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Summary

Nowadays, the scale of machine learning problems becomes much larger than before. It

raises a huge demand in distributed perception and distributed computation. A multi-agent

system provides exceptional scalability for problems like active sensing and data fusion.

However, many rich characteristics of large-scale machine learning problems have not been

addressed yet such as large input domain, nonstationarity, and high dimensionality. This

thesis identifies the challenges related to these characteristics from multi-agent perspective.

By exploiting the correlation structure of data in large-scale problems, we propose multi-

agent coordination schemes that can improve the scalability of the machine learning models

while preserving the computation accuracy. To elaborate, the machine learning problems we

are solving with multi-agent coordination techniques are:

(a) Gaussian process regression. To perform distributed regression on a large-scale

environmental phenomenon, data compression is often required due to the communication

costs. Currently, decentralized data fusion methods encapsulate the data into local summaries

based on a fixed support set. However in a large-scale field, this fixed support set, acting

as a centralized component in the decentralized system, cannot approximate the correlation

structure of the entire phenomenon well. It leads to evident losses in data summarization.

Consequently, the regression performance will be significantly reduced.

In order to approximate the correlation structure accurately, we propose an agent-centric

support set to allow every agent in the data fusion system to choose a possibly different

support set and dynamically switch to another one during execution for encapsulating its own

data into a local summary which, perhaps surprisingly, can still be assimilated with the other

agents’ local summaries into a globally consistent summary. Together with an information

sharing mechanism we designed, the new decentralized data fusion methods with agent-

centric support set can be applied to regression problems on a much larger environmental

phenomenon with high performance.

(b) Active learning. In the context of environmental sensing, active learning/active

sensing is a process of taking observations to minimize the uncertainty in an environmental

field. The uncertainty is quantified based on the correlation structure of the phenomenon
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which is traditionally assumed to be stationary for computational sake. In a large-scale

environmental field, this stationary assumption is often violated. Therefore, existing active

sensing algorithms perform sub-optimally for a nonstationary environmental phenomenon.

To the best of our knowledge, our decentralized multi-robot active sensing (DEC-MAS)

algorithm is the first work to address nonstationarity issue in the context of active sensing. The

uncertainty in the phenomenon is quantified based on the nonstationary correlation structure

estimated by Dirichlet process mixture of Gaussian processes (DPM-GPs). Further, our DEC-

MAS algorithm can efficiently coordinate the exploration of multiple robots to automatically

trade-off between learning the unknown, nonstationary correlation structure and minimizing

the uncertainty of the environmental phenomenon. It enables multi-agent active sensing

techniques to be applied to a large-scale nonstationary environmental phenomenon.

(c) Bayesian optimization. Optimizing an unknown objective function is challenging

for traditional optimization methods. Alternatively, in this situation, people use Bayesian

optimization which is a modern optimization technique that can optimize a function by only

utilizing the observation information (input and output values) collected through simulations.

When the input dimension of the function is low, a few simulated observations can generate

good result already. However, for high dimensional function, a huge number of observations

are required which is impractical when the simulation consumes lots of time and resources.

Fortunately, many high dimensional problems have sparse correlation structure. Our

ANOVA-DCOP work can decompose the correlation structure in the original high-dimensional

problem into many correlation structures of subsets of dimensions based on ANOVA kernel

function. It significantly reduces the size of input space into a collection of lower-dimensional

subspaces. Additionally, we reformulate the Bayesian optimization problem as a decentral-

ized constrained optimization problem (DCOP) that can be efficiently solved by multi-agent

coordination techniques so that it can scale up to problems with hundreds of dimensions.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, the scale of machine learning problems that we are interested in becomes much

larger than before. For example, monitoring the traffic condition in the road network of a big

city requires collecting speed data from quantities of road segments and reconstructing the

traffic speed distribution of the entire urban road network by a regression model (Chen et al.,

2015, Kamarianakis and Prastacos, 2003, Min and Wynter, 2011, Wang and Papageorgiou,

2005, Work et al., 2010). Machine learning problems of such a scale motivates the need to

design and develop distributed algorithms for solving them efficiently and scalably.

To develop distributed algorithms, people seek techniques from multi-agent community.

Current research works on multi-agent system (Cao et al., 2013, Chen et al., 2012, 2013b,

Leonard et al., 2007, Low et al., 2012, Rogers et al., 2011, Singh et al., 2009) have devel-

oped various decentralized multi-agent coordination schemes to scale up machine learning

problems such as environmental sensing and data fusion. A typical multi-agent system

decomposes a large-scale problem into a list of small-scale sub-problems and then assigns an

agent to solve each small-scale problem separately. After the sub-problems are solved, the

original problem is solved by combining the sub-problems’ solutions through decentralized

multi-agent coordination.
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Existing multi-agent systems can resolve the scalability issues with respect to the size

of the data (Chen et al., 2011, Guestrin et al., 2004, Low et al., 2015, Sun et al., 2015).

However, besides the size of the data, large-scale machine learning problems have many

complex characteristics that have not been addressed yet:

• Large input domain in large-scale regression

• Nonstationarity in large-scale active learning

• High dimensionality in optimizing a complex unknown function

In the next few subsections, we will discuss three challenges in large-scale machine

learning problems specific to those characteristics that are critical to the performance of many

applications.

1.1.1 Regression at Scale

Regression is one of the fundamental machine learning problems. Usually, a centralized

model is ill-suited for regression over massive volume of data because it suffers from poor

scalability in the data size and a single point of failure. Therefore, some decentralized data

fusion methods have been developed to improve the scalability and robustness.

Decentralized Data Fusion is a process of integrating data from multiple sources to

form a consistent representation of a target environmental phenomenon (Chen et al., 2012,

2013b, Cortes, 2009, Guestrin et al., 2004). In decentralized data fusion, each agent takes

observations from its allocated area and performs the local regression within this area.

To achieve high accuracy in data fusion, the agent needs to retrieve information from its

neighboring agents.

Sharing a large amount of data/observations consumes lots of time and resources. In

practice, instead of directly sharing the original observations, it is better for each agent to

"compress" the observations into small-sized local summaries by certain approximation

method, and then share the small-sized local summaries with other neighboring agents.
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(a) A support set is a set of locations of pseudo observations.

(b) Approximation of correlation structure.

Fig. 1.1 Illustration of support set.

To reduce the information loss in the summarization process, recent works (Chen et al.,

2012, 2013b) on Gaussian process decentralized data fusion (GP-DDF) methods approximate

the correlation structure of the environmental phenomenon. A correlation structure is a

set of the pairwise correlations between all the observed and unobserved measurements.

The approximation process in GP-DDF relies on a notion of a fixed support set which is a

small-sized set of locations in the environmental field(see Fig. 1.1a). This fixed support set

decomposes the original correlation structure in the measurements by two types of low-rank

correlation structures (see Fig. 1.1b): A) correlation structure between the observations and

the pseudo observations at locations in the support set; B) correlation structure between the

pseudo observations at locations in the support set and the unobserved measurements. With

the fixed support set, GP-DDF methods compute the values of pseudo observations from

the actual observations based on A-type correlation structure and predict the unobserved
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measurements with these values based on the B-type correlation structure. The accuracy

of the approximation depends on the spatial correlation between the observations and the

pseudo observations. If the observations and the pseudo observations are far from each other,

their correlations are weak. Consequently, the pseudo observations can not summarize the

observations accurately.

Fig. 1.2 Illustration of challenge of large input domain.

Now, we can introduce the first challenge in large-scale regression problem on spatial

data: due to the large input domain, a fixed support set cannot accurately approximate the

correlation structure of large-scale phenomenon. In decentralized data fusion applications,

the size of the target environmental field we are interested in can be extremely large. For

example, we want to reconstruct the traffic speed distribution for each road segment over

entire Singapore. In this scenario, the fixed support set is a critical issue. Let us illustrate

with Fig. 1.2. In the figure, the observation has a strong correlation with the unobserved

measurement so that it can predict it well. However, if we deploy a fixed support set far

from the observation, the pseudo observation at the location in the support set is weakly

correlated with the observation. It is not able to deliver the information from observation to

the unobserved measurement for prediction. The support set is restricted by its size to limit

the computational overheads and can only sparsely cover the large-scale phenomenon. In

environmental field with large input domain, a huge number of observations will be far from

the fixed support set. As a result, the fixed support set cannot accurately approximate the

correlation structure between all the observed and unobserved measurements. Consequently,

huge information loss is expected.
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Moreover, besides the major challenge, there are two more limitations from practical

consideration:

1. When the domain of the phenomenon of interest expands, the size of the support

set must also be increased proportionally to cover and predict the phenomenon well

at the expense of greater time, space, and communication overheads, which grows

prohibitively expensive.

2. If the current support set needs to be replaced by a new support set of different size and

input locations (e.g., due to change in domain size, time, space, and communication

requirements, using an improved active learning criterion to select a support set

that better covers and predicts the phenomenon), then all the previously gathered

observations (if not discarded after summarization using the old support set) have to

be re-summarized into local summaries based on the new support set, which is not

scalable.

The fixed support set is a centralized component in decentralized data fusion methods

which in nature contradicts with the original intention of decentralization. To address the

challenge related to large input domain, it is essential to remove this centralized component

so that the data fusion model can be truly decentralized.

1.1.2 Active Learning at Scale

In order to generate an accurate regression result with a limited number of observations, taking

the most informative observations/samples is a key step. Active learning is a fundamental

machine learning problem to choose the most informative observations by minimizing

the uncertainty quantified in the original regression problem. In multi-agent community,

multi-agent active sensing (MAS) is an active learning method for exploring large-scale

environmental phenomenon. Its objective is to coordinate a team of mobile agents to actively

gather the most informative observations for predicting a spatially varying phenomenon of

interest while being subject to resource cost constraints (e.g., number of deployed agents,

energy consumption, mission time).
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To quantify the uncertainty, a number of MAS algorithms characterize the correlation

structure in the environmental phenomenon so that the predictive uncertainty can be formally

computed (e.g., mean square error, entropy, mutual information). Subsequently, multiple

agents are directed to explore the highly uncertain areas of the environmental phenomenon.

In order not to incur a high computational expense, these algorithms have assumed the

spatial correlation structure to be known (or estimated crudely using sparse prior data) and

stationary.

Stationarity is a statistical term to describe a special type of environmental phenomenon

in which the degree of smoothness of the spatial variation of the measurements is the same

across the entire phenomenon. Many small-scale environmental phenomena are stationary

which indeed result in a stationary correlation structure in the measurements. However, when

the scale of the phenomena becomes larger, this stationary assumption will be violated, and

the underlying correlation structure in the measurements is actually nonstationary.
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Fig. 1.3 Demonstration of real-world nonstationary environmental phenomena: (a) Plankton
density (chl-a) phenomenon (measured in mg/m3) in log-scale in Gulf of Mexico, and (b)
traffic (road speeds) phenomenon (measured in km/h) over an urban road network.

For example (see Fig. 1.3), in some ocean phenomena (e.g., temperature, salinity, sea

surface height), their measurements far offshore are more smoothly varying (i.e., more

spatially correlated) in the cross-shore direction than nearshore (Li et al., 2008). Urban

traffic network is a combination of highways and small roads. It also displays nonstationary

phenomena (e.g., traffic speeds, taxi demands) which pose important considerations to traffic

routing and signal control.
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Here, we introduce the second challenge of large-scale machine learning related to

active learning: most large-scale phenomena are nonstationary in nature which leads to

wrongly quantified uncertainty based on current MAS algorithms. Although existing MAS

algorithms can still be used for sampling a non-stationary phenomenon by assuming, albeit

incorrectly, its spatial correlation structure to be known and stationary in order to preserve

time efficiency. They can gather the most informative observations under an assumed

stationary correlation structure, but they will perform sub-optimally with respect to the true

nonstationary correlation structure.

A more desirable MAS algorithm should instead be designed to consider the informa-

tiveness of its selected observations based on the true nonstationary correlation structure.

Furthermore, unlike the stationary structure which can be pre-determined with a small number

of observations in the early stage of active sensing, the nonstationary correlation structure has

to assume to be unknown before the target phenomenon is well explored due to its complexity.

It needs to be updated using the newly taken observations in the whole active sensing process,

which raises a fundamental issue faced by active learning. How can a MAS algorithm trade

off between these two possibly conflicting criteria? Should the next observation to be taken

to a) estimate the unknown nonstationary correlation structure or b) minimize the uncertainty

of the phenomenon based on the estimated nonstationary correlation structure?

1.1.3 Optimization at Scale

Most of the machine learning tasks or the training procedure of these tasks can be formulated

as optimization problems. For instance, active learning is to minimize the uncertainty in

the original task; fitting a regression model is to minimize the likelihood function using

the training data. Usually, in order to solve an optimization problem, we need to know the

expression of the objective function (if possible, the expression of the derivative or the second

derivative) to search the maximum/minimum value of the function.

In practice, some problem in nature is so complex that it may not have an analytical

expression that can be solved by traditional optimization methods. Alternatively, it is more

convenient to analyze the problem through simulation. For example, El Niño is a complex
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meteorological phenomenon (Larkin and Harrison, 2005) so that researchers analyse its

behavior through simulation. The financial market is highly unpredictable so that many

trading strategies (Wang et al., 2012) can only be evaluated through backtesting (simulate the

trading strategy using historical data). In these scenarios, the objective function is a black

box. We can only optimize the function based on the knowledge of the observed input-output

value pairs.

Fig. 1.4 Illustration of the procedure of Bayesian optimization.

Bayesian optimization (BO) is a modern optimization technique that can find the global

optimum of an unknown functions with limited function evaluations. There are two ingre-

dients in BO: The first ingredient is a prior distribution that captures the belief over the

unknown objective function based on the observations (the input-output pairs); The second

ingredient is a risk function that describes the deviation of current optimum from the true

global optimum. Existing BO works integrated these two ingredients by an acquisition

function. This acquisition function has an analytical expression that can be evaluated. The

most interesting thing is that BO transforms the problem of optimizing an unknown function

into two relatively easier problems: a) estimating the acquisition function and b) optimizing

the acquisition function. The acquisition function is estimated by taking observations from

simulations. By performing optimization on the acquisition function, we can know which

input value should be set for the next round of simulation. After iteratively conducting the
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simulation (see Fig. 1.4) with the guidance of BO, eventually, the optimum value of the

original function can be found.

However, learning and optimizing an acquisition function may not be an easy job in the

real-world situation, especially when the function has high input dimension, which is the third

challenge in large-scale machine learning. In many optimization problems conducted through

simulation, there are a large amount of parameters (each parameter is a dimension of the input)

that need to be tuned. In BO framework, estimating and optimizing the acquisition function

require learning the correlation structure between all the observations. The correlation

between two observations depends on all the input dimensions. Thus, to capture the true

latent correlation structure, the observations need to form a sufficient coverage of the input

space in every dimension. Otherwise, the acquisition function may be not able to correctly

describe the black-box function and the risk function. This is not a serious problem when

the objective function’s input dimension is low. However, when the function contains a

huge number of parameters, a large volume of observations are required to cover the high

dimensional input space. Unfortunately, in most simulations, this is time- and resource-

consuming. With a limited budget, we can only run a limited number of simulations so that

the observations may not be sufficient to form a good coverage of the input space. It will

lead to a poor estimation of the correlation structure in the observations. Consequently, the

optimization result will be far from the true optimum in the end.

1.2 Objectives

In the above subsections, we have discussed three characteristics (large input domain (section

2.1), nonstationarity (section 1.1.2) and high dimensionality (section 1.1.3)) in the large-scale

machine learning problems and their related challenges. An interesting thing is that the

three challenges share a common critical component: the underlying correlation structure

is inappropriately estimated or approximated in the context of large-scale machine learning

problem by ignoring those characteristics.
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• A fixed support set is not suitable for approximating the correlation structure of the

measurements in large input domain.

• Active sensing algorithm based on the stationary assumption cannot learn the actually

nonstationary correlation structure of the large-scale environmental phenomenon.

• The observations within limited budget are insufficient for learning the correlation

structure in high dimensional input space.

In order to address the three challenges, we ask the following research question:

In the context of large-scale machine learning, how can the correlation

structure of the data be exploited for constructing multi-agent coordination

schemes that can improve the scalability of the machine learning models

while preserving the computation accuracy?

If the true underlying correlation structure can be captured correctly, multi-agent coordi-

nation will provide great scalability to the solutions of the machine learning problems. In a

large environmental field, one support set cannot approximate the correlation structure of

observations in the entire domain but it can approximate the correlation structure within a

certain range. So it may be possible to use multiple local support sets to approximate the

local correlation structures with high accuracy and then use multi-agent coordination to share

the knowledge of each approximated local correlation structure.

In a nonstationary environmental field, instead of minimizing the uncertainty in the field

based on a stationary correlation structure, the active sensing algorithm should learn the

nonstationary structure and minimize the uncertainty based on the estimated correlation

structure.

Even though a huge number of parameters exist in high-dimensional unknown function

optimization problem, not all of them are correlated. We can exploit the sparsity of the

correlation structure among inputs so that a high dimensional input space can be decomposed

into small subspaces which can be densely covered by a few observations.
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1.3 Contributions

By constructing specific multi-agent coordination scheme according to the true underlying

correlation structure in large-scale machine learning problems, this thesis is trying to answer

the research question with the following contributions.

To address the challenge with large input domain:

• We present novel Gaussian process decentralized data fusion algorithms with agent-

centric support sets for distributed cooperative perception of large-scale environmental

phenomenon (section 3.2). In contrast with GP-DDF methods using fixed support

set, our proposed algorithms allow every sensing agent to choose a possibly different

support set and dynamically switch to another one during execution for encapsulating

its own data into a local summary that, perhaps surprisingly, can still be assimilated

with the other agents’ local summaries (i.e., based on their current choices of support

sets) into a globally consistent summary to be used for predicting the phenomenon.

• We propose a new transfer learning mechanism (section 3.2) for a team of mobile

sensing agents capable of sharing and transferring information encapsulated in a sum-

mary based on a support set to that utilizing a different support set with some loss that

can be theoretically bounded and analyzed. To alleviate the issue of information loss

accumulating over multiple instances of transfer learning, we propose an information

sharing mechanism to be incorporated into our GP-DDF algorithms.

• Our proposed algorithms can overcome the following three limitations of GP-DDF

methods (Chen et al., 2012, 2013b, 2015):

1. For any unobserved input location, an agent can choose a small, constant-sized

(i.e., independent of domain size of the phenomenon) but sufficiently dense

support set surrounding it to predict its measurement accurately while preserving

time, space, and communication efficiencies;

2. The agents can reduce the information loss due to summarization by choosing or

dynamically switching to a support set “close” to their local data;
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3. Without needing to retain previously gathered data, an agent can choose or

dynamically switch to a new support set whose summary can be constructed

using information transferred from the summary based on its current support set,

thus preserving scalability to big data.

• Finally, we empirically evaluate the performance of our proposed algorithms using

three real-world datasets, one of which is millions in size (section 3.3).

To address the challenge with nonstationarity:

• We present a decentralized multi-robot active sensing (DEC-MAS) algorithm that

can efficiently coordinate the exploration of multiple robots to automatically trade-off

between learning the unknown, nonstationary correlation structure and minimizing

the uncertainty of the environmental phenomena. Further, our DEC-MAS algorith-

m models a nonstationary phenomenon as a Dirichlet process mixture of Gaussian

processes (DPM-GPs) (Section 4.1): Using the gathered observations, DPM-GPs can

learn to automatically partition the phenomenon into separate local areas, each of

which comprises measurements that vary according to a stationary spatial correlation

structure and can thus be modeled by a locally stationary Gaussian process.

• We demonstrate how DPM-GPs and its structural properties can be exploited to

(a) formalize an active sensing criterion that trades off between gathering the most

informative observations for estimating the unknown partition (i.e., a key component

of the nonstationary correlation structure) vs. that for predicting the phenomenon given

the current, possibly imprecise estimate of the partition (Section 4.2), and (b) support

effective and efficient decentralized coordination (Section 4.3).

• We also provide a theoretical performance guarantee for DEC-MAS and analyze its

time complexity (section 4.3).

• Finally, we empirically demonstrate using two real-world datasets that DEC-MAS

outperforms the state-of-the-art MAS algorithms (Section 4.4).
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To address the challenge with high dimensionality:

• We present a Bayesian optimization method using Gaussian process prior with ANOVA

kernel function (section 5.2) that can decompose the correlation structure in high di-

mensions into a list of correlation structures of subsets of dimensions. Correspondingly,

the high dimensional input space is decomposed into small subspaces so that a few

observations can densely cover each subspace to learn and optimize the acquisition

function in BO accurately.

• To the best of our knowledge, ANOVA-DCOP is the first work to introduce multi-agent

coordination into high dimensional Bayesian optimization problem (section 5.2.3)

by exploiting the sparse correlation structure using ANOVA kernel. We formulate

the optimization of acquisition function as a decentralized constraint optimization

problem (DCOP) which can be solved efficiently using multi-agent coordination. We

theoretically bound the regret of the proposed algorithm and analyze its time complexity

(section 5.3).

• Finally, we empirically evaluate the performance using two high dimensional functions

with known optimum value and one real financial problem. The results show that our

method outperforms the existing high dimensional BO methods when the problem has

sparse correlation structure among the inputs (section 5.4).





Chapter 2

Related Works

This chapter reviews three large-scale machine learning problems (regression in section

2.1, active learning in section 2.2, optimization in section 2.3) and their characteristics. We

identify the challenges due to these characteristics in the existing works and position our

work in the literature to highlight our contributions in addressing these challenges.

2.1 Regression and Low Rank Approximation

Regression is one of the fundamental machine learning problems. In the last decades,

kernel method (Schölkopf and Smola, 2002) has demonstrated great performance in solving

regression problems. Methods such as kernel regression (Jaakkola and Haussler, 1999),

support vector regression (Smola and Schölkopf, 2004) and Gaussian process (Rasmussen

and Williams, 2006) are widely used in data analytical applications. Within those methods,

Gaussian process or so-called Kriging (Stein, 2012) in the geostatistics community is a

Bayesian nonparametric model which shows significant robustness in analyzing spatially

varying possibly noisy environmental phenomenon. It has integrated with many multi-agent

techniques in environmental sensing and data fusion tasks (Krause and Golovin, 2014, Krause

et al., 2008a, Meliou et al., 2007b, Osborne et al., 2008, Snelson, 2007).

Although the kernel methods can effectively capture the correlation structure in the

problem, the computation usually involves cubic time complexity due to inverting a kernel
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matrix. It suffers from serious scalability issue in the size of the data. Many works (Hsieh

et al., 2014, Le et al., 2013, Yang et al., 2012) have explored the sparse correlation structure to

learn the kernel in a more efficient way and preserve the model accuracy. Specifically for the

kernel matrix in Gaussian process model, there are many low-rank approximation methods

(Quiñonero-Candela and Rasmussen, 2005, Snelson and Ghahramani, 2007, Snelson and

Gharahmani, 2005) that have been developed based on a notion called support set. The

support set introduces the conditional independence in the measurements in order to form a

sparse representation of original correlation structure.

To improve the scalability of large-scale regression problems, people often seek help from

online learning methods and decentralized data fusion algorithms. Many online regression

methods (Ngu, Csató and Opper, 2002, Seeger and Williams, 2003, Xu et al., 2014) use a

fixed support set for computational sake. Since the correlation structure within the fixed

support set is consistent, many time consuming computations only need to be done once.

Decentralized data fusion algorithms such as GP-DDF (Chen et al., 2012) and GP-DDF+

(Chen et al., 2013b) also utilize a fixed support set to allow multiple agents agents to perform

data fusion in a decentralized manner. Each agent is able to take observations and encapsulate

them into a local summary based on the fixed support set. Then, multiple agents can share

their local summaries and reconstruct a consistent global summary for prediction.

As can be seen that, GP-DDF and GP-DDF+ are decentralized algorithms but rely on

this single fixed support set which is a centralized component in a decentralized system. In

a large-scale environmental field, a large volume of observations taken by the agents are

far from this fixed support set so that the computed local summaries are inaccurate. Our

proposed method utilize an agent-centric support set so that multiple support sets can densely

cover the environmental field. No matter where the agents are, the observations they take can

always find a close support set to compute an accurate local summary. Later on, the local

summaries can be shared between agents using a transfer learning mechanism we proposed.

In this way, we remove the centralized component in the original algorithm. It not only

decentralized the agents’ actions but also the model itself.
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In literature, there are some works that share the similar idea of agent-centric support

sets. For example, Deisenroth and Ng (2015) construct a tree structure of Gaussian process.

It splits the environmental field into many sub-fields, and each sub-field is modeled by a

Gaussian process. Hence, they are not able to share information between the sub-fields. The

work of Bui and Turner (2014) on the other hand, constructs a treed support set that can

allow the computation scales linearly with the size of the support set. However, their method

can not be learned in an incremental way so that it is not suitable for decentralized data

fusion. Our agent-centric support set can share local summaries between the sub-fields using

the proposed transfer learning mechanism and it allows the agents to add new observations

incrementally into the local summaries, which is more applicable for large-scale data fusion.

2.2 Active Learning and Nonstationarity

Active learning algorithms allow the agent to actively choose the data from the domain it

learns. It can achieve better performance with less training data than traditional passive

learning algorithms. Multi-agent active sensing is a particular type of active learning in

the multi-agent system which involves multiple agents to take the most informative obser-

vations from the target environmental phenomenon by minimizing the uncertainty in that

phenomenon. If we assume the phenomenon follows a Gaussian process prior, the uncertainty

of the phenomenon can be quantified based on the correlation structure as mean square error

(Low et al., 2008), entropy (Low et al., 2009) or mutual information (Meliou et al., 2007a).

The uncertainty quantified in the existing literature is based on the assumption that the

phenomenon is stationary. However, most of the large-scale phenomena are nonstationary

in nature. Therefore, quantifying the uncertainty using the stationary assumption will be

incorrect, which will result in sub-optimal active sensing performance. Out of the active

sensing topic, there are some existing works that have discussed nonstationary data modelling.

The methods can be categorized into two main types: a single model with nonstationary

kernel function (S) and a mixture of stationary models (M) as shown in table 2.1.
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Type Works Citation

S

Dot product kernel Schölkopf and Smola (2002), sec. 7.8
Neural network kernel Neal (1996)

Non-linear warping Sampson and Guttorp (1992)
Kernel averaging Paciorek and Schervish (2003)

M
Hotspots Low et al. (2009)

Voronoi tessellation Cortes et al. (2004)
Mixture of GPs Tresp (2001)

Infinite maxture of GPs Rasmussen and Ghahramani (2002)
Table 2.1 Modeling nonstationary data

In single model methods, dot product kernel (Schölkopf and Smola, 2002) is too simple

to model the real problem. The other two kernels (Neal, 1996, Sampson and Guttorp, 1992)

require specific domain knowledge to design the actual kernel. Kernel averaging (Paciorek

and Schervish, 2003) is a more general method but it contains a huge number of parameters

need to be learned from the data, which is too time-consuming for large-scale environmental

sensing applications. Mixture model, on the other hand, is more practical for real-world

problems. The works (Cortes et al., 2004, Low et al., 2009, Rasmussen and Ghahramani,

2002, Tresp, 2001) share the similar ideas to split the environmental field into several

subfields. The difference is how they split the field. Low et al. (2009) separate the field as

highly varying hotspots 1 and smooth background. Cortes et al. (2004) separate the field

as a Voronoi graph. These two works require the domain knowledge in the environmental

field. The works on mixture of Gaussian processes (Rasmussen and Ghahramani, 2002,

Tresp, 2001) are more general modeling techniques that can detect the stationary subfield

during the active sensing. A Dirichlet process mixture of Gaussian processes (DPM-GPs)

(Rasmussen and Ghahramani, 2002) can dynamically change the number of sub-models in

the mixture to fit the data. It is highly practical for the large-scale environmental phenomenon

because a large-scale environmental phenomenon usually has globally nonstationary but

locally stationary behavior that naturally fits the mixture model.

The methods we mentioned above focus on the modeling of the phenomenon. None of

them is specifically designed to direct the agents to actively taking observations from the

1hotspots exhibiting extreme measurements and much higher spatial variability than the rest of the field
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environmental phenomenon. To the best of my knowledge, there is only one work (Krause

and Guestrin, 2007) has tried to learn the correlation structure during the active sensing

process but it still has a stationary assumption which is not applicable for a large-scale

nonstationary phenomenon.

Our proposed DEC-MES algorithm is the first work that addresses the nonstationarity

challenge in the context of active sensing. We use DPM-GPs to fit the nonstationary phe-

nomenon. We derive the formulation of uncertainty based on the mixture model and propose

an active sensing criterion to direct multiple agents to take observations that can minimize

the uncertainty based on the nonstationary correlation structure learned from the model.

2.3 Optimization and High Dimensionality

Optimization is to search the maximum/minimum value of an objective function under

certain constraints. With different structures and constraints over the objective function, the

optimization methods can be quite different. In the simplest case, when the objective function

is convex, it is easy to use convex optimization methods (Boyd and Vandenberghe, 2004) to

get the global optimum with guarantees. When the objective function is not convex, it is still

possible to use gradient decent methods (Qian, 1999) to search the local optimum.

However, the objective function may not have analytical expression in complex problems.

The method to optimize an unknown function is quite different from the traditional opti-

mization method. Usually, it requires many trials of simulations. The only information we

have is the observed input-output pairs from the simulations. In this scenario, some heuristic

search methods like genetic algorithms (Akbari and Ziarati, 2011), Monte Carlo methods

(Rubinstein and Kroese, 2011), swarm intelligence (Parsopoulos and Vrahatis, 2002) are

applied to search the optimum via a huge number of simulations. Those methods require

heuristics with domain knowledge in order to generate good results (Tomoiagă et al., 2013).

Additionally, those methods require a huge number of simulations, which is impractical for

real complex problem since they cost lots of time and resources.
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Bayesian optimization (Snoek et al., 2012) is a modern optimization technique that

is suitable for optimizing unknown objective functions. Another name of BO is efficient

global optimization in the experimental design literature (Jones et al., 1998). It assumes that

the unknown function is distributed as a Gaussian process. The belief over the function is

updated by the simulated input and output pairs. Bayesian optimization utilizes an acquisition

function to capture the shape of unknown function and evaluate the risk on the deviation

from the true optimum. This acquisition function automatically balances the exploration and

exploitation in choosing the input values for new simulations, which result in relatively fewer

trials of simulations in searching the optimum. In the literature, there are three commonly

used acquisition functions:

• Probability of improvement (Kushner, 1964). Intuitively, it is to maximize the proba-

bility of improving the best current value.

• Expected improvement (Močkus, 1975). Alternatively, one could choose to maxi-

mize the expected improvement over the current best value. It demonstrates better

performance than the probability of improvement.

• Gaussian process upper confidence bound (GP-UCB) (Srinivas et al., 2009). A

more recent method is to exploit the upper/lower confidence bounds (for maximiza-

tion/minimization) to construct a parametric form of the acquisition function to min-

imize the regret in searching the optimum. The regret bound of GP-UCB can be

derived analytically so that we use it as the acquisition function for our ANOVA-DCOP

method.

Many large-scale optimization problems require methods that can deal with high dimen-

sional input. Although BO is successful in solving some problems, especially in learning

parameters of machine learning models, it is restricted to problems with less than ten di-

mensions (Wang et al., 2016). It is challenging to scale BO to high dimensions. To the

best of our knowledge, there are three works that specifically addressed high dimensional

BO problems: Subspace learning (Djolonga et al., 2013), random embedding (Wang et al.,
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2016) and additive model (Kirthevasan et al., 2015). The first two methods (Djolonga et al.,

2013, Wang et al., 2016) explore the intrinsic low-rank dimensions in the original high

dimensional space. They require specifying the number of the intrinsic dimensions. When

the specified number is far from the ground truth, their methods will generate poor results

as demonstrated in our experiments in section 5.4. On the other hand, the additive model

has a strong assumption that the dimensions are mutually independent. It totally ignores the

correlation structure in the dimensions. They ease the limitation by brutally grouping the

dimensions and assuming the groups are mutually independent.

The work of additive model (Kirthevasan et al., 2015) motivated our ANOVA-DCOP

method. Instead of assuming all the dimensions are independent, it is more reasonable to

explore the sparse correlation structure in the dimensions. In contrast with brutally grouping

the dimensions, we introduce multi-agent coordination techniques to learn the correlation

structure in the process of BO. Unlike the other two methods which require specifying a

fixed number of intrinsic dimensions, our work has the flexibility to adjust the correlation

structure dynamically.

In multi-agent community, there are many existing works on distributed optimization

problems. For example, Dantzig-Wolfe decomposition (Chung, 2011, Frangioni and Gendron,

2013) is one of the distributed optimization methods in linear programming. When the input

space of the problem has linear consistent decomposable structure for both objective function

and constraints, Dantzig-Wolfe method can decompose the optimization problem into many

subproblems. Other problems that beyond linear programming are often cast as decentralized

constrained optimization problem (DCOP) (Shoham and Leyton-Brown, 2008). DCOP

requires the objective function have a linear summation structure so that the problem can

be solved by sharing information between multiple agents. Many notable problems can be

formulated as DCOP such as distributed graph coloring and distributed multiple knapsack

problem (Frangioni and Gendron, 2013). Researchers have designed many multi-agent

coordination methods to solve this problem. Adopt (Modi et al., 2005) and DPOP (Petcu and

Faltings, 2005) are two wildly used methods. They can guarantee the optimal solution for an

optimization problem but they suffer from exponentially growing coordination overhead. A



22 Related Works

breakthrough in the literature is bounded max-sum (Farinelli et al., 2009, Kim and Lesser,

2013). It significantly reduces the time complexity in agent coordination and still maintains

the near-optimal solution of the problem. Our work of ANOVA-DCOP introduces DCOP to

Bayesian optimization so that multi-agent coordination can be used to optimize an unknown

function which is previously not feasible in the literature. Moreover, the bounded max-sum

method we are using together with ANOVA kernel can scale up to optimizing an unknown

function with hundreds of dimensions.

To sum up, we have reviewed the current literature related to the three challenges in large-

scale machine learning problems and positioned our work in the literature to demonstrate the

contributions to filling the gap with the scalability challenges due to the characteristics of the

large-scale problem. The remaining chapters of the thesis are organized as follows: Chapter

3 explains our GP-DDF method with agent-centric support set to address the challenge of

large input domain; Chapter 4 explains our DEC-MES method to address the challenge of

nonstationarity; Chapter 5 explains our ANOVA-DCOP method to address the challenge of

high dimensionality. Finally, chapter 6 concludes our works and discusses the potentials of

utilizing multi-agent techniques in large-scale machine learning problems.



Chapter 3

Gaussian Process Decentralized Data

Fusion with Agent-Centric Support Sets

for Large-Scale Distributed Cooperative

Perception

Motivated by the challenge of large input domain in large-scale regression problem, this

chapter presents a novel decentralized data fusion method using agent-centric support set.

In section 3.2 and section 3.2, we introduce the agent-centric support set and the transfer

learning mechanism to share the local summaries between two agents. Further, in section 3.3,

we design a multi-agent coordination algorithm in order to apply the method in the large-scale

environmental field. Lastly, we evaluate our GP-DDF method with three real-world datasets.
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Large-Scale Distributed Cooperative Perception

3.1 Background and Notations

Modeling Spatially Varying Environmental Phenomena with Gaussian Processes (GP-

s).

A Gaussian process (GP) can model a spatially varying environmental phenomenon as

follows: The phenomenon is defined to vary as a realization of a GP. Let X be a set

representing the domain of the phenomenon such that each location x ∈ X is associated

with a realized (random) measurement yx (Yx) if it is observed (unobserved). Let {Yx}x∈X

denote a GP, that is, any finite subset of {Yx}x∈X follows a multivariate Gaussian distribution

(Rasmussen and Williams, 2006). Then, the GP is fully specified by its prior mean µx ,E[Yx]

and covariance σxx′ , cov[Yx,Yx′] for all x,x′ ∈X , the latter of which characterizes the spatial

correlation structure of the phenomenon and can be defined, for example, by the widely-used

squared exponential covariance function

σxx′ , σ
2
s exp(−0.5∥Λ−1(x− x′)∥2)+σ

2
n δxx′ (3.1)

where σ2
s and σ2

n are, respectively, its signal and noise variance hyperparameters controlling

the intensity and the noise of the measurements, Λ is a diagonal matrix with length-scale

hyperparameters ℓ1 and ℓ2 controlling, respectively, the degree of spatial correlation or “simi-

larity” between measurements in the horizontal and vertical directions of the phenomenon,

and δxx′ is a Kronecker delta that is 1 if x = x′, and 0 otherwise.

Supposing a column vector yD , (yx′)
⊤
x′∈D of realized measurements is observed for

some set D ⊂ X of locations, a GP model can exploit these observations/data to perform

probabilistic regression by providing a Gaussian posterior/predictive distribution

N
(
µx+ΣxDΣ

−1
DD(yD−µD),σxx−ΣxDΣ

−1
DDΣDx

)
(3.2)

of the measurement for any unobserved location x ∈ X \D where µD , (µx′)
⊤
x′∈D, ΣxD ,

(σxx′)x′∈D, ΣDD , (σx′x′′)x′,x′′∈D, and ΣDx , Σ⊤xD. To predict the phenomenon, a naive

approach to data fusion is to fully communicate all the data to every mobile sensing agent,
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each of which then predicts the phenomenon separately using the Gaussian predictive

distribution in (3.2). Such an approach, however, scales poorly in the data size |D| due to the

need to invert ΣDD which incurs O(|D|3) time.

GP Decentralized Data Fusion (GP-DDF).

To improve the scalability of the GP model for practical use in data fusion, the work of (Chen

et al., 2015) has proposed efficient and scalable GP decentralized data fusion algorithms for

cooperative perception of environmental phenomena that can distribute the computational

load among the mobile sensing agents. The intuition of the GP-DDF algorithm of (Chen

et al., 2015) is as follows: Each of the N mobile sensing agents constructs a local summary of

the data/observations taken along its own path based on a common support set S ⊂ X known

to all the other agents and communicates its local summary to them. Then, it assimilates the

local summaries received from the other agents into a globally consistent summary which is

used to compute a Gaussian predictive distribution for predicting the phenomenon.

Formally, the local and global summaries and the Gaussian predictive distribution induced

by GP-DDF are defined as follows:

Definition 1 (Local Summary). Given a common support set S ⊂ X known to all N mobile

sensing agents, each agent i encapsulates a column vector yDi of realized measurements for

its observed locations Di into a local summary (νS|Di,ΨSS|Di) where

νB|Di , ΣBDiΣ
−1
DiDi|S(yDi−µDi) ,

ΨBB′|Di , ΣBDiΣ
−1
DiDi|SΣDiB′

(3.3)

for all B,B′⊂X and ΣDiDi|S , ΣDiDi−ΣDiSΣ
−1
SSΣSDi .

Definition 2 (Global Summary). Given a common support set S ⊂ X known to all N mobile

sensing agents and the local summary (νS|Di,ΨSS|Di) of every agent i = 1, . . . ,N, a global

summary is defined as a tuple (ν̇S ,Ψ̇SS) where

ν̇S , ∑
N
i=1 νS|Di and Ψ̇SS , ∑

N
i=1 ΨSS|Di +ΣSS . (3.4)
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Definition 3 (GP-DDF). Given a common support set S ⊂ X known to all N agents and the

global summary (ν̇S ,Ψ̇SS), the GP-DDF algorithm run by each agent computes a Gaussian

predictive distributionN (µx,σ
2
x) of the measurement for any unobserved location x ∈X \D

where

µx,µx+ΣxSΨ̇
−1
SS ν̇S , σ

2
x ,σxx−ΣxS(Σ

−1
SS−Ψ̇

−1
SS)ΣSx . (3.5)

The Gaussian predictive distribution (3.5) computed by the GP-DDF algorithm is theoret-

ically guaranteed by Chen et al. (2015) to be equivalent to that induced by the centralized

partially independent training conditional (PITC) approximation (Quiñonero-Candela and

Rasmussen, 2005) of the GP model. Running GP-DDF on each of the N agents can, however,

reduce the O(|D|((|D|/N)2 + |S|2)) time incurred by PITC to only O((|D|/N)3 + |S|3 +

|S|2N) time, hence scaling considerably better with increasing data size |D|.

Though GP-DDF scales well with big data, it can predict poorly due to information loss

caused by summarizing the measurements and correlation structure of the data/observations

and sparse coverage of the areas with highly varying measurements by the support set. To

address its shortcoming, the GP-DDF+ algorithm of Chen et al. (2015) exploits the data

local to an agent to improve the predictions for unobserved locations “close” to its data (in

the correlation sense) while preserving the efficiency of GP-DDF by adopting its idea of

summarizing information into local and global summaries (Definitions 1 and 2).

Definition 4 (GP-DDF+). Given a common support set S ⊂ X known to all N agents,

global summary (ν̇S ,Ψ̇SS), local summary (νS|Di,ΨSS|Di), and a column vector yDi of

realized measurements for observed locations Di, the GP-DDF+ algorithm run by each

agent i computes a Gaussian predictive distribution N (µx,σ
2
x) of the measurement for any

unobserved location x ∈ X \D where

µx , µx +
(
γ

i
xSΨ̇

−1
SS ν̇S −ΣxSΣ

−1
SSνS|Di

)
+νx|Di ,

σ
2
x , σxx−

(
γ

i
xSΣ
−1
SSΣSx−ΣxSΣ

−1
SSΨSx|Di

− γ
i
xSΨ̇

−1
SSγ

i
Sx

)
−Ψxx|Di

(3.6)
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such that γ i
xS , ΣxS +ΣxSΣ

−1
SSΨSS|Di−ΨxS|Di and γ i

Sx , γ i⊤
xS .

The Gaussian predictive distribution (3.6) computed by the GP-DDF+ algorithm is

observed to exploit local and global summaries (i.e., terms within brackets) as well as data

local to agent i (i.e., νx|Di and Ψxx|Di terms) and theoretically guaranteed by Chen et al.

(2015) to be equivalent to that induced by the centralized partially independent conditional

(PIC) approximation (Snelson and Ghahramani, 2007) of the GP model. In terms of time

complexity, GP-DDF+ shares the same improvement in scalability over PIC as that of

GP-DDF over PITC.

3.2 GP-DDF with Agent-Centric Support Sets

Transfer Learning.

It can be observed from (3.5) and (3.6) that the GP-DDF and GP-DDF+ algorithms depend

on a common support set S known to all N mobile sensing agents, which raises critical

limitations due to the large input domain: (a) Their cubic time cost in |S| prohibits increasing

the size of S too much to preserve their efficiency, which consequently limits the expansion

of the domain of the phenomenon for which it can still be covered and predicted well; (b)

if S sparsely covers the large-scale phenomenon due to its restricted size and is thus “far”

from the data and unobserved locations to be predicted, then the values of the components in

terms like ΣSDi and ΣxS tend to zero, which degrade their predictive performance; and (c)

when switching to a new support set, they have to wastefully discard all previous summaries

based on the old support set.

To address the above limitations, a straightforward approach inspired by the local GPs

method (Choudhury et al., 2002, Das and Srivastava, 2010) is to partition the domain of the

phenomenon into local areas and run GP-DDF or GP-DDF+ with a different, sufficiently

dense support set for each local area. But, such an approach often suffers from discontinuities

in predictions on the boundaries between local areas 1 and only utilizes the data within a

1An exception is the work of Park et al. (2011) that overcomes this boundary effect by imposing continuity
constraints along the boundaries in a centralized manner.
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local area for its predictions, thereby performing poorly in local areas with little/no data.

These drawbacks motivate the need to design and develop a transfer learning mechanism for

a team of mobile sensing agents capable of sharing and transferring information encapsulated

in a summary based on a support set for a local area to that utilizing a different support set

for another area. In this section, we will describe our transfer learning mechanism and its

use in our GP-DDF or GP-DDF+ algorithm with agent-centric support sets and theoretically

bound and analyze its resulting loss of information.

Specifically, supposing a mobile sensing agent i moves from a local area with support set

S to another local area with a different support set S ′ (i.e., S
⋂
S ′ = /0), the local summary

(νS ′|Di,ΨS ′S ′|Di) based on the new support set S ′ can be derived exactly from the local

summary (νS|Di,ΨSS|Di) utilizing the old support set S only when the data (Di,yDi) gathered

by agent i (i.e., discarded after encapsulating into (νS|Di,ΨSS|Di)) in the local area with

support set S can be fully recovered from (νS|Di,ΨSS|Di), which is unfortunately not possible.

Our key idea is thus to derive the local summary (νS ′|Di,ΨS ′S ′|Di) approximately from

(νS|Di,ΨSS|Di) in an efficient and scalable manner by exploiting the following important

definition:

Definition 5 (Prior Summary). Given a support set S ⊂ X for a local area, each mobile

sensing agent i encapsulates a column vector yDi of realized measurements for its observed

locations Di into a prior summary (ωS|Di,ΦSS|Di) where

ωS|Di,ΣSDiΣ
−1
DiDi

(yDi−µDi) , ΦSS|Di,ΣSDiΣ
−1
DiDi

ΣDiS . (3.7)

The prior summary (ωS|Di,ΦSS|Di) (3.7) is defined in a similar manner to the local

summary (νS|Di,ΨSS|Di) (3.3) except for the ΣDiDi term in the former replacing the ΣDiDi|S

term in the latter and is the main ingredient for making our proposed transfer learning

mechanism efficient and scalable. Interestingly, the prior summary based on the new support

set S ′ can be approximated from the prior summary utilizing the old support set S as follows:

Proposition 1. If YS ′ and YDi are conditionally independent given YS (i.e., ΣS ′Di|S = ΣS ′Di−

ΣS ′SΣ
−1
SSΣSDi = 0) for i = 1, . . . ,N, then
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ωS ′|Di=ΣS ′SΣ
−1
SSωS|Di, ΦS ′S ′|Di=ΣS ′SΣ

−1
SSΦSS|DiΣ

−1
SSΣSS ′. (3.8)

Its proof is in Appendix A.1.

Remark. The conditional independence assumption in Proposition 1 extends that on the

training conditionals of PITC and PIC (Section 3.1) which have already assumed conditional

independence of YD1, . . . ,YDN given YS . Alternatively, it can be interpreted as a low-rank

covariance matrix approximation ΣS ′SΣ
−1
SSΣSDi of ΣS ′Di . The quality of this approximation

will be theoretically guaranteed later.

To efficiently and scalably derive the local summary (νS ′|Di,ΨS ′S ′|Di) approximately

from (νS|Di,ΨSS|Di), our transfer learning mechanism will first have to transform the local

summary (νS|Di,ΨSS|Di) to the prior summary (ωS|Di,ΦSS|Di) based on the old support

set S, then use the latter to approximate the prior summary (ωS ′|Di,ΦS ′S ′|Di) based on the

new support set S ′ by exploiting Proposition 1, and finally transform the approximated

prior summary back to approximate the local summary (νS ′|Di,ΨS ′S ′|Di), as detailed in

Algorithm 1 below. The above two transformations can be achieved by establishing the

following relationship between the local summary and prior summary:

Proposition 2. Given a support set S ⊂X for a local area, the local summary (νS|Di,ΨSS|Di) (3.3)

and the prior summary (ωS|Di,ΦSS|Di) (3.7) of agent i are related by

Φ
−1
SS|Di

ωS|Di=Ψ
−1
SS|Di

νS|Di , Φ
−1
SS|Di

=Ψ
−1
SS|Di

+Σ
−1
SS . (3.9)

Its proof is in Appendix A.2.

Supposing agent i has gathered additional data (D′i,yD′i) from the local area with the

new support set S ′, it can be encapsulated into a local summary (νS ′|D′i ,ΨS ′S ′|D′i) that is

assimilated with the approximated local summary (νS ′|Di,ΨS ′S ′|Di) by simply summing them

up:
νS ′|Di

⋃
D′i = νS ′|Di +νS ′|D′i ,

ΨS ′S ′|Di
⋃
D′i = ΨS ′S ′|Di +ΨS ′S ′|D′i ,

(3.10)

which require making a further assumption of conditional independence between D′i and D j

given the support set S ′ for j = 1, . . . ,N.
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Finally, to assimilate the local summary of agent i with the other agents’ local summaries

(i.e., based on their current choices of support sets) into a global summary to be used for

predicting the phenomenon, the local summary (νS ′|D j ,ΨS ′S ′|D j) of every other agent j ̸= i

based on agent i’s support set S ′ can be derived approximately from the received local

summary (νS ′′|D j ,ΨS ′′S ′′|D j) based on agent j’s support set S ′′ ̸= S ′ using exactly the same

transfer learning mechanism described above. Then, the global summary (ν̇S ′,Ψ̇S ′S ′) can be

computed via (3.4) and used by the GP-DDF or GP-DDF+ algorithm (Section 3.1).

Algorithm 1: GP-DDF/GP-DDF+ with agent-centric support sets based on transfer

learning for agent i

if agent i transits from local area with support set S to local area with support set S ′ then

/* Transfer learning mechanism */

Construct local summary (νS|Di ,ΨSS|Di) and transform it to prior summary

(ωS|Di ,ΦSS|Di) by (3.9);

Derive prior summary (ωS ′|Di ,ΦS ′S ′|Di) based on S ′ approximately from (ωS|Di ,ΦSS|Di)

by (3.8);

Transform prior summary (ωS ′|Di ,ΦS ′S ′|Di) to local summary (νS ′|Di ,ΨS ′S ′|Di) by (3.9);

if agent i has to predict the phenomenon then

if data (D′i,yD′i) is available from local area with support set S ′ then
Assimilate local summaries (νS ′|Di ,ΨS ′S ′|Di) with (νS ′|D′i ,ΨS ′S ′|D′i) to yield

(νS ′|Di
⋃
D′i ,ΨS ′S ′|Di

⋃
D′i) by (3.10);

Exchange local summary with every agent j ̸= i;

foreach agent j ̸= i in local area with support set S ′′ ̸= S ′ do
Derive local summary (νS ′|D j ,ΨS ′S ′|D j) based on S ′ approximately from received

local summary (νS ′′|D j ,ΨS ′′S ′′|D j) based on S ′′ using the above transfer learning

mechanism;
Compute global summary (ν̇S ′ ,Ψ̇S ′S ′) by (3.4) using local summaries

(νS ′|Di
⋃
D′i ,ΨS ′S ′|Di

⋃
D′i) and (νS ′|D j ,ΨS ′S ′|D j) of every agent j ̸= i;

Run GP-DDF (3.5) or GP-DDF+ (3.6);

Supposing |S|= |S ′|= |S ′′| for simplicity, our transfer learning mechanism in Algorithm

1 incurs only O(|S|3) time (i.e., independent of data size |D|) due to multiplication and
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inversion of matrices of size |S| by |S|. Since the support set for every local area is expected

to be small, our transfer learning mechanism is efficient and scalable.

Recall from the remark after Proposition 1 that our transfer learning mechanism has

utilized a low-rank covariance matrix approximation ΣS ′SΣ
−1
SSΣSDi of ΣS ′Di . To theoretically

bound the information loss resulting from such an approximation, we first observe that

it resembles the Nyström low-rank approximation except that the latter typically involves

approximating a symmetric positive semi-definite matrix like ΣS ′S ′ or ΣDiDi instead of ΣS ′Di ,

which precludes a direct application of existing results on Nyström approximation (Sun

et al., 2015) to our theoretical analysis. Fortunately, we can exploit the idea of clustering

with respect to S for our theoretical analysis which is inspired by that of the Nyström

approximation of Zhang et al. (2008) but results in a different loss bound depending on the

GP hyperparameters (Section 3.1) and the “closeness” of S ′ and Di to S in the correlation

sense.

Define c(x) as a function mapping each x ∈ Di
⋃
S ′ to the “closest” c(x) ∈ S, that is,

c : Di
⋃
S ′ → S where c(x) , argmins∈S ||Λ−1(x− s)||. Then, partition Di (S ′) into |S|

disjoint subsets Dis , {x ∈ Di | c(x) = s} (S ′s , {x ∈ S ′ | c(x) = s}) for s ∈ S. Intuitively,

Dis (S ′s) is a cluster of locations in Di (S ′) that are closest to location s in the support set S.

Our main result below theoretically bounds the information loss ||ΣS ′Di−ΣS ′SΣ
−1
SSΣSDi||F

resulting from the low-rank approximation ΣS ′SΣ
−1
SSΣSDi of ΣS ′Di with respect to the Frobe-

nius norm:

Theorem 1. Let σxx′ be defined by a squared exponential covariance function (3.1),T ,

argmaxs∈S |Dis|, T ′ , argmaxs∈S |S ′s|, εS ′ , |S ′|−1
∑x∈S ′ ||Λ−1(x− c(x))||2, and εDi ,

|Di|−1
∑x∈Di ||Λ

−1(x− c(x))||2. Then, ||ΣS ′Di−ΣS ′SΣ
−1
SSΣSDi||F has a upper bound:

√
3/eσ2

s |S|T T ′
(√

εS ′+ εDi +
√

εS ′+
√

εDi +σ2
s ||Σ−1

SS ||F |S|
√

3εS ′εDi/e
)
. (3.11)

Its proof is in Appendix A.3. Note that a similar result to Theorem 1 can be derived for

other commonly-used covariance functions such as those presented in the work of Zhang

et al. (2008).
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It can be observed from Theorem 1 that the information loss ||ΣS ′Di−ΣS ′SΣ
−1
SSΣSDi||F

can be reduced when the signal variance σ2
s is small, the length-scales ℓ1 and/or ℓ2 are large,

the mobile sensing agent i utilizes a support set S “close” to its observed locations Di in a

local area (i.e., smaller εDi) and moves to another local area with a support set S ′ “close” to

S (i.e., smaller εS ′).

Lazy Transfer Learning.

Theorem 1 above further reveals that every instance of transfer learning in Algorithm 1 incurs

some information loss which accumulates over multiple instances when the agent transits

between many local areas and consequently degrades its resulting predictive performance.

This motivates the need to be frugal in the number of instances of transfer learning to be

performed.

To achieve this, our key idea is to delay transfer learning till prediction time but in a

memory-efficient manner2.

Specifically, we propose the following information sharing mechanism to reduce memory

requirements for a team of mobile sensing agents: When agent i leaves a local area, its local

summary is communicated to another agent in the same area who assimilates it with its own

local summary using (3.4). However, if no other agent is in the same area, then agent i stores

a backup of its local summary.

On the other hand, when agent i enters a local area containing other agents, it simply

obtains its corresponding support set to encapsulate its new data gathered in this area. But,

if no other agent is in this area, then agent i retrieves (and removes) the backup of its

corresponding local summary from an agent who has previously visited this area3. If no

agent has such a backup, then agent i is the first to visit this area and constructs a new

support set for it. Algorithm 4 (Appendix A.4) details the GP-DDF/GP-DDF+ algorithm

2Naively, an agent can delay transfer learning by simply storing a separate local summary based on the
support set for every previously visited local area, which is not memory-efficient.

3Multiple backups of the local summary for the same local area may exist if agents leave this area at the
same time, which rarely happens. In this case, agent i should retrieve (and remove) all these backups from the
agents storing them.
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with agent-centric support sets by incorporating the above information sharing mechanism in

order to achieve memory-efficient lazy transfer learning.

To analyze the memory requirements of our information sharing mechanism in Algorith-

m 4 (Appendix A.4), let the domain of the phenomenon be partitioned into K local areas.

Then, the team of N mobile sensing agents incurs a total of O((K +N)|S|2) memory in the

worst case when all the agents reside in the same local area and the last agent entering this

area stores the backups of the local summaries for the other K−1 local areas.

However, the agents are usually well-distributed over the entire phenomenon in practice:

In the case of evenly distributed agents, the team incurs a total ofO(max(K,N)|S|2) memory.

So, each agent incurs an amortized memory cost of O(max(K,N)|S|2/N).

A limitation of the information sharing mechanism in Algorithm 4 (Appendix A.4) is its

susceptibility to agent failure: If an agent stores the backups of the local summaries for many

local areas and breaks down, then all the information on these local areas will be lost. Its

robustness to agent failure can be improved by distributing multiple agents to every local

area to reduce its risk of being empty and hence its likelihood of inducing a backup.

3.3 Experiments and Discussion

In the experiments, we first test the agent-centric support set and transfer learning mechanism

on a simulated spatial phenomenon, and then the entire performance of our algorithm will be

evaluated with two real world datasets and one of them is millions in size.

3.3.1 Simulated Spatial Phenomena

The toy experiment here is set up to demonstrate the effectiveness of our proposed lazy trans-

fer learning mechanism (Section 3.2) that is driving our GP-DDF/GP-DDF+ algorithms with

agent-centric support sets (Appendix A.4): A number of 2-dimensional spatial phenomena

of size 50 by 50 are generated using signal variance σ2
s = 1, noise variance σ2

n = 0.01, and

by varying the length-scale ℓ1 = ℓ2 from 1 to 20. The domain of the spatial phenomenon

is partitioned into 4 disjoint local areas of size 25 by 25 (Fig. 3.1), each of which contains
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(a) GP-DDF (b) Local PITCs

 

 

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 −8

−7

−6

−5

−4

−3

−2

 

 

10 20 30 40 50

5

10

15

20

25

30

35

40

45

50 −8

−7

−6

−5

−4

−3

−2

(c) Full PITCs (d) GP-DDF-ASS

Fig. 3.1 (a-d) Maps of log-predictive variance (i.e., logσ
2
x for all x ∈ X ) over a spatial phe-

nomenon with length-scale of 10 achieved by the tested decentralized data fusion algorithms.

an agent moving randomly within to gather 25 local data/observations. We compare the

predictive performance of the following decentralized data fusion algorithms: (a) Original

GP-DDF (Chen et al., 2012, 2015) with a common support set of size 18 distributed over the

entire phenomenon and known to all 4 agents, (b) PITCs utilizing local information (local

PITCs) with agent-centric support sets assign a different PITC to each agent summarizing its

gathered local data based on a support set of size 18 distributed over its residing local area, (c)

PITCs utilizing full information (full PITCs) with agent-centric support sets assign a different

PITC to each agent summarizing its gathered local data as well as those communicated by the

other agents (i.e., full data gathered by all agents) based on a support set of size 18 distributed

over its residing local area, (d) GP-DDF with agent-centric support sets (GP-DDF-ASS)

each of size 18 and distributed over a different local area (Algorithm 4 in Appendix A.4).

Note that if our proposed lazy transfer learning mechanism in GP-DDF-ASS incurs minimal

(total) information loss, then its predictive performance will be similar to that of full PITCs

(local PITCs).
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Fig. 3.1 shows results of the maps of log-predictive variance (i.e., logσ
2
x for all x ∈ X )

over a spatial phenomenon with length-scale of 10 achieved by the tested decentralized

data fusion algorithms. It can be observed from Fig. 3.1a that GP-DDF achieves the worst

predictive performance since the size of its common support set is only a quarter of that

used by the other tested algorithms. From Fig. 3.1b, though local PITCs can predict better

than GP-DDF, the predictive uncertainty at the boundaries between local areas remains very

high, which is previously explained in Section 3.2. Fig. 3.1c shows the most ideal predictive

performance achieved by full PITCs because each agent exploits the full data gathered by

and exchanged with all agents for encapsulating into a global summary based on the support

set distributed over its residing local area. Fig. 3.1d reveals that GP-DDF-ASS can achieve

predictive performance comparable to that of full PITCs without needing to exchange the

full data between all agents due to minimal information loss by our proposed lazy transfer

learning mechanism.

Recall from Theorem 1 (Section 3.2) that the information loss incurred by our proposed

transfer learning mechanism depends on the closeness between the support sets distributed

over different local areas as well as the closeness (i.e., in the correlation sense) between

the support sets and the data/observations. The effect of varying such closeness on the

performance of our transfer learning mechanism can be empirically investigated by alter-

natively changing the length-scale to control the degree of spatial correlation between the

measurements of the phenomenon.

Fig. 3.2 shows results of the reduction in RMSE of GP-DDF, full PITCs, and GP-DDF-

ASS over local PITCs with varying lengthscales from 1 to 20. It can be observed that only

GP-DDF performs worse than local PITCs while both GP-DDF-ASS and full PITCs perform

significantly better than local PITCs, all of which are explained previously. Interestingly,

the reduction in RMSEs varies for different length-scales and tends to zero when the length-

scale is either too small or large. With a very small length-scale, the correlations between

the support sets distributed over different local areas and between the support sets and the

data/observations become near-zero, hence resulting in poor transfer learning for GP-DDF-

ASS. This agrees with the observation in our theoretical analysis for Theorem 1 (Section 3.2).
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Fig. 3.2 Graphs of reduction in RMSE of GP-DDF, full PITCs, and GP-DDF-ASS over local
PITCs vs. varying length-scales.

With a very large length-scale, though their correlations are strong, the local observations/data

can be used by local PITCs to predict very well, hence making transfer learning redundant.

Our transfer learning mechanism performs best with intermediate length-scales where the

correlations between the support sets distributed over different local areas and between the

support sets and the data are sufficiently strong but not to the extent of achieving good

predictions with simply local data.

3.3.2 Experiments on Real-World data

The performance of our GP-DDF and GP-DDF+ algorithms with agent-centric support sets

are empirically evaluated using the following two real-world datasets:

(a) The indoor lighting quality dataset contains 1200 observations of relative lighting

level gathered simultaneously by three real Pioneer 3-DX mobile robots mounted with SICK

LMS200 laser rangefinders and weather boards while patrolling an office environment, as

shown in Fig. 3.3. The domain of interest is partitioned into K = 8 consecutive local areas

and the robots patrol to and fro across them such that they visit all K = 8 local areas exactly

twice to gather observations of relative lighting level.

(b) the monthly sea surface temperature (◦C) dataset (Fig. 3.4) is bounded within lat.

35.75-14.25S and lon. 80.25-104.25E (i.e., in the Indian ocean) and gathered from Dec.

2002 to Dec. 2015 with a data size of 1,083,608. The huge spatiotemporal domain of
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(a) (b)

Fig. 3.3 (a) Red, green, and blue trajectories of three Pioneer 3-DX mobile robots in an office
environment generated by AMCL package in ROS, along which (b) 1200 observations of
relative lighting level are gathered simultaneously by the robots at locations denoted by small
colored circles.

Fig. 3.4 Temperature phenomenon bounded within lat. 35.75-14.25S and lon. 80.25-104.25E
in Dec. 2015.

this phenomenon comprises 5-dimensional input feature vectors of latitude, longitude, year,

month, and season, and is spatially partitioned into 32 disjoint local areas, each of which

is further temporally partitioned into 64 disjoint intervals (hence, K = 2048) and assigned

2 agents moving randomly within to gather local observations; the results are averaged

over 10 runs. We have also investigated the effect of varying degrees of spatial correlation

(specifically, length-scale) between measurements of simulated spatial phenomena on the

effectiveness of our proposed lazy transfer learning mechanism (Section 3.2) due to varying
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extents on its resulting information loss (Theorem 1) and reported the empirical results in

Appendix 3.3.1.

Two performance metrics are used in our experiments: (a) Root-mean-square error

(RMSE)
√
|X |−1 ∑x∈X (µx− yx)2 measures the predictive performance of the tested algo-

rithms while (b) incurred time measures their efficiency and scalability. The performance of

our GP-DDF and GP-DDF+ algorithms with agent-centric support sets (respectively, GP-

DDF-ASS and GP-DDF+-ASS), each of which is of size 30 (200) and randomly distributed

over a different local area of the office environment (temperature phenomenon), are compared

against that of the local GPs method (Choudhury et al., 2002, Das and Srivastava, 2010)

and state-of-the-art GP-DDF and GP-DDF+ (Chen et al., 2015) with a common support

set of size 30 (200) randomly distributed over the entire office environment (temperature

phenomenon) and known to all agents; consequently, the latter construct local summaries of

the same size. The hyperparameters of GP-DDF-ASS and GP-DDF+-ASS are learned using

maximum likelihood estimation, as detailed in Appendix A.5.

Predictive Performance.

Figs. 3.5a and 3.5c show results of decreasing RMSE achieved by tested algorithms with

an increasing total number of observations, which is expected. It can be observed that

GP-DDF-ASS and GP-DDF+-ASS, respectively, outperform GP-DDF and GP-DDF+, as

explained previously in the introduction. Furthermore, the performance improvement of

GP-DDF-ASS over GP-DDF is larger than that of GP-DDF+-ASS over GP-DDF+, which

demonstrates the effectiveness of our lazy transfer learning mechanism, especially when

some local areas lack data/observations. This also explains the better predictive performance

of GP-DDF+-ASS over local GPs, even though they both exploit local data.

Time Efficiency.

In this experiment, we specifically evaluate the time efficiency of our transfer learning

mechanism (Section 3.2) in GP-DDF-ASS and GP-DDF+-ASS with respect to the number of

observations; to do this, we have intentionally ignored the time incurred by their information
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Fig. 3.5 Graphs of RMSE and total time incurred by tested algorithms vs. total no. of
observations for (a-b) indoor lighting quality and (c-d) temperature phenomenon.

sharing mechanism (i.e., first if-then construct in Algorithm 4 in Appendix A.4) and compared

their resulting incurred time with that of GP-DDF and GP-DDF+ (i.e., without transfer

learning). Figs. 3.5b and 3.5d show results of increasing total time incurred by tested

algorithms when the total number of observations increases, which is expected (Section 3.1).

It can be observed that GP-DDF-ASS and GP-DDF+-ASS, respectively, incur only slightly

more time than GP-DDF and GP-DDF+ (i.e., due to an extra small fixed cost of O(|S|3)

time for transfer learning (Section 3.2)) to achieve more superior predictive performance,

especially for GP-DDF-ASS. GP-DDF+-ASS incurs more time than GP-DDF-ASS (local

GPs) to further exploit local data (support set and transfer learning) for improving its

predictive performance. For time-critical applications, we recommend using GP-DDF-ASS

over GP-DDF+-ASS since its incurred time is small and increases very gradually with more

observations. For big data applications, GP-DDF+-ASS is instead preferred since a large

amount of local data is often available in nearly every local area for prediction.
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We have also empirically evaluated the scalability of GP-DDF-ASS and GP-DDF+-ASS

in the number of agents and observed that their total incurred time decrease with more

agents and they, respectively, incur only slightly more time than GP-DDF and GP-DDF+

due to their information sharing mechanism described in Section 3.2 (i.e., first if-then

construct in Algorithm 4 in Appendix A.4). The empirical results are are reported in detail in

Appendix A.6.

3.4 Conclusion

This chapter describes novel GP-DDF-ASS and GP-DDF+-ASS algorithms for distributed

cooperative perception of large-scale environmental phenomena. To overcome the limitations

of GP-DDF and GP-DDF+ (Chen et al., 2012, 2013b, 2015), our proposed GP-DDF-ASS

and GP-DDF+-ASS algorithms employ a new transfer learning mechanism between agents

which is capable of sharing and transferring information encapsulated in a summary based on

a support set to that utilizing a different support set with some loss that can be theoretically

bounded and analyzed. To alleviate the issue of information loss accumulating over multiple

instances of transfer learning, GP-DDF-ASS and GP-DDF+-ASS exploit an information shar-

ing mechanism to achieve memory-efficient lazy transfer learning. Empirical evaluation on

two real-world datasets show that our transfer learning and information sharing mechanisms

make GP-DDF-ASS and GP-DDF+-ASS incur only slightly more time than GP-DDF and

GP-DDF+ (i.e., without transfer learning) to achieve more superior predictive performance.



Chapter 4

Multi-Robot Active Sensing of

Non-Stationary Gaussian Process-Based

Environmental Phenomena

Motivated by the challenge of nonstationarity in large-scale active learning problem, this

chapter explains the details of our proposed DEC-MAS algorithm to address nonstationarity

issue in active sensing. Section 4.1 describes the Gaussian process model and mixture model

to quantify the uncertainty in a nonstationary environmental field. Section 4.3 illustrates

the DEC-MAS algorithm with the proposed active sensing criterion. Lastly, section 4.4

demonstrates the empirical performance of the DEC-MAS on two real-world datasets.

4.1 Modeling a Phenomenon

4.1.1 Gaussian Process (GP)

A nonstationary environmental phenomenon can be viewed as a mixture of stationary phe-

nomena. We will first introduce the modeling of a stationary field by a Gaussian process

with additional notations that captures the specific local smoothness, and then introduce the

mixture model that combines multiple Gaussian processes.
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A Gaussian process (GP) (Rasmussen and Williams, 2006) can be used to model a

spatially varying phenomenon as follows: The phenomenon is defined to vary as a realization

of a GP. Let V denote a set of sampling units representing the domain of the phenomenon

such that each sampling unit x ∈V is specified by a d-dimensional feature vector and is also

associated with a realized (random) measurement yx (Yx) if x is sampled/observed (unob-

served). Let {Yx}x∈V denote a GP, that is, every finite subset of {Yx}x∈V has a multivariate

Gaussian distribution (Chen et al., 2013a, Rasmussen and Williams, 2006). The GP is fully

specified by its prior mean µx , E[Yx] and covariance σxx′|θ , cov[Yx,Yx′|θ ] for all x,x′ ∈V ,

the latter of which characterizes the spatial correlation structure of the phenomenon and can

be defined using a covariance function parameterized by θ , as described later.

Supposing a column vector yD of realized measurements is available for some set D⊂V

of observed sampling units, the GP can exploit these observations to predict the measurements

for any set X ⊆V \D of unobserved sampling units as well as provide their corresponding

predictive uncertainties using the following Gaussian posterior mean vector and covariance

matrix, respectively:

µX |D,θ , µX +ΣXD|θ Σ
−1
DD|θ (yD−µD) (4.1)

ΣXX |D,θ , ΣXX |θ −ΣXD|θ Σ
−1
DD|θ ΣDX |θ (4.2)

where µX (µD) is a column vector with mean components µx for all x ∈ X (x ∈ D), ΣXX |θ

(ΣDD|θ ) is a covariance matrix with covariance components σxx′|θ for all x,x′ ∈ X (x,x′ ∈ D),

ΣXD|θ is a covariance matrix with covariance components σxx′|θ for all x ∈ X ,x′ ∈ D, and

ΣDX |θ is the transpose of ΣXD|θ . The posterior covariance matrix ΣXX |D,θ (4.2), which

is independent of the measurements yD, can be used to quantify the uncertainty of the

predictions through, for example, the Gaussian posterior joint entropy:

H[YX |yD,θ ],
1
2

log(2πe)|X |
∣∣ΣXX |D,θ

∣∣ . (4.3)

We will focus on using this entropy-based measure of predictive uncertainty in this work.

A GP can model a stationary phenomenon by defining its prior covariance σxx′|θ using a

stationary covariance function (Rasmussen and Williams, 2006), that is, it is a function of
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x−x′. Hence, it is invariant to translations in the domain V . A common choice is the squared

exponential covariance function:

σxx′|θ , σ
2
s exp

(
−1

2

d

∑
i=1

(
xi− x′i
ℓi

)2
)
+σ

2
n δxx′ (4.4)

where xi (x′i) is the i-th component of the d-dimensional feature vector x(x′), the set of

hyperparameters θ , {σ2
s ,σ

2
n , ℓ1, . . . , ℓd} are, respectively, signal and noise variances and

length-scales, and δxx′ is a Kronecker delta that is 1 if x = x′ and 0 otherwise. Intuitively, the

signal and noise variances describe, respectively, the intensity and noise of the measurements

while each length-scale ℓi controls the degree of smoothness in the spatial variation of the

measurements (i.e., spatial correlation or “similarity” between measurements) with respect

to the i-th feature component. If the hyperparameters are not known, they can be trained

using the available observations via maximum likelihood estimation (MLE) (Rasmussen

and Williams, 2006), that is, by choosing θ that maximizes the log marginal likelihood

log p(yD|θ) =

− 1
2
(yD−µD)

⊤
Σ
−1
DD|θ (yD−µD)−

1
2

log(2π)|D|
∣∣ΣDD|θ

∣∣ . (4.5)

Similarly, a GP can model a non-stationary phenomenon by specifying its prior covariance

with a non-stationary covariance function, the choice of which involves a trade-off between

the richness of the resulting GP model vs. computational efficiency. For example, the

simple non-stationary polynomial and neural network covariance functions (Rasmussen and

Williams, 2006) only need a few hyperparameters to be determined. But, they do not exhibit

a desirable locality property1 that holds for many stationary covariance functions (e.g., (4.4))

and, more importantly, has been widely exploited by existing MAS algorithms mentioned in

the literature review to achieve time efficiency. On the other hand, the complex non-stationary

version of Matérn covariance function (Paciorek and Schervish, 2003) requires a large number

of hyperparameters to be specified. Though it can capture the locality property, the training

1The locality property (Krause et al., 2008b) states that the spatial correlation of measurements between
sampling units decreases to zero with increasing distance between them.
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of its hyperparameters, when unknown, is computationally expensive. An alternative to using

a single GP is to consider modeling the non-stationary phenomenon with a mixture of GPs

that can provide a fine balance between richness and efficiency as well as a useful structural

property to be exploited by our DEC-MAS algorithm, as described next.

4.1.2 Dirichlet Process Mixture of Gaussian Processes (DPM-GPs)

It is often observed (e.g., see Fig. 1.3) that the measurements in separate areas of a non-

stationary phenomenon vary according to different locally stationary spatial correlation

structures (Sampson et al., 2001). Such a phenomenon can be modeled with high fidelity by

a Dirichlet process mixture of locally stationary GPs (Rasmussen and Ghahramani, 2002),

which offers the following representational and computational advantages over a single non-

stationary GP (Section 4.1.1): (a) It preserves the use of the well-studied and widely-applied

stationary covariance functions, many of which exhibit the locality property (Section 4.1.1)

and are computationally friendly with only a few (unknown) hyperparameters to be trained,

(b) the required number of locally stationary GPs can automatically grow with the increasing

complexity of the phenomenon, and (c) each locally stationary GP only incurs cubic time in

the size of the observations that are local to its corresponding area of prediction instead of

over the entire phenomenon.

A DPM-GPs can model a non-stationary phenomenon as follows: The phenomenon is

defined to vary as a realization of a DPM-GPs. Let its number of locally stationary GP

components be denoted by K. For each GP component k = 1, . . . ,K, its prior covariance

characterizes a locally stationary spatial correlation structure and is defined using a stationary

covariance function parameterized by θk. In order to estimate the unknown θk using MLE

(4.5), the measurements yDk (where Dk ⊆ D) that are induced by GP component k have to

be identified first. That is, every observed sampling unit x ∈ D has to be associated with a

realized component label denoted by zx and Dk , {x∈D|zx = k}. To realize these component

labels zD , {zx}x∈D, we use Gibbs sampling, as detailed next.

Each random component label, denoted by Zx, for all x ∈ D follows a sampling unit-

dependent Dirichlet process prior:
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p(Zx = k|zD\{x},θk) =


nxk

|D|−1+α
if k ≤ K,

α

|D|−1+α
if k = K +1,

(4.6)

where nxk , (|D|−1)(∑x′∈Nx σxx′|θk
δzx′k)/(∑x′∈Nx σxx′|θk

), Nx , {x′ ∈ D\{x}|dG(x,x′)≤ γ}

for some γ > 0, dG(x,x′) is the shortest path length between sampling units x and x′ with

respect to the topology of a graph G induced from V to be traversed by the robots (Section 4.2),

σxx′|θk
is previously defined in (4.4), and α denotes a concentration parameter. The Dirichlet

process prior (4.6) can be understood as follows: When k = 1, . . . ,K, the probability of

the observation at x being induced by GP component k is proportional to the number of

neighboring observed sampling units with the same component label k weighted by their

proximity to x. Its probability of being induced by a new GP component K+1 is proportional

to α . Hence, α controls the addition of new GP components. For the new GP component

K +1, its θK+1 is sampled from a pre-defined uniform distribution.

Given the realized measurements yD for the set D of observed sampling units, the Dirichlet

process prior can be updated using Bayes’ rule to the following posterior:

p(Zx = k|zD\{x},yD,θk) ∝p(yx|Zx = k,yDk\{x},θk)p(Zx = k|zD\{x},θk) if k ≤ K,

p(yx|Zx = k,θk)p(Zx = k|zD\{x},θk) if k=K+1,

(4.7)

where
p(yx|Zx = k,yDk\{x},θk)∼N (µx|Dk\{x},θk

,Σxx|Dk\{x},θk
)

for k ≤ K and p(yx|Zx = K + 1,θK+1) ∼ N (µx,σxx|θK+1). It can be seen from p(yx|Zx =

k,yDk\{x},θk) that an observation induced by a GP component is conditionally independent

of the observations induced by the other GP components, a structural property of which will

be exploited by our DEC-MAS algorithm (Sections 4.2 and 4.3).

Using the posterior (4.7), Gibbs sampling (Gilks et al., 1996) is performed (starting with

K = 1) to realize the component labels zD. In Appendix, we propose two heuristics to speed

up the convergence of this sampling method. Given zD, θk can now be trained using MLE
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(4.5). Such a process of Gibbs sampling followed by MLE is iterated until the values of zD

stabilize or a user-defined limit is reached.

Given the realized measurements yD and component labels zD for observed sampling

units D, the DPM-GPs can exploit them to predict the measurement for an unobserved

sampling unit x by aggregating the predictions of the K GP components weighted by their

probability of inducing it:

µx|D,θ =
K

∑
k=1

µx|Dk,θk
p(Zx = k|zD,θk) (4.8)

where θ , {θ1, . . . ,θK} and p(Zx = k|zD,θk), which is defined in a similar way to (4.6), can

be used to estimate the unknown partition of the phenomenon.

4.2 Multi-Robot Active Sensing (MAS)

Define a directed graph G , (V,E) where the domain V of a phenomenon is connected by a

set E ⊆V ×V of edges such that there is an edge (x,x′) if and only if a robot can traverse

from x ∈V to x′ ∈V within some user-defined cost constraint (e.g., time interval, traveling

distance). The MAS problem is then formulated as follows: Supposing the robots have

previously observed the measurements yD from a set D⊂V of sampling units and used these

observations to estimate their corresponding component labels zD by Gibbs sampling and

the hyperparameters θ of the DPM-GPs by MLE (Section 4.1.2), they have to coordinate to

jointly select the next most informative set X∗ of sampling units (i.e., with corresponding

measurements and component labels of maximum joint entropy) to be observed:

X∗ = argmax
X

H[YX ,ZX |yD,zD,θ ] . (4.9)

The next possible sampling unit to be observed by each robot is constrained to be se-

lected from one that is adjacent to the robot’s current residing sampling unit in G. Us-

ing chain rule for entropy, it can be shown that these max-entropy sampling units X∗

minimize the posterior joint entropy (i.e., H[YV\(D
⋃

X∗),ZV\(D
⋃

X∗)|YX∗,ZX∗,yD,zD,θ ]) of
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the measurements and component labels for the remaining unobserved sampling unit-

s (i.e., V \ (D
⋃

X∗)) in the phenomenon. H[YV\(D
⋃

X∗),ZV\(D
⋃

X∗)|YX∗ ,ZX∗,yD,zD,θ ] =

H[ZV\(D
⋃

X∗)|ZX∗,zD,θ ]+H[YV\(D
⋃

X∗)|YX∗,ZV\D,yD,zD,θ ] by chain rule for entropy. So, the

choice of X∗ (4.9) jointly optimizes a trade-off between gathering the most informative obser-

vations for estimating the unknown partition (i.e., component labels ZV\(D
⋃

X∗) in unobserved

areas) vs. that for predicting the phenomenon (i.e., measurements YV\(D
⋃

X∗) in unobserved

areas) given the current, imprecise estimate of the partition (i.e., component labels ZV\D and

zD).

Unfortunately, evaluating H[YX ,ZX |yD,zD,θ ] in (4.9) is prohibitively expensive with

a large number |X | of robots, as explained below. We will therefore derive a tractable

approximation to H[YX ,ZX |yD,zD,θ ]:

H[YX ,ZX |yD,zD,θ ]

=H[ZX |zD,θ ]+H[YX |ZX ,yD,zD,θ ]

≈ ∑
x∈X

H[Zx|zD,θ ]+H[YX |ẑX ,yD,zD,θ ]

= ∑
x∈X

H[Zx|zD,θ ]+
K

∑
k=1

H[YXk |ẑXk ,yDk ,θk]

(4.10)

where H[Zx|zD,θ ],−
K

∑
k=1

p(Zx = k|zD,θk) log p(Zx = k|zD,θk), p(Zx = k|zD,θk) is defined

in a similar way to (4.6), Xk , {x ∈ X |ẑx = k}, and H[YXk |ẑXk ,yDk ,θk] can be evaluated

in closed form using (4.14). The first equality follows from the chain rule for entropy

and can then be expanded to ∑zX (− log p(zX |zD,θ)+H[YX |zX ,yD,zD,θ ])p(zX |zD,θ), which

requires enumerating an exponential (i.e., in the number |X | of robots) number of possible

assignments zX to evaluate the summation. This computational burden is eased by the

approximation in (4.10): Its first summation term is obtained using chain rule for entropy

followed by assuming conditional independence of Zx for all x ∈ X given zD and θ . Its

second term is due to the same conditional independence assumption to yield p(zX |zD,θk)

= ∏x∈X p(zx|zD,θk) followed by plugging the maximum likelihood estimate ZX = ẑX into

H[YX |ZX ,yD,zD,θ ] where ẑx = argmaxzx p(zx|zD,θk) for all x ∈ X . We conjecture that, in
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practice, the assumption becomes less restrictive when the number |D| of observations

increases to potentially reduce the degree of violation of conditional independence, the

spatial correlation between measurements decreases, and the robots are sufficiently far apart.

The last equality in (4.10) arises from the chain rule for entropy and the structural property

of DPM-GPs that observations between GP components are conditionally independent

(Section 4.1.2).

If the approximation in (4.10) is used as the active sensing criterion instead, then the

MAS problem becomes

X̃ = argmax
X

H̃[YX ,ZX |yD,zD,θ ] , (4.11)

H̃[YX ,ZX |yD,zD,θ ],∑
x∈X

H[Zx|zD,θ ]+
K

∑
k=1

H[YXk |ẑXk ,yDk ,θk]. (4.12)

Note that the choice of X̃ jointly optimizes a trade-off between observing sampling units with

most uncertain component labels (i.e., first summation term) vs. that with most uncertain

measurements (i.e., second summation term) given the current, imprecise estimate of their

labels and zD.

4.3 Decentralized Multi-Robot Active Sensing (DEC-MAS)

In the previous section, we have presented a centralized MAS (CEN-MAS) algorithm (4.11)

that coordinates the exploration of multiple robots to jointly optimize a trade-off between

observing sampling units with most uncertain component labels vs. that with most uncertain

measurements given the current, imprecise estimate of their labels. However, solving (4.11)

is computationally costly due to the space of possible X that grows exponentially in the

number |X | of robots. To alleviate this computational difficulty, we propose a DEC-MAS

algorithm that exploits the structural property of DPM-GPs (Section 4.1.2) and the locality

property of stationary covariance functions used by each GP component (Section 4.1.1) for

efficient decentralized coordination.

The key idea underlying the need to coordinate any two robots in a team is as follows:

Based on (a) the structural property of DPM-GPs that observations between GP components
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are conditionally independent (Section 4.1.2), and (b) the locality property of each stationary

GP component that the spatial correlation of measurements between sampling units decreases

to zero with increasing distance between them (Section 4.1.1), two robots have to coordinate

their active sensing only when (a) some pair of their next possible sampling units to be

observed are associated with the same GP component (i.e., same estimated component

labels), and (b) the correlation of the measurements for such a pair is high enough due to

their spatial proximity, respectively. We formalize this idea using the notion of a coordination

graph, as defined next.

A coordination graph is defined to be an undirected graph G , (V,E) that consists

of a set V of vertices denoting the robots, and a set E of edges representing coordination

dependencies between robots such that there exists an edge {r,r′} incident with robots r ∈ V

and r′ ∈ V \{r} iff
max

x∈Nr,x′∈Nr′
|ςxx′|> ε

ςxx′ =

 Σxx′|Dk,θk
if ẑx = ẑx′ = k,

0 otherwise,

(4.13)

for some ε > 0 where Nr (Nr′) denotes the set of sampling units adjacent to robot r’s (r′’s)

current residing sampling unit in G. Using (4.13), each robot can determine its adjacency to

all the other robots in a decentralized manner and exchange this adjacency information with

them so as to construct a consistent adjacency matrix for representing G.

The next step is to determine the connected components of G whose resulting vertex

sets partition the set V of robots into, say, N disjoint subsets V1, . . . ,VN such that the robots

within each subset have to coordinate their active sensing. Each robot can determine its

residing connected component in a decentralized way by performing a depth-first search in G

starting from it as root.

Finally, define

Ĥ[YXk |ẑXk ,yDk ,θk],
1
2

log(2πe)|Xk|
∣∣∣Σ̂XkXk|Dk,θk

∣∣∣ (4.14)

where Σ̂XkXk|Dk,θk
is a block-diagonal matrix comprising diagonal blocks of the form ΣXknXkn|Dk,θk

for n = 1, . . . ,N where Xkn , {x ∈ Xn|ẑx = k} and Xn denotes a set of next possible sam-
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pling units to be observed by the set Vn of robots for n = 1, . . . ,N. So, Xn =
⋃K

k=1 Xkn and

X =
⋃N

n=1 Xn. Then, it can be derived from (4.14) that

Ĥ[YXk |ẑXk ,yDk ,θk] =
N

∑
n=1

H[YXkn|ẑXkn,yDk ,θk] (4.15)

by exploiting the property that the log-determinant of a block-diagonal matrix is equal to the

sum of log-determinants of its diagonal blocks. The MAS problem (4.11) is consequently

approximated by

max
X

∑
x∈X

H[Zx|zD,θ ]+
K

∑
k=1

Ĥ[YXk |ẑXk ,yDk ,θk]

= max⋃N
n=1 Xn

N

∑
n=1

∑
x∈Xn

H[Zx|zD,θ ]+
K

∑
k=1

H[YXkn|ẑXkn,yDk ,θk]

=
N

∑
n=1

max
Xn

∑
x∈Xn

H[Zx|zD,θ ]+
K

∑
k=1

H[YXkn|ẑXkn,yDk ,θk]

(4.16)

where the first equality is due to (4.15). More importantly, the last equality can be solved in a

partially decentralized manner by each disjoint subset Vn of robots for n = 1, . . . ,N:

X̂n = argmax
Xn

∑
x∈Xn

H[Zx|zD,θ ]+
K

∑
k=1

H[YXkn|ẑXkn,yDk ,θk] . (4.17)

The degree of decentralization for our DEC-MAS algorithm (4.17) can be varied by control-

ling ε: Increasing ε causes more robots to become isolated vertices in G, thus decreasing

the size η , maxn |Vn| of its largest connected component and entailing higher degree of

decentralization.

Let
ξ , max

k,n,Xkn,i,i′

∣∣∣[Σ−1
XknXkn|Dk,θk

]
ii′

∣∣∣ (4.18)

and ε , 0.5K log1
/(

1−
(
|V|1.5ηξ ε

)2
)

. We prove in the theoretical result below that

X̂ =
⋃N

n=1 X̂n is guaranteed to achieve an entropy H̃[YX̂ ,ZX̂ |yD,zD,θ ] (i.e., by plugging X̂ into

(4.12)) that is at most ε less than the maximum entropy H̃[YX̃ ,ZX̃ |yD,zD,θ ] achieved by X̃

(4.11):
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Theorem 2 (Performance Guarantee).If |V|1.5ηξ ε< 1, then H̃[YX̃ ,ZX̃ |yD,zD,θ ]−H̃[YX̂ ,ZX̂ |yD,zD,θ ]≤

ε .

The proof of Theorem 2 is given in Appendix. The implication of Theorem 2 is that our

DEC-MAS algorithm (4.17) is competitive (i.e., small ε) as compared to the CEN-MAS

algorithm (4.11) when (a) the number |V| of robots is not too large, (b) the largest connected

component of η robots being formed in G is reasonably small, (c) the minimum required

correlation ε between the next possible sampling units to be observed by adjacent robots is

kept low, and (d) the number K of GP components is small.

4.3.1 Time and Communication Complexity

In this subsection, we will analyze the time and communication complexity of our DEC-

MAS algorithm. Suppose that the observations are distributed evenly among the K GP

components and denote the maximum out-degree and in-degree of G by δ and δ ′, respectively.

Then, |Nx| ≤ ∆ , (δ + δ ′)γ for all x ∈ D. Gibbs sampling for estimating the component

labels zD followed by MLE for estimating the hyperparameters θ (Section 4.1.2) incur

O(M|D|K((|D|/K)3 +∆)) time over M iterations. Our DEC-MAS algorithm (4.17) incurs

O(K(|D|/K)3 +ηδ η(K∆+(|D|/K)2 +η2)) time. By setting η = |V|, it yields the time

complexity of the CEN-MAS algorithm (4.11) for comparison.

Central to the efficiency of our DEC-MAS algorithm is the requirement of a small η (i.e.,

size of largest connected component of robots being formed in G to coordinate their active

sensing), which is in fact achieved in practice, as explained by the following observations:

For a GP component with small spatial correlation, the posterior entropy of the measurements

in the unobserved part of its local area of prediction remains high after sampling, hence

attracting more robots to explore it. But, its small spatial correlation entails high degree of

decentralization (4.13), thus resulting in a small η . On the other hand, for a GP component

with large spatial correlation, the posterior entropy of the measurements in the unobserved

part of its local area of prediction becomes low after sampling, hence attracting fewer robots

to explore it. So, a small η is also maintained.
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For our DEC-MAS algorithm, each robot broadcasts O(|V|)-sized and O(1)-sized mes-

sages on its adjacency information and new observation, respectively.

4.4 Experiments and Discussion

4.4.1 Experimental Setup

This section evaluates the active sensing performance and time efficiency of DEC-MAS

empirically on two real-world datasets featuring non-stationary phenomena: (a) June 2012

MODIS plankton density (chlorophyll-a) data of Gulf of Mexico (Fig. 1.3a) discretized into a

60×60 grid of sampling locations/units and bounded within lat. 28.175−29.975N and lon.

87.675−89.475W. The mean density is 4.5 mg/m3 and standard deviation is 9.8 mg/m3; (b)

Traffic speeds data along 775 road segments (including highways, arterials, slip roads, etc.)

of an urban road network (Fig. 1.3b) during the evening peak hours on April 20, 2011. The

mean speed is 52.8 km/h and standard deviation is 21.1 km/h. Each sampling unit (i.e., road

segment) is specified by a 4-dimensional feature vector: length, number of lanes, speed limit,

and direction. This non-stationary traffic phenomenon is modeled using a Dirichlet process

mixture of stationary relational GPs; the relational GP is previously developed in (Chen et al.,

2012) and its stationary correlation structure can exploit both the road segment features and

road network topology information.

For each dataset, 5% of the data are randomly selected as prior observations to estimate

their corresponding prior component labels zD by Gibbs sampling and the prior hyperparam-

eters θ of the DPM-GPs by MLE (Section 4.1.2). Subsequently, they are constantly updated

using the new observations gathered by running DEC-MAS repeatedly. For DEC-MAS, ε

(4.13) is set to 0.1. The experiments are run on a PC with Intelr CoreTM2 Quad CPU Q9550

at 2.83 GHz. The results shown below are averaged over 40 trials of randomly selected initial

robots’ residing sampling units.

Performance metrics. The first metric evaluates active sensing performance of a tested

MAS algorithm: It measures root mean squared error (RMSE)
√

∑x∈V (µx|D,θ − yx)2/|V |

over domain V of the phenomenon that results from using the posterior mean µx|D,θ of the
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algorithm’s utilized model (i.e., (4.1) of GP or (4.8) of DPM-GPs with stationary covariance

function (4.4)) to predict the measurements for the remaining unobserved sampling units

V \D given the gathered observations. The second metric evaluates the time efficiency and

scalability of a tested MAS algorithm by measuring its incurred time.

Comparison of MAS algorithms. The performance of our DEC-MAS algorithm is com-

pared to that of the state-of-the-art MAS algorithms, as listed in Table 4.1 and briefly

described next: The centralized maximum entropy sampling (CEN-MES) algorithm (Low

et al., 2009) repeatedly selects the next set X of sampling units to be observed that maximizes

(4.3) based on a stationary GP model. After gathering the observations, CEN-MES can

alternatively use DPM-GPs (instead of GP) for prediction (i.e., (4.8)) and we call this CEN-

MES+D. The partially decentralized maximum entropy sampling (DEC-MES) algorithm

(Chen et al., 2012) exploits a similar notion of the coordination graph to split a robot team into

disjoint sub-teams, each of which runs CEN-MAS separately without coordinating with other

sub-teams. The MAX-SUM algorithm (Rogers et al., 2011) is a general-purpose iterative

solver for distributed constraint optimization problems. In (Rogers et al., 2011), MAX-SUM

is only used to optimize (4.3) based on the GP model; it does not utilize DPM-GPs nor

optimize our novel MAS criterion (4.11), which are done here. Unlike DEC-MAS, the per-

formance guarantee of MAX-SUM offers a non-informative, loose worst-case approximation

ratio that only holds for tree-like coordination structures. Lastly, to show the importance of

observing sampling units with highly uncertain component labels, the first summation term

in (4.17) is removed to yield

max
Xn

K

∑
k=1

H[YXkn|ẑXkn,yDk ,θk] , (4.19)

which we call DEC-MAS-C. Note that it is prohibitively expensive to compare with the

maximum mutual information-based algorithm of (Krause et al., 2008b), which scales poorly

with increasing domain size |V | and is hence not practical for real-time active sensing. For

example, it incurred > 62 hours to generate paths for 3 robots to sample a total of 267

observations in a grid of |V |= 1424 sampling units, as reported in (Low et al., 2011).
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Algorithm Model Criterion
CEN-MES (Low et al., 2009) GP (4.3)
DEC-MES (Chen et al., 2012) GP (4.3)

CEN-MES+D
GP (active sensing)

(4.3)
DPM-GPs (prediction)

MAX-SUM (Rogers et al., 2011) DPM-GPs (4.11)
CEN-MAS DPM-GPs (4.11)
DEC-MAS DPM-GPs (4.17)
DEC-MAS-C DPM-GPs (4.19)

Table 4.1 Comparison of MAS algorithms (Each algorithm exploits a single model for both
active sensing and prediction, except for CEN-MES+D).

4.4.2 Results and Analysis

A. Effect of criterion on predictive performance.
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(a) Plankton density (b) Traffic speeds
Fig. 4.1 Graphs of predictive performance vs. total no. |D| of observations gathered by
|V|= 4 robots.

Fig. 4.1 shows results of the predictive performance using varying number |D| of obser-

vations gathered by |V|= 4 robots running the tested algorithms. The observations are as

follows:

(I) The algorithms optimizing active sensing criterion (4.11) or (4.17) based on DPM-GPs

(i.e., CEN-MAS, DEC-MAS, and MAX-SUM) can achieve the best predictive performance

(i.e., lowest RMSE) due to the following reasons: (a) DPM-GPs can model and predict

the non-stationary phenomena better than a stationary GP, as observed in the performance
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improvement of CEN-MES+D over CEN-MES by using DPM-GPs (instead of GP) for

prediction, and (b) algorithms optimizing the criteria (4.11) or (4.17) can gather more

informative observations than algorithms using criterion (4.3), as observed in the performance

improvement of CEN-MAS, DEC-MAS, and MAX-SUM over CEN-MES+D while using

DPM-GPs for prediction.

(II) More superior predictive performance can be achieved by jointly optimizing the trade-

off between observing sampling units with most uncertain component labels vs. that with

most uncertain measurements given the current, imprecise estimate of their labels than by

solely addressing the latter criterion; this is observed in the more superior performance of

CEN-MAS, DEC-MAS, and MAX-SUM over DEC-MAS-C, the latter of which neglects

observing sampling units with highly uncertain labels (4.19).

(III) DEC-MAS optimizing criterion (4.17) can achieve predictive performance close to that

of CEN-MAS and MAX-SUM using criterion (4.11). It is prohibitively expensive to obtain

results for CEN-MAS with |V|> 4 robots. So, we will only present results for decentralized

algorithms from now on.

B. Effect of decentralization on predictive performance.
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(a) Plankton density (b) Traffic speeds
Fig. 4.2 Graphs of predictive performance vs. no. |V| of deployed robots gathering a total of
(a) |D|= 1200 and (b) |D|= 500 observations from plankton density and traffic phenomena,
respectively.
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Fig. 4.2 shows results of the predictive performance using a total of |D|= 1200 and |D|=

500 observations gathered from plankton density and traffic phenomena, respectively, by

varying number |V| of robots running the tested decentralized algorithms. The observations

are as follows:

(I) The predictive performance of all decentralized algorithms improve with increasing num-

ber of robots because every robot is tasked to gather less observations and their performance

are thus less adversely affected by their greedy selection of maximum-entropy sampling

units. Consequently, more informative unobserved sampling units are explored.

(II) DEC-MAS performs significantly better than DEC-MES and DEC-MAS-C due to the

same reasons as that given in the previous observations A(I) and A(II), respectively.

(III) DEC-MAS can achieve predictive performance comparable to that of MAX-SUM.

Intuitively, MAX-SUM exploits and exchanges additional coordination information between

robots in different connected components formed by DEC-MAS, but this results in little

performance improvement of MAX-SUM over DEC-MAS. We will also see later that MAX-

SUM is less computationally efficient and significantly less scalable than DEC-MAS in the

number of robots.

C. Effect of decentralization on time efficiency and scalability.

Fig. 4.3 shows results of the incurred time of the tested algorithms with varying number of

observations and robots. The observations are as follows:

(I) CEN-MAS incurs at least 1 order of magnitude more time than the decentralized algo-

rithms for |V|= 4 robots.

(II) DEC-MAS incurs computational time less than or comparable to that of DEC-MES:

Even though DEC-MAS incurs additional time needed to estimate the component labels

and compute the entropy of labels in (4.17), it saves time in the following aspects: (a)

As mentioned previously in Section 4.1.2, DPM-GPs (i.e., used by DEC-MAS) offers the

computational advantage over a single GP (i.e., used by DEC-MES) that each GP component

only incurs cubic time in the size of the observations that are local to its corresponding



4.4 Experiments and Discussion 57

Total no. of observations
200 400 600 800 1000 1200

In
cu

rr
ed

 ti
m

e 
(m

s)

102

103

104

105

DEC-MES

DEC-MAS

MAX-SUM

CEN-MAS

Total no. of observations
200 400 600 800 1000 1200

In
cu

rr
ed

 ti
m

e 
(m

s)

102

103

104

DEC-MES

DEC-MAS

MAX-SUM

Total no. of observations
200 400 600 800 1000 1200

In
cu

rr
ed

 ti
m

e 
(m

s)

102

103

104

DEC-MES

DEC-MAS

MAX-SUM

(a) |V|= 4 (b) |V|= 6 (c) |V|= 8

Total no. of observations
200 400 600 800 1000 1200

In
cu

rr
ed

 ti
m

e 
(m

s)

500

1000

1500

2000

2500

DEC-MES

DEC-MAS

MAX-SUM

Total no. of observations
200 400 600 800 1000 1200

In
cu

rr
ed

 ti
m

e 
(m

s)

500

1000

1500

2000

2500

3000

3500

DEC-MES

DEC-MAS

MAX-SUM

Total no. of observations
200 400 600 800 1000 1200

In
cu

rr
ed

 ti
m

e 
(m

s)

1000

1500

2000

2500

3000

3500

4000

DEC-MES

DEC-MAS

MAX-SUM

(d) |V|= 10 (e) |V|= 12 (f) |V|= 14

Total no. of observations
50 100 150 200 250 300 350 400 450 500

In
cu

rr
ed

 ti
m

e 
(m

s)

101

102

103

104

DEC-MES

DEC-MAS

MAX-SUM

CEN-MAS

Total no. of observations
50 100 150 200 250 300 350 400 450 500

In
cu

rr
ed

 ti
m

e 
(m

s)

150

200

250

300

350

400
DEC-MES

DEC-MAS

MAX-SUM

Total no. of observations
50 100 150 200 250 300 350 400 450 500

In
cu

rr
ed

 ti
m

e 
(m

s)

102

103

104

DEC-MES

DEC-MAS

MAX-SUM

(g) |V|= 4 (h) |V|= 6 (i) |V|= 8

Total no. of observations
100 200 300 400 500

In
cu

rr
ed

 ti
m

e 
(m

s)

200

400

600

800

1000

1200

1400

1600

DEC-MES

DEC-MAS

MAX-SUM

Total no. of observations
100 200 300 400 500

In
cu

rr
ed

 ti
m

e 
(m

s)

500

1000

1500

2000

2500

3000

DEC-MES

DEC-MAS

MAX-SUM

Total no. of observations
100 200 300 400 500

In
cu

rr
ed

 ti
m

e 
(m

s)

500

1000

1500

2000

2500

3000

3500

4000

DEC-MES

DEC-MAS

MAX-SUM

(j) |V|= 10 (k) |V|= 12 (l) |V|= 14

Fig. 4.3 Graphs of incurred time vs. total no. |D| of observations gathered from (a-f) plankton
density and (g-l) traffic phenomena by varying no. |V| of robots.

area of prediction instead of over the entire phenomenon; and (b) DEC-MAS tends to form

smaller connected components than DEC-MES due to the structural property of DPM-GPs

that requires two robots to coordinate their active sensing only when some pair of their

next possible sampling units to be observed are associated with the same GP component

(Section 4.3), and also due to its behavior of keeping the size η of the largest connected

component small, as explained in Section 4.3.1.
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(III) DEC-MAS is more time-efficient and significantly more scalable than MAX-SUM in the

number of robots (Fig. 4.3) while achieving comparable predictive performance (Fig. 4.2).

MAX-SUM is computationally more expensive because it has to process the additional

coordination information between robots in different connected components formed by

DEC-MAS that results in little performance improvement over DEC-MAS.

4.5 Conclusion

This chapter describes a novel DEC-MAS algorithm that can efficiently coordinate multiple

robots in a partially decentralized manner to gather the most informative observations

for predicting an unknown, non-stationary phenomenon. In particular, we demonstrate

how its efficient decentralized coordination and theoretical performance guarantee can be

realized by exploiting the structural property of DPM-GPs and the locality property of

each stationary GP component. Empirical evaluation on two real-world datasets featuring

non-stationary phenomena shows that (a) more superior active sensing performance can

be achieved by optimizing our proposed MAS criterion (4.11) or (4.17) that trades off

between observing sampling units with most uncertain component labels vs. that with most

uncertain measurements given the current, imprecise estimate of their labels, and (b) DEC-

MAS outperforms the decentralized MAX-SUM (Rogers et al., 2011) (DEC-MES (Chen

et al., 2012)) algorithm in time efficiency and scalability (active sensing) while achieving

comparable active sensing performance (time efficiency).



Chapter 5

Multi-Agent Coordination to Scale Up

High Dimensional Bayesian

Optimization

Motivated by the challenge of high dimensionality in the large-scale optimization problem,

this chapter presents ANOVA-DCOP, a novel high dimensional Bayesian optimization

method. In section 5.2, we introduce the ANOVA kernel and how it can be used to decompose

the correlation structure in a high dimensional problem. Furthermore, in section 5.2.3, we

utilize the summation structure created by ANOVA kernel and reformulate the problem as

DCOP that can be efficiently solved by bounded max-sum which is a typical multi-agent

coordination method. In section 5.3, we theoretically analyze the time complexity and

regret bound in searching the optimum of the unknown function. Lastly in section 5.4, we

demonstrate the imperial performance of ANOVA-DCOP on two analytical functions and

one real-world financial problem.

5.1 Bayesian Optimization

The optimization problem in general is to maximize a function f :X →R whereX ⊂ [−1,1]d

is a compact domain. Many complex functions have no analytical expressions, so traditional
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optimization methods such as gradient descent are not applicable here. In order to optimize

an unknown function, conducting simulation is required. Bayesian optimization (BO) method

is useful to optimize an unknown function only based on the observations (input-out put pairs

of many simulations). Without losing generality, considering a maximization problem (the

minimization problem can be easily transformed into a maximization problem.), Bayesian

optimization method sequentially queries the function at some x ∈ X and obtain a noisy

observation yx = f (x)+ε where ε ∼N (0,η2) is Gaussian white noise. The maximum point

x∗ = argmaxx∈X f (x) is obtained by evaluating a belief over the original function based on

the observations.

In BO framework, the unknown function is assumed to be distributed as a Gaussian

process with zero mean function. Suppose at time step t, BO has already collected noisy

observations yDt−1 in location set Dt−1 = x1:t−1 from time step 1 to t−1, then the unknown

function’s value at x is distributed by a posterior Gaussian distribution N (µx|Dt−1,Σxx|Dt−1)

given all the observations yDt−1 with posterior mean mux|Dt−1 and posterior variance Σxx|Dt−1

as follows:

µx|Dt−1 = µx +ΣxDt−1(ΣDt−1Dt−1 +η2I)−1(yDt−1−µDt−1)

Σxx|Dt−1 = Σxx−ΣxDt−1(ΣDt−1Dt−1 +η2I)−1ΣDt−1x

(5.1)

where η is the observation noise variance 1, I is an identity matrix, the covariance terms Σxx,

ΣDt−1Dt−1 and ΣxDt−1 are computed using certain kernel functions such as squared exponential

kernel function (Rasmussen and Williams, 2006):

κ(x,x′) = σ
2
s exp

(
− 1

2

d

∑
i=1

(x(i)− x′(i)

ℓi

)2
)

(5.2)

where x(i) denotes the i-th component of the d-dimensional vector x, the set of hyperparame-

ters θ = {σ2
s , ℓ1, ..., ℓd} are, respectively, signal variance and lengthscale in each dimension.

The posterior distribution tell us two kinds of information: a) the expected function value

at a given input location x and b) the uncertainty on that location x. In order to choose the next

1The notation of the specified noise variance is different from previous two chapters because we want to
avoid decomposing the noise when we decompose the kernel function.
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sample point, many BO methods construct certain form of acquisition function according

to the two kinds of information. We have already discussed three widely used acquisition

functions in the literature review (Snoek et al., 2012): probability of improvement, expected

improvement and GP-UCB. In this work, we focus on GP-UCB (Srinivas et al., 2009) which

has the following form:

ϕt(x) = µx|Dt−1 +β
1/2
t σx|Dt−1 (5.3)

where σ2
x|Dt−1

= Σxx|Dt−1 . Unlike the other two methods, GP-UCB is a parametric acquisition

function that contains a parameter βt which changes over time. When βt is large, GP-UCB

tends to explore the highly uncertain area in the input space while when βt is small, it tends

to exploit the maximum value of the current expectation of the unknown function.

Algorithm 2 illustrates the general BO procedure. In literature, many BO methods are

proposed for addressing optimization problems in different scenarios. In order to compare the

performance of those methods, the instantaneous regret rt = f (x∗)− f (xt) is introduced which

leads to two commonly used performance measures (Kirthevasan et al., 2015): cumulative

regret RT = ∑
T
t=1 rt and simple regret ST = mint≤T rt .

Algorithm 2: Bayesian optimization procedure
for t = 1,2, ...,T do

find xt = argmaxx∈X µx|Dt−1 +β
1/2
t σx|Dt−1

query yxt = f (xt)+ ε

collect point Dt ← Dt−1
⋃

xt
collect observation yDt ← y{Dt−1

⋃
xt}

5.2 ANOVA-DCOP

One challenging scenario of using BO arises when there is a need to optimize an unknown

function in high dimensions (Djolonga et al., 2013, Kirthevasan et al., 2015, Wang et al.,

2016). To address this challenge by learning a sparse correlation structure in the dimensions,

we propose ANOVA-DCOP, a novel BO method to optimize such high dimensional function.
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The method consists of two component: the ANOVA kernel function used in the poster

Gaussian distribution and DCOP, the reformulation of the acquisition function from multi-

agent perspective. These two components scale up the optimization problem to hundreds of

dimensions.

5.2.1 High Dimensionality

In order to scale up optimization problems to high dimensions, we need to exploit the sparse

correlation structure in the dimensions. ANOVA-DCOP relies on a key structural assumption:

a d-dimensional objective function can be decomposed into a summation of sub-functions of

all possible subsets of the dimensions as follows:

f (x) = ∑
I∈2S

fI(xI) (5.4)

where S = {1,2, ...,d} is the dimension index set and 2S is the super set of S for recording

all possible subsets of dimensions. Denote I to be one possible subsets of the dimensions and

xI =
⋃

i∈I x(i) where x(i) is the i-th dimensional element of input x. If I = /0, fI(xI) = f0.

One simple example of the function can be f (x) = 1+ x(1)+ x(2)+ x(1)x(2).

Under this structural assumption, we introduce ANOVA kernel function (Durrande et al.,

2013) with the motivation of decomposing the correlation structure in the dimensions:

κ(x,x′) =
d

∏
i=1

(1+κi(x(i),x′(i))) (5.5)

where κi(x(i),x′(i)) is a base kernel function that can be any type of kernel function (Ras-

mussen and Williams, 2006) on i-th dimension.

Accordingly, with this ANOVA kernel function, the posterior Gaussian distribution at x

given observations yDt−1 is derived as:

µx|Dt−1 = µx +κ(x,Dt−1)(ΣDt−1Dt−1 +η2I)−1(yDt−1−µDt−1)

Σxx|Dt−1 = κ(x,x)−κ(x,Dt−1)(ΣDt−1Dt−1 +η2I)−1κ(Dt−1,x)
(5.6)
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where Σxx = κ(x,x) and κ(x,Dt−1) = [κ(x,x′1), ...,κ(x,x′t−1)] is a t− 1 dimensional row

vector where x′ j ∈ Dt−1.

After some algebra, we can observe that ANOVA kernel function can be rearranged as

a summation form with respect to the subsets of dimensions which matches the structural

assumption we made on f (x).

Proposition 3. An ANOVA kernel function can be decomposed into a list of kernel functions:

κ(x,x′) =
d

∏
i=1

(1+κi(x(i),x′(i))) = ∑
I∈2S

∏
i∈I

κi(x(i),x′(i)) = ∑
I∈2S

κI(xI ,x′I) (5.7)

where

κI(xI ,x′I) =

 1 if I = /0

∏i∈I κi(x(i),x′(i)) if I ̸= /0

Further, if we assume a Gaussian process prior with zero mean function on f (x), the

prior mean can also be decomposed into the subsets of dimensions:

µx = ∑
I∈2S

µxI (5.8)

where

µxI = 0 for I ∈ 2S

With the decomposed form of ANOVA kernel function, we can rewrite the posterior

Gaussian distribution N (µx|Dt−1,Σxx|Dt−1) at any step t of f (x) with posterior mean and

posterior variance as:

µx|Dt−1 = ∑I∈2S

(
µxI +κI(xI ,DI

t−1)(ΣDt−1Dt−1 +η2I)−1(yDt−1−µDt−1)
)

Σxx|Dt−1 = ∑I∈2S κI(xI ,xI)−∑I∈2S ∑I ′∈2S κI(xI ,DI
t−1)(ΣDt−1Dt−1 +η2I)−1κI ′(DI ′

t−1,x
I ′)

(5.9)

where κI(xI ,DI
t−1) = [κI(xI ,x′

I
1 ), ...,κI(xI ,x′

I
t−1)] is a t dimensional row vector where

x′Ij ∈ DI
t−1 and DI

t−1 is a set of all the observations’ with dimensions in I.
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ANOVA kernel function enumerates sub-kernel functions of all the possible subsets of

dimensions. To compute the posterior distribution of a Gaussian process with ANOVA kernel,

we need to sum up 2d terms for the posterior mean and 22d terms for the posterior variance. It

is therefore prohibitively expensive when the input dimension is large. Fortunately, in many

real-world, high-dimensional problems, the input parameters are usually sparsely correlated.

One parameter may be only strongly correlated with a few other parameters instead of being

strongly correlated with all the rest parameters. Hence, we make the following assumption

on sparse correlation structure in the dimensions:

Assumption 1. At any time step t ≥ 1, the correlation structure between two measurements at

input x and x′ given the observations yDt−1 can be expanded into a summation of correlations

with subsets of dimensions with size up to k.

Type Correlation
subsets with size 0 1
subsets with size 1 κi(x(i),x′(i)) for i = 1,2,3,4
subsets with size 2 ∏i∈I κi(x(i),x′(i)) for I ∈ {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
subsets with size 3 ∏i∈I κi(x(i),x′(i)) for I ∈ {{1,2,3},{1,2,4},{2,3,4}}

Table 5.1 Demonstration of sparse correlation structure in four dimensional input.

Let us explain the meaning of the assumption with an example. Suppose the input of a

system contains four parameters x = (x(1),x(2),x(3),x(4)), if we choose k = 3, the correlations

between measurements at x and x′ are restricted within the correlations in the subsets of

dimensions as illustrated in table 5.1. All the correlations with dimension size larger than k

will assume to be zero.

When the true underlying correlation structure is sparse, we can choose a small k << d

to significantly reduce the redundant computation introduced by ANOVA kernel function.

In this work, we choose k = 2 (only consider up to pairwise correlations) in order to fit in

the specific multi-agent coordination method we use. However, our proposed method is not

restricted to k = 2 case by applying more general multi-agent coordination method.
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When k = 2, we are actually truncating ANOVA kernel function as:

κ̃(x,x′) = 1+∑
d
i=1 κ(x(i),x′(i))+∑

d
1≤i< j≤d κi(x(i),x′(i))κ j(x( j),x′( j))

= ∑I∈U ∏i∈I κi(x(i),x′(i))

= ∑I∈U κI(xI ,x′I)

(5.10)

where U = {{ /0}
⋃
S
⋃
{{i, j}|i ∈ S, j ∈ S, i ̸= j}} is the indices set with terms contain less

than or equal to two dimensions.

Accordingly, at time step t, f (x)∼N (µx|Dt−1 ,Σxx|Dt−1) where µx|Dt−1 and Σxx|Dt−1 have

the following form:

µx|Dt−1 = ∑I∈U µxI + κ̃(x,Dt−1)(Σ̃Dt−1Dt−1 +η2I)−1(yDt−1−µDt−1)

= ∑I∈U

(
µxI +κI(xI ,DI

t−1)(Σ̃Dt−1Dt−1 +η2I)−1(yDt−1−µDt−1)
)

Σxx|Dt−1 = ∑I∈U κI(xI ,xI)− κ̃(x,Dt−1)(Σ̃Dt−1Dt−1 +η2I)−1κ̃(Dt−1,x)

= ∑I∈U κI(xI ,xI)−∑I∈U ,I ′∈U ,I=I ′ κI(xI ,DI
t−1)(Σ̃Dt−1Dt−1 +η2I)−1κI ′(DI ′

t−1,x
I ′)

(5.11)

where Σ̃
−1
Dt−1Dt−1

is the covariance matrix computed using the truncated ANOVA kernel

function. Here in the second step of the posterior covariance in equation 5.11 is derived

by applying the assumption 1 we made above: At any time step t, the correlation structure

between two measurements at input x and x′ given the observations yDt−1 can be expanded

into a summation of correlations with subsets of dimensions with size up to k = 2. When

I ̸= I ′, the posterior covariance will introduce terms involving more than two dimensions

which has value zero in the correlation under assumption 1.

In the Gaussian process with truncated ANOVA kernel function, there are O(d2) =

1+d + d(d−1)
2 instead of O(2d) terms that need to be summed up to compute the posterior

mean and the posterior variance. Therefore the time complexity is reduced from exponential

to polynomial in d, which presents a significant speed-up in terms of the computing time.

It is interesting that µx|Dt−1 and Σxx|Dt−1 are linear decomposable under Assumption 1. To

utilize the linear decomposable form later, we define the following two terms associated with

each sub-function fI(xI) and make the following assumption on fI(xI):
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Assumption 2. Define µx|DI
t−1

and Σxx|DI
t−1

as:

µxI |Dt−1
= µxI +κI(xI ,DI

t−1)(Σ̃Dt−1Dt−1 +η2I)−1(yDt−1−µDt−1)

ΣxIxI |Dt−1
= κI(xI ,xI)−κI(xI ,DI

t−1)(Σ̃Dt−1Dt−1 +η2I)−1κI(DI
t−1,x

I)
(5.12)

Then, we assume that at time step t, f (xI)∼N (µxI |Dt−1
,ΣxIxI |Dt−1

).

With assumption 2, we can construct a relationship between decomposition ofN (µx|Dt−1,Σxx|Dt−1)

and N (µxI |Dt−1
,ΣxIxI |Dt−1

):

Proposition 4. Under Assumption 1, at each time step t, the original function f (x) at x

is distributed as N (µx|Dt−1,Σxx|Dt−1) with truncated ANOVA kernel. It can be decomposed

into a summation of terms fI(xI) which is distributed as N (µxI |Dt−1
,ΣxIxI |Dt−1

) defined in

Assumption 2. So we have the following equality:

µx|Dt−1 = ∑I∈U µxI |Dt−1

Σxx|Dt−1 = ∑I∈U ΣxIxI |Dt−1

(5.13)

The proof is in appendix C.1.

5.2.2 Acquisition Function

Bayesian optimization methods utilize an acquisition function to integrate the information

in posterior mean and posterior variance. One widely used acquisition function is GP-UCB

with the following form:

ϕt(x) = µx|Dt−1 +β
1/2
t

√
σ2

x|Dt−1
. (5.14)

Using the truncated ANOVA kernel function, GP-UCB can be decomposed as:

ϕt(x) =
(

∑
I∈U

µxI |Dt−1

)
+β

1/2
t

√
∑
I∈U

σ2
xI |Dt−1

. (5.15)
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The motivation of using the ANOVA kernel is to decomposing the acquisition function

into a summation structure which can be casted as a decentralized constrained optimization

problem (DCOP). However, the term
√

∑I∈U σ2
xI |Dt−1

cannot be decomposed directly.

In order to generate a summation structure, we approximate the term
√

∑I∈U σ2
xI |Dt−1

in

equation 5.15 by applying Cauchy inequality
√

∑I∈U σ2
xI |Dt−1

≤ ∑I∈U
√

σ2
xI |Dt−1

. With this

approximation, we propose the following acquisition function:

ϕ̃t(x) = ∑
I∈U

(
µxI |Dt−1

+β
1/2
t σxI |Dt−1

)
= ∑

I∈U
ϕ̃t(xI) (5.16)

This acquisition function has a summation structure that can be cast as a DCOP. Although

we set k = 2 in our derivation, but this acquisition function can be generalized to any k ≤ d.

Perhaps surprisingly, if we set k = 1, it reproduces the acquisition function used in additive

model (Kirthevasan et al., 2015) in which they assume that all the dimensions are mutually

independent. Our work in fact loose their assumption by capturing the correlations in subsets

of dimensions with size up to k. To address the high dimensional optimization problem,

pairwise correlations usually are the most important ones. The correlations involving more

dimensions can be approximated by pairwise correlations. So in practice, we focus on k = 2

case. And in this special case, the result-in DCOP can be solved efficiently by a robust

multi-agent coordination method named bounded max-sum.

5.2.3 Bounded Max-Sum

Distributed Constraint Optimization Problem (DCOP)(Shoham and Leyton-Brown, 2008)

is a quadruple P = (A,V,Ω,F) where A is a set of agents, V = {x(1), ...,x(d)} and Ω =

{Ω(1), ...,Ω(d)} are the input variables and domain. F = { f j}|F |j=1 is a set of functions. The

variable and function forms a bipartite factor graph G = (V,F ,E). DenoteMi to be an index

indicating which function nodes are connected to variable x(i) and N j is an index indicating

which variable nodes are connected to function g j. Let xN j to be the scope of the function g j

so that if x(i) is connected to g j, then g j(xN j) contains x(i).
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To solve this problem, each variable node and function node in the bipartite factor

graph is assigned to a computational agent. The agents search for the maximum value via

decentralized coordination. Each agent is only able to control its own node and can directly

communicate with neighboring agents. Two agents are consider to be neighbors if there is an

edge connecting the node that the agents control.

Max-sum (Kim and Lesser, 2013) is a message passing algorithm for solving DCOP. Two

types of messages are passing along the edges on the bipartite factor graph. Suppose an edge

ei j ∈ E connects a variable x(i) and function g j(xN j), these messages are defined as follows:

• From variable to function:

qi→ j(x(i)) = Ci j +∑k∈Mi\ j rk→i(x(i)) (5.17)

where Ci j is a normalizing constant to prevent the messages from increasing endlessly

in cyclic graphs. Its value is set by satisfying the following equation:

∑Mi qi→ j(x(i)) = 0 (5.18)

• From function to variable:

r j→i(x(i)) = max
xℓ\x(i)
{g j(xℓ)+ ∑

k∈N j\i
qk→i(x(i))} (5.19)

Max-Sum is a distributed synchronous algorithm, since the agent controlling node x(i)

has to wait to receive messages from all its neighbors but f j, to be able to compute its

message to f j. When the graph has no cycle, this algorithm is guaranteed to converge to

global optimal solution (Rollon and Larrosa, 2012). After the convergence, each variable

node can compute the function zi(x(i)) = maxx(i) ∑k∈Mi rk→i(x(i)). The optimal assignment

is x(i)∗ = argmaxx(i)zi(x(i)).

In the context of ANOVA-DCOP, each variable node is a dimension of the input of the

unknown function. Its domainMi = Ω
(i)
t at time step t. The function node is a little bit
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tricky. In order to evenly distributed the terms of acquisition function to each function node,

we design the following function to be assigned to a function node that connects two variable

nodes as equation 5.20. Its domainM j = ΩI
t which is the combination of domain Ω

(i)
t and

Ω
(k)
t at time step t.

g j(x(i),x(k)) = ϕ̃t(x(i),x(k))+
1

d−1
(ϕ̃t(x(i))+ ϕ̃t(x(k))) (5.20)

Although we only consider correlation structure with k = 2, it may still create cycle in the

graph. As a result, we need to apply bounded max-sum (Rollon and Larrosa, 2012) algorithm

to remove certain edges by building a maximum spanning tree T based on the weights of the

correlations. The weights are computed as:

wi j = max
x(k)
{max

x(i)
g j(x(i),x(k))−min

x(i)
g j(x(i),x(k))} (5.21)

If the edge ei j is not in the maximum spanning tree T , the function g j(x(i),x(k)) is

transformed into:

g̃ j(x(k)) = min
x(i)

g j(x(i),x(k)) (5.22)

According to the the spanning tree, the objective function becomes:

g(x) = ∑
ei j∈T ,ei j∈T

g j(x(i),x(k))+ ∑
ei j /∈T

g̃ j(x(k)) (5.23)

The acquisition function of ANOVA-DCOP is distributed to function nodes as subfunc-

tion g j(·, ·). Bounded max-sum optimizes the DCOP with objective function g(x) with a

summation form of g j(·, ·). The result of bounded max-sum is exactly the optimum of the

acquisition function of ANOVA-DCOP after applying the maximum spanning tree in the

graph. By iteratively taking new observation and solving the DCOP problem associated with

the updated acquisition function, the optimum of acquisition function will be more and more

close to the optimum of original function so that the optimum of the original function can be
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found eventually. The entire procedure of our proposed ANOVA-DCOP method is described

in Alg. 3.

Algorithm 3: Multi-agent Bayesian optimization procedure
provide an initial spanning tree T .
for t = 1,2, ...,T do

while not converge do
build discretized domain Ωt .

update variable domainMi = Ω
(i)
t .

update function domain N j = ΩI
t .

for variable node x(i) do
collect message r j→i(x(i)) fromMi

produce message qi→ j(x(i)) using message fromMi\ j

for function node g j do
collect message qi→ j(x(i)) from N j

produce message r j→i(x(i)) using message from N j\i

for variable node x(i) do
find x(i)∗ = argmaxx(i)zi(x(i))

combine the result as xt
query yxt = f (xt)+ ε through simulation
collect point Dt ← Dt−1

⋃
xt

collect observation yDt ← y{Dt−1
⋃

xt}
compute the weights of edges on the graph using Eqn. 5.21
update spanning tree T
update function nodes using Eqn. 5.23.

5.3 Theoretical Analysis of ANOVA-DCOP

GP-UCB is a parametric acquisition function in works of BO. The parameter βt will balance

the exploration and exploitation in optimizing the unknown function. In this section, we will

demonstrate that by setting a suitable value of βt , we can theoretically bound the regret of

ANOVA-DCOP. Our analysis is based on the following two assumptions:

Assumption 3. Let f (x) be sampled from a zero-mean Gaussian process (see Section X)

with kernel κ̃(x,x′), ∑I∈U κI(xI ,x′I). We assume (a) the kernel κ̃(·,x) is L-Lipschitz for
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every x and (b) there exists constants a,b > 0 so that for every xI , it follows that

Pr
(

supx

∣∣∣∣∂ f (x)
∂xI

∣∣∣∣> J
)
≤ aexp

(
−J2

b2

)
. (5.24)

Assumption 4. Let xt ∈Ωt denotes the selected sampling location of our algorithm at time

step t ≥ 1, we assume that xt is ζ0t−1/2-optimal which implies 0≤ ϕ̃t(x̃t)− ϕ̃t(xt)≤ ζ0t−1/2

where x̃t denotes the true maximizer of the acquisition ϕ̃t(x) over the entire input space X .

Under these two assumptions and theorem 4 in Srinivas et al. (2010), the cumulative

regret of ANOVA-DCOP can be bounded as Theorem 3 as follows:

Theorem 3. Given δ ∈ (0,1), the cumulative regret RT , (1/T )∑
T
t=1( f (x∗)− f (xt)) of

our algorithm can be upper-bounded by C2 (a,b,U ,T,L,δ ,ζ0,η) + 2β
1/2
T T−1/2

√
C1|U|γT

where γT is the maximum information gain after T sampling steps as defined in Srinivas et al.

(2010), C1 = 1/ log(1+η−2), βT = 2k log
(
dT 3)+2log(3 |U|πT/δ ) and C2 (a,b,U ,T,L,δ ,ζ0,η)

is a constant that only depends on a, b, T , L, δ , ζ0, η and |U|.

This theoretical result (Proof in Appendix 3) shows that by applying truncated ANOVA

kernel function with k, if we set βt ∈ O(2k logdt3), for a optimization problem with dimen-

sion index U constructed from d dimensions, with high probability, we can have a upper

bound within T time steps with respect to the maximum information gain γT . If we choose

k = 1 and r = 1, the regret upper bound holds with the same complexity in the additive model

(Kirthevasan et al., 2015). If we assume more complex structure on the function f (x) by

increasing k, the regret bound grows linearly with
√
U .

We analyze the complexity of the multi-agent collaboration as follows. Suppose we set

k = 2 and denote |ωm| is the maximum granularity for all time steps over dimensions I ∈ U .

The original searching space for BO isO(ωd
m). With ANOVA kernel function, we can reduce

the searching space to O(ω2
m) for each agent solving the DCOP. The searching space is

significantly reduced. However, Our ANOVA-DCOP method incurs more time than original

BO with time complexity O(|Dt |3) in time step t. ANOVA-DCOP requires O(d logd) time

to build the maximum spanning tree and O(d2) to compute the weights of the edges. So the

total time complexity in time step t is O(d logd +d2 +H|Dt |3) for H iterations. The extra
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running time is bearable when the simulation is time-consuming, so our method is suitable

when the simulation is computationally expensive or consumes lots of resources.

5.4 Experiments

In this section, we imperially evaluate ANOVA-DCOP by comparing with existing high

dimensional Bayesian optimization methods in the literature such as original GP-UCB

method (Srinivas et al., 2010), random embedding (Wang et al., 2016), subspace learning

(Djolonga et al., 2013) and additive model (Kirthevasan et al., 2015). The performance

metric we use is the simple regret ST = mint≤T rt .

5.4.1 Analytic Function

(a) Branin (b) Logsum

Fig. 5.1 Analytic functions to be tested. The input is scaled to [−1,1]× [−1,1]. The
output is negated for maximization problem. Branin has maximum value −0.397887 at
(−0.75221,0.63667), (0.08555,−0.69665) and (0.9233,−0.67). Logsum has maximum
value 2.1972 at (−0.3,0.8).

We firstly test the methods on two analytic functions: Brainin function and Logsum

function as in Fig. 5.1. The reason we choose these two functions is to demonstrate the

performance of various BO methods under different structural assumptions on the function.

Branin is a benchmark function for optimization which has been tested in many previous
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works in literature. The original Branin function has the following form with two-dimensional

input:

f (x) = (x(2)− 5.1x(1)
2

4π2 +
5x(1)

π
−6)2 +10(1− 1

8π
)cos(x(1))+10 (5.25)

where the input (x(1),x(2)) is restrained to [−5,10]× [0,15]. In the experiment, we scale

the input to [−1,1]× [−1,1] and negate the output for maximization problem. The two-

dimensional input is projected onto 20, 60 and 100 dimensional space by multiplying a d by

2 random matrix, where each element of the matrix is sampled from a standard Gaussian

distribution. As a result, the high dimensional function we create actually only has intrinsic

two dimensions. This structural assumption favors the methods which can reduce the high

dimensional input to low dimensions such as subspace learning (Djolonga et al., 2013).

This dimension projection structure does not highlight our contribution by exploring the

correlation structure between the dimensions. So we design the Logsum function that favors

our method. It is a d-dimensional function which assumes each dimension is only correlated

with its adjacent two dimensions:

f (x) = 1
d−1 ∑1≤i< j≤1 log(1+g(x(i),x( j)))

g(x(i),x( j)) = 8e−
1
2 v⊤1 Σ

−1
1 v1 + e−

1
2 v⊤2 Σ

−1
2 v2 + e−

1
2 v⊤3 Σ

−1
3 v3

vk = (x(i)−µ
(i)
k ,x( j)−µ

( j)
k )⊤

(5.26)

where Σ1 =

 0.05 −0.04

−0.04 0.05

, µ1 =

 −0.3

0.8

, Σ2 =

 0.05 0.04

0.04 0.05

, µ2 =

 0.8

−0.3

,

Σ3 =

 0.05 0

0 0.05

, µ2 =

 −0.7

−0.7

.

In the experiment, we use square exponential kernel function for all the other methods

and for the base function of ANOVA-DCOP. The signal variance in the hyperparameters of

the kernel function and noise variance is prefixed to 10% and 1% of the output value range

of the testing function. We learn the lengthscale of each dimension in the hyperparameters

every 50 iterations through maximizing the marginal likelihood of the realized Gaussian
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process given the observations. The coefficient βt is set to O(4log(dt3)) for ANOVA-DCOP.

For other methods, to the best of our knowledge, we use the settings in their original papers.

For subspace learning method, the number of intrinsic dimensions is set to the true intrinsic

dimensions 2 for Branin and 5 for Logsum. We presampled 20 observations to build the

initial maximum spanning tree for ANOVA-DCOP, and this maximum spanning tree is

updated every 50 iteration. These 20 initial observations are included in all the other methods

for fair comparison.
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(a) Branin d = 20 (b) Branin d = 60 (c) Branin d = 100
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(d) Logsum d = 20 (e) Logsum d = 60 (f) Logsum d = 100

Fig. 5.2 Simple regret of BO methods tested two analytic functions (Branin and Logsum)
within 500 time steps.

Fig. 5.2 shows the simple regret of different BO methods within 500 iterations. The top

three subfigures are the results tested on Branin function and bottom three subfigures are the

results tested on Logsum function. We can clearly see the difference in the performance on

the two functions due to their different structural assumption.

The high dimensional input in Branin is constructed from dimension projection. Subspace

learning method can learn the correlation between intrinsic dimensions and we serve the

method with the true intrinsic number of dimensions. Therefore with a few observations,
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it can quickly find the maximum point. On the other hand, Random embedding method,

at each time step, generates a random matrix to do dimension projection which may not

match to the true intrinsic dimensions. As a result, it performs not so well in our settings.

Our proposed ANOVA-DCOP method and additive model have similar acquisition function.

The difference is that additive model assumes all the dimensions are independent with each

other while ANOVA-DCOP assumes a pairwise correlation between the dimensions. The

additional information on the correlation reduces the number of iterations in searching the

space. And both methods significantly reduce the searching space compare to the original

GP-UCB method which results in a lower simple regret than GP-UCB.

Different from Branin, the high dimensional input in Logsum has pairwise correlations.

We purposely construct the function to have no reduced subspace so both random embedding

method and subspace learning method cannot successfully reduce the regret. On the other

hand, the additive model has a much smaller searching space so that within the limited

iteration, it outperforms the original GP-UCB method. Similarly, the pairwise correlation

structure in the dimensions is easy for ANOVA-DCOP to learn. Hence, it can use the

additional correlation information to reduce the regret faster than additive model.

From the experiments of two analytical functions, we can see that if there exists sparse

correlation structure in the dimensions, ANOVA-DCOP can effectively find the maximum

point with a few observations. But the problem is that we cannot always have such a nice

structure. In the next subsection, we will evaluate the performance of ANOVA-DCOP on

real application with unknown correlation structures.

5.4.2 Trading Strategy Optimization

In this section, we apply ANOVA-DCOP on a trading strategy optimization problem. We

focus on a popular alpha trading strategy (Tortoriello, 2009) with many factors chosen by

the investors. Every trading day, Alpha trading strategy chooses a target portfolio from a

stock pool with a set of parameterized factors. By comparing the target portfolio and current

portfolio, a rebalance plan is generated by selling the stocks in the target portfolio but not

in current portfolio and buying the stocks in the current portfolio but not in target portfolio.
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The strategy is evaluated based on the backtest performance on a sufficient large time period

in the past using historical data. The backtest performance is measured by Sortino based on

the tested period which has the following form:

Sortino ratio =
r− r f

σd
(5.27)

where r is the annualized return and r f is the risk-free annualized return and σd is the

downside standard deviation. Assume that the market has a positive return in the long term,

we can not short the stocks, and we cannot hedge the risk through trading derivatives. A

good strategy in this scenario will have a large return and small downside standard deviation.

So we want to find the parameters that can maximize Sortino ratio.

By adjusting the parameters in the factors, the backtest performance is changed so that

the Sortino value is different. As a result, we can view the Alpha trading strategy to be a

blackbox function. Its input is a vector with all the parameters in the factors and its output is

a singular value of Sortino. This blackbox function is time-consuming to evaluate since the

backtest is usually executed on a sufficient time period on a large stock pool. We would like

to find the optimal parameters in the factors with a few number of backtests. It is a suitable

scenario to apply Bayesian optimization here.

In the experiment, We use the following factors listed in Table 5.2 with 22 parameters

to choose the target portfolio. The stock pool is all the stocks in CSI 800 index in Chinese

A-share market. The backtest is conducted within time period from Feb. 01, 2010 to Feb. 01,

2016 on the trading platform JoinQuant. The compared strategy is buy and hold CSI 300

index which is the major index in Chinese stock market.

This experiment is manually executed by computing the next best parameters’ values

from different BO methods, and then based on the new parameters’ values, we run backtest

on JoinQuant website. We limit the number of iteration to 300. In this real problem, we do

not know the true intrinsic dimensions. Hence, we set the number of intrinsic dimensions to

be
√

d as suggested in the original paper of subspace learning (Djolonga et al., 2013).

Fig. 5.3 shows the Sortino improvement within 300 iterations and Fig. 5.4 shows

the details of strategy with the parameters optimized by ANOVA-DCOP. Both random
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Factor type Rules

Fundamental signals

PE upper bound
PB upper bound

ROE lower bound
ROB lower bound
PEG lower bound

EBIDA lower bound
Book/Market ratio weight
Fixed assets ratio weight

Market capital size upper bound
Circulating capital value upper bound

Accounts payable/Operation revenue weight
Accounts receivable/Operation revenue weight

Cash on cash return weight
Total profit/Total assets weight

Technical signals
RSI upper bound for selling

(Price - Moving average) upper bound for buying
Weekly KDJ(2 variables) lower bound for buying
Daily KDJ(2 variables) lower bound for buying

Stoploss
Stoploss ratio on major index (CSI300)

Stoploss ratio on individual stock
Table 5.2 Parameters in multi-factor trading strategy

No. of observations
0 50 100 150 200 250 300

So
rt

in
o

10-2

10-1

100

101
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Random

Subspace

Additive

ANOVA-DCOP

Fig. 5.3 Sortino value of the multi-factor trading strategy optimized by BO methods within
300 time steps. The simulated trading is manually conducted on JoinQuant backtest platform
from Feb. 01, 2010 to Feb. 01, 2016.
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Fig. 5.4 Backtest performance of the optimized multi-factor trading strategy in Chinese
A-share market v.s. CSI 300 index from Feb. 01, 2010 to Feb. 01, 2016.

embedding method and subspace learning method outperform GP-UCB since the factors

we use have some correlations so they can find a smaller intrinsic dimensional space to

search. For example, PE and PB use the same stock price information, Weekly KDJ and

daily KDJ compute the same price sequence with different granularity. Multi-factor model is

a rule based strategy. It mainly uses heuristics to select the stocks. Each heuristic contains

one or two parameters, which creates the situation that some parameters are independent,

and some are correlated. As a result, additive model and ANOVA-DCOP have a better

performance. Moreover, ANOVA-DCOP performs better than additive model due to learning

the correlation between the parameters.

5.5 Conclusion

The chapter proposed ANOVA-DCOP, a novel high dimensional Bayesian optimization

method . A truncated ANOVA kernel function is introduced to decompose the sparse

correlation structure of all the dimensions into a list of correlation structures that only involve

subsets of dimensions. Based on the truncated ANOVA kernel, we have derived a linear

decomposable acquisition function which can be cast as a DCOP. If we assume that the

correlations are restricted in subsets with less than or equal to 2 dimensions, it can be
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efficiently solved by bounded max-sum which is a typical multi-agent coordination method.

This linear decomposable form in ANOVA-DCOP can reduce a high-dimensional problem

into a list of low dimensional problems. Consequently, The complexity in searching the input

space significantly reduced and we theoretically analyzed the regret of ANOVA-DCOP. We

have evaluated the performance of our method with two analytical functions and a real-world

trading optimization problem. The imperial results show that ANOVA-DCOP significantly

improved the performance of existing high dimensional BO methods when the problem has a

sparse correlation structure among the inputs.





Chapter 6

Conclusion and Future Work

This thesis has investigated the following question:

In the context of large-scale machine learning, how can the correlation

structure of the data be exploited for constructing multi-agent coordination

schemes that can improve the scalability of the machine learning models

while preserving the computation accuracy?

6.1 Summary of Contributions

While working toward a satisfactory answer to the above question, along with practical

algorithms that achieve it, we have been able to make the following progress:

To address the challenge with large input domain:

• We present novel Gaussian process decentralized data fusion algorithms with agent-

centric support sets for distributed cooperative perception of large-scale environmental

phenomenon (section 3.2). In contrast with GP-DDF methods using fixed support

set, our proposed algorithms allow every sensing agent to choose a possibly different

support set and dynamically switch to another one during execution for encapsulating

its own data into a local summary that, perhaps surprisingly, can still be assimilated

with the other agents’ local summaries (i.e., based on their current choices of support

sets) into a globally consistent summary to be used for predicting the phenomenon.
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• We propose a new transfer learning mechanism (section 3.2) for a team of mobile

sensing agents capable of sharing and transferring information encapsulated in a sum-

mary based on a support set to that utilizing a different support set with some loss that

can be theoretically bounded and analyzed. To alleviate the issue of information loss

accumulating over multiple instances of transfer learning, we propose an information

sharing mechanism to be incorporated into our GP-DDF algorithms.

• Our proposed algorithms can overcome the following three limitations of GP-DDF

methods (Chen et al., 2012, 2013b, 2015):

1. For any unobserved input location, an agent can choose a small, constant-sized

(i.e., independent of domain size of the phenomenon) but sufficiently dense

support set surrounding it to predict its measurement accurately while preserving

time, space, and communication efficiencies;

2. The agents can reduce the information loss due to summarization by choosing or

dynamically switching to a support set “close” to their local data;

3. Without needing to retain previously gathered data, an agent can choose or

dynamically switch to a new support set whose summary can be constructed

using information transferred from the summary based on its current support set,

thus preserving scalability to big data.

• Finally, we empirically evaluate the performance of our proposed algorithms using

three real-world datasets, one of which is millions in size (section 3.3).

To address the challenge with nonstationarity:

• We present a decentralized multi-robot active sensing (DEC-MAS) algorithm that

can efficiently coordinate the exploration of multiple robots to automatically trade-off

between learning the unknown, nonstationary correlation structure and minimizing

the uncertainty of the environmental phenomena. Further, our DEC-MAS algorith-

m models a nonstationary phenomenon as a Dirichlet process mixture of Gaussian

processes (DPM-GPs) (Section 4.1): Using the gathered observations, DPM-GPs can
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learn to automatically partition the phenomenon into separate local areas, each of

which comprises measurements that vary according to a stationary spatial correlation

structure and can thus be modeled by a locally stationary Gaussian process.

• We demonstrate how DPM-GPs and its structural properties can be exploited to

(a) formalize an active sensing criterion that trades off between gathering the most

informative observations for estimating the unknown partition (i.e., a key component

of the nonstationary correlation structure) vs. that for predicting the phenomenon given

the current, possibly imprecise estimate of the partition (Section 4.2), and (b) support

effective and efficient decentralized coordination (Section 4.3).

• We also provide a theoretical performance guarantee for DEC-MAS and analyze its

time complexity (section 4.3).

• Finally, we empirically demonstrate using two real-world datasets that DEC-MAS

outperforms the state-of-the-art MAS algorithms (Section 4.4).

To address the challenge with high dimensionality:

• We present a Bayesian optimization method using Gaussian process prior with ANOVA

kernel function (section 5.2) that can decompose the correlation structure in high di-

mensions into a list of correlation structures of subsets of dimensions. Correspondingly,

the high dimensional input space is decomposed into small subspaces so that a few

observations can densely cover each subspace to learn and optimize the acquisition

function in BO accurately.

• To the best of our knowledge, ANOVA-DCOP is the first work to introduce multi-agent

coordination into high dimensional Bayesian optimization problem (section 5.2.3)

by exploiting the sparse correlation structure using ANOVA kernel. We formulate

the optimization of acquisition function as a decentralized constraint optimization

problem (DCOP) which can be solved efficiently using multi-agent coordination. We

theoretically bound the regret of the proposed algorithm and analyze its time complexity

(section 5.3).
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• Finally, we empirically evaluate the performance using two high dimensional functions

with known optimum value and one real financial problem. The results show that our

method outperforms the existing high dimensional BO methods when the problem has

sparse correlation structure among the inputs (section 5.4).

6.2 Future Works

This section proposes and discusses potential research directions that could be pursued as

continuation to our current work in this thesis:

• Generalize agent-centric support set for nonstationary phenomenon The large-

scale environmental phenomenon is usually nonstationary. Therefore, many real-

world problems have issues with both large input domain and nonstationarity. In GP-

DDF methods with agent-centric support set, the stationary assumption is impractical

in many situations. When the phenomenon is nonstationary, the transfer learning

mechanism we proposed is not able to deliver the local summaries from one area to

another area, which leads to huge information loss. To sharing information in the

nonstationary phenomenon, a new transfer learning mechanism is required.

Further, the information sharing mechanism we proposed is also not efficient in the

sense of the number of observations for a nonstationary phenomenon. As demonstrated

in our DEC-MAS, smooth area in the nonstationary field is easier to predict than the

highly varying area. So instead of fixing the agent path to share the information as we

did in the experiments, a more intelligent information sharing mechanism is required.

• Multi-output DEC-MAS for multiple phenomena The existing active sensing liter-

ature, including our DEC-MAS work in this thesis, are still restricted to single-output

learning scenarios for which each measurement is a single scalar. In practice, a com-

plex environmental field contains multiple phenomena that are strongly correlated. For

example, the temperature and salinity in the ocean have a strong correlation. Therefore,

one phenomenon can provide additional information to other phenomena in the same
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environmental field. If some observations in one phenomenon are available in advance,

we can easily learn another nonstationary phenomenon in the same field. With this

motivation, it is able to extend our DEC-MAS algorithm to perform active sensing for

multiple phenomena.

• ANOVA-DCOP with constrains In the experiments of ANOVA-DCOP, the functions

that we evaluated have no constraints. However, in practice, the parameters in a

complex system are often constrained by many equalities and inequalities. When

ANOVA-DCOP decomposes the acquisition function according to the correlation struc-

ture in the dimensions, those constraints need to be decomposed into sub-constrains

accordingly. In traditional high dimensional optimization (Chung, 2011, Frangioni

and Gendron, 2013), the decomposition of constraints needs to match the decompo-

sition of the objective function so that the high dimensional problem can be reduced

to lower-dimensional sub-problems. It is challenging to make the decomposition of

dimensions consistent with the acquisition function and constraints for BO methods

because the correlation structure has to be learned during the optimization. Moreover,

in many simulations, not only the function itself is unknown, the constraints may be

unknown too, which is a highly nontrivial problem to be explored.
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Appendix A

Agent-Centric Support Set for

Regression

A.1 Proof of Proposition 1

ωS ′|Di

= ΣS ′DiΣ
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and
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SSΣSS ′

= ΣS ′SΣ
−1
SSΦSS|DiΣ

−1
SSΣSS ′

where the second equalities above follow from the assumption that S ′ andDi are conditionally

independent given S (i.e., ΣS ′Di|S = ΣS ′Di−ΣS ′SΣ
−1
SSΣSDi = 0).
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A.2 Proof of Proposition 2

ΨSS|Di

= ΣSDiΣ
−1
DiDi|SΣDiS

= ΣSDi(Σ
−1
DiDi

+Σ
−1
DiDi

ΣDiSΣ
−1
SS|Di

ΣSDiΣ
−1
DiDi

)ΣDiS

= ΣSDiΣ
−1
DiDi

ΣDiS +

ΣSDiΣ
−1
DiDi

ΣDiSΣ
−1
SS|Di

ΣSDiΣ
−1
DiDi

ΣDiS

= ΦSS|Di +ΦSS|Di(ΣSS −ΣSDiΣ
−1
DiDi

ΣDiS)
−1

ΦSS|Di

= ΦSS|Di +ΦSS|Di(ΣSS −ΦSS|Di)
−1

ΦSS|Di

= ΦSS|Di(I +(ΣSS −ΦSS|Di)
−1

ΦSS|Di)

= ΦSS|Di(ΣSS −ΦSS|Di)
−1(ΣSS −ΦSS|Di +ΦSS|Di)

= ΦSS|Di(ΣSS −ΦSS|Di)
−1

ΣSS

where the second equality follows from the matrix inverse lemma on Σ
−1
DiDi|S = (ΣDiDi −

ΣDiSΣ
−1
SSΣSDi)

−1 = Σ
−1
DiDi

+Σ
−1
DiDi

ΣDiSΣ
−1
SS|Di

ΣSDiΣ
−1
DiDi

. As a result, Ψ
−1
SS|Di

= Σ
−1
SS (ΣSS−

ΦSS|Di)Φ
−1
SS|Di

= Φ
−1
SS|Di
−Σ

−1
SS .

νS|Di

= ΣSDiΣ
−1
DiDi|SyDi

= ΣSDi(Σ
−1
DiDi

+Σ
−1
DiDi

ΣDiSΣ
−1
SS|Di

ΣSDiΣ
−1
DiDi

)yDi

= ΣSDiΣ
−1
DiDi

yDi +ΣSDiΣ
−1
DiDi

ΣDiSΣ
−1
SS|Di

ΣSDiΣ
−1
DiDi

yDi

= ωS|Di +ΦSS|Di(ΣSS −ΣSDiΣ
−1
DiDi

ΣDiS)
−1

ωS|Di

= ωS|Di +ΦSS|Di(ΣSS −ΦSS|Di)
−1

ωS|Di

= ΦSS|Di(Φ
−1
SS|Di

+(ΣSS −ΦSS|Di)
−1)ωS|Di

= ΦSS|Di(ΣSS −ΦSS|Di)
−1

((ΣSS −ΦSS|Di)Φ
−1
SS|Di

+ I)ωS|Di

= ΦSS|Di(ΣSS −ΦSS|Di)
−1

ΣSSΦ
−1
SS|Di

ωS|Di

= (ΣSSΦ
−1
SS|Di

− I)−1
ΣSSΦ

−1
SS|Di

ωS|Di

= (Φ−1
SS|Di

−Σ
−1
SS)
−1

Φ
−1
SS|Di

ωS|Di

= ΨSS|DiΦ
−1
SS|Di

ωS|Di
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where the second equality follows from the matrix inverse lemma on Σ
−1
DiDi|S = Σ

−1
DiDi

+

Σ
−1
DiDi

ΣDiSΣ
−1
SS|Di

ΣSDiΣ
−1
DiDi

. As a result, Ψ
−1
SS|Di

νS|Di = Φ
−1
SS|Di

ωS|Di . So, (3.9) follows.

A.3 Proof of Theorem 1

The following lemma is necessary for deriving our main result here:

Lemma 4. Define σxx′ using a squared exponential covariance function. Then, every covari-

ance component σxx′ in ΣS ′tDit′
, ΣSS , ΣS ′tS , and ΣDit′S satisfies (σxx′−σss′)

2≤ 3e−1σ4
s (∥Λ−1(x−

s)∥2 +∥Λ−1(x′− s′)∥2) for all x,x′,s,s′ ∈ X .

Proof. Since every covariance component σxx′ in ΣS ′tDit′
, ΣSS , ΣS ′tS , and ΣDit′S does not

involve the noise variance σ2
n , it follows from (3.1) that

σxx′ = σ
2
s exp

(
−
∥∥∥∥Λ−1(x− x′)√

2

∥∥∥∥2
)

= σ
2
s k
(∥∥∥∥Λ−1(x− x′)√

2

∥∥∥∥)

where k(a), exp(−a2). Then,

(σxx′−σss′)
2

= σ
4
s

{
k
(∥∥∥∥Λ−1(x− x′)√

2

∥∥∥∥)− k
(∥∥∥∥Λ−1(s− s′)√

2

∥∥∥∥)}2

= 0.5σ
4
s k′(ξ )2(∥Λ−1(x− x′)∥−∥Λ−1(s− s′)∥)2

≤ e−1
σ

4
s (∥Λ−1(x− s)∥+∥Λ−1(x′− s′)∥)2

≤ e−1
σ

4
s (∥Λ−1(x− s)∥+∥Λ−1(x′− s′)∥)2

≤ 3e−1
σ

4
s (∥Λ−1(x− s)∥2 +∥Λ−1(x′− s′)∥2)

where the second equality is due to mean value theorem such that k′(ξ ) is the first-order

derivative of k evaluated at some ξ ∈ (∥Λ−1(s−s′)∥/
√

2,∥Λ−1(x−x′)∥/
√

2) without loss of

generality, the first inequality follows from the fact that k′(a) is maximized at a=−1/
√

2 and
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hence k′(ξ )≤ k′(−1/
√

2) =
√

2/e, and the second inequality is due to triangle inequality

(i.e., ∥Λ−1(x− x′)∥ ≤ ∥Λ−1(x− s)∥+∥Λ−1(s− s′)∥+∥Λ−1(s′− x′)∥). �

Supposing each subset Dis (S ′s) contains T (T ′) locations1, select one location from

each subset to form a new subset Dit ′ , {xit ′s}s∈S (S ′t , {x′ts}s∈S) of |S| locations for

t ′ = 1 (t = 1) and repeat this for t ′ = 2, . . . ,T (t = 2, . . . ,T ′). Then, Di =
⋃T

t ′=1Dit ′ and

S ′ =
⋃T ′

t=1S ′t . It follows that ΣS ′S = [ΣS ′tS ]t=1,...,T ′ , ΣSDi = [ΣSDit′ ]t ′=1,...,T , and ΣS ′Di =

[ΣS ′tDit′
]t=1,...,T ′,t ′=1,...,T .

Using the definition of Frobenius norm followed by the subadditivity of a square root

function,
||ΣS ′Di−ΣS ′SΣ

−1
SSΣSDi||F

= ||ΣS ′Di|S ||F

=

√√√√ T ′

∑
t=1

T

∑
t ′=1
||ΣS ′tDit′ |S ||

2
F

≤
T ′

∑
t=1

T

∑
t ′=1
||ΣS ′tDit′ |S ||F .

(A.1)

Let AS ′tDit′
, ΣS ′tDit′

−ΣSS , BS ′tS , ΣS ′tS −ΣSS , and CDit′S , ΣDit′S −ΣSS . Then,

||ΣS ′tDit′ |S ||F
= ||ΣS ′tDit′

−ΣS ′tSΣ
−1
SSΣSDit′ ||F

= ||ΣSS +AS ′tDit′
−

(ΣSS +BS ′tS)Σ
−1
SS(ΣSS +CDit′S)

⊤||F
= ||ΣSS +AS ′tDit′

−Σ
⊤
SS −C⊤Dit′S −BS ′tS −

BS ′tSΣ
−1
SSC⊤Dit′S ||F

≤ ||AS ′tDit′
||F + ||BS ′tS ||F + ||CDit′S ||F +

||BS ′tS ||F ||CDit′S ||F ||Σ
−1
SS ||F

(A.2)

where the inequality is due to the subadditivity and submultiplicativity of the matrix norm.

1If the subset sizes differ, then “virtual” locations are added to each subset to make all subsets to be of the
same size as T , argmaxs∈S |Dis| (T ′ , argmaxs∈S |S ′s|). The virtual locations added to Dis (S ′s) are chosen as
s ∈ S so that they do not induce additional errors but will loosen the bound.
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Let εS ′t , (1/|S|)∑x∈S ′t ||Λ
−1(x− c(x))||2 and εDit′ , (1/|S|)∑x∈Dit′

||Λ−1(x− c(x))||2.

Then,
||AS ′tDit′

||2F
= ||ΣS ′tDit′

−ΣSS ||2F
= ∑

s,s′∈S
(σx′tsxit′s′

−σss′)
2

≤ 3e−1σ4
s ∑

s,s′∈S

(
||Λ−1(x′ts− s)||2 + ||Λ−1(xit ′s′− s′)||2

)
= 3e−1σ4

s |S|

(
∑
s∈S
||Λ−1(x′ts− s)||2 +

∑
s′∈S
||Λ−1(xit ′s′− s′)||2

)
= 3e−1σ4

s |S|2(εS ′t + εDit′ )

(A.3)

since εS ′t = (1/|S|)∑s∈S ||Λ−1(x′ts− s)||2 and εDit′ = (1/|S|)∑s′∈S ||Λ−1(xit ′s′− s′)||2. The

inequality is due to Lemma 4.

||BS ′tS ||
2
F

= ||ΣS ′tS −ΣSS ||2F
= ∑

s,s′∈S
(σx′tss′−σss′)

2

≤ 3e−1σ4
s ∑

s,s′∈S

(
||Λ−1(x′ts− s)||2 + ||Λ−1(s′− s′)||2

)
= 3e−1σ4

s |S|∑
s∈S
||Λ−1(x′ts− s)||2

= 3e−1σ4
s |S|2εS ′t

(A.4)
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such that the inequality is due to Lemma 4.

||CDit′S ||
2
F

= ||ΣDit′S −ΣSS ||2F
= ∑

s,s′∈S
(σxit′ss′−σss′)

2

≤ 3e−1σ4
s ∑

s,s′∈S

(
||Λ−1(xit ′s− s)||2 + ||Λ−1(s′− s′)||2

)
= 3e−1σ4

s |S|∑
s∈S
||Λ−1(xit ′s− s)||2

= 3e−1σ4
s |S|2εDit′

(A.5)

such that the inequality is due to Lemma 4.

By substituting (A.3), (A.4), and (A.5) into (A.2),

||ΣS ′tDit′ |S ||F
≤
√

3e−1σ4
s |S|2(εS ′t + εDit′ )+

√
3e−1σ4

s |S|2εS ′t +√
3e−1σ4

s |S|2εDit′ +√
3e−1σ4

s |S|2εS ′t

√
3e−1σ4

s |S|2εDit′ ||Σ
−1
SS ||F

=
√

3/eσ
2
s |S|

(√
εS ′t + εDit′ +

√
εS ′t +

√
εDit′ +

σ
2
s ||Σ−1

SS ||F |S|
√

3εS ′t εDit′/e
)
.

(A.6)
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By substituting (A.6) into (A.1),

||ΣS ′Di−ΣS ′SΣ
−1
SSΣSDi||F

≤
√

3/eσ
2
s |S|

T ′

∑
t=1

T

∑
t ′=1

(√
εS ′t + εDit′ +

√
εS ′t +

√
εDit′ +

σ
2
s ||Σ−1

SS ||F |S|
√

3εS ′t εDit′/e
)

≤
√

3/eσ
2
s |S|

(√√√√T T ′
T ′

∑
t=1

T

∑
t ′=1

(εS ′t + εDit′ ) +√√√√T T ′
T ′

∑
t=1

T

∑
t ′=1

εS ′t +

√√√√T T ′
T ′

∑
t=1

T

∑
t ′=1

εDit′ +

σ
2
s ||Σ−1

SS ||F |S|

√√√√T T ′(3/e)
T ′

∑
t=1

T

∑
t ′=1

εS ′t εDit′

)

=
√

3/eσ
2
s |S|

(√√√√T T ′
(

T
T ′

∑
t=1

εS ′t +T ′
T

∑
t ′=1

εDit′

)
+√√√√T 2T ′

T ′

∑
t=1

εS ′t +

√√√√T T ′2
T

∑
t ′=1

εDit′ +

σ
2
s ||Σ−1

SS ||F |S|

√√√√T T ′(3/e)
T ′

∑
t=1

εS ′t

T

∑
t ′=1

εDit′

)
=
√

3/eσ
2
s |S|T T ′

(√
εS ′+ εDi +

√
εS ′+

√
εDi +

σ
2
s ||Σ−1

SS ||F |S|
√

3εS ′εDi/e
)

such that the second inequality follows from

T

∑
t=1

√
at ≤

√
T

T

∑
t=1

at

which can be obtained by applying Jensen’s inequality to the concave square root function.

The last equality is due to εS ′ = (1/T ′)∑
T ′
t=1 εS ′t and εDi = (1/T )∑

T
t ′=1 εDit′ .
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A.4 GP-DDF/GP-DDF+ Algorithm with Agent-Centric Sup-

port Sets based on Lazy Transfer Learning

Refer to Algorithm 4 below.

Algorithm 4: GP-DDF/GP-DDF+ with agent-centric support sets based on lazy transfer
learning for agent i

if agent i transits from local area with support set S to local area with support set S ′ then
/* Information sharing mechanism */
/* Leaving local area with S */
if other agents are in local area with support set S then

Construct and send local summary (νS|Di ,ΨSS|Di) to an agent in this area who
assimilates it with its own local summary using (3.4);
Delete local summary (νS|Di ,ΨSS|Di);

else
Backup local summary (νS|Di ,ΨSS|Di);

/* Entering local area with S ′ */
if other agents are in local area with support set S ′ then

Get support set S ′ from an agent in this area;

else
if some agent j in the team stores a backup of local summary based on support set S ′
then

Retrieve and remove this backup of local summary based on S ′ from agent j;

else
Construct support set S ′;

if agent i has to predict the phenomenon then
if data (D′i,yD′i) is available from local area with support set S ′ then

Construct local summary (νS ′|D′i ,ΨS ′S ′|D′i) by (3.3);

Exchange local summary with every agent j ̸= i;
foreach agent j ̸= i in local area with support set S ′′ ̸= S ′ do

/* Transfer learning mechanism */
Derive local summary (νS ′|D j ,ΨS ′S ′|D j) based on S ′ approximately from received
local summary (νS ′′|D j ,ΨS ′′S ′′|D j) based on S ′′ using transfer learning mechanism in
Algorithm 1 (Section 3.2);

Compute global summary (ν̇S ′ ,Ψ̇S ′S ′) by (3.4) using local summaries (νS ′|D′i ,ΨS ′S ′|D′i)

and (νS ′|D j ,ΨS ′S ′|D j) of every agent j ̸= i;
Run GP-DDF (3.5) or GP-DDF+ (3.6);
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A.5 Hyperparameter Learning

The hyperparameters of our GP-DDF-ASS and GP-DDF+-ASS algorithms are learned by

maximizing the sum of log-marginal likelihoods ∑S log p(yD|S) over the support set S

of every different local area via gradient ascent with respect to a common set of signal

variance, noise variance, and length-scale hyperparameters (Section 3.1) where, as derived in

(Quiñonero-Candela and Rasmussen, 2005),

log p(yD|S) =−0.5(log |ΞDD|S |+ y⊤DΞ
−1
DD|SyD+ |D| log(2π))

such that ΞDD|S , ΦDD|S +blockdiag[ΣDD|S ]+σ2
n I. Note that these learned hyperparame-

ters of our GP-DDF-ASS and GP-DDF+-ASS algorithms correspond to the case where our

proposed lazy transfer learning mechanism incurs minimal information loss.

A.6 Real-World Plankton Density Phenomenon

The MODIS plankton density dataset (Fig. A.1) is bounded within lat. 30-31N and lon.

245.36-246.11E (i.e., off the west coast of USA) with a data size of 4941. The domain

of this phenomenon is discretized into a 61×81 grid of locations that are associated with

log-chlorophyll-a measurements in mg/m3. It is partitioned into K = 16 disjoint local areas

of size about 15 by 20, each of which is assigned N/K mobile sensing agents. The N/K

agents in every local area then move together in a pre-defined lawnmower pattern from one

local area to the next adjacent one such that they visit all the K = 16 local areas exactly twice

to gather data/observations from this phenomenon and end in the same local area initially

assigned to them. Whenever the N/K agents transit into the next local area, they will move

randomly within to gather the local data/observations; the results are averaged over 30 runs.

The performance of our GP-DDF and GP-DDF+ algorithms with agent-centric support

sets (respectively, GP-DDF-ASS and GP-DDF+-ASS), each of which is of size 50 and

randomly distributed over a different local area of the plankton density phenomenon, are

compared against that of the local GPs method Choudhury et al. (2002), Das and Srivastava
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Fig. A.1 Plankton density phenomenon bounded within lat. 30-31N and lon. 245.36-246.11E.

(2010) and state-of-the-art GP-DDF and GP-DDF+ Chen et al. (2015) with a common

support set of size 50 randomly distributed over the entire plankton density phenomenon and

known to all agents.

Predictive Performance.

Fig. A.2a shows results of decreasing RMSE achieved by tested algorithms with an increasing

total number of observations for N = 32 agents. The observations and analysis are similar

to that reported in Section 3.3 (specifically, under ‘Predictive Performance’). It can also

be observed that the performance gap between GP-DDF-ASS and GP-DDF+-ASS appears

to be smaller than that for the indoor lighting quality and temperature phenomenon shown

in Figs. 4.1a and 4.1c, respectively: Compared to the indoor lighting quality (temperature

phenomenon), the plankton density phenomenon has a relatively larger length-scale (much

smaller domain size and consequently closer agent-centric support sets), thereby making

transfer learning more effective, which agrees with the observation in our theoretical analysis

for Theorem 1 (Section 3.2), and reducing the performance advantage of GP-DDF+-ASS

over GP-DDF-ASS in exploiting local data.
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Fig. A.2 Graphs of (a) RMSE and (b) total incurred time vs. total no. of observations, and (c)
graphs of total incurred time vs. no. of agents achieved by tested algorithms for plankton
density phenomenon.

Time Efficiency.

Fig. A.2b shows results of increasing total time incurred by tested algorithms with an increas-

ing total number of observations for N = 32 agents. The experimental setup, observations,

and analysis are again similar to that reported in Section 3.3 (specifically, under ‘Time

Efficiency’).

Scalability in the Number of Agents.

Fig. A.2c shows results of total time incurred by tested algorithms with an increasing number

N of agents to gather a total number of 1235 observations. It can be observed that the

total time incurred by GP-DDF+-ASS, GP-DDF+, GP-DDF-ASS, and GP-DDF decrease

with more agents, as explained in Section 3.1; recall further that they become more robust

to agent failure with more agents assigned to every local area to reduce its risk of being

empty and hence its likelihood of inducing a backup. In addition, GP-DDF-ASS and GP-

DDF+-ASS, respectively, incur only slightly more time than GP-DDF and GP-DDF+ due to

their information sharing mechanism described in Section 3.2 (specifically, the first if-then

construct in Algorithm 4 in Appendix A.4). Note that the total time incurred by local GPs

remains constant with respect to the number of agents because a fixed number of about 77

observations are gathered by all agents in each local area and used by any agent for prediction

in the same local area.





Appendix B

DEC-MAS for Active Learning

B.1 Proof of Theorem 2

Let Σ̃XkXk|Dk,θk
,ΣXkXk|Dk,θk

−Σ̂XkXk|Dk,θk
and ρk be the spectral radius of Σ̂

−1
XkXk|Dk,θk

Σ̃XkXk|Dk,θk
.

We first bound ρk from above.

For any Xk, Σ̂
−1
XkXk|Dk,θk

Σ̃XkXk|Dk,θk
comprises diagonal blocks of size |Xkn| × |Xkn| with

components of value 0 for n = 1, . . . ,N and off-diagonal blocks of the form Σ
−1
XknXkn|Dk,θk

ΣXknXkn′ |Dk,θk
for n,n′ = 1, . . . ,N and n ̸= n′. Any pair of robots r ∈ Vn and r′ ∈ Vn′ reside in

different connected components of coordination graph G and are therefore not adjacent. So,

by (4.13),

max
i,i′

∣∣∣[ΣXknXkn′ |Dk,θk

]
ii′

∣∣∣≤ ε (B.1)

for n,n′ = 1, . . . ,N and n ̸= n′. Using (4.18) and (B.1), each component in any off-diagonal

block of Σ̂
−1
XkXk|Dk,θk

Σ̃XkXk|Dk,θk
can be bounded as follows:

max
i,i′

∣∣∣[Σ−1
XknXkn|Dk,θk

ΣXknXkn′ |Dk,θk

]
ii′

∣∣∣≤ |Xkn|ξ ε (B.2)

for n,n′ = 1, . . . ,N and n ̸= n′. It follows from (B.2) that

max
i,i′

∣∣∣[Σ̂−1
XkXk|Dk,θk

Σ̃XkXk|Dk,θk

]
ii′

∣∣∣≤max
n
|Xkn|ξ ε ≤ ηξ ε . (B.3)
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The last inequality is due to max
n
|Xkn| ≤max

n
|Vn| ≤ η . Then,

ρk ≤
∣∣∣∣∣∣Σ̂−1

XkXk|Dk,θk
Σ̃XkXk|Dk,θk

∣∣∣∣∣∣
2

≤ |Xk|max
i,i′

∣∣∣[Σ̂−1
XkXk|Dk,θk

Σ̃XkXk|Dk,θk

]
ii′

∣∣∣
≤ |V|ηξ ε .

(B.4)

The first two inequalities are due to standard properties of matrix norm. The last inequality

follows from (B.3).

The rest of this proof uses the following result of (Ipsen and Lee, 2011) that is revised to

reflect our notations:

Theorem 5. If |Xk|ρ2
k < 1, then log

∣∣ΣXkXk|Dk,θk

∣∣≤ log
∣∣∣Σ̂XkXk|Dk,θk

∣∣∣≤ log
∣∣ΣXkXk|Dk,θk

∣∣−log
(
1−|Xk|ρ2

k

)
for any Xk.

Using Theorem 5 followed by (B.4),

log
∣∣∣Σ̂XkXk|Dk,θk

∣∣∣− log
∣∣ΣXkXk|Dk,θk

∣∣ ≤ log
1

1−|Xk|ρ2
k

≤ log
1

1−(|V|1.5ηξ ε)
2

(B.5)

for any Xk.

H̃[YX̃ ,ZX̃ |yD,zD,θ ]− H̃[YX̂ ,ZX̂ |yD,zD,θ ]

= ∑
x∈X̃

H[Zx|zD,θ ]−∑
x∈X̂

H[Zx|zD,θ ]

+
K

∑
k=1

H[YX̃k
|ẑX̃k

,yDk ,θk]−H[YX̂k
|ẑX̂k

,yDk ,θk]

≤ ∑
x∈X̃

H[Zx|zD,θ ]−∑
x∈X̂

H[Zx|zD,θ ]

+
K

∑
k=1

Ĥ[YX̃k
|ẑX̃k

,yDk ,θk]−H[YX̂k
|ẑX̂k

,yDk ,θk]

≤ ∑
x∈X̂

H[Zx|zD,θ ]−∑
x∈X̂

H[Zx|zD,θ ]

+
K

∑
k=1

Ĥ[YX̂k
|ẑX̂k

,yDk ,θk]−H[YX̂k
|ẑX̂k

,yDk ,θk]

≤ K
2

log
1

1−(|V|1.5ηξ ε)
2
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The first equality is due to (4.12). The first, second, and last inequalities follow from (4.14)

and Theorem 5, (4.16), and (B.5), respectively.

B.2 Heuristics to Improve Gibbs Sampling

Gibbs sampling for estimating the component labels zD is time-consuming because it has to

evaluate |D|K posterior probabilities (4.7) in every iterative sweep. We propose the following

two heuristics to speed up its convergence.

Firstly, environmental sensing applications (El Saadi and Bah, 2007, Groves et al., 1998,

Wei and Pengda, 2002) have shown that the magnitude of local mean yx , ∑x′∈Nx yx′/|Nx|

(where x ∈ D) is highly informative towards partitioning a non-stationary phenomenon into

separate local areas with different locally stationary spatial correlation structures because

the local means between different local areas tend to vary considerably. So, before Gibbs

sampling, an informative prior set zD of component labels can be determined by clustering

the local means yx concatenated with their corresponding feature vectors x for all x ∈ D.

For clustering, we use the Gaussian mixture model of (Figueiredo and Jain, 2002) that

can automatically select an appropriate number of clusters (i.e., K) based on the minimum

message length criterion.

Secondly, during Gibbs sampling, observations residing deep within a local area com-

prising measurements induced by a GP component tend to yield highly certain component

labels (i.e., with low entropy) and are thus very unlikely to change their labels. To reduce

computations, they can be skipped during Gibbs sampling.





Appendix C

ANOVA-DCOP for Optimization

C.1 Proof of Proposition 4

From Assumption 2, we know that each term fI(xI)∼N (µxI |Dt−1
,ΣxIxI |Dt−1

). And µxI |Dt−1
,

ΣxIxI |Dt−1
are defined as:

µxI |Dt−1
= µxI +κI(xI ,DI

t−1)(Σ̃Dt−1Dt−1 +η2I)−1(yDt−1−µDt−1)

ΣxIxI |Dt−1
= κI(xI ,xI)−κI(xI ,DI

t−1)(Σ̃Dt−1Dt−1 +η2I)−1κI(DI
t−1,x

I)
(C.1)

By summing up all the terms in U , we have:

∑I∈U µxI |Dt−1
= ∑I∈U

(
µxI +κI(xI ,DI

t−1)(Σ̃Dt−1Dt−1 +η2I)−1(yDt−1−µDt−1)
)

= ∑I∈U µxI +∑I∈U κI(xI ,DI
t−1)(Σ̃Dt−1Dt−1 +η2I)−1(yDt−1−µDt−1)

= ∑I∈U µxI +
(

∑I∈U κI(xI ,DI
t−1)

)
(Σ̃Dt−1Dt−1 +η2I)−1(yDt−1−µDt−1)

∑I∈U ΣxIxI |Dt−1
= ∑I∈U

(
κI(xI ,xI)−κI(xI ,DI

t−1)(Σ̃Dt−1Dt−1 +η2I)−1κI(DI
t−1,x

I)
)

= ∑I∈U κI(xI ,xI)−∑I∈U κI(xI ,DI
t−1)(Σ̃Dt−1Dt−1 +η2I)−1κI(DI

t−1,x
I)

(C.2)

From Proposition 3 and the truncation approximation of ANOVA kernel, we know

that µx = ∑I∈U µxI and κ̃(x,x) = ∑I∈U κI(xI ,xI) from the definition of ANOVA kernel.

Using the property of ANOVA kernel between x and all x j ∈ Dt−1, we have: κ̃(x,Dt−1) =

∑I∈U κI(xI ,DI
t−1).
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Therefore,

∑I∈U µxI |Dt−1
= ∑I∈U µxI +

(
∑I∈U κI(xI ,DI

t−1)
)
(Σ̃Dt−1Dt−1 +η2I)−1(yDt−1−µDt−1)

= µx + κ̃(x,Dt−1)(Σ̃Dt−1Dt−1 +η2I)−1(yDt−1−µDt−1)

= µx|Dt−1

(C.3)

Additionally, Assumption 1 restricts the correlations only exists in the subsets of dimen-

sions with size up to k = 2 at any time step t. Consequently, We remove the correlations

when I ̸= I ′ because it may introduce correlations more than k = 2 dimensions:

∑I∈U κI(xI ,DI
t−1)(Σ̃Dt−1Dt−1 +η2I)−1κI(DI

t−1,x
I)

= ∑I∈U ,I ′∈U ,I=I ′ κI(xI ,DI
t−1)(Σ̃Dt−1Dt−1 +η2I)−1κI ′(DI ′

t−1,x
I ′)

(C.4)

It will leads to the linear decomposable form:

∑I∈U ΣxIxI |Dt−1

= ∑I∈U κI(xI ,xI)−∑I∈U κI(xI ,DI
t−1)(Σ̃Dt−1Dt−1 +η2I)−1κI(DI

t−1,x
I)

= ∑I∈U κI(xI ,xI)−∑I∈U ,I ′∈U ,I=I ′ κI(xI ,DI
t−1)(Σ̃Dt−1Dt−1 +η2I)−1κI ′(DI ′

t−1,x
I ′)

= Σxx|Dt−1

(C.5)

C.2 Proof of Theorem 3

Let {πt}∞
t=1 and xt ,

⋃
i x(i)t denote a convergent series such that ∑

∞
t=1 π

−1
t = 1 (e.g., πt ,

π2t2/6) and the input location selected by maximizing ϕ̃t(x) over a discretization Ωt of X at

time t, respectively. Then, let x̃t ,
⋃

i x̃(i)t be the true maximiser of ϕ̃t(x) over X , we further

assume that 0≤ ϕ̃t(x̃t)− ϕ̃t(xt)≤ ζ0t−1/2 where ζ0 is a constant that does not depend on t.

That is, for every step t, xt is assumed to be ζ0t−1/2-optimal. More specifically, for every

time step t, we construct Ωt as the Cartesian product of each dimension’s discretization

Ω
(i)
t , i.e. Ωt , Ω

(1)
t ×Ω

(2)
t × . . .×Ω

(d)
t . For notational convenience, given a subset of

dimension I , {i1, i2, . . . , ik} ∈ U , we also define (a) ΩI
t , Ω

(i1)
t ×Ω

(i2)
t × . . .×Ω

(ik)
t as the
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discretization of the sub-space of input spanning over dimensions i1, i2, . . . , ik; (b) ωI
t , |ΩI

t |

as its granularity and (c) ωt , maxI∈U ωI
t as the maximum granularity at time t over all

I ∈ U . In the following discussion, we will show how Ω
(i)
t can be constructed to achieve a

tight upper-bound on the cumulative regret of our algorithm.

For generalization purpose, we derive the proof with respect to subsets with size less or

equal to k and compact domain x ∈ [0,r]d which is consistent with the work of Srinivas et al.

(2010). Our domain in the main thesis can be scaled to [0,r]d by setting r = 2 and shifting 1

unit.

Lemma 6. For any δ ∈ (0,1), let βt , 2log(ωt |U|πt/δ ), then with probability at least

1−δ , we have
∣∣ f (x)−µx|Dt−1

∣∣≤ β
1/2
t ∑I∈U σxI |Dt−1

for all x ∈Ωt and t ≥ 1.

Proof. By definition, at any time step t ≥ 1, given the previous observations yDt−1 , a subset

of input dimensions I ∈ U and a candidate xI , we have fI
(
xI
)
∼ N

(
µxI |Dt−1

,σ2
xI |Dt−1

)
.

Hence, let r ,
(

fI
(
xI
)
−µxI |Dt−1

)
/σxI |Dt−1

, it trivially follows that r ∼ N (0,1). Thus,

applying the tail inequality p(|r|> c)≤ exp(−c2/2) Srinivas et al. (2010) for the standard

normal variable r with c , β
1
2

t yields Pr
(∣∣∣ fI (xI)−µxI |Dt−1

∣∣∣> β
1
2

t σxI |Dt−1

)
≤ exp(−βt/2)

or equivalently:

Pr
(∣∣∣ fI (xI

)
−µxI |Dt−1

∣∣∣≤ β
1
2

t σxI |Dt−1

)
≥ 1− exp(−βt/2) (C.6)

for each tuple of
(
I,xI , t

)
. Then, applying the union bound over xI ∈ ΩI

t consequently

yields

Pr
(
∀xI ∈Ω

I
t ,
∣∣∣ fI (xI

)
−µxI |Dt−1

∣∣∣≤ β
1
2

t σxI |Dt−1

)
≥ 1−

∣∣∣ΩI
t

∣∣∣exp(−βt/2)

≥ 1−ωtexp(−βt/2) (C.7)

for each tuple of (I, t). Similarly, applying the union bound again over I ∈ U and t ∈ Z+

subsequently implies

Pr
(
∀I ∈ U , t ≥ 1,xI ∈Ω

I
t ,
∣∣∣ fI (xI

)
−µxI |Dt−1

∣∣∣≤ β
1
2

t σxI |Dt−1

)
≥ 1−|U|

∞

∑
t=1

ωtexp(−βt/2)
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Plugging βt , 2log(ωt |U|πt/δ ) into the above inequality thus produces

Pr
(
∀I ∈ U , t ≥ 1,xI ∈Ω

I
t ,
∣∣∣ fI (xI

)
−µxI |Dt−1

∣∣∣≤ β
1
2

t σxI |Dt−1

)
≥ 1−δ

∞

∑
t=1

π
−1
t = 1−δ

(C.8)

whose last equality holds due to our choice of {πt}t such that ∑t π
−1
t = 1. That is, with

probability at least 1−δ ,
∣∣∣ fI (xI)−µxI |Dt−1

∣∣∣≤ β
1
2

t σxI |Dt−1
simultaneously for all tuples of

(I, t,xI).

Effectively, this means with probability at least 1−δ ,

∣∣ f (x)−µx|Dt−1

∣∣ =

∣∣∣∣∣∑I∈U
(

fI
(

xI
)
−µxI |Dt−1

)∣∣∣∣∣
≤ ∑

I∈U

∣∣∣ fI (xI
)
−µxI |Dt−1

∣∣∣ ≤ β
1/2
t ∑

I∈U
σxI |Dt−1

(C.9)

for all t ∈ Z+ and x ∈Ωt . To elaborate, the first and last equalities in Eq. (C.9) are true due

to our assumption that ∀x, f (x), ∑I∈U fI
(
xI
)

and its implication on the decomposability

of the predictive mean µx|Dt−1 = ∑I∈U µxI |Dt−1
(see Section X). Finally, the first and second

inequalities of Eq. (C.9) follow directly from the triangle inequality and our previously

established result in Eq. (C.8), thus completing our proof.

Lemma 7. Given δ ∈ (0,1), X ⊆ [0,r]d and J , b
√

log(3a |U|/δ ), we have

Pr

(
∀x ∈ X ,∀t ≥ 1,

∣∣ f (x)−µ[x]t |Dt−1

∣∣≤ Jr/t3 +β
1/2
t ∑

I∈U
σ[xI ]t |Dt−1

)
≥ 1−2δ/3(C.10)

where [x]t , [xI ]t and [xi]t denote the closest points (in terms of the L1 distance) to x, xI

and x(i) in Ωt , ΩI
t and Ω

(i)
t , respectively; and βt = 2k log

(
dt3)+ 2log(3 |U|πt/δ ) with

k = maxI∈U |I|.

Proof. Applying the union bound over I ∈ U to Eq. (5.24) (see Assumption 3) with

J , b
√

log(3a |U|/δ ) yields

Pr
(
∀I ∈ U ,supx

∣∣∣∣∂ f (x)
∂xI

∣∣∣∣> J
)
≤ ∑

I∈U
Pr
(

supx

∣∣∣∣∂ f (x)
∂xI

∣∣∣∣> J
)
≤ a |U|exp

(
−J2

b2

)
=

δ

3
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where the last equality follows from the definition of J. This immediately implies

Pr
(
∀I ∈ U ,supx

∣∣∣∣∂ f (x)
∂xI

∣∣∣∣≤ J
)
≥ 1− δ

3
(C.11)

with J , b
√

log(3a |U|/δ ). Since U also contains all subsets that correspond to a single

input dimension, the premise that ∀I ∈ U ,supx

∣∣∣∂ f (x)
∂xI

∣∣∣ ≤ J directly implies a J-Lipschitz

condition on f (x) with J , b
√

log(3a |U|/δ ). Eq. (C.11) then guarantees that this is true

with high probability:

Pr
(
∀x,x′ ∈ X ,

∣∣ f (x)− f (x′)
∣∣ ≤ b

√
log(3a |U|/δ )

∥∥x− x′
∥∥

1

)
≥ 1− δ

3
. (C.12)

Also, since the input space X ⊆ [0,r]d is assumed to be compact and bounded, we can

construct a discretization Ω
(i)
t for each dimension 1 ≤ i ≤ d such that ∥x(i)− [x(i)]t∥ ≤

r/τt simply by extracting τt uniformly spaced points from X (i). Consequently, we have

∥x− [x]t∥1 , ∑
d
i=1 |x(i)− [x(i)]t | ≤ dr/τt . Thus, choosing τt = dt3 yields ∥x− [x]t∥1 ≤ r/t3,

ωI
t ,

∣∣ΩI
t
∣∣= (dt3)|I| and ωt , maxI∈U ωI

t = (dt3)k where k , maxI∈U |I|. Eq. (C.12) then

implies

Pr
(
∀x ∈ X ,∀t ≥ 1, | f (x)− f ([x]t)| ≤ br

√
log(3a |U|/δ )/t3

)
≥ 1− δ

3
. (C.13)

On the other hand, since ∀x ∈ X and t ≥ 1, we have [x]t ∈Ωt and hence, Lemma 6 can

be applied with δ/31 to yield:

Pr

(
∀x ∈ X ,∀t ≥ 1,

∣∣ f ([x]t)−µ[x]t |Dt−1

∣∣ ≤ β
1/2
t ∑

I∈U
σ[xI ]t |Dt−1

)
≥ 1− δ

3
(C.14)

1This means replacing δ with δ/3 in the Lemma 6 and exploiting the resulting probabilistic statement in
the context of Lemma 7.
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where βt , 2log(3ωt |U|πt/δ ) = 2k log
(
dt3)+2log(3 |U|πt/δ ). Applying the union bound

to combine Eq. (C.13) and Eq. (C.14) then implies

∣∣ f (x)−µ[x]t |Dt−1

∣∣ ≤ | f (x)− f ([x]t)|+
∣∣ f ([x]t)−µ[x]t |Dt−1

∣∣
≤ br

√
log(3a |U|/δ )/t3 +β

1/2
t ∑

I∈U
σ[xI ]t |Dt−1

(C.15)

for all x∈X and t ≥ 1 simultaneously with probability at least 1−2δ/3. Finally, substituting

J , b
√

log(3a |U|/δ ) into Eq. (C.15) completes our proof.

Lemma 8. Given δ ∈ (0,1) and κ̃(·,x) is L-Lipschitz with respect to all x ∈ X (see Assump-

tion 3), we have

Pr

(
∀t ≥ 1,∀x ∈ X ,

∣∣µx|Dt−1−µ[x]t |Dt−1

∣∣ ≤ Lr

η2t
5
2

(
f (x∗)+η

√
2log(πt/2δ )

))
≥ 1−δ

Proof. Using the expression of predictive mean in Eq.(X), we have

∣∣µx|Dt−1−µ[x]t |Dt−1

∣∣ =
∣∣∣(κ̃ (x,Dt−1)− κ̃ ([x]t ,Dt−1))

(
κ̃ (Dt−1,Dt−1)+η

2I
)−1

yDt−1

∣∣∣ .
Then, let u⊤ , κ̃ (x,Dt−1)− κ̃ ([x]t ,Dt−1), A , κ̃ (Dt−1,Dt−1)+η2I and v , yDt−1 , the

above equation can be concisely rewritten as

∣∣µx|Dt−1−µ[x]t |Dt−1

∣∣ =
∣∣∣u⊤A−1v

∣∣∣ ≤ ∥u∥2

∥∥A−1v
∥∥

2 ≤ c∥u∥2 ∥v∥2 (C.16)

where c ,
∥∥A−1

∥∥
op , inf

{
c′ ≥ 0 : ∀v′,

∥∥Av′
∥∥

2 ≤ c∥v′∥2
}

denotes the operator norm of

A−1 and the first inequality follows from the Cauchy-Schwarz inequality while the second

inequality follows from our definition of c. Furthermore, since A−η2I = κ̃ (Dt−1,Dt−1)≻ 0

(i.e., positive definite) by our choice of kernel, its inverse’s operator norm c is less than η−2

Kirthevasan et al. (2015). Hence,

∣∣∣µx|Dt−1−µ[x]t |Dt−1

∣∣∣ ≤ η
−2
∥∥∥κ̃ (x,Dt−1)− κ̃ ([x]t ,Dt−1)

∥∥∥
2

∥∥∥yDt−1

∥∥∥
2

≤ L
η2

∥∥∥x− [x]t
∥∥∥

2

∥∥∥yDt−1

∥∥∥
2
≤ L

η2

∥∥∥x− [x]t
∥∥∥

1

∥∥∥yDt−1

∥∥∥
2

(C.17)
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Also, by our construction of the discretization Ωt of X at time step t (see Lemma 7), we have

∥x− [x]t∥1 ≤ r/t3. Thus, Eq. (C.17) above can be further simplified as

∣∣∣µx|Dt−1−µ[x]t |Dt−1

∣∣∣ ≤ rL
η2t3

∥∥∥yDt−1

∥∥∥
2
. (C.18)

On the other hand, note that yxℓ = f (xℓ)+ ε where ε ∼N (0,η2). This immediately implies

v , (yxℓ − f (xℓ))/η ∼ N (0,1) and hence, applying the Gaussian tail bound p(v > mℓ) ≤

(1/2)exp(−m2
ℓ/2) Srinivas et al. (2010) with mℓ ,

√
2log(πℓ/2δ )) yields

Pr
(

yxℓ− f (xℓ)> η
√

2log(πℓ/2δ ))
)
≤ δ

πℓ
. (C.19)

Besides, by definition, f (x∗)≥ f (xℓ) so yxℓ− f (xℓ)≤ yxℓ− f (x∗) and hence,

Pr
(

yxℓ− f (x∗)> η
√

2log(πℓ/2δ ))
)
≤ Pr

(
yxℓ− f (xℓ)> η

√
2log(πℓ/2δ ))

)
≤ δ

πℓ
.(C.20)

That is, for each xℓ selected by our algorithm at time step ℓ≥ 1, Eq. (C.20) above guarantees

that with probability at least 1−δ/πℓ,

yxℓ ≤ f (x∗)+η
√

2log(πℓ/2δ ) . (C.21)

This means the chance that Eq. (C.21) holds simultaneously for all ℓ ≥ 1 is at least 1−

δ ∑
∞
ℓ=1 π

−1
ℓ = 1−δ (due to our choice of {πℓ}ℓ in Section X). When this happens, we have:

∥∥∥yDt−1

∥∥∥
2
,

(
∑

xℓ∈Dt−1

y2
xℓ

)1/2

≤
(
(t−1)

(
f (x∗)+η

√
2log(πℓ/2δ )

)2
)1/2

≤ t1/2
(

f (x∗)+η
√

2log(πt/2δ )
)

(C.22)

where the last step trivially follows because obviously πt ≥ πℓ when t ≥ ℓ and t− 1 < t.

Plugging Eq. (C.22) into Eq. (C.18) above yields

∣∣∣µx|Dt−1−µ[x]t |Dt−1

∣∣∣ ≤ rL
η2t3

∥∥∥yDt−1

∥∥∥
2

≤ rL
η2t5/2

(
f (x∗)+η

√
2log(πt/2δ )

)
. (C.23)
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Lastly, Eq. (C.23) holds with probability at least 1−δ since Eq. (C.22) holds with probability

at least 1−δ . This completes our proof.

Proof of Theorem 3

Proof. Given δ ∈ (0,1), it follows from Lemma 7 that with probability at least 1−2δ/3,

∣∣ f (x∗)−µ[x∗]t |Dt−1

∣∣ ≤ Jr/t3 +β
1/2
t ∑

I∈U
σ[xI∗ ]t |Dt−1

(C.24)∣∣ f (xt)−µ[xt ]t |Dt−1

∣∣ ≤ Jr/t3 +β
1/2
t ∑

I∈U
σ[xIt ]t |Dt−1

(C.25)

where J = b
√

log(3a |U|/δ ) and βt = 2k log
(
dt3)+ 2log(3 |U|πt/δ ) for all t ≥ 1. This

means

f (x∗) ≤ µ[x∗]t |Dt−1 + Jr/t3 +β
1/2
t ∑

I∈U
σ[xI∗ ]t |Dt−1

(C.26)

f (xt) ≥ µ[xt ]t |Dt−1− Jr/t3−β
1/2
t ∑

I∈U
σ[xIt ]t |Dt−1

(C.27)

with probability at least 1−2δ/3. Hence, we can bound the instantaneous regret

rt , f (x∗)− f (xt) ≤ µ[x∗]t |Dt−1−µ[xt ]t |Dt−1 +2Jr/t3 +β
1/2
t ∑

I∈U

(
σ[xI∗ ]t |Dt−1

+σ[xI ]t |Dt−1

)
= ϕ̃t([x∗]t)− ϕ̃t([xt ]t)+2Jr/t3 +2β

1/2
t ∑

I∈U
σ[xIt ]t |Dt−1

≤ ϕ̃t(xt)+ζ0t−
1
2 − ϕ̃t([xt ]t)+2Jr/t3 +2β

1/2
t ∑

I∈U
σ[xIt ]t |Dt−1

= µxt |Dt−1−µ[xt ]t |Dt−1 +2Jr/t3 +ζ0t−
1
2 +β

1/2
t ∑

I∈U

(
σxIt

+σ[xIt ]t |Dt−1

)
(C.28)

for all t ≥ 1 with probability at least 1−2δ/3. Note that the second step of Eq. (C.28) is due

to our definition of ϕ̃t(x) in Section X while the third step follows from Assumption 4 which

states that ϕ̃t([x∗]t)≤ ϕ̃t(x̃t)≤ ϕ̃t(xt)+ζ0t−
1
2 (since x̃t is the true maximizer of ϕ̃t(x) and xt
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is assumed to be ζ0t−
1
2 -optimal). Finally, applying Lemma 8 with δ/32, we have

µxt |Dt−1−µ[xt ]t |Dt−1 ≤
Lr

η2t5/2

(
f (x∗)+η

√
2log(3πt/2δ )

)
(C.29)

for all t ≥ 1 with probability at least 1−δ/3. Combining both Eq. (C.28) and Eq. (C.29) via

the union bound consequently yields

rt ≤
Lr

η2t5/2

(
f (x∗)+η

√
2log(3πt/2δ )

)
+2Jr/t3 +ζ0t−

1
2 +β

1/2
t ∑

I∈U

(
σxIt |Dt−1

+σ[xIt ]t |Dt−1

)
(C.30)

for all t ≥ 1 with probability at least 1−δ where J = b
√

log(3a |U|/δ ) and βt = 2k log
(
dt3)+

2log(3 |U|πt/δ ). Therefore, summing both sides of the above inequality over t = 1,2, . . . ,T ,

the cumulative regret can be bounded as

RT ,
1
T

T

∑
t=1

rt ≤ C2 (a,b,U ,T,L,δ ,ζ0,η) +
1
T

T

∑
t=1

(
β

1/2
t ∑

I∈U

(
σxIt |Dt−1

+σ[xIt ]t |Dt−1

))

≤ C2 (a,b,U ,T,L,δ ,ζ0,η) + β
1/2
T T−1

T

∑
t=1

∑
I∈U

(
σxIt |Dt−1

+σ[xIt ]t |Dt−1

)
(C.31)

with probability at least 1−δ where C2 (a,b,U ,T,L,δ ,ζ0,η) is a constant that only depends

on a, b, |U|, T , L, δ , ζ0 and η . Finally, to upper-bound the last term in the above equation,

note that(
T

∑
t=1

∑
I∈U

(
σxIt |Dt−1

+σ[xIt ]t |Dt−1

))2

≤ T |U|
T

∑
t=1

∑
I∈U

(
σ

2
xIt |Dt−1

+σ
2
[xIt ]t |Dt−1

)
= T |U|

T

∑
t=1

(
σ

2
xt |Dt−1

+σ
2
[xt ]t |Dt−1

)
(C.32)

where the first step follows from Jensen inequality and the last step holds due to the decom-

posability of predictive variance (see Section X). To upper-bound σ2
xt |Dt−1

and σ2
[xt ]t |Dt−1

,

we exploit the fact that u2/ log(1 + u2) ≤ v2/ log(1 + v2) when u2 ≤ v2. Thus, letting

u2 , η−2σ2
xt |Dt−1

≤ η−2 , v2 (the last step goes through because by definition, σ2
xt |Dt−1

≤ 1)

2This means replacing δ with δ/3 and applying the resulting probabilistic inequality to the Theorem 3.
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and rearranging terms, we have

σ
2
xt |Dt−1

≤ log
(

1+η
−2

σ
2
xt |Dt−1

)
/ log

(
1+η

−2) = C1 log
(

1+η
−2

σ
2
xt |Dt−1

)
(C.33)

and similarly, using the exact argument for σ2
[xt ]t |Dt−1

yields

σ
2
[xt ]t |Dt−1

≤ log
(

1+η
−2

σ
2
[xt ]t |Dt−1

)
/ log

(
1+η

−2) = C1 log
(

1+η
−2

σ
2
[xt ]t |Dt−1

)
.(C.34)

Summing both sides of Eq. (C.33) and Eq. (C.34) over t = 1,2, . . . ,T yields

T

∑
t=1

σ
2
xt |Dt−1

≤ 2C1
T

∑
t=1

1
2

log
(

1+η
−2

σ
2
xt |Dt−1

)
= 2C1I(yDT ; fDT ) ≤ 2C1γT (C.35)

where γT , maxA⊆X :|A|=T I(yA; fA) denotes the maximum information gain over the course

of T sampling steps as defined in Srinivas et al. (2010). The second step of Eq. (C.35) above

is also a borrowed result of Srinivas et al. (2010). Again, using the exact argument for

σ2
[xt ]t |Dt−1

also yields ∑
T
t=1 σ2

[xt ]t |Dt−1
≤ 2C1γT . Hence, combining these results, we have

T

∑
t=1

(
σ

2
xt |Dt−1

+σ
2
[xt ]t |Dt−1

)
≤ 4C1γT (C.36)

Plugging Eq. (C.36) into Eq. (C.32) consequently yields

T

∑
t=1

∑
I∈U

(
σxIt |Dt−1

+σ[xIt ]t |Dt−1

)
≤ 2

√
C1T |U|γT (C.37)

Lastly, plugging Eq. (C.37) into Eq. (C.31) yields

RT ,
1
T

T

∑
t=1

rt ≤ C2 (a,b,U ,T,L,δ ,ζ0,η) + 2β
1/2
T T−1/2

√
C1|U|γT (C.38)



Appendix D

Useful Results

D.1 Matrix Inverse Lemma

For a positive definite matrix  A B

C D

 (D.1)

We have the following identity:

(A−BD−1C)−1 = A−1 +A−1B(D−CA−1B)−1CA−1 (D.2)

D.2 Union Bound

Theorem 9. Let A1, ...,An to be a countable set of events, then

p(
n⋃

i=1

Ai)≤
n

∑
i=1

p(Ai) (D.3)

D.3 Jensen Inequality

Theorem 10. Let X be a random variable. If f is a convex function, then f (E[X ])≤E[ f (X)].
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For example: √
∑

i
x2

i ≤∑
i

xi (D.4)

D.4 Gaussian Tail Bound

Theorem 11. Let X be a normal random variable: X ∼N (0,1). Then, we have

p(x > c)≤ 1
2

e−
c2
2 (D.5)

and

p(|x|> c)≤ e−
c2
2 (D.6)

D.5 Riemann Zeta Function

Definition 6. The Riemann zeta function is defined for any complex number s with real part

> 1 by the following formula:

ζ (s) =
∞

∑
n=1

1
ns (D.7)

In special case s = 2:

ζ (s = 2) =
∞

∑
n=1

1
n2 =

π2

6
(D.8)

D.6 Frobenius Norm

Definition 7. The Frobenius norm, is matrix norm of an m×n matrix A defined as the square

root of the sum of the absolute squares of its elements,

||A||F =

√
m

∑
i=1

m

∑
j=1
|ai j|2 (D.9)
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D.7 Operator Norm

Definition 8. Given two normed vector spaces V and W (over the same base field, either the

real numbers R or the complex numbers C), a linear map A : V →W is continuous if and

only if there exists a real number c such that

||Av|| ≤ c||v|| for ∀v ∈V (D.10)

Correspondingly the operator norm can be defined as:

||A||op = inf{c≥ 0 : ||Av|| ≤ c||v|| for ∀v ∈V} (D.11)
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