforms both PITC+ and DTC+

on all experiment settings and in addition, PITC+ also appears to significantly out-

perform DTC+ on the low-noise UK Housing Price datasets while maintaining a

competitive performance on the others. This highlights the significance of having a

general framework to approximate any SGP model in an anytime fashion, thus bring-

ing more competitive learning models to the arena of big data, which is the main

thrust of our work here; (c) Lastly, we also empirically analyze the anytime speedup

capabilities of our PIC+, PITC+ and DTC+ models given some level of predictive

efficiency to maintain via their corresponding trade-off curves, thus providing a pow-

erful tool for making good decisions in time-critical, data-intensive applications.
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Figure 5.1: PIC+’s anytime prediction error empirically converges towards that of PIC on
the AIMPEAK dataset with varying support set size m = 250, 500, 750, 1000 and number
k = 50, 75, 100 of blocks.
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Figure 5.2: PITC+’s anytime prediction error empirically converges towards that of PITC
on the AIMPEAK dataset with varying support set size m = 250, 500, 750, 1000 and
number k = 50, 75, 100 of blocks.
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Figure 5.3: DTC+’s anytime prediction error empirically converges towards those of DTC
on the AIMPEAK dataset with varying support set size m = 250, 500, 750, 1000 and
number k = 50, 75, 100 of blocks.
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Figure 5.4: Graphs of time vs. prediction efficiency (TE vs. PE) trade-off for (a-c) PIC+,
(d-f) DTC+ and (g-i) PITC+ evaluated on the AIMPEAK dataset with varying support
set size m = 250, 500, 750, 1000 and number k = 100 of blocks.
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Figure 5.5: Graphs of the anytime RMSE of PIC+, PITC+ and DTC+ evaluated on the
AIMPEAK dataset with varying support set size m = 250, 500, 750, 1000 and number
k = 50, 75, 100 of blocks.
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Figure 5.6: PIC+’s anytime predictive performance on the SARCOS dataset with varying
support set size m = 250, 500, 750, 1000 and number k = 50, 75, 100 of blocks.
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Figure 5.7: PITC+’s anytime predictive performance on the SARCOS dataset with varying
support set size m = 250, 500, 750, 1000 and number k = 50, 75, 100 of blocks.
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Figure 5.8: DTC+’s anytime predictive performance on the SARCOS dataset with varying
support set size m = 250, 500, 750, 1000 and number k = 50, 75, 100 of blocks.
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Figure 5.9: Graphs of the anytime RMSE of PIC+, PITC+ and DTC+ evaluated on
the SARCOS dataset with varying support set size m = 250, 500, 750, 1000 and number
k = 50, 75, 100 of blocks.

115



Chapter 5. Scalable Predictive Modeling Platforms for Active Learning

0 2 4 6 8 10 12
0.4

0.5

0.6

0.7

0.8

0.9

1

TE

P
E

 

 

PIC+

0 5 10 15
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

TE

P
E

 

 

PIC+

0 2 4 6 8

0.4

0.5

0.6

0.7

0.8

0.9

1

TE

P
E

 

 

PIC+

(a) m = 500, k = 100 (b) m = 750, k = 100 (c) m = 1000, k = 100

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

TE

P
E

 

 

DTC+

0 2 4 6 8 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TE

P
E

 

 

DTC+

0 2 4 6 8 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

TE

P
E

 

 

DTC+

(d) m = 500, k = 100 (e) m = 750, k = 100 (f) m = 1000, k = 100

0 2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

TE

P
E

 

 

PITC+

0 5 10 15
0.5

0.6

0.7

0.8

0.9

1

TE

P
E

 

 

PITC+

0 2 4 6 8
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TE

P
E

 

 

PITC+

(g) m = 500, k = 100 (h) m = 750, k = 100 (i) m = 1000, k = 100

Figure 5.10: Graphs of time vs. prediction efficiency (TE vs. PE) trade-off for (a-c) PIC+,
(d-f) DTC+ and (g-i) PITC+ evaluated on the SARCOS dataset with varying support
set size m = 500, 750, 1000 and number k = 100 of blocks.
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Figure 5.11: PIC+, PITC+ and DTC+’s anytime predictive performance converge towards
those of PIC, PITC and DTC on the UK Housing Price dataset for flat apartments with
support set size m = 250 and varying number k = 100, 150, 200 of blocks.
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Figure 5.12: PIC+, PITC+ and DTC+’s anytime predictive performance converge towards
those of PIC, PITC and DTC on the UK Housing Price dataset for detached houses with
support set size m = 250 and varying number k = 100, 150, 200 of blocks.
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Figure 5.13: Graphs of the anytime RMSE of PIC+, PITC+ and DTC+ evaluated on
the UK Housing Price dataset for (a-c) flat apartments and (d-f) detached houses with
support set size m = 250 and varying number k = 100, 150, 200 of blocks.
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Figure 5.14: Graphs of time vs. prediction efficiency (TE vs. PE) trade-off for (a-c)
PIC+, (d-f) PITC+ and (g-i) DTC+ evaluated on the UK Housing Price dataset for flat
apartments with support set size m = 250 and varying number k = 100, 150, 200 of
blocks.
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Figure 5.15: Graphs of time vs. prediction efficiency (TE vs. PE) trade-off for (a-c) PIC+,
(d-f) PITC+ and (g-i) DTC+ evaluated on the UK Housing Price dataset for detached
houses with support set size m = 250 and varying number k = 100, 150, 200 of blocks.
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Conclusion

This thesis has investigated the following question:

Given a resource-constrained budget for interaction, how then does an interac-

tive learning agent optimize the trade off between exploration and exploitation

in practical, complex environmental domains efficiently?

6.1 Summary of Contributions

While working toward a satisfactory answer to the above question, along with prac-

tical algorithms that achieve it, we have been able to make the following progress:

We have generalized the existing BRL framework [Poupart et al., 2006] to

integrate the general class of parametric models and model priors of the envi-

ronment, thus successfully bridging the gap in applying BRL to more realistic

and practical problem domains such as self-interested multi-agent learning

[Hoang and Low, 2013a].

We have established a formal, nonmyopic framework to circumvent this exploration-

exploitation dilemma in budgeted AL scenarios, which guarantees a near
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Bayes-optimal expected performance and consequently, closes up the gap in

putting AL into practical, complex environmental domains while preserving

the Bayes optimality [Hoang et al., 2014].

To assist future developments of nonmyopic AL on large-scale environments,

we have laid a theoretical foundation for scaling up the existing class of learn-

ing models to process massive datasets containing hundreds of thousands

data points on a single machine. Though it is difficult to foresee the future of

nonmyopic AL research in large-scale domains, its trajectory will likely require

more scalable learning models.

All of which are substantiated by the following specific contributions:

• Formalization of I-BRL. I-BRL significantly extends BRL to integrate the general

class of parametric models and model priors of the environment (Section 3.1)

and consequently, relaxes the restrictive assumption of BRL that is often im-

posed in existing works and offers practitioners greater flexibility to encode their

prior domain knowledge effectively.

• Solving I-BRL. Through I-BRL, it is demonstrated that the nonmyopic Bayes-

optimal policy can be analytically derived (Section 3.2.1) and efficiently ap-

proximated (Section 3.2.2) with respect to an arbitrary choice of model and

model prior for the unknown environment. Then, in practice, we empirically

show the effectiveness of I-BRL in an interesting traffic problem modeled after

a real-world situation for which the restrictive assumptions of BRL do not hold

(Section 3.3).

• Formalization of ε-BAL. To establish a theoretical foundation for trading off be-

tween exploration and exploitation in nonmyopic active learning, which is still a

research topic in its infancy, we develop a novel ε-BAL learning paradigm that
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frames active learning as a Bayesian sequential decision problem to jointly and

naturally optimize the exploration-exploitation trade-off while preserving the

desired Bayes optimality (Section 4.2.1). Using ε-BAL, we can recognize and

then, penalize a policy that biases towards exploitation if it entails a highly dis-

persed posterior over the model parameters. Consequently, the induced policy

is guaranteed to be optimal in the expected active learning performance.

• Solving ε-BAL. Although the exact Bayes-optimal policy to nonmyopic active

learning cannot be derived exactly, ε-BAL demonstrates that it is nevertheless

possible to solve for an ε-Bayes-optimal policy analytically (Sections 4.2.2 and

4.2.3) and approximate it efficiently using an anytime algorithm based on ε-BAL

with real-time performance guarantees (Section 4.2.4). In practice, we evaluate

and verify its superior performance over the existing state-of-the-art algorithms

using both synthetic and real-world datasets (Section 4.3).

• Scaling up Sparse Gaussian Processes (SGPs) for Big Data. To scale up the existing

SGP-based learning models to large datasets, we demonstrate how a numeri-

cal approximation procedure which converges towards a given SGP model can

be derived by a novel inverse variational inference framework (Section 5.2.1).

Interestingly, we identify a class of SGP-based models for which it is possible

to make the complexity for each update iteration independent of the size of

data, thus resulting in an anytime learning paradigm that naturally trades off

between the computing resource and the accuracy of estimation (Section 5.2.2).

In practice, we demonstrate the efficiency of our framework on a wide range of

large-scale real-world datasets which contain hundreds of thousand data points

(Section 5.3).
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6.2 Future Works

This section proposes and discusses potential research directions that could be pur-

sued as continuation to our current work in this thesis:

• Large-scale Nonmyopic Active Learning. The work in this thesis has mainly fo-

cused on small-scale AL applications for which the learning agent is constrained

by an active budget of at most a few hundreds of experiments/queries where

each of which returns a single observation sample, thus underrating the scalabil-

ity of their underlying predictive model (e.g., Gaussian processes). In contrast,

for data-intensive domains (see Chapter 2.2), each conducted experiment/query

might return a batch of observations instead of a single one, thus tremendously

increasing the size of the collected dataset. This consequently renders the pre-

dictive model computationally impractical. For such reason, it is therefore

highly interesting and desirable to develop AL algorithms capable of simulta-

neously selecting a batch of experiments/queries per stage while optimizing the

exploration-exploitation trade-off in such nonmyopic fashion.

Although we have already developed more scalable learning models to assist

future developments in this direction (Chapter 5), deriving scalable, nonmyopic

AL strategies to perform efficiently in large-scale domains remains highly non-

trivial. In fact, a simple approach toward achieving this is to fix the batch size

k in advance and exhaustively enumerate all possible combinations of k actions

at each decision-making stage of the single-mode AL algorithm introduced in

Chapter 4. However, this is highly inefficient in time-critical applications as

the cost of enumerating these combinations will certainly grow exponentially in

k. To avoid this computational bottleneck, one feasible approach is to consider

using the developed nonmyopic AL policy (Chapter 4) on a macro level which
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sequentially directs the learning agent towards the most informative regions

(given its previously collected data) and uses the existing greedy (single-mode)

AL strategies to quickly select a batch of observations. Analyzing the theo-

retical performance of this macro approach is an important step to gauge its

feasibility in practice, which could be pursued as continuation to our work.

• Multi-output Nonmyopic Active Learning. The existing AL literature, including

the work in this thesis, is still restricted to single-output learning scenarios for

which each measurement is a single scalar. In practice, however, it is more

often that we encounter multi-output domains where each measurement is a

vector of multiple components which are probably correlated: Treating them

separately essentially means neglecting important information which might lead

to poor prediction. More specifically, these measurements may only be partially

observable to us, meaning that parts of such measurement vectors are not di-

rectly observable to us. This further raises the incomplete/missing data issue.

Assuming we have plenty of data for one particular component but significantly

less for another, can we then exploit the correlation between these components

to improve our prediction for the less-data component?

Naively, this involves constructing an inter-correlation structure to model this

phenomenon and facilitate a full Bayesian treatment. However, while there

exists a multitude of works [Higdon, 2002; Boyle and Frean, 2005; Bonilla et al.,

2008; Álvarez et al., 2010] addressing this problem, it is still unclear whether

the proposed multi-output models indeed exhibit a necessary decomposable

structure (see Eqs. (5.20) and (5.21)) which could lend itself to the development

of a similar anytime strategy as we previously demonstrated in Chapter 5 for
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the single-output case. Ultimately, how do we integrate this in a nonmyopic AL

framework efficiently? These are the highly non-trivial questions that we seek

to address as a potential extension of our current work.
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Appendix A

Proofs of Main Results for Chapter 3

This section provides more detailed proof sketches for Theorems 2 and 3 as mentioned

in Section 3.2.

A.1 Proof of Theorem 2

Theorem 2. The optimal value function V k for k steps-to-go converges to the optimal

value function V for infinite horizon as k →∞:

‖V − V k+1‖∞ ≤ φ‖V − V k‖∞ . (A.1)

Proof Sketch. Define Lks(b) = |Vs(b) − V k
s (b)|. Using |maxa f(a) − maxa g(a)| ≤

maxa |f(a)− g(a)|,

Lk+1
s (b) ≤ φmax

u

∑
v,s′

〈pvs , b〉 puvs (s′)Lks′(b
v
s)

≤ φmax
u

∑
v,s′

〈pvs , b〉 puvs (s′)‖V − V k‖∞

= φ‖V − V k‖∞ . (A.2)
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Since the last inequality (A.2) holds for every pair (s, b), it follows that ‖V −V k+1‖∞ ≤

φ‖V − V k‖∞. This completes our proof. �

A.2 Proof of Theorem 3

Theorem 3. The optimal value function V k
s (b) for k steps-to-go can be represented

as a finite set Γks of α-functions:

V k
s (b) = max

αs∈Γks

〈αs, b〉 . (A.3)

Proof Sketch. We give a constructive proof to (A.3) by induction, which shows how

Γks can be built recursively. Assuming that (A.3) holds for k 1, it can be proven that

(A.3) also holds for k + 1. In particular, it follows from our inductive assumption

that the term V k
s′ (b

v
s) in (3.5) can be rewritten as:

V k
s′ (b

v
s) =

|Γk
s′ |

max
j=1

∫
λ

αjs′(λ)bvs(λ)dλ

=
|Γk
s′ |

max
j=1

∫
λ

αjs′(λ)
pvs(λ)b(λ)

〈pvs , b〉
dλ

= 〈pvs , b〉
−1
|Γk
s′ |

max
j=1

∫
λ

b(λ)αjs′(λ)pvs(λ)dλ . (A.4)

By plugging the above equation into (3.5) and using rsb(u) =
∑

v 〈pvs , b〉 rs(u, v),

V k+1
s (b) = max

u

(
rsb(u) + φ

∑
s′,v

|Γk
s′ |

max
j=1

puvs (s′)Qv
s(α

j
s′ , b)

)
, (A.5)

1When k = 0, (A.3) can be verified by letting αs(λ) = 0
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where Qv
s(α

j
s′ , b) =

∫
λ
αjs′(λ)pvs(λ)b(λ)dλ. Now, applying the fact that

∑
s′

∑
v

|Γk
s′ |

max
ts′v=1

As′v[ts′v] = max
t

∑
s′

∑
v

As′v[ts′v] , (A.6)

where As′v[ts′v] = puvs (s′)Qv
s(α

ts′v
s′ , b) and using rsb(u) =

∫
λ
b(λ)

∑
v p

v
s(λ)rs(u, v)dλ,

equation (A.5) can be rewritten as

V k+1
s (b) = max

u,t

∫
λ

b(λ)αuts (λ)dλ , (A.7)

with t = (ts′v)s′∈S,v∈V and

αuts (λ) =
∑
v

pvs(λ)

(
rs(u, v) + φ

∑
s′

α
ts′v
s′ (λ)puvs (s′)

)
. (A.8)

By setting Γk+1
s = {αuts }u,t and uαuts = u, it can be verified that (A.3) also holds for

k + 1. Our proof is therefore completed. �
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Appendix B

Proofs of Main Results for Chapter 4

B.1 Proof of Lemma 1

We will give a proof by induction on n that

|Q∗n(zD, x)−Qε
n(zD, x)| ≤ (N − n+ 1)γ (B.1)

for all tuples (n, zD, x) generated at stage n = n′, . . . , N by (4.9) to compute V ε
n′(zD′).

When n = N , W ∗
N(zD, x) = Qε

N(zD, x) in (4.11), by definition. So, |Q∗N(zD, x) −

Qε
N(zD, x)| ≤ γ (B.1) trivially holds for the base case. Supposing (B.1) holds for

n+ 1 (i.e., induction hypothesis), we will prove that it holds for n′ ≤ n < N :

|Q∗n(zD, x)−Qε
n(zD, x)| ≤ |Q∗n(zD, x)−W ∗

n(zD, x)|+ |W ∗
n(zD, x)−Qε

n(zD, x)|

≤ γ + |W ∗
n(zD, x)−Qε

n(zD, x)|

≤ γ + (N − n)γ = (N − n+ 1)γ . (B.2)
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The first and second inequalities follow from the triangle inequality and (4.11), re-

spectively. The last inequality is due to

|W ∗
n(zD, x)−Qε

n(zD, x)| ≤ 1

S

S∑
i=1

∣∣V ∗n+1(zD ∪ {zix})− V ε
n+1(zD ∪ {zix})

∣∣
≤ 1

S

S∑
i=1

max
x′

∣∣Q∗n+1(zD ∪ {zix}, x′)−Qε
n+1(zD ∪ {zix}, x′)

∣∣
≤ (N − n)γ (B.3)

such that the last inequality follows from the induction hypothesis. From (B.1), when

n = n′, |Q∗n′(zD′ , x)−Qε
n′(zD′ , x)| ≤ (N − n′ + 1)γ for all x ∈ X \ D′ since D = D′

and zD = zD′ . �

B.2 Proof of Lemma 2

Let’s define W i
n(zD, x) , − log p(zix|zD) + V ∗n+1(zD ∪ {zix}). Then, W ∗

n(zD, x) =

S−1
∑S

i=1 W
i
n(zD, x) can be viewed as an empirical mean computed based on the

random samples W i
n(zD, x) drawn from a distribution whose mean coincides with

Q̂n (zD, x) , Ĥ
[
Ẑx|zD

]
+ E

[
V ∗n+1

(
zD ∪ {Ẑx}

)
|zD
]

Ĥ
[
Ẑx|zD

]
, −

∫ τ̂

−τ̂
f
(
Ẑx = zx|zD

)
log p (Zx = zx|zD) dzx

− f
(
Ẑx = −τ̂ |zD

)
log p (Zx = −τ̂ |zD)

− f
(
Ẑx = τ̂ |zD

)
log p (Zx = τ̂ |zD) (B.4)

such that the expectation term is omitted from the RHS expression of Q̂N at stage N ,

and recall from Definition 1 that f and p are distributions of Ẑx and Zx, respectively.
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Using Hoeffding’s inequality,∣∣∣∣∣Q̂n (zD, x)− 1

S

S∑
i=1

W i
n (zD, x)

∣∣∣∣∣ ≤ γ

2

with probability at least 1− 2 exp(−Sγ2/
(
2(W −W )2

)
) where W and W are upper

and lower bounds of W i
n(zD, x), respectively. To determine these bounds, note that

|zix| ≤ τ̂ , by Definition 1, and |µx|D,λ| ≤ τ̂ − τ , by (4.8). Consequently, 0 ≤ (zix −

µx|D,λ)
2 ≤ (2τ̂−τ)2 ≤ (2NκN−1τ−τ)2 = (2NκN−1−1)2τ 2 such that the last inequality

follows from Lemma 8. Together with using Lemma 7, the following result ensues:

1√
2πσ2

n

≥ p(zix|zD, λ) ≥ 1√
2πσ2

o

exp

(
−(2NκN−1 − 1)2τ 2

2σ2
n

)
(B.5)

where σ2
n and σ2

o are previously defined in (4.14). It follows that

p(zix|zD) =
∑
λ∈Λ

p(zix|zD, λ) bD(λ)

≥
∑
λ∈Λ

[
1√

2πσ2
o

exp

(
−(2NκN−1 − 1)2τ 2

2σ2
n

)]
bD(λ)

=
1√

2πσ2
o

exp

(
−(2NκN−1 − 1)2τ 2

2σ2
n

)
.

Similarly, p(zix|zD) ≤ 1/
√

2πσ2
n. Then,

− log p(zix|zD) ≤ 1

2
log
(
2πσ2

o

)
+

(2NκN−1 − 1)2τ 2

2σ2
n

,

− log p(zix|zD) ≥ 1

2
log
(
2πσ2

n

)
.
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By Lemma 11, 0.5(N −n) log
(
2πeσ2

n

)
≤ V ∗n+1(zD ∪{zix}) ≤ 0.5(N −n) log

(
2πeσ2

o

)
+

log |Λ|. Consequently,

∣∣W −W ∣∣ ≤ N log

(
σo
σn

)
+

(2NκN−1 − 1)2τ 2

2σ2
n

+ log |Λ|

= O
(
N2κ2Nτ 2

σ2
n

+N log
σo
σn

+ log |Λ|
)
.

Finally, using Lemma 17, |Q∗n(zD, x)− Q̂n(zD, x)| ≤ γ/2 by setting

τ = O

σo
√

log

(
σ2
o

γ

(
N2κ2N + σ2

o

σ2
n

+N log
σo
σn

+ log |Λ|
)),

thereby guaranteeing that

|Q∗n(zD, x)−W ∗
n(zD, x)| ≤ |Q∗n(zD, x)− Q̂n(zD, x)|+ |Q̂n(zD, x)−W ∗

n(zD, x)|

≤ γ

2
+
γ

2
= γ

with probability at least 1− 2 exp (−2Sγ2/T 2) where

T = 2
∣∣W −W ∣∣ = O

(
N2κ2Nτ 2

σ2
n

+N log
σo
σn

+ log |Λ|
)
. �

B.3 Proof of Lemma 3

From Lemma 2,

P (|Q∗n(zD, x)−W ∗
n(zD, x)| > γ) ≤ 2 exp

(
−2Sγ2

T 2

)

for each tuple (n, zD, x) generated at stage n = n′, . . . , N by (4.9) to compute V ε
n′(zD′).

Since there will be no more than (S|X |)N tuples (n, zD, x) generated at stage n =
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n′, . . . , N by (4.9) to compute V ε
n′(zD′), the probability that |Q∗n(zD, x)−W ∗

n(zD, x)| >

γ for some generated tuple (n, zD, x) is at most 2(S|X |)N exp(−2Sγ2/T 2) by applying

the union bound. Lemma 3 then directly follows. �

B.4 Proof of Theorem 5

Suppose that a set zD of observations, a budget of N − n + 1 sampling locations,

S ∈ Z+, and γ > 0 are given. It follows immediately from Lemmas 1 and 3 that the

probability of |Q∗n(zD, x) − Qε
n(zD, x)| ≤ Nγ (4.12) holding for all x ∈ X \ D is at

least

1 − 2 (S |X |)N exp

(
−2Sγ2

T 2

)

where T is previously defined in Lemma 2.

To guarantee that |Q∗n(zD, x)−Qε
n(zD, x)| ≤ Nγ (4.12) holds for all x ∈ X \D0 with

probability at least 1− δ, the value of S to be determined must therefore satisfy the

following inequality:

1− 2 (S |X |)N exp

(
−2Sγ2

T 2

)
≥ 1− δ ,

which is equivalent to

S ≥ T 2

2γ2

(
N logS +N log |X |+ log

2

δ

)
. (B.6)

Using the identity log S ≤ αS−logα−1 with an appropriate choice of α = γ2/(NT 2),
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the RHS expression of (B.6) can be bounded from above by

S

2
+
T 2

2γ2

(
N log

N |X |T 2

eγ2
+ log

2

δ

)
.

Therefore, to satisfy (B.6), it suffices to determine the value of S such that the

following inequality holds:

S ≥ S

2
+
T 2

2γ2

(
N log

N |X |T 2

eγ2
+ log

2

δ

)

by setting

S =
T 2

γ2

(
N log

N |X |T 2

eγ2
+ log

2

δ

)
(B.7)

where T , O
(
N2κ2Nτ 2

σ2
n

+N log
σo
σn

+ log |Λ|
)

by further setting

τ = O

σo
√

log

(
σ2
o

γ

(
N2κ2N + σ2

o

σ2
n

+N log
σo
σn

+ log |Λ|
)),

as defined in Lemma 2 previously. By assuming σo, σn, |Λ|, N , κ, and |X | as constants,

τ = O(
√

log(1/γ)), thus resulting in T = O(log(1/γ)). Consequently, (B.7) can be

reduced to

S = O


(

log
(

1
γ

))2

γ2
log

 log
(

1
γ

)
γδ


 . �
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B.5 Proof of Lemma 4

Theorem 5 implies that (a) Q∗n(zD, π
∗
n(zD)) − Q∗n(zD, π

ε
n(zD)) ≤ Q∗n(zD, π

∗
n(zD)) −

Qε
n(zD, π

ε
n(zD))+Nγ and (b)Q∗n(zD, π

∗
n(zD))−Qε

n(zD, π
ε
n(zD)) ≤ maxx∈X\D |Q∗n(zD, x)−

Qε
n(zD, x)| ≤ Nγ. By combining (a) and (b), Q∗n(zD, π

∗
n(zD)) − Q∗n(zD, π

ε
n(zD)) ≤

Nγ + Nγ = 2Nγ holds with probability at least 1− δ by setting S and τ according

to that in Theorem 5. �

B.6 Proof of Theorem 6

By Lemma 4, Q∗n(zD, π
∗
n(zD))−Q∗n(zD, π

ε
n(zD)) ≤ 2Nγ holds with probability at least

1 − δ. Otherwise, Q∗n(zD, π
∗
n(zD)) − Q∗n(zD, π

ε
n(zD)) > 2Nγ with probability at most

δ. In the latter case,

Q∗n(zD, π
∗
n(zD))−Q∗n(zD, π

ε
n(zD)) ≤ (N − n+ 1) log

(
σo
σn

)
+ log |Λ|

≤ N log

(
σo
σn

)
+ log |Λ|

where the first inequality in (B.8) follows from (a) Q∗n(zD, π
∗
n(zD)) = V ∗n (zD) ≤

0.5(N − n+ 1) log(2πeσ2
o) + log |Λ|, by Lemma 11, and (b)

Q∗n (zD, π
ε
n(zD)) = H

[
Zπεn(zD)|zD

]
+ E

[
V ∗n+1

(
zD ∪ {Zπεn(zD)}

)
|zD
]

≥ 1

2
log
(
2πeσ2

n

)
+

1

2
(N − n) log

(
2πeσ2

n

)
=

1

2
(N − n+ 1) log

(
2πeσ2

n

)
such that the inequality in (B.8) is due to Lemmas 11 and 12, and the last inequality

in (B.8) holds because σo ≥ σn, by definition in (4.14) (hence, log (σo/σn) ≥ 0).

Recall that πε is a stochastic policy (instead of a deterministic policy like π∗) due to
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its use of the truncated sampling procedure (Section 4.2.2), which implies πεn(zD) is

a random variable. As a result,

Eπεn(zD) [Q∗n(zD, π
∗
n(zD))−Q∗n(zD, π

ε
n(zD))] ≤ (1− δ) (2Nγ) + δ

(
N log

(
σo
σn

)
+ log |Λ|

)
≤ 2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

)
(B.8)

where the expectation is with respect to random variable πε(zD) and the first inequal-

ity follows from Lemma 4 and (B.8). Using the facts that

Eπεn(zD) [Q∗n(zD, π
∗
n(zD))−Q∗n(zD, π

ε
n(zD))] = V ∗n (zD)− Eπεn(zD) [Q∗n(zD, π

ε(zD))]

and Eπεn(zD) [Q∗n (zD, π
ε
n(zD))] = Eπεn(zD)

[
H[Zπεn(zD)|zD] + E

[
V ∗n+1

(
zD ∪ {Zπεn(zD)}

)
|zD
]]

,

(B.8) therefore becomes

V ∗n (zD)− Eπεn(zD)

[
H[Zπεn(zD)|zD]

]
≤ Eπεn(zD)

[
E
[
V ∗n+1

(
zD ∪ {Zπεn(zD)}

)
|zD
]]

+2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

)
(B.9)

such that there is no expectation term on the RHS expression of (B.9) when n = N .

From (4.6), V π
1 (zD0) can be expanded into the following recursive formulation using

chain rule for entropy:

V π
n (zD) = H

[
Zπn(zD)|zD

]
+ E

[
V π
n+1

(
zD ∪ {Zπn(zD)}

)
|zD
]

(B.10)

for stage n = 1, . . . , N where the expectation term is omitted from the RHS expression

of V π
N at stage N . Using (B.9) and (B.10) above, we will now give a proof by induction

on n that
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V ∗n (zD)− E{πεi}Ni=n
[
V πε

n (zD)
]
≤ (N − n+ 1)

(
2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

))
.

(B.11)

When n = N ,

V ∗N(zD)− E{πεN}
[
V πε

N (zD)
]

= V ∗N(zD)− EπεN (zD)

[
H[ZπεN (zD)|zD]

]
≤ 2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

)

such that the equality is due to (B.10) and the inequality follows from (B.9). So,

(B.11) holds for the base case. Supposing (B.11) holds for n + 1 (i.e., induction

hypothesis), we will prove that it holds for n < N :

V ∗n (zD)− E{πεi}Ni=n
[
V πε

n (zD)
]

= V ∗n (zD)− Eπεn(zD)

[
H
[
Zπεn(zD)|zD

]]
− Eπεn(zD)

[
E
[
E{πεi}Ni=n+1

[
V πε

n+1

(
zD ∪ {Zπεn(zD)}

)] ∣∣∣zD]]
≤ Eπεn(zD)

[
E
[
V ∗n+1

(
zD ∪ {Zπεn(zD)}

)
|zD
]]

+ 2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

)
− Eπεn(zD)

[
E
[
E{πεi}Ni=n+1

[
V πε

n+1

(
zD ∪ {Zπεn(zD)}

)] ∣∣∣zD]]
= Eπεn(zD)

[
E
[
V ∗n+1

(
zD ∪ {Zπεn(zD)}

)
−E{πεi}Ni=n+1

[
V πε

n+1

(
zD ∪ {Zπεn(zD)}

)] ∣∣∣zD]]
+ 2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

)
≤ (N − n)

(
2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

))
+ 2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

)
= (N − n+ 1)

(
2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

))
.
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such that the first equality is due to (B.10), and the first and second inequalities

follow from (B.9) and induction hypothesis, respectively.

From (B.11), when n = 1,

V ∗1 (zD)− Eπε
[
V πε

1 (zD)
]

= V ∗1 (zD)− E{πεi}Ni=1

[
V πε

1 (zD)
]

≤ N

(
2Nγ + δ

(
N log

(
σo
σn

)
+ log |Λ|

))
.

Let ε = N(2Nγ + δ(N log(σo/σn) + log |Λ|)) by setting γ = ε/(4N2) and δ =

ε/(2N(N log(σo/σn) + log |Λ|)). As a result, from Lemma 4, τ = O(
√

log(1/ε))

and consequently, it follows that

S = O

((
log
(

1
ε

))2

ε2
log

(
log
(

1
ε

)
ε2

))
.

Theorem 6 then follows. �

B.7 Proof of Theorem 15

Theorem 15. Let π be any stochastic policy. Then, Eπ [V π
1 (zD0)] ≤ V ∗1 (zD0).

Proof. We will give a proof by induction on n that

E{πi}Ni=n [V π
n (zD)] ≤ V ∗n (zD) .
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When n = N , we have

E{πN} [V π
N (zD)] = EπN (zD)

[
H
[
ZπN (zD)|zD

]]
≤ EπN (zD)

[
max
x∈X\D

H [Zx|zD]

]
= EπN (zD) [V ∗N (zD)] = V ∗N (zD)

such that the first and second last equalities are due to (B.10) and (4.7), respectively.

So, (B.12) holds for the base case. Supposing (B.12) holds for n + 1 (i.e., induction

hypothesis), we will prove that it holds for n < N :

E{πi}Ni=n [V π
n (zD)] = Eπn(zD)

[
H
[
Zπn(zD)|zD

]]
+ Eπn(zD)

[
E
[
E{πi}Ni=n+1

[
V π
n+1

(
zD ∪ {Zπn(zD)}

)] ∣∣∣zD]]
≤ Eπn(zD)

[
H
[
Zπn(zD)|zD

]]
+ Eπn(zD)

[
E
[
V ∗n+1

(
zD ∪ {Zπn(zD)}

) ∣∣∣zD]]
≤ Eπn(zD)

[
max
x∈X\D

(
H [Zx|zD] + E

[
V ∗n+1 (zD ∪ {Zx}) |zD

] )]
= Eπn(zD) [V ∗n (zD)] = V ∗n (zD)

such that the first and second last equalities are, respectively, due to (B.10) and (4.7),

and the first inequality follows from the induction hypothesis. �
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Appendix C

Proofs of Auxiliary Results for

Chapter 4

C.1 Lemma 7

Lemma 7. For all zD, x ∈ X \ D, and λ = {σλn, σλs , `λ1 , . . . , `λP} ∈ Λ (Section 4.1),

σ2
n ≤ σxx|D,λ ≤ σ2

o where σ2
n and σ2

o are defined in (4.14).

Proof. Lemma 6 of Cao et al. [2013] implies (σλn)2 ≤ σxx|D,λ ≤ (σλs )2 + (σλn)2, from

which Lemma 7 directly follows. �

C.2 Lemma 8

Lemma 8. Let [−τ̂ , τ̂ ] ([−τ̂ ′, τ̂ ′]) denote the support of the distribution of Ẑx (Ẑx′)

for all x ∈ X \D (x′ ∈ X \ (D∪{x})) at stage n (n+ 1) for n = 1, . . . , N − 1. Then,

τ̂ ′ ≤ κτ̂ − κ− 3

2
τ (C.1)
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where κ is previously defined in (4.13). Without loss of generality, assuming µx|D0,λ =

0 for all x ∈ X \ D0 and λ ∈ Λ, τ̂ ≤ nκn−1τ at stage n = 1, . . . , N .

Proof. By Definition 1, since |µx′|D,λ| ≤ τ̂ − τ , |zix| ≤ τ̂ , and |µx|D,λ| ≤ τ̂ − τ , it

follows from (4.13) and the following property of Gaussian posterior mean

µx′|D∪{x},λ = µx′|D,λ + σx′x|D,λσ
−1
xx|D,λ(z

i
x − µx|D,λ)

that |µx′|D∪{x},λ| ≤ κτ̂ − 0.5(κ− 1)τ . Consequently, |minx′∈X\(D∪{x}),λ∈Λ µx′|D∪{x},λ −

τ | ≤ κτ̂ − 0.5(κ − 3)τ and |maxx′∈X\(D∪{x}),λ∈Λ µx′|D∪{x},λ + τ | ≤ κτ̂ − 0.5(κ − 3)τ .

Then, τ̂ ′ ≤ κτ̂ − 0.5(κ− 3)τ , by (4.8).

Since µx|D0,λ = 0 for all x ∈ X \D0 and λ ∈ Λ, τ̂ = τ at stage n = 1, by (4.8). If κ ≥ 3,

then it follows from (C.1) that τ̂ ′ ≤ κτ̂ − 0.5(κ− 3)τ ≤ κτ̂ since 0 ≤ 0.5(κ− 3) ≤ κ

and 0 ≤ τ ≤ τ̂ . As a result, τ̂ ≤ κn−1τ at stage n = 1, . . . , N . Otherwise (i.e.,

1 ≤ κ < 3), τ̂ ′ ≤ κτ̂ + 0.5(3− κ)τ ≤ κτ̂ + τ since 0 < 0.5(3− κ) ≤ 1. Consequently,

τ̂ ≤
∑n−1

i=0 κ
iτ ≤ nκn−1τ at stage n = 1, . . . , N . �

C.3 Lemma 9

Definition 2 (Diagonally Dominant ΣDD|λ). Given zD (D ⊆ X ) and λ ∈ Λ, ΣDD|λ

is said to be diagonally dominant if

σxx|λ ≥
(√
|D| − 1 + 1

) ∑
x′∈D\{x}

σxx′|λ
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for any x ∈ D. Furthermore, since σxx|λ =
(
σλs
)2

+
(
σλn
)2

for all x ∈ X ,

σxx|λ ≥
(√
|D| − 1 + 1

)
max
u∈D

∑
x′∈D\{u}

σux′|λ .

Lemma 9. Without loss of generality, assume that µx = 0 for all x ∈ X . For all

zD (D ⊆ X ), λ ∈ Λ, and η > 0, if ΣDD|λ is diagonally dominant (Definition 2) and

|zu| ≤ η for all u ∈ D, then |µx|D,λ| ≤ η for all x ∈ X \ D.

Proof. Since µx = 0 for all x ∈ X ,

µx|D,λ = ΣxD|λΣ
−1
DD|λzD . (C.2)

Since Σ−1
DD|λ is a symmetric, positive-definite matrix, there exists an orthonormal basis

comprising the eigenvectors E , [e1 e2 . . . e|D|] (e>i ei = 1 and e>i ej = 0 for i 6= j)

and their associated positive eigenvalues Ψ−1 , Diag[ψ−1
1 , ψ−1

2 , . . . , ψ−1
|D|] such that

Σ−1
DD|λ = EΨ−1E> (i.e., spectral theorem). Denote {αi}|D|i=1 and {βi}|D|i=1 as the sets of

coefficients when ΣDx|λ and zD are projected on E, respectively. (C.2) can therefore

be rewritten as

µx|D,λ =

 |D|∑
i=1

αie
>
i

Σ−1
DD|λ

 |D|∑
i=1

βiei


=

 |D|∑
i=1

αie
>
i

 |D|∑
i=1

βi

(
Σ−1
DD|λei

)
=

 |D|∑
i=1

αie
>
i

 |D|∑
i=1

βiψ
−1
i ei


=

|D|∑
i=1

αiβiψ
−1
i . (C.3)
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From (C.3), µ2
x|D,λ =

(∑|D|
i=1 αiβiψ

−1
i

)2

≤ ψ−2
min

(∑|D|
i=1 α

2
i

)(∑|D|
i=1 β

2
i

)
= ψ−2

min

∥∥ΣxD|λ
∥∥2

2
‖zD‖2

2

with ψmin , min
|D|
i=1 ψi, which can be bounded from below by applying Gershgorin cir-

cle theorem for ΣDD|λ:

ψmin ≥ min
u∈D

(
σuu|λ −Rλ

D(u)
)

= σxx|λ −max
u∈D

Rλ
D(u)

≥
(√
|D|+ 1

)
max

u∈D∪{x}
Rλ
D∪{x}(u)−max

u∈D
Rλ
D(u)

where Rλ
D(u) ,

∑
x′∈D\{u} σux′|λ, the first equality follows from the fact that σuu|λ =(

σλs
)2

+
(
σλn
)2

= σxx|λ for all u, x ∈ X , and the second inequality holds because

Σ(D∪{x})(D∪{x})|λ is assumed to be diagonally dominant (Definition 2). On the other

hand, since x /∈ D, Rλ
D∪{x}(u) = Rλ

D(u) + σux|λ ≥ Rλ
D(u) for all u ∈ D, which

immediately implies maxu∈D∪{x}R
λ
D∪{x}(u) ≥ maxu∈D R

λ
D∪{x}(u) ≥ maxu∈D R

λ
D(u).

Plugging this into the above inequality, ψmin ≥
(√
|D|+ 1

)
maxu∈D∪{x}R

λ
D∪{x}(u)−

maxu∈D R
λ
D(u) ≥

√
|D|maxu∈D∪{x}R

λ
D∪{x}(u) ≥

√
|D|Rλ

D∪{x}(x). Since ‖ΣxD|λ‖2 =√∑
u∈D σ

2
xu|λ ≤

∑
u∈D σxu|λ = Rλ

D∪{x}(x), it follows that ψmin ≥
√
|D|‖ΣxD|λ‖2

or, equivalently, ψ2
min ≥ |D|‖ΣxD|λ‖2

2, which implies µ2
x|D,λ ≤ ψ−2

min‖ΣxD|λ‖2
2‖zD‖2

2 ≤

|D|−1‖zD‖2
2 ≤ |D|−1|D|η2 = η2 where the last inequality holds due to the fact that

|zu| ≤ η for all u ∈ D. Hence, |µx|D,λ| ≤ η. �

C.4 Lemma 10

Lemma 10. Let [−τ̂max, τ̂max] and [−τ̂ , τ̂ ] denote the largest support of the distribu-

tions of Ẑx for all x ∈ X \ D at stages 1, 2, . . . , n and the support of the distribution

of Ẑx for all x ∈ X \ D at stage n + 1 for n = 1, 2, . . . , N − 1, respectively. Suppose

that D0 = ∅ and, without loss of generality, µx = 0 for all x ∈ X . For all zD (D ⊆ X )

and λ ∈ Λ, if ΣDD|λ is diagonally dominant (Definition 2), then τ̂ ≤ τ̂max + τ . Con-
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sequently, τ̂ ≤ nτ at stage n = 1, . . . , N .

Remark. If ΣDD|λ is diagonally dominant (Definition 2), then Lemma 10 provides

a tighter bound on τ̂ (i.e., τ̂ ≤ nτ) than Lemma 8 that does not involve κ. In fact,

it coincides exactly with the bound derived in Lemma 8 by setting κ = 1. By using

this bound (instead of Lemma 8’s bound) in the proof of Lemma 2 (Appendix B.2),

it is easy to see that the probabilistic bound in Lemma 2 and its subsequent results

hold by setting κ = 1.

Proof. Since [−τ̂max, τ̂max] is the largest support of the distributions of Ẑx for all

x ∈ X \ D at stages 1, 2, . . . , n, |zix| ≤ τ̂max for all x ∈ X \ D at stages 1, 2, . . . , n,

by Definition 1. Therefore, at stage n + 1, |zu| ≤ τ̂max for all u ∈ D. By Lemma 9,

|µx|D,λ| ≤ τ̂max for all x ∈ X \D and λ ∈ Λ at stage n+ 1, which consequently implies

|minx∈X\D,λ∈Λ µx|D,λ− τ | ≤ τ̂max + τ and |maxx∈X\D,λ∈Λ µx|D,λ + τ | ≤ τ̂max + τ . Then,

it follows from (4.8) that τ̂ ≤ τ̂max + τ at stage n + 1 for n = 1, . . . , N − 1. Since

D0 = ∅, µx|D0,λ = µx = 0. Then, τ̂ = τ at stage 1, by (4.8). Consequently, τ̂ ≤ nτ at

stage n = 1, 2, . . . , N . �

C.5 Lemma 11

Lemma 11. For all zD and n = 1, . . . , N ,

V ∗n (zD) ≤ 1

2
(N − n+ 1) log

(
2πeσ2

o

)
+ log |Λ| ,

V ∗n (zD) ≥ 1

2
(N − n+ 1) log

(
2πeσ2

n

)
where σ2

n and σ2
o are previously defined in (4.14).

Proof. By definition (4.7), V ∗n (zD) = H
[
Z{π∗i }Ni=n|zD

]
. Using Theorem 1 of Krause
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and Guestrin [2007],

H
[
Z{π∗i }Ni=n|zD

]
≤

∑
λ∈Λ

bD(λ) max
|A|=N−n+1

H [ZA|zD, λ] + H [Λ]

=
∑
λ∈Λ

bD(λ) H [ZAλ |zD, λ] + H [Λ]
(C.4)

where Λ denotes the set of random parameters corresponding to the realized param-

eters λ, A,Aλ ⊆ X \ D, Aλ , arg max|A|=N−n+1 H [ZA|zD, λ], and

H[ZA|zD, λ] , −
∫
p(zA|zD, λ) log p(zA|zD, λ) dzA

=
1

2
log
(

(2πe)|A|
∣∣ΣAA|D,λ∣∣) (C.5)

such that ΣAA|D,λ is a posterior covariance matrix with components σxx′|D,λ for all

x, x′ ∈ A. Furthermore, we have

H[ZAλ|zD, λ] ≤
∑
x∈Aλ

H[Zx|zD, λ]

=
1

2

∑
x∈Aλ

log
(
2πeσxx|D,λ

)
≤ |Aλ|

2
log
(
2πeσ2

o

)
=

1

2
(N − n+ 1) log

(
2πeσ2

o

)
(C.6)

where H[Zx|zD, λ] is defined in a similar manner as (C.5). Substituting (C.6) back

into (C.4), we have

V ∗n (zD) = H[Z{π∗i }Ni=n|zD]

≤ 1

2
(N − n+ 1) log

(
2πeσ2

o

)
+ H[Λ]

≤ 1

2
(N − n+ 1) log

(
2πeσ2

o

)
+ log |Λ|

where the last inequality follows from the fact that the entropy of a discrete distri-
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bution is maximized when the distribution is uniform.

On the other hand, from (4.7),

V ∗n (zD) = H
[
Zπ∗n(zD)|zD

]
+ E

[
V ∗n+1

(
zD ∪ {Zπ∗n(zD)}

) ∣∣∣zD]
≥ 1

2
log
(
2πeσ2

n

)
+ E

[
V ∗n+1

(
zD ∪ {Zπ∗n(zD)}

) ∣∣∣zD] (C.7)

where the inequality is due to Lemma 12. Then, the lower bound of V ∗n (zD) can be

proven by induction using (C.7), as detailed next. When n = N (i.e., base case),

V ∗N(zD) = H[Zπ∗N (zD)|zD] ≥ 0.5 log (2πeσ2
n), by Lemma 12. Supposing V ∗n+1(zD) ≥

0.5(N − n) log (2πeσ2
n) for n < N (i.e., induction hypothesis), V ∗n (zD) ≥ 0.5(N − n+

1) log (2πeσ2
n), by (C.7). �

C.6 Lemma 12

Lemma 12. For all zD and x ∈ X \ D,

H [Zx|zD] ≥ 1

2
log
(
2πeσ2

n

)
.

where σ2
n is previously defined in (4.14).

Proof. Using the monotonicity of conditional entropy (i.e., “information never hurts”
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bound) [Cover and Thomas, 1991],

H [Zx|zD] ≥
∑
λ∈Λ

bD(λ) H[Zx|zD, λ]

=
1

2

∑
λ∈Λ

bD(λ) log
(
2πeσxx|D,λ

)
≥ 1

2

∑
λ∈Λ

bD(λ) log
(
2πeσ2

n

)
=

1

2
log
(
2πeσ2

n

)
where H[Zx|zD, λ] is defined in a similar manner as (C.5) and the last inequality holds

due to Lemma 7. �

C.7 Lemma 13

Lemma 13. For all zD and x ∈ X \ D,

∫
|zx|≥τ̂

p(zx|zD) dzx ≤ 2Φ

(
− τ

σo

)

where Φ denotes the cumulative distribution function of N (0, 1) and σo is previously

defined in (4.14).
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Proof. From (4.5),

∫
|zx|≥τ̂

p(zx|zD) dzx =
∑
λ∈Λ

bD(λ)

∫
|zx|≥τ̂

p(zx|zD, λ) dzx

=
∑
λ∈Λ

bD(λ)

∫
|yx+µx|D,λ|≥τ̂

p(yx|zD, λ) dyx

≤
∑
λ∈Λ

bD(λ)

∫
|yx|≥τ

p(yx|zD, λ) dyx

= 2
∑
λ∈Λ

bD(λ) Φ

(
− τ
√
σxx|D,λ

)

≤ 2Φ

(
− τ

σo

)

where, in the second equality, yx , zx − µx|D,λ and hence p(yx|zD, λ) ∼ N (0, σxx|D,λ),

the first inequality follows from {yx| |yx+µx|D,λ| ≥ τ̂} ⊆ {yx| |yx| ≥ τ} since |µx|D,λ| ≤

τ̂ − τ due to (4.8), the last equality is due to the identity
∫
|y|≥τ p(y) dy = 2Φ(−τ/σ)

such that p(y) ∼ N (0, σ2), and the last inequality follows from the fact that Φ is an

increasing function and σxx|D,λ ≤ σ2
o due to Lemma 7. �

C.8 Lemma 14

Lemma 14. We have

∫
|y−µ|≥τ

y2 p(y) dy = 2
(
σ2 + µ2

)
Φ
(
− τ
σ

)
+ στ

√
2

π
exp

(
− τ 2

2σ2

)
(C.8)

where p(y) ∼ N (µ, σ2) and Φ denotes the cumulative distribution function of N (0, 1).
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Proof. Consider p(x) ∼ N (0, σ2). Then,∫
|x|≥τ

x2 p(x) dx = σ2 −
∫ τ

−τ
x2 p(x) dx

= σ2 − 2σ2

√
π

∫ τ√
2σ

− τ√
2σ

z2e−z
2

dz
(C.9)

where the last equality follows by setting z , x/(
√

2σ). Then, using the following

well-known identity:

∫ b

a

z2e−z
2

dz =
1

4

(√
π erf(z)− 2ze−z

2
) ∣∣∣b

a

for the second term on the RHS expression of (C.9),

∫ τ

−τ
x2 p(x) dx =

σ2

2

(
erf

(
τ√
2σ

)
− erf

(
−τ√
2σ

))
− στ

√
2

π
exp

(
− τ 2

2σ2

)
= σ2

(
Φ
( τ
σ

)
− Φ

(
− τ
σ

))
− στ

√
2

π
exp

(
− τ 2

2σ2

)
(C.10)

where the last equality follows from the identity Φ(z) = 0.5(1 + erf(z/
√

2)). Then,

plugging (C.10) into (C.9) and using the identity 1− Φ(z) = Φ(−z),

∫
|x|≥τ

x2 p(x) dx = 2σ2Φ
(
− τ
σ

)
+ στ

√
2

π
exp

(
− τ 2

2σ2

)

Let x , y − µ. Then,

∫
|y−µ|≥τ

y2 p(y) dy =

∫
|x|≥τ

x2 p(x) dx + 2µ

∫
|x|≥τ

x p(x) dx+ µ2

∫
|x|≥τ

p(x) dx
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Finally, using the identities

∫
|x|≥τ

x p(x) dx = 0 and

∫
|x|≥τ

p(x) dx = 2Φ
(
− τ
σ

)
,

Lemma 14 directly follows. �

C.9 Lemma 15

Lemma 15. Let us define

G(zD, x, λ, λ
′) ,

∫
|zx|≥τ̂

(zx − µx|D,λ)2

2σxx|D,λ
p(zx|zD, λ′) dzx . (C.11)

For all zD, x ∈ X \ D, τ ≥ 1, and λ, λ′ ∈ Λ,

G(zD, x, λ, λ
′) ≤ O

(
σo
σ2
n

(
N2κ2Nτ + σ2

o

)
exp

(
− τ 2

2σ2
o

))

where σn and σo are defined in (4.14).

Proof. Let yx , zx − µx|D,λ and µx|λ,λ′ , µx|D,λ′ − µx|D,λ. Then,

G(zD, x, λ, λ
′) =

1

2σxx|D,λ

∫
|yx+µx|D,λ|≥τ̂

y2
x p(yx|zD, λ′) dyx

≤ 1

2σxx|D,λ

∫
|yx−µx|λ,λ′ |≥τ

y2
x p(yx|zD, λ′) dyx (C.12)

where p(yx|zD, λ′) ∼ N (µx|λ,λ′ , σxx|D,λ′), and the inequality follows from {yx| |yx +

µx|D,λ| ≥ τ̂} ⊆ {yx| |yx − µx|λ,λ′| ≥ τ} since |µx|D,λ′| ≤ τ̂ − τ due to (4.8).
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Applying Lemma 14 to (C.12),

G(zD, x, λ, λ
′) ≤

(
σxx|D,λ′ + µ2

x|λ,λ′

σxx|D,λ

)
Φ

(
− τ
√
σxx|D,λ′

)
+
τ
√
σxx|D,λ′

σxx|D,λ
√

2π
exp

(
− τ 2

2σxx|D,λ′

)
≤

(
σ2
o + 4N2κ2Nτ 2

σ2
n

)
Φ

(
− τ

σo

)
+

τσo

σ2
n

√
2π

exp

(
− τ 2

2σ2
o

)

where the last inequality holds due to σxx|D,λ′ ≤ σ2
o and σxx|D,λ ≥ σ2

n, as proven in

Lemma 7, and µx|λ,λ′ = µx|D,λ′ −µx|D,λ ≤ 2τ̂ − 2τ ≤ 2NκN−1τ by |µx|D,λ| ≤ τ̂ − τ and

|µx|D,λ′ | ≤ τ̂ − τ) derived from (4.8) and by Lemma 8.

Finally, by applying the following Gaussian tail inequality:

Φ

(
− τ

σo

)
= 1− Φ

(
τ

σo

)
≤ σo

τ
exp

(
− τ 2

2σ2
o

)
, (C.13)

it directly follows that

G(zD, x, λ, λ
′) ≤ O

(
σo
σ2
n

(
N2κ2Nτ + σ2

o

)
exp

(
− τ 2

2σ2
o

))

since τ ≥ 1. �

C.10 Lemma 16

Lemma 16. For all zD, x ∈ X \ D, and τ ≥ 1,

0 ≤ H[Zx|zD]− Ĥ[Ẑx|zD] ≤ O
(
σo
σ2
n

(
N2κ2Nτ + σ2

o

)
exp

(
− τ 2

2σ2
o

))
(C.14)

153



Chapter C. Proofs of Auxiliary Results for Chapter 4

where σn and σo are defined in (4.14). So,

∣∣∣H [Zx|zD]− Ĥ
[
Ẑx|zD

]∣∣∣ ≤ O
(
σo
σ2
n

(
N2κ2Nτ + σ2

o

)
exp

(
− τ 2

2σ2
o

))
. (C.15)

Proof. From (4.7) and (B.4),

H [Zx|zD]− Ĥ
[
Ẑx|zD

]
=

∫ −τ̂
−∞

p(zx|zD) log

(
p(−τ̂ |zD)

p(zx|zD)

)
dzx

+

∫ ∞
τ̂

p(zx|zD) log

(
p(τ̂ |zD)

p(zx|zD)

)
dzx . (C.16)

Since p(zx|zD) is the predictive distribution representing a mixture of Gaussian predic-

tive distributions (4.5) whose posterior means (4.2) fall within the interval [−τ̂ , τ̂ ] due

to (4.8), it is clear that p(−τ̂ |zD) ≥ p(zx|zD) for all zx ≤ −τ̂ and p(τ̂ |zD) ≥ p(zx|zD)

for all zx ≥ τ̂ . As a result, the RHS expression of (C.16) is non-negative, that is,

H[Zx|zD]− Ĥ[Ẑx|zD] ≥ 0.

On the other hand, from (4.5),

p(zx|zD) =
∑
λ∈Λ

1√
2πσxx|D,λ

exp

(
−(zx − µx|D,λ)2

2σxx|D,λ

)
bD(λ)

≤
∑
λ∈Λ

1√
2πσxx|D,λ

bD(λ)

≤
∑
λ∈Λ

1

σn
√

2π
bD(λ) =

1

σn
√

2π

such that the last inequality follows from Lemma 7. By taking log of both sides of

the above inequality and setting zx = −τ̂ (zx = τ̂), log p(−τ̂ |zD) ≤ −0.5 log(2πσ2
n)
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(log p(τ̂ |zD) ≤ −0.5 log(2πσ2
n)). Then, from (C.16),

H [Zx|zD]− Ĥ
[
Ẑx|zD

]
≤ −1

2
log
(
2πσ2

n

) ∫
|zx|≥τ̂

p(zx|zD)dzx

+

∫
|zx|≥τ̂

p(zx|zD) (− log p(zx|zD)) dzx . (C.17)

Using (4.5) and Jensen’s inequality, since − log is a convex function,

∫
|zx|≥τ̂

p(zx|zD) (− log p(zx|zD)) dzx ≤
∑
λ∈Λ

bD(λ)

∫
|zx|≥τ̂

p(zx|zD) (− log p(zx|zD, λ)) dzx

≤ 1

2
log
(
2πσ2

o

) ∫
|zx|≥τ̂

p(zx|zD)dzx

+
∑
λ,λ′∈Λ

bD(λ)bD(λ′)G(zD, x, λ, λ
′)

≤ 1

2
log
(
2πσ2

o

) ∫
|zx|≥τ̂

p(zx|zD)dzx + max
λ,λ′

G(zD, x, λ, λ
′)

≤ 1

2
log
(
2πσ2

o

) ∫
|zx|≥τ̂

p(zx|zD)dzx

+ O
(
σo
σ2
n

(
N2κ2Nτ + σ2

o

)
exp

(
− τ 2

2σ2
o

))
(C.18)

where G(zD, x, λ, λ
′) is previously defined in (C.11), the second inequality is due to

− log p(zx|zD, λ) =
1

2
log
(
2πσxx|D,λ

)
+

(
zx − µx|D,λ

)2

2σxx|D,λ

≤ 1

2
log
(
2πσ2

o

)
+

(
zx − µx|D,λ

)2

2σxx|D,λ

with the inequality following from Lemma 7, and the last inequality in (C.18) holds
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due to Lemma 15. Substituting (C.18) back into (C.17),

H [Zx|zD]− Ĥ
[
Ẑx|zD

]
≤ log

(
σo
σn

)∫
|zx|≥τ̂

p(zx|zD) dzx

+ O
(
σo
σ2
n

(
N2κ2Nτ + σ2

o

)
exp

(
− τ 2

2σ2
o

))
. (C.19)

By Lemma 7, since σo ≥ σn, log(σo/σn) ≥ 0. Using Lemma 13,

log

(
σo
σn

)∫
|zx|≥τ̂

p(zx|zD) dzx ≤ 2 log

(
σo
σn

)
Φ

(
− τ

σo

)
≤ 2 log

(
σo
σn

)
σo
τ

exp

(
− τ 2

2σ2
o

)
≤ 2σo log

(
σo
σn

)
exp

(
− τ 2

2σ2
o

)
(C.20)

where the second inequality follows from the Gaussian tail inequality (C.13), and the

last inequality holds due to τ ≥ 1. Finally, by substituting (C.20) back into (C.19),

Lemma 16 follows. �

C.11 Lemma 17

Lemma 17. For all zD, x ∈ X \ D, n = 1, . . . , N , γ > 0, and τ ≥ 1,

|Q∗n(zD, x)− Q̂n(zD, x)| ≤ O
(
σoτ

(
N2κ2N + σ2

o

σ2
n

+N log
σo
σn

+ log |Λ|
)

exp

(
− τ 2

2σ2
o

))

where Q̂n(zD, x) is previously defined in (B.4). Thus, by setting

τ = O

σo
√

log

(
σ2
o

γ

(
N2κ2N + σ2

o

σ2
n

+N log
σo
σn

+ log |Λ|
)) ,

it directly follows that |Q∗n(zD, x)− Q̂n(zD, x)| ≤ γ/2.
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Proof. From (4.7) and (B.4),

∣∣∣Q∗n(zD, x)− Q̂n(zD, x)
∣∣∣ ≤ ∣∣∣H [Zx|zD]− Ĥ

[
Ẑx|zD

]∣∣∣+

∫ −τ̂
−∞

p(zx|zD)∆n+1(zx,−τ̂)dzx

+

∫ ∞
τ̂

p(zx|zD)∆n+1(zx, τ̂)dzx

where ∆n+1(zx,−τ̂) and ∆n+1(zx, τ̂) as

∆n+1(zx,−τ̂) ,
∣∣V ∗n+1 (zD ∪ {zx})− V ∗n+1 (zD ∪ {−τ̂})

∣∣ ,
∆n+1(zx, τ̂) ,

∣∣V ∗n+1 (zD ∪ {zx})− V ∗n+1 (zD ∪ {τ̂})
∣∣ .

Using Lemma 11, ∆n+1(zx,−τ̂) ≤ (N−n) log(σo/σn)+log |Λ| ≤ N log(σo/σn)+log |Λ|.

By a similar argument, ∆n+1(zx, τ̂) ≤ N log(σo/σn) + log |Λ|. Consequently,

∣∣∣Q∗n(zD, x)− Q̂n(zD, x)
∣∣∣ ≤ ∣∣∣H[Zx|zD]− Ĥ[Ẑx|zD]

∣∣∣
+

(
N log

(
σo
σn

)
+ log |Λ|

)∫
|zx|≥τ̂

p(zx|zD)dzx

≤ O
(
σoτ

(
N2κ2N + σ2

o

σ2
n

+N log
σo
σn

+ log |Λ|
)

exp

(
− τ 2

2σ2
o

))
.

The last inequality follows from Lemmas 16 and 13 and the Gaussian tail inequality

(C.13), which are applicable since τ ≥ 1.

To guarantee that |Q∗n(zD, x) − Q̂n(zD, x)| ≤ γ/2, the value of τ to be determined

must therefore satisfy the following inequality:

aσoτ

(
N2κ2N + σ2

o

σ2
n

+N log
σo
σn

+ log |Λ|
)

exp

(
− τ 2

2σ2
o

)
≤ γ

2
(C.21)
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where a is an existential constant1 such that

|Q∗n(zD, x)− Q̂n(zD, x)| ≤ aσoτ

(
N2κ2N + σ2

o

σ2
n

+N log
σo
σn

+ log |Λ|
)

exp

(
− τ 2

2σ2
o

)
.

By taking log of both sides of (C.21),

τ 2

2σ2
o

≥ 1

2
log
(
τ 2
)

+ log

(
2aσo
γ

(
N2κ2N + σ2

o

σ2
n

+N log
σo
σn

+ log |Λ|
))

.(C.22)

Using the identity log(τ 2) ≤ ατ 2 − log(α)− 1 with α = 1/(2σ2
o), the RHS expression

of (C.22) can be bounded from above by

τ 2

4σ2
o

+ log

(
2
√

2aσ2
o√

eγ

(
N2κ2N + σ2

o

σ2
n

+N log
σo
σn

+ log |Λ|
))

.

Hence, to satisfy (C.22), it suffices to determine the value of τ such that the following

inequality holds:

τ 2

2σ2
o

≥ τ 2

4σ2
o

+ log

(
2
√

2aσ2
o√

eγ

(
N2κ2N + σ2

o

σ2
n

+N log
σo
σn

+ log |Λ|
))

,

which implies

τ ≥ 2σo

√√√√log

(
2
√

2aσ2
o√

eγ

(
N2κ2N + σ2

o

σ2
n

+N log
σo
σn

+ log |Λ|
))

= O

σo
√

log

(
σ2
o

γ

(
N2κ2N + σ2

o

σ2
n

+N log
σo
σn

+ log |Λ|
))

1Deriving an exact value for a should be straight-forward, albeit mathematically tedious, by
taking into account the omitted constants in Lemmas 16 and 17.
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Therefore, by setting

τ = O

σo
√

log

(
σ2
o

γ

(
N2κ2N + σ2

o

σ2
n

+N log
σo
σn

+ log |Λ|
)), (C.23)

|Q∗n(zD, x)− Q̂n(zD, x)| ≤ γ/2 can be guaranteed. �

C.12 Lemma 18

Lemma 18. For all zD and λ ∈ Λ, let A and B denote subsets of sampling locations

such that A ⊆ B ⊆ X . Then, for all x ∈ (X \ B) ∪ A,

H
[
ZA∪{x}|zD, λ

]
−H [ZA|zD, λ] ≥ H

[
ZB∪{x}|zD, λ

]
−H [ZB|zD, λ] .

Proof. If x ∈ A ⊆ B, H
[
ZA∪{x}|zD, λ

]
−H [ZA|zD, λ] = H

[
ZB∪{x}|zD, λ

]
−H [ZB|zD, λ] =

0. Hence, this lemma holds trivially in this case. Otherwise, if x ∈ X \ B, we have

H
[
ZA∪{x}|zD, λ

]
−H [ZA|zD, λ] = E [H[Zx|zD ∪ ZA, λ]|zD, λ]

H
[
ZB∪{x}|zD, λ

]
−H [ZB|zD, λ] = E [H [Zx|zD ∪ ZB, λ] |zD, λ]

from the chain rule for entropy. Let A′ , B \ A ⊇ ∅. Therefore, B can be re-written

as B = A ∪A′ where A ∩A′ = ∅ (since A ⊆ B). Then,

H
[
ZB∪{x}|zD, λ

]
−H [ZB|zD, λ] = E [H [Zx|zD ∪ ZB, λ] |zD, λ]

= E [H [Zx|zD ∪ ZA ∪ ZA′ , λ] |zD, λ]

≤ E [H [Zx|zD ∪ ZA, λ] |zD, λ]

= H
[
ZA∪{x}|zD, λ

]
−H [ZA|zD, λ]
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where the inequality follows from the monotonicity of conditional entropy (i.e., “in-

formation never hurts” bound) [Cover and Thomas, 1991]. �

C.13 Lemma 19

Lemma 19. For all zD and λ ∈ Λ, let S∗ , arg maxS⊆X :|S|=kH [ZS |zD, λ]. Then,

H [ZS∗|zD, λ] ≤ e

e− 1

(
H
[
ZSλk |zD, λ

]
+
kr

e

)

where r = −min(0, 0.5 log(2πeσ2
n)) ≥ 0 and Sλk is the a priori greedy design previously

defined in (4.18).

Proof. Let S∗ , {s∗1, . . . , s∗k} and Sλi , {sλ1 , . . . , sλi } for i = 1, . . . , k. Then,

H
[
ZS∗∪Sλi |zD, λ

]
= H [ZS∗|zD, λ] +

i∑
j=1

(
H
[
ZS∗∪{sλ1 ,...,sλj }|zD, λ

]
−H

[
ZS∗∪{sλ1 ,...,sλj−1}|zD, λ

])
(C.24)

Clearly, if sλj ∈ S∗, H
[
ZS∗∪{sλ1 ,...,sλj }|zD, λ

]
−H

[
ZS∗∪{sλ1 ,...,sλj−1}|zD, λ

]
= 0. Otherwise,

let S̃ , S∗ ∪
{
sλ1 , . . . , s

λ
j−1

}
. Using the chain rule for entropy,

H
[
ZS̃∪{sλj }

|zD, λ
]
−H

[
ZS̃ |zD, λ

]
= E

[
H
[
Zsλj

∣∣∣zD ∪ ZS̃ , λ] ∣∣∣zD, λ]
≥ E

[
1

2
log
(
2πeσ2

n

) ∣∣∣zD, λ]
=

1

2
log
(
2πeσ2

n

)
where the last inequality follows from Lemma 12. Combining these two cases and
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using the fact that r = −min(0, 0.5 log(2πeσ2
n)),

H
[
ZS̃∪{sλj }

|zD, λ
]
−H

[
ZS̃ |zD, λ

]
≥ −r ,

which, by substituting back into (C.24), implies

H
[
ZS∗∪Sλi |zD, λ

]
≥ H [ZS∗|zD, λ]− ir . (C.25)

Equivalently, (C.25) can be re-written as

H [ZS∗ |zD, λ] ≤ H
[
ZS∗∪Sλi |zD, λ

]
+ ir . (C.26)

On the other hand,

H
[
ZS∗∪Sλi |zD, λ

]
= H

[
ZSλi |zD, λ

]
+

k∑
j=1

(
H
[
ZSλi ∪{s∗1,...,s∗j}|zD, λ

]
−H

[
ZSλi ∪{s∗1,...,s∗j−1}|zD, λ

])

≤ H
[
ZSλi |zD, λ

]
+

k∑
j=1

(
H
[
ZSλi ∪{s∗j}|zD, λ

]
−H

[
ZSλi |zD, λ

])

= H
[
ZSλi |zD, λ

]
+
∑
s∈S∗

(
H
[
ZSλi ∪{s}|zD, λ

]
−H

[
ZSλi |zD, λ

])

≤ H
[
ZSλi |zD, λ

]
+ k

(
H
[
ZSλi+1

|zD, λ
]
−H

[
ZSλi |zD, λ

])

where the first inequality is due to Lemma 18, and the last inequality follows from

the construction of Sλi+1(4.17). Combining this with (C.26),

H [ZS∗|zD, λ]−H
[
ZSλi |zD, λ

]
≤ k

(
H
[
ZSλi+1

|zD, λ
]

− H
[
ZSλi |zD, λ

] )
− imin

(
0,

1

2
log(2πeσ2

n)

)
.
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Let δi , H [ZS∗|zD, λ] − H
[
ZSλi |zD, λ

]
. Then, the above inequality can be written

concisely as

δi ≤ k(δi − δi+1) + ir ,

which can consequently be cast as

δi+1 ≤
(

1− 1

k

)
δi +

ir

k
. (C.27)

Let i , l − 1 and expand (C.27) recursively to obtain

δl ≤ αlδ0 +
r

k

l−1∑
i=0

αi(l − i− 1) (C.28)

where α = 1− 1/k. To simplify the second term on the RHS expression of (C.28),

l−1∑
i=0

αi(l − i− 1) = (l − 1)
l−1∑
i=0

αi −
l−1∑
i=0

iαi

= (l − 1)
1− αl

1− α
−

l−1∑
i=0

iαi

= k(l − 1)(1− αl)−
l−1∑
i=0

iαi . (C.29)

Then, let γt ,
∑t−1

i=0 iα
i and φt ,

∑t
i=1 α

i,

γt+1 =
t∑
i=0

iαi = α

t−1∑
i=0

αi(i+ 1) = α

(
γt +

t−1∑
i=0

αi

)

= αγt +
t−1∑
i=0

αi+1 = αγt +
t∑
i=1

αi = αγt + φt . (C.30)
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Expand (C.30) recursively to obtain

γt+1 = αtγ1 +
t−1∑
i=0

αiφt−i

=
t−1∑
i=0

αi
(
k(1− αt−i+1)− 1

)
=

t−1∑
i=0

αi
(
k − kαt−i+1 − 1

)
= (k − 1)

t−1∑
i=0

αi − k
t−1∑
i=0

αt+1

= k(k − 1)(1− αt)− ktαt+1 . (C.31)

Let t , l − 1. Substituting (C.31) back into (C.29),

l−1∑
i=0

αi(l − i− 1) = k(l − 1)− k(k − 1)(1− αl−1) .

Finally, let l , k. Substituting the above inequality back into (C.28),

δk ≤ αkδ0 + r(k − 1)αk−1 . (C.32)

Using the identity 1− x ≤ e−x,

αk =

(
1− 1

k

)k
≤
(

exp

(
−1

k

))k
=

1

e
.

This directly implies

αk−1 =
αk

α
≤ 1

e
(
1− 1

k

) .
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Substituting these facts into (C.32),

δk ≤
δ0

e
+
kr

e
,

which subsequently implies

H [ZS∗|zD, λ]−H
[
ZSλk |zD, λ

]
≤ 1

e
H [ZS∗|zD, λ] +

kr

e

or, equivalently,

H [ZS∗|zD, λ] ≤ e

e− 1

(
H
[
ZSλk |zD, λ

]
+
kr

e

)
. �
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Appendix D

Proofs of Main Results for Chapter 5

D.1 Proof of Theorem 10

Since q(fn|fm) is set as the exact GP conditional, we can plug (5.10) into (5.9) to

rewrite Lm(q) as

Lm(q) =

∫
p(fn|fm) log

p(fn,yn|fm)

p(fn|fm)
dfn

=

∫
p(fn|fm) log p(yn|fn)dfn , (D.1)

where p(yn|fn) , N (yn|fn, σ2
nI) (Section 5.1.2) and p(fn|fm) , N (fn|Pfm,Knn −Qnn)

as in (5.10). Plug these facts into (D.1), we obtain

Lm(q) = Efn

[
− 1

2σ2
n

(yn − fn)T (yn − fn)

]
+ const

= Efn

[
− 1

2σ2
n

fTn fn +
1

σ2
n

fTn yn

]
+ const , (D.2)

where we absorbs terms that do not depend on fn into const: Eq. (D.2) is derived

by letting (−1/2σ2
n)yTnyn be absorbed into const. Since fn ∼ N (Pfm,Knn − Qnn)
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according to (5.10), we can use the following Gaussian identities, E [fn] = Pfm and

E
[
fTn fn

]
= E [fn]T E [fn] + tr (Knn −Qnn), to rewrite Lm(q) as

Lm(q) = − 1

2σ2
n

E
[
fTn fn

]
+

1

σ2
n

E [fn]T yn + const

= − 1

2σ2
n

fTmPTPfm +
1

σ2
n

fTmPTyn + const (D.3)

where the last step is derived by applying the above Gaussian identities and letting

(−1/2σ2
n)tr (Knn −Qnn) be absorbed into const. Eq. (D.3) thus concludes our proof.

D.2 Proof of Theorem 11

Using Theorem 9, we can write L(q) as

L(q) =

∫
q(fm)Lm(q)dfm −KL (q(fm)‖p(fm))

= Efm

[
− 1

2σ2
n

fTmPTPfm +
1

σ2
n

fTmPTyn

]
− KL (q(fm)‖p(fm)) + const , (D.4)

where (D.4) is derived by plugging the RHS of (D.3) into Lm(q). Then, since fm ∼

N
(
µ+,Σ+

)
, we can again plug the Gaussian identities E [fm] = µ+ and E

[
fTmSfm

]
=

µT+Sµ+ + tr (SΣ+) with S = PTP into (D.4) and further expand L(q) as a function

of µ+ and Σ+:

L(q) = − 1

2σ2
n

(
µT+PTPµ+ + tr

(
PTPΣ+

) )
+

1

σ2
n

µT+PTyn −KL (q(fm)‖p(fm)) + const . (D.5)
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On the other hand, recall that p(fm) , N (fm|µ∗,Λ−1
∗ ) which implies

− log p(fm) =
1

2
(fm − µ∗)

T Λ∗ (fm − µ∗) + const . (D.6)

Then, we can represent KL (q(fm)‖p(fm)) as

KL (q(fm)‖p(fm)) =

∫
q(fm) log

q(fm)

p(fm)
dfm = −H [q(fm)] + Efm [− log p(fm)]

= E
[

1

2
(fm − µ∗)

T Λ∗ (fm − µ∗)
]
− 1

2
log |Σ+|+ const

= E
[

1

2
fTmΛ∗fm − µT∗Λ∗fm

]
− 1

2
log |Σ+|+ const . (D.7)

In particular, the third equality follows directly from (D.6) and the fact that H [q(fm)] =

(1/2) log |Σ+|+ const which is implied by q(fm) , N
(
fm|µ+,Σ+

)
. Then, we absorb

(1/2)µT∗Λ∗µ∗ into const since it does not depend on µ+ and Σ+, thus arriving at

(D.7). In addition, note that the expectation on the RHS of (D.7) is in fact over

q(fm) which is parameterized as a Gaussian. Therefore, we can once again invoke the

Gaussian identities E [fm] = µ+ and E
[
fTmΛ∗fm

]
= µT+Λ∗µ+ + tr (Λ∗Σ+) to simplify

(D.7) as detailed below:

KL (q(fm)‖p(fm)) =
1

2
µT+Λ∗µ+ +

1

2
tr (Λ∗Σ+)

− 1

2
log |Σ+| − µT+Λ∗µ∗ + const . (D.8)

Thus, plugging (D.8) into (D.5) reveals (5.13) (Theorem 11), thus concluding our

proof.

167



Chapter D. Proofs of Main Results for Chapter 5

D.3 Proof of Theorem 13

As {il}rl=1 is sampled i.i.d from the uniform distribution over {1, 2, . . . , p}, we have:

E [F(m, il)] =

p∑
i=1

Pr (il = i) F(m, i) =

p∑
i=1

1

p
F(m, i)

=
1

p

p∑
i=1

F(m, i) . (D.9)

Applying the above argument for G(m, il), we can obtain similar result for G:

E [G(m, il)] =
1

p

p∑
i=1

G(m, i) . (D.10)

Thus, (D.9) and (D.10) together imply

E
[
G(m, il)− F(m, il)µ+

]
= E [G(m, il)]− E [F(m, il)]µ+

=
1

p

p∑
i=1

(
G(m, i)− F(m, i)µ+

)
(D.11)

Thus, taking the expectation over S for both sides of (5.22) and applying (D.11) to

the resulting RHS, we obtain

ES

[
∂L̂
∂µ+

]
= G(m) +

p∑
i=1

G(m, i)−

(
F(m) +

p∑
i=1

F(m, i)

)
µ+ . (D.12)

Now, plugging (5.20) and (5.21) into the RHS of (D.12), we have

ES

[
∂L̂
∂µ+

]
= Σ−1m µm −Σ−1

m µ+ =
∂L
∂µ+

. (D.13)
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where the last equality follows from (5.17). Similarly, taking the expectation over S

for both sides of (5.23) and applying (D.9) to the resulting RHS, we get

ES

[
∂L̂
∂Σ+

]
=

1

2

(
Σ−1

+ −

(
F(m) +

p∑
i=1

F(m, i)

))

=
1

2

(
Σ−1

+ −Σ−1
m

)
=

∂L
∂Σ+

, (D.14)

where the last two steps follow directly from (5.20) and (5.18), respectively. As such,

(D.13) and (D.14) conclude our proof.

D.4 Proof of Theorem 14

The proof of Theorem 14 can be constructed by reiterating the exact arguments used

in the proof of Theorem 13 (Appendix D.3). In particular, the results in (D.9) and

(D.10) are reproduced here for convenience:

E [F(m, il)] =
1

p

p∑
i=1

F(m, i) , (D.15)

E [G(m, il)] =
1

p

p∑
i=1

G(m, i) . (D.16)

Thus, taking the expectation over S on both sides of (5.33) and applying (D.16) to

the resulting RHS, we have

ES

[
∂L̂
∂η1

]
= −

(
η2 − η1η

T
1

)−1
η1 + G(m) +

p∑
i=1

G(m, i) . (D.17)

Then, plugging (5.21) into the RHS of (D.17) recovers (5.31) which implies ES [∂L̂/∂η1] =

∂L/∂η1. Similarly, taking the expectation over S on both sides of (5.34) and applying
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(D.16) to the resulting RHS, it follows that

ES

[
∂L̂
∂η2

]
=

1

2

(
η2 − η1η

T
1

)−1 − 1

2

(
F(m) +

p∑
i=1

F(m, i)

)
. (D.18)

Finally, plugging (5.20) into the RHS of (D.18) recovers (5.32) which implies ES [∂L̂/∂η2] =

∂L/∂η2, thus completing our proof for Theorem 14.
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Appendix E

Proofs of Auxiliary Results for

Chapter 5

E.1 Proof of Lemma 6

∀ fn, fm we have p(yn) = p(fn, fm,yn)/p(fn, fm|yn) which directly implies

log p(yn) = log
p(fn, fm,yn)

p(fn, fm|yn)
. (E.1)

Thus, let q(fn, fm) be an arbitrary probability density function and integrate both

side of (E.1) with q we have

log p(yn) =

∫
q(fn, fm) log

p(fn, fm,yn)

p(fn, fm|yn)
dfndfm . (E.2)

Then, using the identity log(ab) = log a + log b, log (p(fn, fm,yn)/p(fn, fm|yn)) is de-

composed as

log
p(fn, fm,yn)

p(fn, fm|yn)
= log

p(fn, fm,yn)

q(fn, fm)
+ log

q(fn, fm)

p(fn, fm|yn)

171



Chapter E. Proofs of Auxiliary Results for Chapter 5

Plug this into (E.2), we obtain

log p(yn) =

∫
q(fn, fm) log

p(fn, fm,yn)

q(fn, fm)
dfndfm

+

∫
q(fn, fm) log

q(fn, fm)

p(fn, fm|yn)
dfndfm . (E.3)

Using the definition of L(q) and KL(.‖.), (E.3) directly implies log p(yn) = L(q) +

KL (q(fn, fm)‖p(fn, fm|yn)) which concludes our proof. �

E.2 Proof of Theorem 9

Let us rewrite L(q) (Lemma 6) as

L(q) =

∫
fm

∫
fn

q(fn, fm) log
p(fn, fm,yn)

q(fn, fm)
dfndfm (E.4)

Then, using the facts that (a) p(fn, fm,yn) = p(fn,yn|fm)p(fm) and (b) q(fn, fm) =

q(fn|fm)q(fm), we can decompose log (p(fn, fm,yn)/q(fn, fm)) as

log
p(fn, fm,yn)

q(fn, fm)
= log

p(fn,yn|fm)

q(fn|fm)
− log

q(fm)

p(fm)
(E.5)

Plug (E.5) into (E.4) and factorize q(fn, fm) as in (b), we can rewrite L(q) as

L(q) =

∫
fm

q(fm)

[∫
fn

q(fn|fm)V(fn)dfn

]
dfm , (E.6)
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where we define V(fn) , log (p(fn,yn|fm)/q(fn|fm))− log(q(fm)/p(fm)). Thus, in order

to simplify (E.6), we first evaluate

I(fm) ,
∫
fn

q(fn|fm)V(fn)dfn

=

∫
fn

q(fn|fm) log
p(fn,yn|fm)

q(fn|fm)
dfn − log

q(fm)

p(fm)

= Lm(q)− log
q(fm)

p(fm)
. (E.7)

Plug (E.7) into (E.6), we obtain

L(q) =

∫
fm

q(fm)

(
Lm(q)− log

q(fm)

p(fm)

)
dfm

=

∫
fm

q(fm)Lm(q)dfm −KL (q(fm)‖p(fm)) (E.8)

which concludes our proof. �

E.3 Proof of Equation (5.4)

Marginalize out f∗ from both sides of (5.2), we obtain

p(fn|fm) =

p∏
i=1

p(fi|fm) . (E.9)

Then, using Bayes rule, p(f∗|yn) can be expressed as

p(f∗|yn) =

∫
p(f∗|fm,yn)p(fm|yn)dfm . (E.10)
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Hence, in order to prove (5.4), it suffices to show that p(f∗|fm,yn) = p(f∗|fm,yp). To

achieve this, note that p(f∗|fm,yn) can be rewritten as

p(f∗|fm,yn) =
p(f∗,yn|fm)

p(yn|fm)
. (E.11)

To simplify (E.11), we first factorize its denominator as

p(yn|fm) =

∫
p(yn|fn)p(fn|fm)dfn =

∫ p∏
i=1

(
p(yi|fi)p(fi|fm)dfi

)
=

p∏
i=1

(∫
p(yi|fi)p(fi|fm)dfi

)
=

p∏
i=1

p(yi|fm) , (E.12)

where the second equality follows from (E.9) and the noise factorization p(yn|fn) =∏p
i=1 p(yi|fi). Likewise, the numerator on the RHS of (E.11) can be factorized as

p(f∗,yn|fm) =

∫
p(f∗, fn|fm)p(yn|fn)dfn

=

(∫
p(f∗, fp|fm)p(yp|fp)dfp

)
×

(
p−1∏
i=1

∫
p(yi|fi)p(fi|fm)dfi

)

= p(f∗,yp|fm)

(
p−1∏
i=1

p(yi|fm)

)
(E.13)

where the second equality follows from the above factorization of p(yn|fn) and (E.9).

Thus, plugging (E.12) and (E.13) into (E.11) yields

p(f∗|fm,yn) =
p(f∗,yp|fm)

p(yp|fm)
= p(f∗|yp, fm) . (E.14)

Plugging (E.14) into (E.10) concludes our proof of (5.4). �
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E.4 Decomposable SGPs

This section demonstrates how the approximation q∗(fm) ' p(fm|yn) employed in

SoR, DTC, FITC and PITC [Quiñonero-Candela and Rasmussen, 2005] as well as

FIC and PIC [Snelson and Ghahramani, 2007] can be decomposed to meet the condi-

tions listed in (5.20) and (5.21). For clarity, the corresponding q∗(fm) of these SGPs

are first derived with respect to their approximated training and testing condition-

als [Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahramani, 2007] in

Appendix E.4.1.

E.4.1 Characterizing SGPs using (5.4)

To begin, we re-state the following exact expression of p(f∗|yn), which is not subject

to any assumption:

p(f∗|yn) =

∫
p(f∗|yn, fm)p(fm|yn)dfm . (E.15)

Then, we will demonstrate how this expression (E.15) can be simplified given the

particular approximated training and testing conditionals of the existing SGPs.

E.4.1.1 PIC

Partially Independent Conditional (PIC) [Snelson and Ghahramani, 2007] jointly

specifies its the approximated training and testing conditionals via the factorization

in (5.2) which helps to simplify (E.15) as (Appendix E.3)

p(f∗|yn) =

∫
p(f∗|yp, fm)p(fm|yn)dfm . (E.16)
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Since (5.2) is the only assumption made in PIC, it appears that its approximations

q∗(f∗|yp, fm) and q∗(fm) in (5.4) coincide with p(f∗|yp, fm) and p(fm|yn). Thus, q∗(fm)

can be constructed by performing exact inference, assuming (5.2) holds, for p(fm|yn).

To do this, note that (5.2) also implies (E.9) which is re-stated here for convenience:

p(fn|fm) =

p∏
i=1

p(fi|fm) , (E.17)

where p(fi|fm) is the exact GP conditional [Rasmussen and Williams, 2006]:

p(fi|fm) , N (fi|KimK−1
mmfm,Kii −Qii) (E.18)

Qii , KimK−1
mmKmi (E.19)

with Kii , k(Xi,Xi), Kim , k(Xi,U), Kmi , k(U,Xi) and Xi , X ∩ Bi. Using

(E.17), p(fn|fm) can be more compactly written as

p(fn|fm) = N
(
fn|KnmKmmfm,R

)
, (E.20)

with R , blkdiag[K11−Q11, . . . ,Kpp−Qpp] = blkdiag[Knn−Qnn] denotes the block

diagonal matrix induced from the partition {Xi}pi=1 of X. Combining this with the

fact that p(fm) , N (fm|0m,Kmm), the joint prior p(fm, fn) can be expressed as

N

 fm

fn

∣∣∣∣∣
 0m

0n

 ,

 Kmm Kmn

Knm Qnn + R

 (E.21)
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Then, using the fact that p(yn|fn) , N (yn|fn, σ2
nI), the joint prior p(fm,yn) [Ras-

mussen and Williams, 2006] can be analytically derived as

N

 fm

yn

∣∣∣∣∣
 0m

0n

 ,

 Kmm Kmn

Knm Qnn + Λ

 (E.22)

with Λ , blkdiag[Knn −Qnn + σ2
nI]. Thus, using (E.22), the conditional p(fm|yn) is

given as N (fm|µm,Σm) where

µm = Kmn (Qnn + Λ)−1 yn ,

Σm = Kmm −Kmn (Qnn + Λ)−1 Knm . (E.23)

For computational efficiency, note that

(Qnn + Λ)−1 = Λ−1 −Λ−1KnmΣKmnΛ
−1 , (E.24)

with Σ , (Kmm + KmnΛ
−1Knm)

−1
, which follows directly from the matrix inversion

lemma. Then, multiply Kmn and yn on both sides of (E.24), we have

µm = Kmn (Qnn + Λ)−1 yn

= Kmn

(
Λ−1 −Λ−1KnmΣKmnΛ

−1
)
yn

=
(
Σ−1 −KmnΛ

−1Knm

)
ΣKmnΛ

−1yn

= KmmΣKmnΛ
−1yn , (E.25)
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where the last equality follows from the definition of Σ. Likewise, Σm is rewritten as

Σm = Kmm −Kmn (Qnn + Λ)−1 Knm

= Kmm −KmmΣKmnΛ
−1Knm

= KmmΣ
(
Σ−1 −KmnΛ

−1Knm

)
= KmmΣKmm , (E.26)

where the last equality again follows from the definition of Σ. As such, the processing

cost of evaluating µm and Σm in (E.25) and (E.26) is only O(nm2) instead of O(n3)

as incurred by (E.23). In particular, we can choose the partition {Xi}pi=1 such that

p = O(n/m) and the size of each partition |Xi| ≤ O(m) to guarantee the cost of

inverting the block diagonal matrix Λ is at most

O

(
p∑
i=1

|Xi|3
)

= O
( n
m
m3
)

= O(nm2) .

Then, since Λ−1 is n by n, the cost of evaluating KmnΛ
−1Kmn is O(nm2) which

directly implies Σ can be evaluated in O(nm2 +m3) = O(nm2) (n > m). Finally, as

Σ is m by m, it is easy to see that the cost of evaluating (E.25) and (E.26) is O(nm2).

The total processing cost of deriving q∗(fm) ≡ p(fm|yn) is therefore O(nm2).

E.4.1.2 PITC, FITC and FIC

The only difference between PITC [Quiñonero-Candela and Rasmussen, 2005] and

PIC [Snelson and Ghahramani, 2007] is that the former assumes the following factor-

ization in addition to that of (5.2)

p(f∗, fp|fm) = p(f∗|fm)p(fp|fm) , (E.27)
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which helps to further simplify p(f∗|yp, fm) = p(f∗|fm) in (5.3). The training condi-

tional p(fn|fm) however remains the same as that of PIC (E.17) which implies PIC and

PITC share the same approximation q∗(fm) = p(fm|yn) as it is derived independently

with the testing conditional p(f∗|yp, fm). The processing cost of evaluating q∗(fm) for

PITC is thus the same as PIC’s.

On the other hand, FITC appears to be a special case of PITC [Quiñonero-Candela

and Rasmussen, 2005] when we replace blkdiag[Knn − Qnn] by diag[Knn − Qnn] in

(E.20). Thus, it is easy to see that the corresponding q∗(fm) of FITC can be derived by

setting Λ−1 = diag[Knn−Qnn +σ2
nI] in the definition of Σ (E.24) and then, plugging

it into (E.25) and (E.26). In terms of the processing cost, the only difference is that

the complexity of evaluating Λ−1 for FITC is O(n) instead of O(nm2). Nonetheless,

computing q∗(fm) still incurs O(nm2) as the cost of evaluating Σ remains O(nm2).

Finally, FIC [Snelson and Ghahramani, 2007] only differs from FITC when multiple

tests f∗ = [f 1
∗ , f

2
∗ , . . . , f

k
∗ ]T are predicted simultaneously. Instead of retaining the

exact testing conditional p(f∗|fm) like FITC, FIC assumes an additional factorization

across the latent outputs of these testing inputs:

p(f∗|fm) =
k∏
i=1

p(f i∗|fm) . (E.28)

However, this change only affects the testing conditional. The training conditional

of FIC is thus the same as FITC’s which implies they share the same q∗(fm) which

incurs the same O(nm2) processing cost.
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E.4.1.3 DTC and SoR

The only difference between Deterministic Training Conditional (DTC) [Seeger et

al., 2003] and PITC [Quiñonero-Candela and Rasmussen, 2005] is that the former re-

places the exact block conditional p(fi|fm) , N (fi|KimK−1
mmfm,Kii−Qii) (E.18) with

N (fi|KimK−1
mmfm,0). This effectively replaces p(fn|fm) , N (fn|KnmK−1

mmfm,Knn −

Qnn) by N (fn|KnmK−1
mmfm,0). Thus, the corresponding q∗(fm) of DTC can be eas-

ily derived by changing that of PITC (hence, PIC) respectively. In particular, we

can replace Knn − Qnn with 0 in the definition of Λ (E.22), plug it into the ex-

pression of Σ (E.24) and consequently, (E.25) and (E.26) to finally derive DTC’s

q∗(fm) = N (fm|µm,Σm) where

µm =
1

σ2
n

Kmm

(
Kmm +

1

σ2
n

KmnKnm

)−1

Kmnyn

Σm = Kmm

(
Kmm +

1

σ2
n

KmnKnm

)−1

Kmm (E.29)

Lastly, Subset of Regressors (SoR) [Smola and Bartlett, 2001] only differs from

DTC [Seeger et al., 2003] by replacing p(f∗|fm) , N (f∗|K∗mK−1
mmfm,K∗∗ − Q∗∗)

by N (f∗|K∗mK−1
mmfm, 0) [Quiñonero-Candela and Rasmussen, 2005]. However, this

change does not affect the training conditional of DTC which solely determines q∗(fm)

as argued previously in Appendix E.4.1.2. As a result, DTC and SoR share the

same q∗(fm). In terms of complexity, evaluating the inversion term in (E.29) incurs

O(m3 + nm2) = O(nm2) which consequently implies the processing cost of (E.29)

incurs O(nm2).

E.4.2 Decomposability

This section demonstrate the decomposability of the existing SGP models as detailed

in [Quiñonero-Candela and Rasmussen, 2005; Snelson and Ghahramani, 2007]. In
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particular, our goal here is to show that their induced q∗(fm) satisfy the Decompos-

ability Conditions in (5.20) and (5.21). To simplify the analysis here, let us first recall

that (a) PIC and PITC share the same q∗(fm) (Appendix E.4.1.2), (b) SoR and DTC

also induce the same q∗(fm), and (c) FITC and FIC are special cases of PITC and

PIC, respectively. Thus, it suffices to just demonstrate the decomposability of DTC

(Appendix E.4.2.1) and PIC (Appendix E.4.2.2) here.

E.4.2.1 Decomposability of DTC

According to Appendix E.4.1.3, DTC’s induced approximation q∗(fm) = N (fm|µm,Σm)

of p(fm|yn) is given by

µm =
1

σ2
n

KmmΣKmnyn , (E.30)

Σm = KmmΣKmm , (E.31)

where Σ , ((1/σ2
n)KmnKnm + Kmm)

−1
. Then, Σ−1

m is decomposed as detailed below:

Σ−1
m = K−1

mmΣ−1K−1
mm

= K−1
mm

(
1

σ2
n

KmnKnm + Kmm

)
K−1
mm

=
1

σ2
n

K−1
mmKmnKnmK−1

mm + K−1
mm , (E.32)

where the first equality follows directly from (E.31). To decompose (E.32), suppose

the data D is arbitrarily partitioned as D = ∪pi=1Di where Di = (Xi,yi) so that X =

∪pi=1Xi and yn =
[
yT1 ,y

T
2 , . . . ,y

T
p

]T
(Section 5.2.2.1). Thus, Kmn = [k1,k2, . . . ,kp]

where ki denotes the sub-matrix which corresponds to k(U,Xi) (Section 5.1.2). As
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such, KmnKnm can be decomposed as

KmnKnm =

p∑
i=1

kik
T
i . (E.33)

Hence, plugging (E.33) into (E.32) we have

Σ−1
m =

p∑
i=1

(
1

σ2
n

K−1
mmkik

T
i K−1

mm

)
+ K−1

mm . (E.34)

Also, plugging (E.30) and (E.31) into Σ−1
m µm yields

Σ−1
m µm =

1

σ2
n

K−1
mmKmnyn

=

p∑
i=1

(
1

σ2
n

K−1
mmkiyi

)
, (E.35)

where the last equality is derived using the partitioned forms of Kmn and yn. Fi-

nally, setting F(m) , K−1
mm, F(m, i) , (1/σ2

n)K−1
mmkik

T
i K−1

mm in (E.34), G(m, i) ,

(1/σ2
n)K−1

mmkiyi and G(m) = 0mm in (E.35) reveals (5.20) and (5.21).

E.4.2.2 Decomposabiility of PIC

According to Appendix E.4.1.1, PIC [Snelson and Ghahramani, 2007] induces the

following approximation q∗(fm) = N (fm|µm,Σm) of p(fm|yn):

µm = KmmΣKmnΛ
−1yn , (E.36)

Σm = KmmΣKmm , (E.37)

where Σ = (Kmm + KmnΛ
−1Knm)−1, Λ = blkdiag [Λ1,Λ2, . . . ,Λp] and the block

matrix Λi = k(Xi,Xi)−KimK−1
mmKmi + σ2

nI with Kim , k(Xi,U), Kmi , k(U,Xi),

Xi = X∩Bi. Note that {Bi}pi=1 denote PIC’s partition of the input space as detailed
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in (5.2). As such, we can equivalently write Λ−1 = blkdiag
[
Λ−1

1 ,Λ−1
2 , . . . ,Λ−1

p

]
which

implies

Σ−1 = Kmm + KmnΛ
−1Knm

= Kmm +

p∑
i=1

KmiΛ
−1
i Kim , (E.38)

where the last equality is derived by applying the partitioned forms of Λ−1 and Kmn

to the RHS of the first equality. Then, plugging (E.38) into the first equality of (E.37)

yields

Σ−1
m = K−1

mmΣ−1K−1
mm

= K−1
mm +

p∑
i=1

(
K−1
mmKmiΛ

−1
i KimK−1

mm

)
(E.39)

Thus, setting F(m) , K−1
mm and F(m, i) , K−1

mmKmiΛ
−1
i KimK−1

mm in (E.39) reveals

(5.20). On the other hand, we have

Σ−1
m µm = K−1

mmKmnΛ
−1yn

= K−1
mm

(
p∑
i=1

KmiΛ
−1yi

)

=

p∑
i=1

(
K−1
mmKmiΛ

−1yi

)
, (E.40)

where the first equality follows directly from (E.36) and (E.37) while the second

equality is derived using the partitioned forms of Kmn, Λ−1 and yn as mentioned

above. Finally, setting G(m, i) , K−1
mmKmiΛ

−1yi and G(m) = 0mm in (E.40) reveals

(5.21), thus completing our analysis.
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E.4.3 Time Complexity of Evaluating F & G

Suppose that each partition of data has at most s data points, it follows directly from

their definition in Appendices E.4.2.1 and E.4.2.2 that the processing cost of evalu-

ating F(m, i) and G(m, i) is O(m2s). Thus, if the stochastic gradient is evaluated by

sampling r partitions, the processing cost for each update iteration (Sections 5.2.2.1

and 5.2.2.2) is O(m2sr). In addition, there is an overhead O(m3) time complexity

incurred to evaluate F(m) , K−1
mm once and for all. This is O(m3) in total if we

specifically select the sampling size r and enforce the largest size smax of each par-

tition such that rsmax ≤ m. Hence, the total processing cost for k update iteration

is O(km3) which offers a significant computational advantage over the traditional

O(nm2) of SGPs [Quiñonero-Candela and Rasmussen, 2005] if we set k = o(n/m).

In practice, k can thus be used to control the trade-off between processing time and

the approximation accuracy of q∗(fm).

E.4.4 Time Complexity of Prediction

This section analyzes the cost of predicting f ∗ , f(x∗) using (5.4) and assuming that

x∗ ∈ Bp′ and q(fm) = N (fm|µ+,Σ+) has already been evaluated using the techniques

described in Sections 5.2.2.1 and 5.2.2.2. In particular, this includes the cost of

(a) computing the approximated testing conditional q(f∗|yp′ , fm) and (b) analytically

integrating it with q(fm) (5.4) to evaluate q(f∗) ' p(f∗|yn). To achieve this, we

analytically derive q(f∗) w.r.t µ+ and Σ+ as detailed below.

E.4.4.1 PIC

Recall that the approximated testing conditional is set as the exact conditional

q(f∗|yp′ , fm) = p(f∗|yp′ , fm). To evaluate p(f∗|yp′ , fm), we use the fundamental def-

inition of GP [Rasmussen and Williams, 2006] to state the following closed-form
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expression for p(f∗, fm, fp′):

N



f∗

fm

fp′


∣∣∣∣∣ 0 ,


K∗∗ K∗m K∗p′

Km∗ Kmm Kmp′

Kp′∗ Kp′m Kp′p′


 , (E.41)

where Kp′p′ , k(Xp′ ,Xp′), Kp′∗ , k(Xp′ ,x∗), Kp′m , k(Xp′ ,U), K∗∗ , k(x∗,x∗)

and K∗p′ , KT
p′∗, Kmp′ , KT

p′m, Xp′ = X ∩ Bp′ . Therefore, integrating (E.41) with

p(yp′|fp′) , N (yp′|fp′ , σ2
nI), the closed-form expression for p(f∗, fm,yp′) is given below:

N



f∗

fm

yp′


∣∣∣∣∣ 0 ,


K∗∗ K∗m K∗p′

Km∗ Kmm Kmp′

Kp′∗ Kp′m Kp′p′ + σ2
nI




Thus, the conditional p(f∗|fm,yp′) is analytically given asN (f∗|E[f∗],V[f∗]) with E[f∗]

and V[f∗] specified below using the conditional Gaussian identity:

E[f∗] = [K∗m K∗p′ ]

 Kmm Kmp′

Kp′m Kp′p′ + σ2
nI

−1  fm

yp′


V[f∗] = K∗∗ − [K∗m K∗p′ ]

 Kmm Kmp′

Kp′m Kp′p′ + σ2
nI

−1  Km∗

Kp′∗


To simplify the above expressions, let us denote

R ,

 Kmm Kmp′

Kp′m Kp′p′ + σ2
nI

−1

=

 Rmm Rmp′

Rp′m Rp′p′

 , (E.42)

where Rmm, Rmp′ , Rp′m and Rp′p′ can be derived by applying the inversion lemma

for partitioned matrices directly. Then, plugging (E.42) into the expression of E[f∗],
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it can be simplified as

E[f∗] = Mfm + ` , (E.43)

with M , (K∗mRmm + K∗p′Rp′m) and ` , (K∗mRmp′ + K∗p′Rp′p′) yp′ . The testing

conditional of PIC can thus be concisely written as p(f∗|fm,yp′) = N (f∗|Mfm +

`,V[f∗]. As such, q(f∗) can be analytically derived by integrating p(f∗|fm,yp′) with

q(fm) = N (fm|µ+,Σ+):

q(f∗) =

∫
N (f∗|Mfm + `)N (fm|µ+,Σ+)dfm = N (f∗|µ∗,Σ∗) , (E.44)

with µ∗ = Mµ+ + ` and Σ∗ = V[f∗] + MΣ+MT . Eq. (E.44) thus represents PIC’s

predictive distribution at x∗. Its prediction is given by the distribution’s mean µ∗ =

Mµ+ + ` which can otherwise be written as

µ∗ = [K∗m K∗p′ ]

 Rmm Rmp′

Rp′m Rp′p′

 µ+

yp′

 , (E.45)

by plugging in the above definitions of M and `. Then, assuming R
[
µT+ yTp′

]T
are

precomputed in advance for every block p′ = 1, 2, . . . , p, the single-input prediction

cost (e.g., the cost of evaluating (E.45)) for any single input x∗ ∈ Bp′ is at most

O(m + |Xp′|). In particular, if the input space is partitioned so that |Xp′| ≤ O(m)

for any p′ = 1, 2, . . . , p, precomputing R
[
µT+ yTp′

]T
for all blocks incurs O(pm3) and

O(pm) for time and storage complexity, respectively. The overall predicting cost is

then reduced to O(m) accordingly.
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E.4.4.2 PITC, FITC, FIC and DTC

Since we only analyze the complexity of single-input prediction at x∗, the approxi-

mated testing conditionals of PITC, FITC, FIC and DTC are set to the same exact

conditional of GP [Quiñonero-Candela and Rasmussen, 2005]:

q(f∗|fm,yp′) = N (f∗ | Pfm, K∗∗ −Q∗∗) , (E.46)

where P , K∗mK−1
mm and Q∗∗ , K∗mK−1

mmKm∗. As such, their predictive distribu-

tions are generally given by

q(f∗) =

∫
N (f∗|Pfm,K∗∗ −Q∗∗)N (fm|µ+,Σ+)dfm

= N (f∗ | Pµ+, K∗∗ −Q∗∗ + PΣ+PT ) . (E.47)

From (E.47) and the above definition of P, the prediction at x∗ is explicitly given as

µ∗ = K∗mK−1
mmµ+ , (E.48)

which can be evaluated in O(m) assuming that K−1
mmµ+ is precomputed in advance

incurring O(m3) and O(m) for time and storage complexity, respectively.

E.4.4.3 SoR

SoR [Smola and Bartlett, 2001] further simplifies the testing conditional in (E.46) by

additionally imposing a deterministic relationship between f∗ and fm:

q(f∗|fm,yp′) = N (f∗ | Pfm,0) . (E.49)
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Integrating the RHS of (E.49) with q(fm) = N (fm|µ+,Σ+) results in SoR predictive

distribution which is given by

q(f∗) =

∫
N (f∗|Pfm,0)N (fm|µ+,Σ+)dfm

= N (f∗ | Pµ+, PΣ+PT ) . (E.50)

Thus, similar to PITC, FITC, FIC and DTC, SoR’s prediction also shares the same

form of K∗mK−1
mmµ+ which can be evaluated in O(m) assuming that K−1

mmµ+ is

precomputed prior to prediction.

E.5 The Canonical Parameterization of Gaussian Dis-

tributions

This section features the canonical parameterization of Gaussian distribution and

highlights some of its properties which have been previously used in Section 5.2.2.2.

For ease of reading, we demonstrate this in the context of q(fm) which is originally

specified using the moment parameterization q(fm) , N (fm|µ+,Σ+). In particular,

let θ , [θ1; vec(θ2)] where θ1 , Σ−1
+ µ+ and θ2 , −(1/2)Σ−1

+ , we begin with the

following re-parameterization of q(fm|θ) with respect to θ:

q(fm|θ) = N (fm|µ+,Σ+) = h(fm) exp
(
θTT(fm)−A(θ)

)
(E.51)

where T(fm) ,
[
fm; vec(fmfTm)

]
, h(fm) , (2π)−m/2 and the normalizing function A(θ)

is defined as

A(θ) , −1

2
tr
(
θ2θ1θ

T
1

)
− 1

2
log |−2θ2|

=
1

2
µT+Σ−1

+ µ+ +
1

2
log
∣∣Σ−1

+

∣∣ . (E.52)
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Alternatively, we can define Z(θ) such that A (θ) = log Z (θ) and rewrite (E.51) as

q(fm) =
1

Z(θ)
h(fm) exp

(
θTT(fm)

)
. (E.53)

Since
∫
q(fm)dfm = 1, (E.53) effectively implies

Z (θ) =

∫
h(fm)exp

(
θTT(fm)

)
dfm . (E.54)

Then, using these establishments, we are now able to verify the identities employed

in Section 5.2.2.1 as detailed in the below subsections.

E.5.1 Evaluating η , E [T(fm)]

This section will demonstrate how E [T(fm)] can be derived as a function of µ+ and

Σ+. To achieve this, we first use the definition of T(fm) to obtain

E [T(fm)] =
[
E [fm] ;E

[
vec
(
fmfTm

)]]
=

[
E [fm] ; vec

(
E
[
fmfTm

])]
=

[
µ+; vec

(
µ+µ

T
+ + Σ+

)]
, (E.55)

where the second step follows from the definition of vec and expectation of vector

while the last step is derived using the Gaussian identities E[fm] = µ+ and E[fmfTm] =

µ+µ
T
+ + Σ+ (since fm ∼ N (µ+,Σ+)). In particular, if we define η1 , µ+ and η2 ,

µ+µ
T
+ + Σ+, then η , [η1; vec(η2)] = E [T(fm)] denotes the expectation parameters

q(fm) in its canonical parameterization.
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E.5.2 Evaluating G(θ)

This section focuses on explicitly representing the Fisher information G(θ) in terms

of A(θ). To achieve this, we note that

∂ log q(fm|θ)

∂θ
=

∂

∂θ

(
θTT(fm)−A(θ)

)
= T(fm)− ∂A(θ)

∂θ
. (E.56)

Thus, applying the identity ∂f(x)/∂xT = (∂f(x)/∂x)T to (E.56), we have

∂ log q(fm|θ)

∂θT
= T(fm)T −

(
∂A(θ)

∂θ

)T
= T(fm)T − ∂A(θ)

∂θT
. (E.57)

Then, differentiate both sides of (E.57) with respect to θ yields

∂2 log q(fm|θ)

∂θ∂θT
= −∂

2A(θ)

∂θ∂θT
. (E.58)

Plugging (E.58) into the definition of G(θ) reveals (5.25).

E.5.3 Proof of ∂η/∂θ = G(θ)

Let us differentiate A(θ) with respect to θ:

∂A(θ)

∂θ
=

∂ log Z(θ)

∂θ
=

1

Z(θ)

∂Z(θ)

∂θ

=
1

Z(θ)

∫
h(fm)

∂

∂θ
exp

(
θTT(fm)

)
dfm

=
1

Z(θ)

∫
h(fm)exp

(
θTT(fm)

)
T(fm)dfm

=

∫
q(fm|θ)T(fm)dfm = E [T(fm)] = η . (E.59)
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Thus, (E.59) effectively implies ηT = ∂A(θ)/∂θT . Hence, differentiating both side of

this equality with respect to θ yields ∂ηT/∂θ = ∂2A(θ)/∂θ∂θT = G(θ). Since G(θ)

is symmetric, it follows that ∂η/∂θ = G(θ). �
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Appendix F

Useful Results

F.1 Hoeffding Inequality

Theorem 16 (Hoeffding Inequality). Given a set S = {X1, X2, . . . , Xn} of indepen-

dent random observations where Xi ∈ [ai, bi]. Then, let us denote X = 1
n

∑n
i=1Xi,

the following inequality holds

Pr (|X − E[X]| ≥ t) ≤ 2exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
. (F.1)

Proof Sketch. Omitted. �

F.2 Union Bound

Theorem 17 (Union Bound). Let A1, A2, . . . be a countable set of events, then

Pr

[
∞⋃
i=1

Ai

]
≤

∑
i=1

Pr (Ai) . (F.2)
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Proof Sketch. Omitted. �

F.3 Jensen Inequality

Theorem 18 (Jensen Inequality). Let X be a random variable. If f is a convex

function then E [f(X)] ≥ f (E[X]). Otherwise, if f is a concave function we have

E [f(X)] ≤ f (E[X]). For example, the exponential function exp(.) is convex while

the logarithm function log(.) is concave.

Proof Sketch. Omitted. �

F.4 Gershgorin Circle Theorem

Theorem 19 (Gershgorin Circle Theorem). Let A be a complex n × n matrix, with

entries aij. For any row 1 ≤ i ≤ n, let Ri
4
=
∑

i 6=j |aij| denote the sum of the absolute

values of the non-diagonal entries in the ith row. Then, for any eigenvalue ψ of A,

there exists i such that the following inequality holds:

|ψ − aii| ≤ Ri . (F.3)

In case A is a real, positive definite matrix (e.g., the covariance matrix), the above

inequality helps us bound A’s smallest eigenvalue from below: ψmin ≥ aii − Ri for

some i, which then implies ψmin ≥
n

min
i=1

(aii −Ri). In addition, if aii = c is constant,

we can further bound ψmin ≥ c− n
max
i=1

Ri.

Proof Sketch. Omitted. �
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F.5 Gaussian Tail Inequality

Theorem 20 (Gaussian Tail Inequality). Let X be a normal random variable: X ∼

N (0, 1). Then, we have

Pr(X > ε) ≤ 1

ε
exp

(
−ε

2

2

)
. (F.4)

By symmetry, we can further derive Pr(|X| > ε) ≤ 2

ε
exp

(
−ε

2

2

)
.

Proof Sketch. Omitted. �
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