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Abstract

Recent research works in machine learning (ML) have focused on learning some tar-

get variables of interest to achieve competitive (or state-of-the-art) predictive perfor-

mance in less time but without requiring large quantities of data, which is known

as data-efficient ML. This thesis focuses on two highly related data-efficient ML ap-

proaches: active learning (AL) and Bayesian optimization (BO) which, instead of

learning passively from a given set of data, need to select and gather the most in-

formative observations for learning the target variables of interest accurately given

some budget constraints. In particular, this thesis aims to (a) exploit the auxiliary

types of outputs which correlate with the target variables for improving the learning

performance of the target output type in both AL and BO algorithms and (b) scale

up the state-of-the-art BO algorithm to high input dimensions.

To achieve above-mentioned objectives, an AL algorithm of multi-output Gaus-

sian process (MOGP) is first developed for minimizing the predictive uncertainty (i.e.,

posterior joint entropy) of the target output type. In contrast to existing works, our

AL problems involve selecting not just the most informative sampling inputs to be ob-

served but also the types of outputs at each selected input for improving the learning

performance of only the target output type given a sampling budget. Unfortunately,

such an entropy criterion scales poorly in the numbers of candidate inputs and se-

lected observations when optimized. To resolve this issue, we exploit a structure

common to sparse MOGP models for deriving a novel AL criterion. Furthermore,

we exploit a relaxed form of submodularity property of our new criterion for de-

vising a polynomial-time approximation algorithm that guarantees a constant-factor

approximation of that achieved by the optimal set of selected observations. Empiri-

cal evaluation on real-world datasets shows that our proposed approach outperforms

existing algorithms for AL of MOGP and single-output GP models.
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Secondly, to boost the BO performance by exploiting the cheaper or less noisy ob-

servations of some auxiliary functions with varying fidelities, we proposed a novel gen-

eralization of predictive entropy search (PES) for multi-fidelity BO called multi-fidelity

PES (MF-PES). In contrast to existing multi-fidelity BO algorithms, our proposed

MF-PES algorithm can naturally trade off between exploitation vs. exploration over

the target and auxiliary functions with varying fidelities without needing to manually

tune any such parameters. To achieve this, we first model the unknown target and

auxiliary functions jointly as a convolved multi-output Gaussian process (CMOGP)

whose convolutional structure is then exploited for deriving an efficient approxima-

tion of MF-PES. Empirical evaluation on synthetic and real-world experiments shows

that MF-PES outperforms the state-of-the-art multi-fidelity BO algorithms.

Lastly, to improve the BO performance in real-world applications with high input

dimensions (e.g., computer vision, biology), we generalize PES for high-dimensional

BO by exploiting an additive structure of the target function. New practical con-

straints are proposed and approximated efficiently such that the proposed acquisition

function of additive PES (add-PES) can be optimized independently for each local

and low-dimensional input component. The empirical results show that our add-PES

considerably improves the performance of the state-of-the-art high-dimensional BO

algorithms by using a simple and common setting for optimizing different tested func-

tions with varying input dimensions, which makes it a superior alternative to existing

high-dimensional BO algorithms.
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Chapter 1

Introduction

1.1 Motivation

For many budget-constrained applications (i.e., in terms of computations and/or sens-

ing/data gathering) in the real-world, data-efficient machine learning (ML) [ICMLws,

2016] is an attractive, frugal alternative to learning from a massive amount of data

(hence, prohibitively costly). Different from the latter, data-efficient ML needs to

address the challenge of learning about some target variables of interest in a com-

plex domain accurately and efficiently without requiring large quantities of data. For

example, semi-supervised learning aims to build good classifiers given only a small

amount of labeled data by exploiting the large amount of unlabeled data [Zhu, 2005].

Transfer learning improves the performance of a target task by transferring knowl-

edge from related task domains when the target task has insufficient training data

[Pan and Yang, 2010].

Instead of learning passively from a given small set of data as in the examples

above, some data-efficient ML approaches (e.g., active learning and Bayesian opti-

mization) need to select and gather the most informative observations for learning
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Chapter 1. Introduction

the target variables of interest more accurately given some budget constraints (e.g.,

mission time). This thesis will focus on such approaches and aims to generalize their

strategies to more practical settings: multiple types of output and high input dimen-

sions.

Firstly, most existing data-efficient ML algorithms are designed to select and

gather the observations from only one type of output. In practice, however, the pri-

mary type of output represented by the target variable often coexists and correlates

well with some auxiliary type(s) of outputs which may be less noisy (e.g., due to

higher-quality sensors), and/or less tedious to sample (e.g., due to greater availabil-

ity/quantity, higher sampling rate, and/or lower sampling cost of these type(s)) and

can consequently be exploited for improving the learning performance of the target

variables. Such multiple types of correlated outputs exist in many real-world appli-

cation domains, for example:

• Environmental sensing and monitoring. Environmental sensing refers to the

task of sensing, modeling, and predicting large-scale, spatially correlated envi-

ronmental phenomena. In many environmental sensing applications, measure-

ments from auxiliary type(s) of phenomena can be exploited to improve the

prediction of the target phenomenon. For example, to monitor soil pollution

by some heavy metals (e.g., Cadmium), its complex and time-consuming ex-

traction from soil samples can be alleviated by supplementing its prediction

with correlated auxiliary types of soil measurements (e.g., pH) that are easier

to sample [Goovaerts, 1997]. Similarly, to monitor algal bloom in the coastal

ocean, plankton abundance correlates well with auxiliary types of ocean mea-

surements (e.g., chlorophyll a, temperature, and salinity) that can be sampled

more readily [Apple et al., 2008].

• Automatic ML. Recently, a growing number of works have focused on develop-

2



Chapter 1. Introduction

ing ML methods that select features, workflows, ML paradigms, algorithms and

their hyperparameters automatically such that they can be used easily without

expert knowledge [ICMLws, 2015]. This is usually achieved by optimizing an

unknown target function whose input and output are constituted by the set-

tings to be selected and the validation accuracy, respectively. However, the

target function is sometimes very expensive to evaluate due to large training

dataset or/and complex model structure. In practice, the expensive-to-evaluate

target function often correlates well with some auxiliary function(s) of vary-

ing fidelities (i.e., degrees of accuracy in reproducing the target function) that

may be less noisy and/or cheaper to evaluate and can thus be exploited to

boost the automatic ML performance. For example, automatically tuning the

hyperparameters of a sophisticated ML model (e.g., deep neural network) is

usually time-consuming as it may incur several hours to days to evaluate the

validation accuracy of the ML model at each selected setting of hyperparame-

ters when training with a massive dataset. To accelerate this process, one may

consider a low-fidelity auxiliary function with the same inputs (i.e., hyperpa-

rameters) and output (i.e., validation accuracy) as the target function except

that its validation accuracy is evaluated by training the ML model with a small

subset of the dataset, hence incurring less time [Swersky et al., 2013]. Simi-

larly, the parameter setting/configuration of a real robot [Lizotte et al., 2007;

Tesch et al., 2013] can be calibrated faster by simulating its motion in a low-

fidelity but low-cost and noise-free simulation environment [Cutler et al., 2015].

Other examples of real-world applications with multiple output types include remote

sensing [Atkinson et al., 2000], traffic monitoring [Chen et al., 2012b], monitoring of

groundwater [Passarella et al., 2003], monitoring of indoor environmental quality, and

precision agriculture [Webster and Oliver, 2007] as well as that pertaining to the Web

3



Chapter 1. Introduction

such as natural language processing [Reichart et al., 2008] and recommender systems

[Zhao et al., 2013], among others.

All of the above practical applications motivate the need to design and develop

data-efficient ML algorithms that can exploit the correlation between different types

of outputs such that the target variables of interest can be learned more accurately

and/or more efficiently, which is one focus of this thesis.

Secondly, some approaches for data-efficient ML succeeded only in low-dimensional

(usually < 10) input space [Shahriari et al., 2016] and cannot perform well in the real-

world applications which have high-dimensional input space. For example, in the

automatic ML problems mentioned above, the dimension of the (hyper)parameters

to be automatically tuned are usually high in applications such as computer vision

[Bergstra et al., 2013], biology [González et al., 2014] and robotics control [Calandra,

2017]. Since the number of samples needed for globally optimizing a target func-

tion usually grows exponentially in the input (i.e., hyperparameters) dimensions, this

poses a significant technical challenge to apply automatic ML algorithms efficiently

to such applications with high input dimensions, which is another focus of this thesis.

1.2 Objective

Among all the data-efficient ML approaches, two specific problems which need to

actively select and gather observations are discussed in this thesis:

1. Active learning (AL) for environmental sensing. In this problem, the AL algo-

rithm aims to select and gather the most informative observations for modeling

and predicting the spatially varying phenomenon given some sampling budget

constraints (e.g., quantity of deployed sensors, energy consumption).

2. Bayesian optimization (BO) for data-efficient black-box optimization. BO is a
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global optimization algorithm which has recently demonstrated with notable

success in optimizing an unknown (possibly noisy, non-convex, and/or with no

closed-form expression/derivative) target function by sampling a finite budget

of often expensive function evaluations [Shahriari et al., 2016].

To achieve the above-mentioned goal for these two data-efficient ML problems, the

works in this thesis will first attempt to exploit the correlations between multiple

types of outputs for improving the performance of AL and BO algorithms, and then

try to generalize a state-of-the-art BO algorithm to high-dimensional input space. To

be specific, there are four key objectives in this thesis that pertain to the need to

account for multiple output types and high input dimensions for AL and BO:

• Modeling data with multiple output types or high input dimensions. In order

to learn the target variables with observations from multiple types of outputs

or high input dimensions, models that can capture such structures of the data

are required. The outputs of these models should be used to design algorithms

for the AL and BO problems that we are interested. More importantly, for

the problems that are difficult/expensive to solve with an exact algorithm, we

would like to exploit the structure of the model for (a) deriving a tractable and

efficient approximation algorithm and (b) guaranteeing the performance of our

approximation algorithm if possible.

• Being effective in terms of achieving good multi-output AL performance. In

a multi-output AL algorithm, we aim to design and develop an AL criterion

that can be used to select not just the most informative sampling inputs to be

observed but also the types of outputs at each selected input for minimizing

the predictive uncertainty of unobserved areas of the primary type of output.

Note that our focus here differs from multivariate spatial sampling algorithms

[Bueso et al., 1999; Le et al., 2003] that aim to improve the prediction of all
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types of outputs, for which existing AL algorithms for sampling observations

only from the target variables can be extended and applied straightforwardly,

as detailed in Section 4.2. In addition, since multiple types of outputs increase

the search space for AL, the multi-output AL criterion is expected to scale well

in the number of candidate sampling outputs and even more so in the number

of observations to be selected.

• Designing multi-fidelity acquisition function of BO. Conventionally, a BO al-

gorithm relies on some choice of acquisition function as a heuristic to guide

its search for the global target maximizer by sampling observations from only

the target function. Existing acquisition functions include improvement-based

[Shahriari et al., 2016] such as probability of improvement or expected improve-

ment (EI) over currently found maximum, information-based [Villemonteix et

al., 2009] such as entropy search (ES) [Hennig and Schuler, 2012] and predictive

entropy search (PES) [Hernández-Lobato et al., 2014], and upper confidence

bound (UCB) [Srinivas et al., 2010]. To boost the BO performance by exploit-

ing multiple types of outputs from auxiliary functions of varying fidelities (i.e.,

degrees of accuracy in reproducing the target function) that may be less noisy

and/or cheaper to evaluate, this thesis aims to design and develop a multi-

fidelity BO acquisition function that can be used to select not just the most

informative inputs but also the target and/or auxiliary functions with varying

fidelities to be evaluated at each selected input for finding or improving the be-

lief of the global target maximizer. Note that we use multi-fidelity BO instead

of multi-output BO to be consistent with the existing BO literature related to

multiple output types [Kandasamy et al., 2016].

• Designing BO acquisition function for high input dimensions. PES is a state-of-

the-art BO acquisition function which has been shown to outperform the other
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BO algorithms in low-dimensional (up to 8) input spaces [Hernández-Lobato et

al., 2014]. However, the computational cost for evaluating and optimizing the

PES acquisition function grows exponentially in the number of dimensions for

input space, as detailed in Section 6.1. To make progress in high-dimensional

BO, we aim to extend the state-of-the-art BO algorithm (i.e., PES) to high-

dimensional input setting such that it scales well in the number of input dimen-

sions.

1.3 Contributions

To achieve the above-mentioned objectives, this thesis models the data using some

form of Gaussian process (GP)-based probabilistic regression models which can char-

acterize the structures of multiple output types or high input dimensions. Unlike the

non-probabilistic regression methods (e.g., multivariate linear regression [Izenman,

1975], multi-output support vector regression [Sánchez-Fernández et al., 2004], regu-

larization methods [Evgeniou and Pontil, 2004] and neural network) which can han-

dle multiple output types and/or high input dimensions, the probabilistic GP-based

models allow the predictive uncertainty of the outputs to be formally quantified (e.g.,

based on entropy or mutual information criterion) and consequently exploited for

developing the AL and BO algorithms. The novel contributions for this thesis are

summarized below:

1.3.1 Multi-output active learning

In the environmental sensing problem, all types of correlated outputs (i.e., target

and auxiliary) is firstly modeled jointly as a multi-output Gaussian process1 (MOGP)

1One may argue for a simpler alternative of using the observations of the auxiliary output types
as additional input features to a single-output GP modeling the primary output. This is, however,
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[Álvarez and Lawrence, 2011; Bonilla et al., 2007b; Osborne et al., 2008; Teh and

Seeger, 2005; Williams et al., 2009], which allows the spatial correlation structure

of each type of output and the cross-correlation structure between different types of

outputs to be formally characterized.

To the best of our knowledge, this work is the first to present an efficient algo-

rithm for active learning of a MOGP model (Chapter 4). We consider utilizing the

entropy criterion to measure the predictive uncertainty of the primary output, which

is widely used for active learning of a single-output GP model. Unfortunately, for

the MOGP which models multiple types of output, such a criterion scales poorly in

the number of candidate sampling inputs of the primary output type (Section 4.2)

and even more so in the number of selected observations (i.e., sampling budget) when

optimized (Section 4.3). To resolve this scalability issue, we first exploit a structure

common to a unifying framework of sparse MOGP models (Section 3.2.2) for deriv-

ing a novel active learning criterion (Section 4.2). Then, we define a relaxed notion

of submodularity2 called ε-submodularity and exploit the ε-submodularity property

of our new criterion for devising a polynomial-time approximation algorithm that

guarantees a constant-factor approximation of that achieved by the optimal set of

selected observations (Section 4.3). Then, we empirically evaluate the performance

of our proposed algorithm using three real-world datasets (Section 4.4).

1.3.2 Multi-fidelity Bayesian optimization (BO)

We present a novel generalization of PES for multi-fidelity BO, which we call multi-

fidelity PES (MF-PES) (Chapter 5). In existing BO algorithms, the chosen acqui-

not feasible in practice: Such observations have to be known/specified for GP prediction, which is
not the case since they need to be sampled, just like that of the target variables.

2The original notion of submodularity has been used in [Krause and Golovin, 2014; Krause and
Guestrin, 2007; Krause et al., 2008] to theoretically guarantee the performance of their algorithms
for active learning of a single-output GP model.
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sition function is always able to trade off between sampling at or near to a likely

target maximizer based on a GP belief of the unknown target function (exploitation)

vs. improving the GP belief (exploration) until the budget is expended. In con-

trast to the state-of-the-art multi-fidelity BO algorithms such as multi-fidelity GP-

UCB [Kandasamy et al., 2016], multi-fidelity sequential kriging optimization [Huang

et al., 2006], and multi-task ES [Swersky et al., 2013], our proposed MF-PES algo-

rithm can jointly and naturally optimize such a non-trivial exploration-exploitation

trade-off without needing to manually tune any such parameters or that of EI to

perform well in different real-world applications, as detailed in Sections 5.2 and 5.3.

To achieve this, we model the unknown target and auxiliary functions jointly as

a convolved MOGP (CMOGP) [Álvarez and Lawrence, 2011] whose convolutional

structure is exploited to formally characterize the fidelity of each auxiliary function

through its cross-correlation with the target function (Section 5.1). Although the

exact acquisition function of MF-PES cannot be computed in closed form, the main

contribution of our work here is to show that it is in fact possible to derive an effi-

cient approximation of MF-PES via (a) a novel multi-output random features (MRF)

approximation of the CMOGP model whose cross-correlation structure between the

target and auxiliary functions can be exploited for improving the belief of the tar-

get maximizer using the observations from evaluating these functions (Section 5.3.1),

and (b) practical constraints relating the global target maximizer to that of the aux-

iliary functions (Section 5.3.2). We empirically evaluate the BO performance of our

MF-PES algorithm on synthetic and real-world experiments (Section 5.4).

1.3.3 High-dimensional BO

To scale the state-of-the-art BO algorithm to high input dimensions, we introduce

a novel generalization of PES to high-dimensional BO, which we call additive PES
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(add-PES) (Chapter 6). Compared to additive GP-UCB (add-GP-UCB) [Kandasamy

et al., 2015] which is a state-of-the-art high-dimensional BO algorithm, our add-

PES is considerably less tedious (manually) for finding an appropriate exploration-

exploitation trade-off to achieve better BO performance for different functions with

high input dimensions, as detailed in Sections 6.1 and 6.3. In contrast to the high-

dimensional max-value ES (MES) [Wang and Jegelka, 2017] which approximates the

PES acquisition function by replacing the uncertainty of target maximizer as that of

the maximal function value, our add-PES algorithm avoids such further approxima-

tion and is defined according to the original PES acquisition function which aims to

reduce the uncertainty of the target maximizer, and thus promising to achieve better

accuracy (Section 6.2).

To achieve this, the unknown target function with high input dimensions is mod-

eled using additive GP (Section 3.3) whose additive structure is exploited to improve

the scalability of PES in the number of input dimensions by optimizing some local

functions independently (Section 6.2). Unfortunately, the approximation of original

PES cannot be applied to each function component straightforwardly since some of

the constraints used for approximating PES can only be defined over the sum of all

function components. To resolve this issue, we propose novel steps for approximating

the add-PES acquisition function efficiently (Section 6.2.2). Finally, we empirically

evaluate the performance of our proposed add-PES algorithm using synthetic func-

tions with varying high dimensions of input (Section 6.3).

1.4 Organization

The remaining chapters of this thesis are organized as follows. Section 2.1 will first

briefly review existing data-efficient ML approaches including AL and BO that we

are interested. Then, data-efficient ML literature that is related to multiple output
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types and high input dimensions will be presented in Section 2.2 and Section 2.3,

respectively. Chapter 3 provides the technical details of modeling data with mul-

tiple types of outputs and high-dimensional input with MOGP and additive GP,

respectively. A brief review of existing MOGP models is also included to identify the

advantage of CMOGP which is selected in this thesis. Chapter 4 and 5 will focus on

designing AL and BO algorithms for multiple output types. In particular, a novel

near-optimal multi-output active learning method and its experimental results will

be presented in Chapter 4. The technical and experimental results of our proposed

multi-fidelity PES algorithm will be shown in Chapter 5. Then, the state-of-the-art

BO acquisition function (i.e., PES) is generalized for optimizing unknown functions

with high-dimensional input in Chapter 6. Finally, the conclusion and the future

works of this thesis will be presented in Chapter 7.
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Chapter 2

Related Works

This chapter reviews the literature related to data-efficient ML. First, existing ap-

proaches that belongs to data-efficient ML family will be briefly introduced in Section

2.1. Then, we will focus on the literature that is closely related to the research prob-

lems proposed in this thesis: active learning (AL) and Bayesian optimization (BO)

algorithms with multiple output types and high input dimensions. In particular, Sec-

tion 2.2.1 focuses on the literature of multi-output AL. Section 2.2.2 reviews existing

multi-fidelity (i.e., multi-output) BO algorithms and discusses the advantage of our

proposed method compared to the state-of-the-art ones. Then, the BO algorithms

designed for high input dimensions will be briefly reviewed in Section 2.3. Compared

to all the literature reviewed in this chapter, our proposed algorithms are either de-

signed for different problem settings or technically much easier to apply for different

real-world applications, as detailed later.

2.1 Data-Efficient Machine Learning

Instead of learning from massive amount of data, data-efficient ML is a family of ML

approaches which aims to learn about some target variables of interest in a complex
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domain accurately and efficiently with limited (labeled) data [ICMLws, 2016]. Such

approaches are required in many real-world application domains such as environmen-

tal sensing, automatic ML and personalized learning which are difficult to collect a

large amount of observations due to the given budget constraints (e.g., energy con-

sumption, mission time, no. of participants).

A wide range of existing ML approaches have been designed to resolve the small-

data issue. For example, semi-supervised learning aims to build good classifiers using

a small set of labeled data by exploiting the large amount of unlabeled data [Zhu,

2005]. Transfer learning techniques improve the learning performance of a target

task by transferring knowledge from related task domains when the target task has

insufficient training data [Pan and Yang, 2010]. One-shot learning is a problem

that aims to learn the object categories from only one, or a handful, of training

images [Fei-Fei et al., 2006]. The other approaches that can belong to the family of

data-efficient ML include bootstrapping, data augmentation, Bayesian deep learning,

non-parametric methods, etc [ICMLws, 2016].

All above-mentioned approaches learn the target variables passively from a given

small set of data. In some problems, however, the observations or labeled data are

not available at the beginning. It requires the algorithm to actively select and gather

the most informative observations for learning the target variables accurately and

efficiently given a budget constraint. Active learning (AL) (sometimes known as

“optimal experimental design in statistics literature) and Bayesian optimization (BO)

have been designed to achieve this goal, and thus, are important approaches of the

data-efficient ML family and will be the focus of this thesis.

A comprehensive literature review of AL can be found in Settles (2010). This the-

sis will focus on AL of environmental sensing and monitoring applications and aim to

develop AL algorithm for multiple types of correlated environmental phenomena (i.e.,

multi-output AL). Different from the other application domains (e.g., image annota-
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tion and retrieval [Wang and Hua, 2011], recommendation [Zhao et al., 2013]) that are

rarely modeled using GP, the spatially varying target phenomenon in the interested

applications can be formally characterized by a probabilistic GP regression model

whose predictive uncertainty will be exploited for deriving efficient AL algorithms.

The literature related to multi-output AL will be reviewed in Section 2.2.1.

BO has been shown to succeed in globally optimizing a black-box function whose

derivatives and convexity properties are unknown [Brochu et al., 2010; Snoek et al.,

2012]. Usually, the target function optimized by BO is very expensive to evaluate

such that only a small number of observations can be sampled, which is same as

the key issue of data-efficient ML. To achieve this, a BO algorithm conventionally

optimizes some choice of acquisition function to iteratively select the next input to

evaluate the unknown function. Examples of acquisition functions include probability

of improvement (PI), expected improvement (EI) [Brochu et al., 2010], entropy search

(ES) [Hennig and Schuler, 2012], predictive entropy search (PES) [Hernández-Lobato

et al., 2014], and upper confidence bound (UCB) [Srinivas et al., 2010]. A comprehen-

sive introduction and literature reviews of BO can be found in Brochu et al. (2010)

and Shahriari et al. (2016). The remaining sections of this chapter will focus on BO

algorithms designed for multiple output types or high input dimensions, whose related

literature will be reviewed in Section 2.2.2 and Section 2.3, respectively.

2.2 Data-Efficient Multi-Output Machine Learning

In this section, we will review AL and BO literature that related to the main focus

of this work: multiple output types and high input dimensions.

2.2.1 Multi-output active learning

Firstly, as has been mentioned in Chapter 1.2, our multi-output AL (MOAL) algo-

rithm is designed to select the most informative observations from all output types
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for minimizing the predictive uncertainty of only the primary type of output. This

objective differs from multivariate spatial sampling algorithms [Bueso et al., 1999;

Le et al., 2003] in geostatistical literature which aim to improve the predictive accu-

racy of all types of outputs.

Then, existing works on AL with multiple output types are not driven by the

MOGP model and have not formally characterized the cross-correlation structure be-

tween different types of outputs: Some spatial sampling algorithms [Bueso et al., 1998;

Angulo and Bueso, 2001] have simply modeled the auxiliary output as a noisy per-

turbation of the primary output that is assumed to be latent, which differs from our

work here. Multi-task active learning (MTAL) and active transfer learning (ATL)

algorithms have considered the prediction of each type of output as one task and

used the auxiliary tasks to help learn the target task. However, the MTAL algo-

rithm of Zhang (2010) requires the relations between different classification tasks to

be manually specified, which is highly non-trivial to achieve in practice and not appli-

cable to MOGP regression. The ATL algorithm of Wang et al. (2014) has used only

a single-output GP to model and predict the offset between different tasks, which

may not represent a complex cross-correlation structure well (e.g., each type of co-

existing phenomena is an additive combination of blurred versions of some latent

ones). Some other ATL and AL algorithms [Roth and Small, 2006; Shi et al., 2008;

Zhao et al., 2013; Zhu et al., 2011] have used active learning strategies (e.g., margin-

based criterion) specific to their classification or recommendation tasks that cannot

be readily tailored to MOGP regression.

Another research area related to multi-output AL is the optimal sensor schedul-

ing [Mourikis and Roumeliotis, 2006; Hero and Cochran, 2011; Wu et al., 2014;

Tzoumas et al., 2016; Han et al., 2017] in control community, which is designed

to schedule the usage of multiple types of sensors due to the resources (i.e., communi-

cation bandwidth, battery power) limitation. The algorithms in this area differ from
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our proposed method in both aspects mentioned above: Firstly, the sensor scheduling

algorithms usually fuse the measurements of all selected sensors for some particular

objectives such as localization, tracking or decision making [Hero and Cochran, 2011].

To achieve this, the observed or predictive measurements of all types of sensors in-

stead of just the target phenomena as in our method are considered in formalizing the

objective. Secondly, to the best of our knowledge, the sensor scheduling algorithms

have assumed independent observation models for each type of sensor [Wu et al., 2014;

Tzoumas et al., 2016; Han et al., 2017]. The cross-correlations between different sen-

sors are not formally characterized such that the measurements of the selected sensors

cannot be exploited for improving the predictive performance of the correlated sensor

measurements that are not observed at the current step.

2.2.2 Multi-fidelity BO

In this thesis, we aim to develop a multi-fidelity BO algorithm that can select ob-

servations from both the target and auxiliary function(s) with varying fidelities for

optimizing only the unknown target function accurately and efficiently. The state-

of-the-art multi-fidelity BO algorithms whose objective is same as this thesis include

multi-fidelity EI [Huang et al., 2006; Forrester et al., 2007], multi-task ES [Swersky

et al., 2013], and multi-fidelity GP-UCB [Kandasamy et al., 2016]. However, all these

algorithms require heuristically setting some parameters to trade off between exploita-

tion vs. exploration over the target and auxiliary functions with varying fidelities,

which makes them not easy to perform well in different real-world applications. De-

tailed descriptions of such parameters for each algorithm will be shown in Sections

5.2 and 5.3. Moreover, to approximate the designed acquisition function tractably

and efficiently, the multi-task ES algorithm in [Swersky et al., 2013] has to reduce

the search space to a small set of input candidates selected by applying EI to only
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the target function. Forrester et al. (2007) and Poloczek et al. (2016) also discretized

the input domain using Latin Hypercube. Such discretization steps artificially con-

strain the exploration of the unknown functions especially if the input dimension is

high. In contrast, the multi-fidelity BO algorithm proposed in this thesis avoid both

of the above issues (i.e., artificial parameter setting and input discretization) and is

much easier to achieve good performance for different functions or different real-world

applications (Section 5.4).

To capture the cross-correlation between the target and auxiliary functions, recent

multi-fidelity BO works [Kandasamy et al., 2017; Klein et al., 2017] have assumed

that the target and auxiliary functions have given fidelity values (e.g., data size in hy-

perparameter tuning problem) which is used to compute the cross-correlation between

multiple functions through a kernel function. The collaborative hyperparameter tun-

ing algorithms [Bardenet et al., 2013; Yogatama and Mann, 2014] have similarly, pre-

sented the correlated datasets used for different functions with a vector of numerical

descriptors. In practice, it is usually difficult to manually and correctly specify such

fidelity values or descriptors for any application, especially since the true fidelity value

of an auxiliary function is usually unknown. For example, one application of multi-

fidelity BO is to accelerate the parameters calibration of robot using the low-fidelity

simulations [Marco et al., 2017], where the cross-correlation between the real robot

and the simulation is difficult to be measured using any given values/descriptors. Our

work instead defines a principled fidelity measure using CMOGP (Section 5.3) that

can be learned from data for any application and hence easily exploited by future

developments of multi-fidelity BO algorithms.

All the other existing BO works that used multiple types of outputs are of dif-

ferent objective from ours: The algorithms in [Bardenet et al., 2013; Yogatama and

Mann, 2014; Feurer et al., 2015] have either assumed the optimizers or observations

of the auxiliary tasks to be known or tried to optimize both the target and auxil-
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iary functions simultaneously. Multi-objective BO algorithms [Zuluaga et al., 2013;

Hernández-Lobato et al., 2016] have tried to simultaneously optimize multiple tasks

whose objectives may conflict with each other. Since there is usually no single optimal

solution that excels in all tasks, multi-objective BO is therefore interested in iden-

tifying an entire set of Pareto-optimal solutions with optimal trade-offs of different

tasks, which is not the focus of our work in this thesis.

2.3 High-Dimensional BO

As has been mentioned in Section 1.1, high-dimension input is an important but

difficult issue of BO for advancing the state-of-the-art because the number of samples

required for globally optimizing a function usually grows exponentially in the input

dimensions. To resolve this issue, the early works of high-dimensional BO usually

assumed “low effective dimensionality” (i.e., a low dimensional subspace that the

unknown function varies in) and used methods such as random embeddings [Wang

et al., 2013], sequential likelihood ratio test [Chen et al., 2012a] and low rank matrix

recovery [Djolonga et al., 2013] to select the relevant/active ones among all the input

dimensions. Such assumption, however, is sometimes too strong and results in bad

performance in real-world applications whose unknown function varies along all the

input dimensions [Kandasamy et al., 2015].

Recent research works [Kandasamy et al., 2015; Wang and Jegelka, 2017; Wang

et al., 2017] have focused on resolving the high-dimensional issues by assuming an

additive structure of the unknown function, which is more general than the “low

effective dimensionality” assumption. Rana et al. (2017) proposed to optimize the

acquisition function globally in high-dimension by choosing large to small length-

scales for GP without requiring any assumption on the structure of the underlying

function. However, most of the above algorithms [Kandasamy et al., 2015; Wang et
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al., 2017; Rana et al., 2017] are based on UCB and/or EI acquisition functions which

are difficult to parameterize to better trade off between exploration vs. exploration

in BO process. For example, UCB-based algorithm is very easy to trap into some

local optimizers by using the parameter recommended in the paper, as observed from

our experiments (Section 6.3). Moreover, the exact parameter for a good exploration-

exploitation trade-off is not clear for a given application since multiple variables (e.g.,

input dimension, no. of iterations, etc.) which related to the application are involved.

As will be shown later in Chapter 6, PES-based BO algorithm could obtain a

very good exploratory behavior by simply setting a common parameter for different

applications, which is important for optimizing a function globally in high input di-

mensions. Although Wang and Jegelka (2017) have proposed an additive max-value

entropy search (add-MES) algorithm for approximating the state-of-the-art PES ac-

quisition function in high dimensions, their algorithm doesn’t perform comparable

to the real PES (Section 6.3) since an additional approximation is introduced by re-

placing the target maximizer with the maximal value, which makes their objective

deviated from the original PES (i.e., reducing the predictive uncertainty of the tar-

get maximizer). In contrast, our proposed high-dimensional BO algorithm will be a

generalization of the real/original PES acquisition function which is easy to decide

its parameter for achieving good exploration-exploitation trade-off, and thus, much

easier to perform well in different real-world applications.

2.4 Summary

As can be seen from above sections, even though there are already some AL and BO

literature about multiple output types and high input dimensions, they are always

(a) of different objective, (b) bad in exploiting the input/output structures of the un-

known function(s) due to some strong (independent) assumptions or (c) technically
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difficult to perform well in different real-world applications due to the requirement of

artificially setting parameters. To advance the state-of-the-art of data-efficient ML,

AL and BO techniques that can fill in all above gaps about multiple output types and

high input dimensions are required. To achieve this, we will first introduce the techni-

cal details of the underlying models which can formally characterize the input/output

structure of our problems (Chapter 3), and thus, are used in this thesis. Then, novel

AL and BO algorithms for multiple output types and high input dimensions will be

proposed in Chapters 4, 5 and 6, as detailed later.
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Chapter 3

Background and Notation

In order to achieve the objectives mentioned in Section 1.2, this thesis will model the

data using Gaussian process (GP)-based regression models whose predictive uncer-

tainty can be exploited for deriving efficient AL and BO algorithms. This chapter

starts by introducing the general idea of GP (Section 3.1). Then, we will describe the

technical details of convolved multi-output GP (CMOGP) (Section 3.2.1) and additive

GP (Section 3.3) which are used to model multiple output types and high input di-

mensions, respectively, in our proposed algorithms. To elaborate the advantage of the

selected model, other existing multi-output GP algorithms will be briefly introduced

and compared with CMOGP in Section 3.2.3.

3.1 Gaussian Process (GP)

A Gaussian process (GP) is a Bayesian non-parametric model that can be used to

model an unknown function f(x) as follows: Let D ⊂ Rd denote a set of sampling

inputs. Then, fD can be modeled using a GP, that is, every finite subset of {f(x)}x∈D
has a multivariate Gaussian distribution [Rasmussen and Williams, 2006]. Such a GP

is fully specified by its prior mean µx , E[f(x)] and covariance σxx′ , cov[f(x), f(x′)]
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for all x, x′ ∈ D, the latter of which characterizes the correlation structure of f(x) and

can be defined using a covariance function. Even though a wide range of covariance

functions have been studied [Rasmussen and Williams, 2006], most of them are only

defined over a single type of output. Therefore, the key issue for modeling multiple

types of outputs using GP is how to specify the prior covariance σxx′ when x and x′

are sampled for different types of outputs, which will be discussed next.

3.2 Multi-Output Gaussian Process (MOGP)

A number of MOGP models such as co-kriging [Webster and Oliver, 2007], parameter

sharing [Skolidis, 2012], and linear model of coregionalization (LMC) [Teh and Seeger,

2005; Bonilla et al., 2007b] have been proposed to handle multiple types of correlated

outputs. In this section, we will first introduce the convolved MOGP (CMOGP)

model which has been empirically demonstrated in [Álvarez and Lawrence, 2011] to

outperform the others and will be used in our algorithms. Then, the other multi-

output prediction models will be briefly reviewed and compared with CMOGP.

3.2.1 Convolved MOGP (CMOGP)

CMOGP regression was first proposed by Boyle and Frean (2004) and then approx-

imated with a sparse structure by Álvarez and Lawrence (2009). Let M types of

outputs be defined over D such that each input x ∈ D is associated with a noisy

realized (random) output y〈x,i〉 (Y〈x,i〉) if x is observed (unobserved) for type i for

i = 1, . . . ,M . Let D+
i , {〈x, i〉}x∈D and D+ ,

⋃M
i=1D

+
i . Then, the output Y〈x,i〉 of

type i at any input x ∈ D can be defined as an unknown function fi(x) corrupted by

an additive noise εi ∼ N (0, σ2
ni

) with noise variance σ2
ni

:

Y〈x,i〉 , fi(x) + εi .
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In a CMOGP regression model, the function fi(x) is defined as a convolution between

a smoothing kernel Ki(x) and a latent function L(x)1:

fi(x) ,
∫
x′∈D

Ki(x− x′) L(x′) dx′. (3.1)

As shown in [Álvarez and Lawrence, 2011], if {L(x)}x∈D is a GP, then {Y〈x,i〉}〈x,i〉∈D+ is

also a GP, that is, every finite subset of {Y〈x,i〉}〈x,i〉∈D+ follows a multivariate Gaussian

distribution. Similar to the single-output case, such a GP is also fully specified by

its prior mean µ〈x,i〉 , E[Y〈x,i〉] and covariance σ〈x,i〉〈x′,j〉 , cov[Y〈x,i〉, Y〈x′,j〉] for all

〈x, i〉, 〈x′, j〉 ∈ D+, the latter of which characterizes the inter-correlation structure for

each type of output (i.e., i = j) and the cross-correlation structure between different

types of outputs (i.e., i 6= j).

Specifically, let {L(x)}x∈D be a GP with prior covariance σxx′ , N (x−x′|0, P−1
0 )

and Ki(x) , σsiN (x|0, P−1
i ) where σ2

si
is the signal variance controlling the inten-

sity of measurements of type i, P0 and Pi are diagonal precision matrices control-

ling, respectively, the degrees of correlation between latent measurements and cross-

correlation between latent and type i measurements, and 0 denotes a column vector

comprising components of value 0. Then, the covariance of {Y〈x,i〉}〈x,i〉∈D+ can be

computed as follows:

σ〈x,i〉〈x′,j〉 = σsiσsjN (x− x′|0, P−1
0 + P−1

i + P−1
j ) + δijxx′σ

2
ni

(3.2)

where δijxx′ is a Kronecker delta of value 1 if i = j and x = x′, and 0 otherwise.

Supposing a column vector yX , (y〈x,i〉)
>
〈x,i〉∈X of realized outputs is available for

some set X ,
⋃M
i=1Xi of observed input tuples where Xi ⊂ D+

i , a CMOGP regression

1For the ease of exposition, we consider a single latent function. Note, however, that multiple
latent functions can be used to improve the fidelity of modeling, as shown in [Álvarez and Lawrence,
2011]. More importantly, our proposed algorithm and theoretical results remain valid with multiple
latent functions.
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model can exploit these observations to provide a Gaussian predictive distribution

N (µZ|X ,ΣZZ|X) of the outputs for any set Z ⊆ D+ \ X of unobserved input tuples

with the following posterior mean vector and covariance matrix:

µZ|X , µZ + ΣZXΣ−1
XX(yX − µX)

ΣZZ|X , ΣZZ − ΣZXΣ−1
XXΣXZ

(3.3)

where ΣAA′ , (σ〈x,i〉〈x′,j〉)〈x,i〉∈A,〈x′,j〉∈A′ and µA , (µ〈x,i〉)
>
〈x,i〉∈A for any A,A′ ⊆ D+.

3.2.2 Sparse CMOGP regression

A limitation of the CMOGP model is its poor scalability in the number |X| of obser-

vations: Computing its Gaussian predictive distribution (3.3) requires inverting ΣXX ,

which incurs O(|X|3) time. To improve its scalability, a unifying framework of sparse

CMOGP regression models such as the deterministic training conditional, fully inde-

pendent training conditional, and partially independent training conditional (PITC)

approximations [Álvarez and Lawrence, 2011] exploit a vector LU , (L(x))>x∈U of

inducing outputs for some small set U ⊂ D of inducing inputs (i.e., |U | � |D|) to

approximate each output Y〈x,i〉:

Y〈x,i〉 ≈
∫
x′∈D

Ki(x− x′) E[L(x′)|LU ] dx′ + εi .

They also share two structural properties that can be exploited for deriving our active

learning criterion and in turn an efficient approximation algorithm in Chapter 4:

P1. Measurements of different types (i.e., YD+
i

and YD+
j

for i 6= j) are conditionally

independent given LU ;

P2. YX and YZ are conditionally independent given LU .
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PITC will be used as the sparse CMOGP regression model in our work here since the

others in the unifying framework impose further assumptions. With the above struc-

tural properties, PITC can utilize the observations to provide a Gaussian predictive

distribution N (µPITC

Z|X ,Σ
PITC

ZZ|X) where

µPITC

Z|X , µZ + ΓZX(ΓXX + ΛX)−1(yX − µX)

ΣPITC

ZZ|X , ΓZZ + ΛZ − ΓZX(ΓXX + ΛX)−1ΓXZ
(3.4)

such that ΓAA′ , ΣAUΣ−1
UUΣUA′ for any A,A′ ⊆ D+, ΣAU (ΣUU) is a covariance matrix

with covariance components

σ〈x,i〉x′ = σsiN (x− x′|0, P−1
0 + P−1

i )

for all 〈x, i〉 ∈ A and x′ ∈ U (σxx′ for all x, x′ ∈ U), ΣUA′ is the transpose of ΣA′U , and

ΛA is a block-diagonal matrix constructed from the M diagonal blocks of ΣAA|U ,

ΣAA−ΓAA for any A ⊆ D+, each of which is a matrix ΣAiAi|U for i = 1, . . . ,M where

Ai ⊆ D+
i and A ,

⋃M
i=1 Ai. Note that computing (3.4) does not require the inducing

inputs U to be observed. Also, the covariance matrix ΣXX in (3.3) is approximated

by a reduced-rank matrix ΓXX summed with the resulting sparsified residual matrix

ΛX . So, by using the matrix inversion lemma to invert the approximated covariance

matrix ΓXX +ΛX and applying some algebraic manipulations, computing (3.4) incurs

O(|X|(|U |2 + (|X|/M)2)) time [Álvarez and Lawrence, 2011] in the case of |U | ≤ |X|

and evenly distributed observations among all M types.

3.2.3 Related works

There are some other methods that can be used to model multiple types of correlated

outputs. Similar to CMOGP, the common idea of all MOGP models is to assume
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that any finite number of realized (y〈x,i〉) or random (Y〈x,i〉) outputs have a joint mul-

tivariate Gaussian distribution which is specified by a mean vector µ and covariance

matrix Σ. Usually, the covariance matrix Σ need to be computed using a covariance

function that is determined according to both the inter-correlation of one output type

and the cross-correlation between different output types, where the cross-correlations

are usually captured by allowing different output types to share a certain structure

over fi(x) and/or εi for i = 1, ...,M . Several approaches have been proposed for

achieving this, as detailed later.

3.2.3.1 Parameter transfer models

Parameter transfer refers to the methods that model each type of output with a

single-output GP and transfer information between different types of outputs by

sharing some parameters. The basic assumption is that different output types are

conditionally independent given some parameters:

p(f1(x), ..., fM(x)|θ) =
M∏
i=1

p(fi(x)|θ)p(θ) (3.5)

where θ can be the hyperparameters (i.e., σ2
ni

and some parameters in the covari-

ance function) and/or the parameters (i.e., mean µ and covariance matrix Σ of the

multivariate Gaussian distribution) of the model [Skolidis, 2012].

Specifically, there are several approaches that consider θ as the variables re-

lated to the GP hyper-parameters: Multi-task informative vector machine (MT-IVM)

of [Lawrence and Platt, 2004] assumed that θ in equation (3.5) is the GP hyper-

parameters. The semi-supervised multi-task regression algorithm of [Zhang and Ye-

ung, 2009] captured the cross-correlations between different types of outputs by im-

posing a common prior distribution over the hyper-parameters such that θ is the pa-

rameters of the prior distribution. Zhang (2010) even placed a common prior over only
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the noise variance σ2
ni

of each output type to capture the cross-correlations between

different output types. Some other works focus on transferring information between

different output types by sharing the parameters of GP [Schwaighofer et al., 2004;

Yu et al., 2005; Birlutiu et al., 2010]. Usually, they assumed that the model pa-

rameters (i.e., mean vector µ and covariance matrix Σ) are drawn from a common

hyper-prior, and placed a normal-inverse Wishart prior distribution over the covari-

ance matrix of the multivariate Gaussian distribution :

p(µ,Σ) = N (µ|µ0,
1

π
Σ)IW(Σ|τ,Σ0) .

The shared parameters of the prior distribution (i.e., µ0, Σ0 and τ) and the functional

values are estimated with an EM algorithm.

However, all these parameter transfer models assume that all types of outputs are

highly correlated with each other, which is a very strong assumption and makes such

models less effective in situations where some types of outputs are less correlated or

even independent of the others.

3.2.3.2 Linear model of coregionalization (LMC)

LMC refers to models that share information between different output types via a set

of latent functions. The reviews of LMC in this section will follow that of Álvarez and

Lawrence (2011). Specifically, LMC models assume that the function fi(x) of each

output type can be expressed as a linear combination of some independent latent

functions L(x):

fi(x) ,
Q∑
q=1

Rq∑
r=1

ari,qL
r
q(x) (3.6)

where {Lrq(x)}Rq

r=1 represent the latent functions that share the same covariance func-

tion. If all the independent latent functions are GP, then {fi(x)}〈x,i〉∈D+ will also
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be a joint GP specified by a mean function and a positive semi-definite covariance

matrix Σ. In LMC, Σ can be represented as a Kronecker product of two separate

matrices: (a) Σt that is used to model the cross-correlations between different out-

put types, and (b) Σx that is used to capture the inter-correlations between the

data points in one output type [Skolidis, 2012]. Usually, the kernel function for

Σx can be chosen from the wide variety of kernel functions that are used for the

single-output GP. Several approaches have been proposed to construct Σt in different

MOGP literatures [Teh and Seeger, 2005; Bonilla et al., 2007a; Bonilla et al., 2007b;

Osborne et al., 2008]:

Semiparametric latent factor models (SLFM) proposed by Teh and Seeger (2005)

turns out to be a simplified version of equation (3.6) by assuming Rq = 1 and some

linear relationships between ari,q. In particular, the covariance matrix in SLFM can

be computed with:

Σ , (A⊗ I)Σx(A> ⊗ I)

where I is an identity matrix, A is a matrix of parameters that related to ari,q and can

be treated as Σt. An empirical Bayes estimation is derived to estimate the parameters,

and informative vector machine (IVM) [Lawrence et al., 2003] is used to reduce the

computational complexity.

Some other works which turn out to be LMC intuitively assumed that the covari-

ance matrix of a MOGP model can be expressed as:

Σ , Σt ⊗ Σx + Σn ⊗ I

where Σn is a diagonal matrix in which the (i, i)th element is the noise variance σ2
ni

.

Different methods have been proposed to estimate Σt: Bonilla et al. (2007a) computed

Σt with a kernel function kt(ti, tj) where ti is the task-descriptor features for the ith

type of output. Bonilla et al. (2007b) applied Cholesky decomposition to the cross-

28



Chapter 3. Background and Notation

correlation matrix: Σt , LLT and estimate L with an EM algorithm. Osborne et

al. (2008) decompose Σt using completely general spherical parameterisation: Σt ,

diag(g) s>s diag(g) where g gives an intuitive length scale for each environmental

variable, and s>s is the correlation matrix. Details about the relationship between

these MOGP models and LMC can be found in Álvarez and Lawrence (2011) and

Álvarez et al. (2012).

All above-mentioned LMC methods have modeled the cross-correlations between

different output types via instantaneous mixing of independent latent functions. Such

assumption, however, makes LMC methods difficult to model correlated output types

that are blurredly correlated with each other, which is the limitation of LMC. In-

terestingly, the CMOGP (Section 3.2.1) used in this thesis resolved this issue by

introducing convolutions to capture the cross-correlations between multiple output

types [Higdon, 2002; Boyle and Frean, 2004; Álvarez and Lawrence, 2011], which is

equivalent to LMC when the smoothing kernels Ki(x− x′) , aiδ(x− x′) where δ(x)

is the Dirac delta function.

3.2.3.3 Other models for multi-output prediction

In addition to previous MOGP models that shared certain structure or parameters to

achieve multi-output prediction, researchers from computer vision community have

also proposed some approaches to exploit the internal dependencies within the high-

dimensional vision outputs. Twin GP [Bo and Sminchisescu, 2010] estimated multi-

outputs by minimizing the Kullback-Leibler divergence between two GPs which is

used to model finite index sets of training and testing examples. Rudovic and Pan-

tic (2011) proposed shape-constrained GP based on a face-shape model to do the

head-pose normalization. Although such methods are computationally efficient for

high-dimensional outputs, they can only model a system where all output types must

be observed at a given input, which makes them not suitable for our problem where
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each type of output can be sampled from different set of inputs2.

Except for MOGP, there are also other methods that can be used to model multiple

output types: Multivariate linear regression [Izenman, 1975; Reinsel and Velu, 1998;

Obozinski et al., 2008; Rohde and Tsybakov, 2011], principal component analysis

(PCA) for output dimension reduction [Higdon et al., 2008; Brooks et al., 2008] and

landmark selection [Balasubramanian and Lebanon, 2012] are examples of parametric

methods that can be used to model multiple types of correlated outputs. Such models

parametrized the functions using finite number of parameters (e.g., finite number of

weights) and attempted to infer these parameters from the observations, which makes

the complexity of the model to be bounded even if the amount of information in the

data is unbounded [Ghahramani, 2012]. In contrast, by placing a prior distribution

(i.e., GP) directly over the functions fi(x) for i = 1, ...,M rather than the parameters,

non-parametric regression models such as MOGP allows their parameters (i.e., mean

vector µ and covariance matrix Σ) to be in infinite dimension and refined with growing

sample size, which makes the model more flexible.

Furthermore, the non-probabilistic multivariate regression methods (e.g., multi-

variate linear regression [Izenman, 1975], multi-output support vector regression [We-

ston et al., 2002; Sánchez-Fernández et al., 2004; Tuia et al., 2011; Xu et al., 2013],

regularization methods [Evgeniou and Pontil, 2004]) usually provide only the most

likely regression value for a given input. In contrast, the MOGP regression model

that we selected is probabilistic, which allows the predictive uncertainty of the out-

put type(s) to be formally quantified (e.g., based on entropy or mutual information

criterion) and consequently exploited for selecting the next sampled input in the AL

and BO algorithms.

2They are known as isotopic and heterotopic system respectively in geostatistics.
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Model properties Data properties
Non-parametric Probabilistic USS Non-IMC HS

MLR
√

DR with PCA
√
−

LS
√
−

MOSVR
√
−

√

MOGP

PT
√ √ √

LMC
√
−

√ √

Twin GP
√ √ √

CMOGP
√ √ √ √ √

Table 3.1: Comparison of selected multi-output prediction methods. (MLR: Multivariate
linear regression. DR: Dimension reduction. LS: landmark selection. MOSVR: Multi-
output support vector regression. PT: Parameter transfer. USS: Unifying sparse structure.
Non-IMC: not an instantaneous mixed cross-correlation (i.e., cross-correlation that cannot
be simply modeled via instantaneous mixing of independent latent functions, as discussed
in Section 3.2.3.2). HS: Heterotopic system. The symbol ’

√
’ means that this type of

model has the required model property or can deal with the data property. The symbol
’
√
−’ means that some variations of this model have the required model property and the

others do not have.

3.2.4 Summary

A brief summary of multi-output regression models mentioned above is shown in

Table 3.1. As can be seen from the table, we propose to use CMOGP for modeling

multiple types of outputs in our proposed AL and BO algorithms because:

1. CMOGP is a non-parametric model which is more flexible than parametric

models.

2. Probabilistic CMOGP allows the predictive uncertainty of the outputs to be

formally quantified and will be consequently exploited for designing our data-

efficient ML algorithms.

3. CMOGP can capture non-trivial/blurred cross-correlations (i.e., non-IMC) be-

tween different output types and has been shown to empirically outperform the
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other MOGP models [Álvarez and Lawrence, 2011].

4. The unifying sparse structure (USS) of CMOGP can be exploited for deriving

our multi-output AL criterion and in turn an efficient approximation algorithm,

as detailed in Section 4.2.1 and Section 4.3.

5. In the proposed BO algorithm with multiple output types, the convolutional

structure of CMOGP can be exploited to (a) formally characterize the fidelity

of each auxiliary functions through its cross-correlation with the target function

and (b) derive efficient approximation algorithm of our proposed multi-fidelity

acquisition function (Section 5.3).

3.3 Additive GP for High Input Dimensions

Additive GP is a method that can be used to model an unknown function with

high input dimensions by decomposing the function into a sum of low-dimensional

local functions, each depending on only a subset of the input variables [Duvenaud

et al., 2011; Kandasamy et al., 2015]. Specifically, let D ⊂ Rd be a set representing

the input domain such that each input x ∈ D is associated with a noisy output

yx ∼ N (f(x), σ2
n), x(i) for i = 1, ..., C be di-dimensional disjoint input components

of x and di � d. Then, x = ⊕Ci=1x
(i) for each x ∈ D. An additive GP assumes that

the function f(x) defined over the input domain D can be decomposed into a sum of

local functions:

f(x) = f (1)(x(1)) + f (2)(x(2)) + ...+ f (C)(x(C)) (3.7)

where f (i) are independent for i = 1, ..., C. Let D(i) ⊂ Rdi denote the ith component

of D for i = 1, ..., C. If we assume that each {f (i)(x(i))}x(i)∈D(i) is a GP with prior
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mean µ(i)(x(i)) , E[f (i)(x(i))] and covariance σ(i)(x
(i)
p , x

(i)
q ) , cov[f (i)(x

(i)
p ), f (i)(x

(i)
q )]

as shown in Section 3.1 for i = 1, ..., C. Then, {f(x)}x∈D is also a GP specified by

the following additive prior mean and covariance

µ(x) ,
C∑
i=1

µ(i)(x(i)), σ(xp, xq) ,
C∑
i=1

σ(i)(x(i)
p , x

(i)
q ).

Note that even though the additive assumption in (3.7) may not be true for

some unknown function f(x), Kandasamy et al. (2015) have argued that the additive

model still has advantages compared to the original GP in such cases: additive GP is

a simpler model compared to the original GP such that it is easier to fit a small set

of observations as in many BO applications. They also empirically showed that the

additive GP works well when the additive structure used in (3.7) is different from the

true additive/non-additive structure of f(x).

Supposing a column vector yX , (yx)
>
x∈X of noisy outputs are observed by

evaluating the function f(x) at a set X ⊂ D of inputs, an additive GP model

can provide a predictive distribution N (µ
(i)

Z(i)|X ,Σ
(i)

Z(i)Z(i)|X) of the local outputs of

fZ(i) , (f (i)(x(i)))>
x(i)∈Z(i) for any set Z(i) ⊂ D(i) of local inputs for i = 1, ..., C with

the following posterior mean vector and covariance matrix:

µ
(i)

Z(i)|X = µ
(i)

Z(i) + Σ
(i)

Z(i)X(i)(ΣXX + σ2
nI)−1(yX − µX)

Σ
(i)

Z(i)Z(i)|X = Σ
(i)

Z(i)Z(i) − Σ
(i)

Z(i)X(i)(ΣXX + σ2
nI)−1Σ

(i)

X(i)Z(i)

(3.8)

where µ
(i)

A(i) , (µ(i)(x(i)))>
x(i)∈A(i) , Σ

(i)

A(i)B(i) , (σ(i)(x
(i)
p , x

(i)
q ))

x
(i)
p ∈A(i), x

(i)
q ∈B(i) for any

A(i), B(i) ⊆ D(i) and µA , (µ(x))>x∈A, ΣAB , (σ(xp, xq))xp∈A,xq∈B for any A,B ⊆ D.
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Near-Optimal Active Learning of

MOGPs

In this chapter, we will focus on the first data-efficient ML problem proposed in Sec-

tion 1.2: active learning for environmental sensing where the target phenomena have

been shown to coexist and correlate well with some auxiliary type(s) of phenomena

in many cases (Section 1.1). Specifically, we aim to design and develop an active

learning algorithm that selects not just the most informative sampling locations to

be observed but also the types of measurements (i.e., target and/or auxiliary) at each

selected location for minimizing the predictive uncertainty of unobserved areas of a

target phenomenon given a sampling budget1.

To achieve this, we model all types of coexisting phenomena jointly as a CMOGP

(Section 4.1) and develop a novel efficient algorithm for active learning of this model

in this chapter. In Section 4.2, we first consider utilizing the entropy criterion to

measure the predictive uncertainty of a target phenomenon. However, due to its poor

1In this chapter, we use the vocabulary of environmental sensing (i.e., “location” as the “input”
and “phenomenon” as the “output”). However, all of our results hold for any real-world application
domains that have multiple types of correlated outputs and the same active learning objective (i.e.,
minimize the predictive uncertainty of only the target output type(s)).
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scalability for solving active learning of CMOGP model, we exploit the structure of

sparse CMOGP (Section 3.2.2) for deriving a novel active learning criterion. Then,

in order to solve our problem using the novel criterion in a polynomial-time, we relax

the notion of submodularity with a ε term and exploit the ε-submodularity property

of our new criterion for devising an approximation algorithm with performance guar-

antee (Section 4.3). Three real-world datasets are used to empirically evaluate the

performance of our proposed algorithm in Section 4.4.

4.1 Modeling Coexisting Phenomena with CMOGP

Recall from Section 1.1 that, in practice, the target phenomenon often coexists and

correlates well with some auxiliary type(s) of phenomena whose measurements may

be more spatially correlated, less noisy (e.g., due to higher-quality sensors), and/or

less tedious to sample (e.g., due to greater availability/quantity, higher sampling rate,

and/or lower sampling cost of deployed sensors of these type(s)) and can consequently

be exploited for improving its prediction. To capture the cross-correlations between

the target and auxiliary phenomena, the CMOGP method can be used to jointly

model all types of coexisting phenomena. Specifically, let the sampling locations be

the inputs and the measurement of type i be the ith type of output of a CMOGP

model. The random output measurements {Y〈x,i〉}〈x,i〉∈D+ will be a GP using the

results of Section 3.2.1. Then, the covariance in (3.2) can be used to characterize

the spatial correlation structure for each type of phenomenon (i.e., i = j) and the

cross-correlation structure between different types of phenomena (i.e., i 6= j), and

the predictive distribution of the measurements for any set Z of unobserved locations

and their corresponding measurement types can be computed using (3.3) and (3.4)

for CMOGP and sparse CMOGP, respectively.
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4.2 Active Learning of CMOGP

As has been shown in many existing literature [Bueso et al., 1999; Krause and

Guestrin, 2007; Chen et al., 2012b], the entropy criterion can be used to measure

the predictive uncertainty of the unobserved areas of a target phenomenon. Using

the CMOGP model, the Gaussian posterior joint entropy (i.e., predictive uncertainty)

of the measurements YZ for any set Z ⊆ D+ \ X of tuples of unobserved locations

and their corresponding measurement types can be expressed in terms of its posterior

covariance matrix ΣZZ|X (3.3) which is independent of the realized measurements yX :

H(YZ |YX) ,
1

2
log(2πe)|Z||ΣZZ|X | . (4.1)

Let index t denote the type of measurements of the target phenomenon2. Then,

active learning of a CMOGP model involves selecting an optimal set X∗ ,
⋃M
i=1 X

∗
i

of N tuples (i.e., sampling budget) of sampling locations and their corresponding

measurement types to be observed that minimize the posterior joint entropy of type

t measurements at the remaining unobserved locations of the target phenomenon:

X∗ , arg min
X:|X|=N

H(YVt\Xt |YX) (4.2)

where Vt ⊂ D+
t is a finite set of tuples of candidate sampling locations of the target

phenomenon and their corresponding measurement type t available to be selected for

observation. However, evaluating the H(YVt\Xt|YX) term in (4.2) incurs O(|Vt|3 +N3)

time, which is prohibitively expensive when the target phenomenon is spanned by a

large number |Vt| of candidate sampling locations. If auxiliary types of phenomena

are missing or ignored (i.e., M = 1), then such a computational difficulty can be

2Our proposed algorithm can be extended to handle multiple types of target phenomena, as
demonstrated in Section 4.4.
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eased by instead solving the well-known maximum entropy sampling (MES) problem

[Shewry and Wynn, 1987]:

X∗t = arg max
Xt:|Xt|=N

H(YXt)

which can be proven to be equivalent to (4.2) by using the chain rule for entropy

H(YVt) = H(YXt) + H(YVt\Xt |YXt) and noting that H(YVt) is a constant. Evaluating

the H(YXt) term in MES incurs O(|Xt|3) time, which is independent of |Vt|. Such an

equivalence result can in fact be extended and applied to minimizing the predictive

uncertainty of all M types of coexisting phenomena, as exploited by multivariate

spatial sampling algorithms [Bueso et al., 1999; Le et al., 2003]:

arg max
X:|X|=N

H(YX) = arg min
X:|X|=N

H(YV \X |YX), (4.3)

where V ,
⋃M
i=1 Vi and Vi is defined in a similar manner to Vt but for measurement

type i 6= t. This equivalence result (4.3) also follows from the chain rule for entropy

H(YV ) = H(YX)+H(YV \X |YX) and the fact that H(YV ) is a constant. Unfortunately,

it is not straightforward to derive such an equivalence result for our active learning

problem (4.2) in which a target phenomenon of interest coexists with auxiliary types

of phenomena (i.e., M > 1): If we consider maximizing H(YX) or H(YXt), then it is

no longer equivalent to minimizing H(YVt\Xt |YX) (4.2) as the sum of the two entropy

terms is not necessarily a constant.

4.2.1 Exploiting sparse CMOGP model structure

We derive a new equivalence result by considering instead a constant entropyH(YVt|LU)

that is conditioned on the inducing measurements LU used in sparse CMOGP regres-

sion models (Section 3.2.2). Then, by using the chain rule for entropy and structural

property P2 shared by sparse CMOGP regression models in the unifying framework

37



Chapter 4. Near-Optimal Active Learning of MOGPs

[Álvarez and Lawrence, 2011] described in Section 3.2.2, (4.2) can be proven (see

Appendix A.1) to be equivalent to

X∗ , arg max
X:|X|=N

H(YXt|LU)− I(LU ;YVt\Xt |YX) (4.4)

where

I(LU ;YVt\Xt |YX) , H(LU |YX)−H(LU |YX∪Vt\Xt) (4.5)

is the conditional mutual information between LU and YVt\Xt given YX . Our novel

active learning criterion in (4.4) exhibits an interesting exploration-exploitation trade-

off: The inducing measurements LU can be viewed as latent structure of the sparse

CMOGP model to induce conditional independence properties P1 and P2. So, on one

hand, maximizing the H(YXt |LU) term aims to select tuples Xt of locations with the

most uncertain measurements YXt of the target phenomenon and their corresponding

type t to be observed given the latent model structure LU (i.e., exploitation). On the

other hand, minimizing the I(LU ;YVt\Xt |YX) term (4.5) aims to select tuples X to be

observed (i.e., possibly of measurement types i 6= t) so as to rely less on measurements

YVt\Xt of type t at the remaining unobserved locations of the target phenomenon to

infer latent model structure LU (i.e., exploration) since YVt\Xt won’t be sampled.

Supposing |U | ≤ |Vt|, evaluating our new active learning criterion in (4.4) in-

curs O(|U |3 + N3) time for every X ⊂ V and a one-off cost of O(|Vt|3) time (Ap-

pendix A.2). In contrast, computing the original criterion in (4.2) requires O(|Vt|3 +

N3) time for every X ⊂ V , which is more costly, especially when the number N of

selected observations is much less than the number |Vt| of candidate sampling loca-

tions of the target phenomenon due to, for example, a tight sampling budget or a

large sampling domain that usually occurs in practice. The trick to achieving such

a computational advantage can be inherited by our approximation algorithm to be
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described next.

4.3 Approximation Algorithm

Our novel active learning criterion in (4.4), when optimized, still suffers from poor

scalability in the number N of selected observations (i.e., sampling budget) like the

old criterion in (4.2) because it involves evaluating a prohibitively large number of

candidate selections of sampling locations and their corresponding measurement types

(i.e., exponential in N). However, unlike the old criterion, it is possible to devise

an efficient approximation algorithm with a theoretical performance guarantee to

optimize our new criterion, which is the main contribution of our work in this chapter.

The key idea of our proposed approximation algorithm is to greedily select the next

tuple of sampling location and its corresponding measurement type to be observed

that maximally increases our criterion in (4.4), and iterate this till N tuples are

selected for observation. Specifically, let

F (X) , H(YXt|LU)− I(LU ;YVt\Xt|YX) + I(LU ;YVt) (4.6)

denote our active learning criterion in (4.4) augmented by a positive constant I(LU ;YVt)

to make F (X) non-negative. Such an additive constant I(LU ;YVt) is simply a techni-

cal necessity for proving the performance guarantee and does not affect the outcome

of the optimal selection (i.e., X∗ = arg maxX:|X|=N F (X)). Then, our approxima-

tion algorithm greedily selects the next tuple 〈x, i〉 of sampling location x and its

corresponding measurement type i that maximizes F (X ∪ {〈x, i〉})− F (X):

〈x, i〉+ , arg max
〈x,i〉∈V \X

F (X ∪ {〈x, i〉})− F (X)

= arg max
〈x,i〉∈V \X

H(Y〈x,i〉|YX)− δiH(Y〈x,i〉|YX∪Vt\Xt)
(4.7)
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Algorithm 1 Greedy Active Learning Algorithm of MOGP

Input: A set V of candidate sampling locations;
1: X ← ∅;
2: for n = 1 to N do
3: select 〈x, i〉+ = arg max〈x,i〉∈V \X H(Y〈x,i〉|YX)− δiH(Y〈x,i〉|YX∪Vt\Xt);

4: X ← X ∪ {〈x, i〉+};
5: end for
6: return X

where δi is a Kronecker delta of value 0 if i = t, and 1 otherwise. The derivation

of (4.7) is in Appendix A.3. Our algorithm updates X ← X ∪ {〈x, i〉+} and it-

erates the greedy selection (4.7) and update till |X| = N (i.e., sampling budget is

depleted), which is shown in Algorithm 1. The intuition to understanding (4.7) is

that our algorithm has to choose between observing a sampling location with the

most uncertain measurement (i.e., H(Y〈x,t〉|YX)) of the target phenomenon (i.e., type

t) vs. that for an auxiliary type i 6= t inducing the largest reduction in predic-

tive uncertainty of the measurements at the remaining unobserved locations of the

target phenomenon since H(Y〈x,i〉|YX) − H(Y〈x,i〉|YX∪Vt\Xt) = I(Y〈x,i〉;YVt\Xt |YX) =

H(YVt\Xt |YX)−H(YVt\Xt|YX∪{〈x,i〉}).

It is also interesting to figure out whether our approximation algorithm may avoid

selecting tuples of a certain auxiliary type i 6= t and formally analyze the conditions

under which it will do so, as elucidated in the following result:

Proposition 1. Let V-t ,
⋃
i 6=t Vi, X-t ,

⋃
i 6=tXi, ρi , σ2

si
/σ2

ni
, and R(〈x, i〉, Vt \

Xt) ,
∑
〈x′,t〉∈Vt\Xt

N (x− x′|0, P−1
0 + P−1

i + P−1
t )2. Assuming absence of suppressor

variables, H(Y〈x,i〉|YX) − H(Y〈x,i〉|YX∪Vt\Xt) ≤ 0.5 log(1 + 4ρtρiR(〈x, i〉, Vt \ Xt)) for

any 〈x, i〉 ∈ V-t \X-t.

Its proof (Appendix A.4) relies on the following assumption of the absence of

suppressor variables which holds in many practical cases [Das and Kempe, 2008]:
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Conditioning does not make Y〈x,i〉 and Y〈x′,t〉 more correlated for any 〈x, i〉 ∈ V-t \X-t

and 〈x′, t〉 ∈ Vt \ Xt. Proposition 1 reveals that when the signal-to-noise ratio ρi of

auxiliary type i is low (e.g., poor-quality measurements due to high noise) and/or the

cross-correlation (3.2) between measurements of the target phenomenon and auxiliary

type i is small due to low σ2
stσ

2
si
R(〈x, i〉, Vt \Xt), our greedy criterion in (4.7) returns

a small value, hence causing our algorithm to avoid selecting tuples of auxiliary type

i.

Theorem 1 (Time Complexity). Our approximation algorithm incurs O(N(|V ||U |2+

N3) + |Vt|3) time.

Its proof is in Appendix A.5. So, our approximation algorithm only incurs quartic

time in the number N of selected observations and cubic time in the number |Vt| of

candidate sampling locations of the target phenomenon.

4.3.1 Performance guarantee

To theoretically guarantee the performance of our approximation algorithm, we will

first motivate the need to define a relaxed notion of submodularity. A submodular set

function exhibits a natural diminishing returns property: When adding an element

to its input set, the increment in its function value decreases with a larger input set.

To maximize a nondecreasing and submodular set function, the work of Nemhauser

et al. (1978) has proposed a greedy algorithm guaranteeing a (1−1/e)-factor approx-

imation of that achieved by the optimal input set.

The main difficulty in proving the submodularity of F (X) (4.6) lies in its mutual

information term being conditioned on X. Some works [Krause and Guestrin, 2005;

Renner and Maurer, 2002] have shown the submodularity of such conditional mu-

tual information by imposing conditional independence assumptions (e.g., Markov

chain). In practice, these strong assumptions (e.g., YA ⊥ Y〈x,i〉|YVt\Xt for any A ⊆ X
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and 〈x, i〉 ∈ V-t \ X-t) severely violate the correlation structure of multiple types of

coexisting phenomena and are an overkill: The correlation structure can in fact be

preserved to a fair extent by relaxing these assumptions, which consequently entails

a relaxed form of submodularity of F (X) (4.6); a performance guarantee similar to

that of Nemhauser et al. (1978) can then be derived for our approximation algorithm.

Definition 1. A function G : 2B → R is submodular if

G(A′ ∪ {a})−G(A′) ≤ G(A ∪ {a})−G(A)

for any A ⊆ A′ ⊆ B and a ∈ B \ A′.

Definition 2. A function G : 2B → R is ε-submodular if

G(A′ ∪ {a})−G(A′) ≤ G(A ∪ {a})−G(A) + ε

for any A ⊆ A′ ⊆ B and a ∈ B \ A′.

Lemma 1. Let σ2
n∗ , mini∈{1,...,M} σ

2
ni

. Given ε1 ≥ 0, if

ΣPITC

〈x,i〉〈x,i〉|X̃∪Vt\Xt
− ΣPITC

〈x,i〉〈x,i〉|X∪Vt\Xt
≤ ε1 (4.8)

for any X̃ ⊆ X and 〈x, i〉 ∈ V-t\X-t, then F (X) is ε-submodular where ε = 0.5 log(1+

ε1/σ
2
n∗).

Its proof is in Appendix A.6. Note that (4.8) relaxes the above example of con-

ditional independence assumption (i.e., assuming ε1 = 0) to one which allows ε1 > 0.

In practice, ε1 is expected to be small: Since further conditioning monotonically de-

creases a posterior variance [Xu et al., 2014], an expected large set Vt \Xt of tuples

of remaining unobserved locations of the target phenomenon tends to be informative

enough to make ΣPITC

〈x,i〉〈x,i〉|X̃∪Vt\Xt
small and hence the non-negative variance reduction

term and ε1 in (4.8) small.

Furthermore, (4.8) with a given small ε1 can be realized by controlling the dis-

cretization of the domain of candidate sampling locations. For example, by refining
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the discretization of Vt (i.e., increasing |Vt|), the variance reduction term in (4.8)

decreases because it has been shown in [Das and Kempe, 2008] to be submodular in

many practical cases. We give another example in Lemma 2 to realize (4.8) by con-

trolling the discretization such that every pair of selected observations are sufficiently

far apart.

It is easy to derive that F (∅) = 0. The “information never hurts” bound for

entropy [Cover and Thomas, 1991] entails a nondecreasing F (X):

F (X ∪ {〈x, i〉})− F (X) = H(Y〈x,i〉|YX)− δiH(Y〈x,i〉|YX∪Vt\Xt)

≥ H(Y〈x,i〉|YX)−H(Y〈x,i〉|YX∪Vt\Xt) ≥ 0 .

The first inequality requires σ2
n∗ ≥ (2πe)−1 so thatH(Y〈x,i〉|YA) = 0.5 log 2πeΣPITC

〈x,i〉〈x,i〉|A ≥

0.5 log 2πeσ2
n∗ ≥ 0 , 3 which is reasonable in practice due to ubiquitous noise. Com-

bining this result with Lemma 1 yields the performance guarantee:

Theorem 2. Given ε1 ≥ 0, if (4.8) holds, then our approximation algorithm is

guaranteed to select X s.t. F (X) ≥ (1 − 1/e)(F (X∗) − Nε) where ε = 0.5 log(1 +

ε1/σ
2
n∗).

Its proof (Appendix A.7) is similar to that of the well-known result of Nemhauser

et al. (1978) except for exploiting ε-submodularity of F (X) in Lemma 1 instead of

submodularity.

Finally, we present a discretization scheme that satisfies (4.8): Let ω be the small-

est discretization width of Vi for i = 1, . . . ,M . Construct a new set V − ⊂ V of tuples

of candidate sampling locations and their corresponding measurement types such that

every pair of tuples are at least a distance of pω apart for some p > 0; each candidate

location thus has only one corresponding type. Such a construction V − constrains

our algorithm to select observations sparsely across the spatial domain so that any

3ΣPITC
〈x,i〉〈x,i〉|A ≥ σ

2
n∗ is proven in Lemma 3 in Appendix A.4.

43



Chapter 4. Near-Optimal Active Learning of MOGPs

〈x, i〉 ∈ V-t \ X-t has sufficiently many neighboring tuples of remaining unobserved

locations of the target phenomenon from Vt \ Xt to keep ΣPITC

〈x,i〉〈x,i〉|X̃∪Vt\Xt
small and

hence the variance reduction term and ε1 in (4.8) small. Our previous theoretical

results still hold if V − is used instead of V . The result below gives the minimum

value of p to satisfy (4.8):

Lemma 2. Let σ2
s∗ , maxi∈{1,...,M} σ

2
si

, ` be the largest first diagonal component of

P−1
0 + P−1

i + P−1
j for all i, j = 1, . . . ,M , and ξ , exp(−ω2/(2`)). Given ε1 > 0 and

assuming absence of suppressor variables, if

p2> log

{
1

2σ2
s∗

min

(
σ2
n∗

N
,
1

2

(√
ε21 +

4ε1σ2
n∗

N
−ε1

))}/
log ξ ,

then (4.8) holds. See Appendix A.8 for its proof.

4.4 Experimental Results

This section evaluates the predictive performance of our approximation algorithm

(m-Greedy) empirically on three real-world datasets:

(a) Jura dataset [Goovaerts, 1997] contains concentrations of 7 heavy metals col-

lected at 359 locations in a Swiss Jura region;

(b) Gilgai dataset [Webster, 1977] contains electrical conductivity and chloride con-

tent generated from a line transect survey of 365 locations of Gilgai territory in

New South Wales, Australia;

(c) Indoor environmental quality (IEQ) dataset [Bodik et al., 2004] contains tem-

perature (◦F) and light (Lux) readings taken by 43 temperature sensors and 41

light sensors deployed in the Intel Berkeley Research lab.
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Figure 4.1: Sampling locations for the (a) Jura (km) and (b) IEQ (m) datasets where ‘◦’
and ‘×’ denote locations of temperature and light sensors, respectively.

The sampling locations for the Jura and IEQ datasets are shown in Figs 4.1.

The performance of m-Greedy is compared to that of the (a) maximum vari-

ance/entropy (m-Var) algorithm which greedily selects the next location and its cor-

responding measurement type with maximum posterior variance/entropy in each it-

eration; and (b) greedy maximum entropy (s-Var) [Shewry and Wynn, 1987] and

mutual information (s-MI) [Krause et al., 2008] sampling algorithms for gathering

observations only from the target phenomenon.

For all experiments, k-means is used to select inducing locations U by clustering

all possible locations available to be selected for observation into |U | clusters such

that each cluster center corresponds to an element of U . The hyper-parameters (i.e.,

σ2
si

, σ2
ni

, P0 and Pi for i = 1, . . . ,M) of MOGP and single-output GP models are

learned using the data via maximum likelihood estimation [Álvarez and Lawrence,

2011]. For each dataset, observations (i.e., 100 for Jura and Gilgai datasets and

10 for IEQ dataset) of type t are randomly selected to form the test set T ; the

tuples of candidate sampling locations and corresponding type t therefore become

less than that of auxiliary types. The root mean squared error (RMSE) metric√
|T |−1

∑
x∈T (y〈x,t〉 − µ〈x,t〉|X)2 is used to evaluate the performance of the tested al-

45



Chapter 4. Near-Optimal Active Learning of MOGPs

gorithms. All experimental results are averaged over 50 random test sets. For a

fair comparison, the measurements of all types are normalized before using them for

training, prediction, and active learning.

4.4.1 Jura dataset.

Three types of correlated lg-Cd, Ni, and lg-Zn measurements are used in this experi-

ment; we take the log of Cd and Zn measurements to remove their strong skewness,

as proposed as a standard statistical practice in [Webster and Oliver, 2007]. The

measurement types with the smallest and largest signal-to-noise ratios (respectively,

lg-Cd and Ni; see Table 4.1) are each set as type t.

lg-Cd Ni lg-Zn

σ2
si

2.2204 8.8280 2.3198

σ2
ni

0.0853 0.1130 0.0596

ρi 26.0305 78.1239 38.9228

Table 4.1: Signal-to-noise ratios ρi of lg-Cd, Ni, and lg-Zn measurements for Jura dataset
with |U | = 100.

Figs. 4.2a-c and 4.2d-f show, respectively, results of the tested algorithms with

lg-Cd and Ni as type t. It can be observed that the RMSE of m-Greedy decreases

more rapidly than that of m-Var, especially when observations of auxiliary types

are selected after about N = 200. This is because our algorithm selects observa-

tions of auxiliary types that induce the largest reduction in predictive uncertainty of

the measurements at the remaining unobserved locations of the target phenomenon

(Section 4.3). In contrast, m-Var may select observations that reduce the predictive

uncertainty of auxiliary types of phenomena, which does not directly achieve the aim

of our active learning problem. With increasing |U |, both m-Greedy and m-Var reach
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Figure 4.2: Graphs of RMSEs vs. no. N of observations with (a-c) lg-Cd and (d-f) Ni as
type t and varying no. |U | = 50, 100, 200 of inducing locations for Jura dataset.

smaller RMSEs, but m-Greedy can achieve this faster with much less observations.

As shown in Figs. 4.2a-f, m-Greedy performs much better than s-Var and s-MI, which

means observations of correlated auxiliary types can indeed be used to improve the

prediction of the target phenomenon. Note that there are only limited number of

observations for s-Var and s-MI since the candidate observations of the target output

type are limited in the dataset. Finally, by comparing the results between Figs. 4.2a-c

and 4.2d-f, the RMSE of m-Greedy with Ni as type t decreases faster than that with

lg-Cd as type t, especially in the beginning (i.e., N ≤ 200) due to higher-quality Ni

measurements (i.e., larger signal-to-noise ratio).

4.4.2 Gilgai dataset.

In this experiment, the lg-Cl contents at depth 0-10cm and 30-40cm are used jointly as

two types of target phenomena while the log of electrical conductivity, which is easier
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to measure at these depths, is used as the auxiliary type. Fig. 4.3a shows results of

the average RMSE over the two lg-Cl types with |U | = 100. Similar to the results of

the Jura dataset, with two types of target phenomena, the RMSE of m-Greedy still

decreases more rapidly with increasing N than that of m-Var and achieves a much

smaller RMSE than that of s-Var and s-MI; the results of s-Var and s-MI are also

averaged over two independent single-output GP predictions of lg-Cl content at the

two depths.

4.4.3 IEQ dataset.

Fig. 4.3b shows results with light as type t and |U | = 40. The observations are similar

to that of the Jura and Gilgai datasets: RMSE of m-Greedy decreases faster than that

of the other algorithms. More importantly, with the same number of observations,

m-Greedy achieves much smaller RMSE than s-Var and s-MI that can sample only

from the target phenomenon. This is because m-Greedy selects observations of the

auxiliary type (i.e., temperature) that are less noisy (σ2
ni

= 0.13) than that of light

(σ2
nt

= 0.23), which demonstrates its advantage over s-Var and s-MI when type t

measurements are noisy (e.g., due to poor-quality sensors).

4.5 Summary

This work describes a novel efficient algorithm for active learning of a MOGP model.

To resolve the issue of poor scalability in optimizing the conventional entropy cri-

terion, we exploit a structure common to a unifying framework of sparse MOGP

models for deriving a novel active learning criterion (4.4). Then, we exploit the

ε-submodularity property of our new criterion (Lemma 1) for devising a polynomial-

time approximation algorithm (4.7) that guarantees a constant-factor approximation

of that achieved by the optimal set of selected observations (Theorem 2). Empiri-
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Figure 4.3: Graphs of RMSEs vs. no. N of observations with (a) lg-Cl as types t for
Gilgai dataset and (b) light as type t for IEQ dataset.

cal evaluation on three real-world datasets shows that our approximation algorithm

m-Greedy outperforms existing algorithms for active learning of MOGP and single-

output GP models, especially when measurements of the target phenomenon are

noisier than that of the auxiliary types.
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Chapter 5

Predictive Entropy Search (PES) for

Multi-Fidelity BO

Chapter 4 has proposed an active learning algorithm for multiple correlated output

types. Motivated by the automatic ML examples in Section 1.1, this chapter aims to

generalize another data-efficient ML method (i.e., BO) to multiple types of correlated

outputs (i.e., multiple correlated functions). In particular, we aim to design and

develop a multi-fidelity BO algorithm that selects not just the most informative inputs

but also the target and/or auxiliary function(s) with varying fidelities and costs to

be evaluated at each selected input for finding or improving the belief of the global

target maximizer.

To achieve this, we first model the unknown target and auxiliary functions jointly

as a CMOGP (Section 5.1). Then, a novel generalization of PES for multi-fidelity

BO called multi-fidelity PES (MF-PES) is proposed in Section 5.3. In contrast to the

state-of-the-art multi-fidelity BO algorithms reviewed in Section 2.2.2, our proposed

MF-PES algorithm can naturally trade off between exploration vs. exploitation over

the target and auxiliary functions with varying fidelities without needing to manually
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tune any such parameters (Section 5.2). More importantly, to compute the acquisition

function of MF-PES in closed form, an efficient approximation of MF-PES is derived

in Section 5.3 via (a) a novel multi-output random features (MRF) approximation of

the CMOGP model whose cross-correlation (i.e., multi-fidelity) structure between the

target and auxiliary functions can be exploited for improving the belief of the target

maximizer using the observations from evaluating these functions (Section 5.3.1), and

(b) practical constraints relating the global target maximizer to that of the auxiliary

functions (Section 5.3.2). Several benchmark functions with varying optimization dif-

ficulties and two real-world hyperparameters tuning problems are used to empirically

demonstrate the advantages of our MF-PES algorithm (Section 5.4).

5.1 Multi-Fidelity Modeling with CMOGP

In order to exploit the cross-correlations between multiple functions, we first model

the unknown target and auxiliary functions jointly using a CMOGP (Section 3.2.1).

Specifically, let M unknown functions f1, . . . , fM with varying fidelities be jointly

modeled as a CMOGP over a bounded input domain D ⊂ Rd such that each input

x ∈ D is associated with a noisy output

y〈x,i〉 ∼ N (fi(x), σ2
ni

) (5.1)

for i = 1, . . . ,M . Recall from Section 3.2.1 that CMOGP defines each i-th function

fi as a convolution between a smoothing kernel Ki and a latent function 1 L:

fi(x) ,
∫
x′∈D

Ki(x− x′) L(x′) dx′ . (5.2)

1To ease exposition, we consider a single latent function. Note, however, multiple latent functions
can improve multi-fidelity prediction. More importantly, our proposed MF-PES algorithm can be
easily generalized to handle multiple latent functions, as shown in Appendix B.5.
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If {L(x)}x∈D is a GP, then {fi(x)}〈x,i〉∈D+ is also a GP, that is, every finite subset of

{fi(x)}〈x,i〉∈D+ follows a multivariate Gaussian distribution. Such a GP is fully speci-

fied by its prior mean µ〈x,i〉 , E[fi(x)] and covariance σ〈x,i〉〈x′,j〉 , cov[fi(x), fj(x
′)] for

all 〈x, i〉, 〈x′, j〉 ∈ D+, the latter of which characterizes both the correlation structure

within each function (i.e., i = j) and the cross-correlation between different functions

(i.e., i 6= j). By assuming the same kernel functions of L(x) and Ki(x) as that of

Section 3.2.1, the covariance

σ〈x,i〉〈x′,j〉 = σsiσsjN (x− x′|0, P−1
0 + P−1

i + P−1
j ) . (5.3)

Notice that (5.3) leaves out the noise variance term in (3.3) since we focus on the

noiseless functions fi instead of the noisy outputs Y〈x,i〉 in this chapter due to the BO

objective (i.e., finding the global maximizer of the target function).

Let t be the index of the target function and x∗i be the maximizer of function fi.

Interestingly, the fidelity of an auxiliary function fi with respect to target function

ft in the context of BO can naturally be characterized by the following normalized

covariance between fi(x∗i) and ft(x∗t):

ρi , σ〈x∗i ,i〉〈x∗t ,t〉/(σ
′
si
σ′st) ∈ [0, 1] (5.4)

where σ′si , σsi/(2π|P−1
0 + 2P−1

i |)1/4. Note that our defined fidelity measure ρi tends

to 1 (i.e., higher fidelity of fi) when (a) the convolutional structure of fi parametrized

by Pi becomes more similar to that of ft (i.e., Pt) and (b) the maximizer x∗i of fi

is closer to the target maximizer x∗t . We will show in our experiments (Section 5.4)

that an auxiliary function fi with a higher fidelity ρi improves the BO performance

of our MF-PES algorithm.

Similar to (3.3), a CMOGP model can provide a predictive belief/distribution
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N (µZ|X ,ΣZZ|X) of the outputs of fZ , (fi(x))>〈x,i〉∈Z (instead of YZ) for any set Z of

input tuples with the following posterior mean vector and covariance matrix:

µZ|X , µZ + ΣZX(ΣXX + Σε)
−1(yX − µX)

ΣZZ|X , ΣZZ − ΣZX(ΣXX + Σε)
−1ΣXZ

(5.5)

where ΣAA′ , (σ〈x,i〉〈x′,j〉)〈x,i〉∈A,〈x′,j〉∈A′ for any A,A′ ⊆ D+ with σ〈x,i〉〈x′,j〉 defined in

(5.3) , and Σε is a diagonal matrix with diagonal components σ2
ni

occurring |Xi| times

for i = 1, . . . ,M .

5.2 Multi-Fidelity BO

A multi-fidelity BO algorithm repeatedly selects the next input tuple 〈x, i〉 for eval-

uating the i-th function fi at x that maximizes a choice of multi-fidelity acquisition

function α(yX , 〈x, i〉) given the past observations (X, yX):

〈x, i〉+ , arg max
〈x,i〉∈D+\X

α(yX , 〈x, i〉)

and updates X ← X ∪{〈x, i〉+} until the budget is expended. The general algorithm

of multi-fidelity BO is shown in Algorithm 2. Intuitively, the acquisition function

α should be constructed to enable the multi-fidelity BO algorithm to jointly and

naturally optimize the non-trivial trade-off between exploitation vs. exploration over

the target and auxiliary functions with varying fidelities for finding or improving the

belief of the global target maximizer x∗t by utilizing information from the CMOGP

predictive belief of these functions (5.5).

To do this, one may, at first glance, be tempted to consider a (a) direct applica-

tion or a (b) straightforward generalization of UCB and improvement-based (e.g., PI

and EI) acquisition functions that enable the conventional BO algorithms to optimize
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Algorithm 2 General Multi-Fidelity BO Algorithm

Input: A budget B; Input domain D+; A set of random initializations (Xinit, yXinit
)

1: X ← Xinit;
2: while B ≥ 0 do
3: select 〈x, i〉+ ← arg max〈x,i〉∈D+\X α(yX , 〈x, i〉);
4: evaluate function fi at the selected input x to get the observation y〈x,i〉+ ;

5: X ← X ∪ {〈x, i〉+};
6: B ← B − costi(x);
7: end while
8: return x̃t∗ ← arg maxx∈D µ{〈x,t〉}|X

the trade-off between exploitation vs. exploration using the GP predictive/posterior

mean and variance, respectively. (a) The former would, however, waste the informa-

tive observations from evaluating a high-fidelity auxiliary function (i.e., convolutional

structures and maximizers of the target and auxiliary functions are similar or close

due to a positive cross-correlation2) that is less noisy and/or cheaper to evaluate than

the target function. (b) The latter can be achieved by, for example, plugging in the

averaged predictive means and variances over all (i.e., target and auxiliary) functions

which, unfortunately, satisfies a different objective of maximizing an average of these

functions (see Section 3.2 in [Swersky et al., 2013]) instead of the target function

directly.

To resolve such issues, a multi-fidelity GP-UCB (MF-GP-UCB) algorithm [Kan-

dasamy et al., 2016] has recently been proposed and requires heuristically setting

parameters to trade off between exploitation vs. exploration over the target and aux-

iliary functions with varying fidelities3 for practical implementation. In particular,

2Like the work of [Swersky et al., 2013] (Section 2.2), we assume the cross-correlation between
the target and auxiliary functions to be positive. An auxiliary function that is negatively correlated
with the target function can be easily transformed to be positively correlated by negating all its
outputs.

3For MF-GP-UCB, the fidelity of each auxiliary function is characterized by the tightness of a
heuristically specified bound on the supremum norm between the target function and itself.
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the MF-GP-UCB algorithm will only evaluate the target function at a selected input

if the square root of the predictive variance (at this input) of every GP modeling

a separate auxiliary function is smaller than its corresponding threshold parameter.

As shall be seen in Section 5.4, the performance of MF-GP-UCB is highly sensitive

to the choice of these parameters which have to be manually tuned to make it work

well in optimizing different target functions. Multi-fidelity BO algorithms based on

EI [Forrester et al., 2007; Huang et al., 2006] have also been proposed but do not

perform as well as MF-GP-UCB (see Section 6 and Appendix D.1 in [Kandasamy et

al., 2016]); the multi-fidelity sequential kriging optimization algorithm [Huang et al.,

2006] also relies on heuristically setting a single shared parameter in EI to control

the exploration-exploitation trade-off over all target and auxiliary functions. In con-

trast, we will propose a multi-fidelity predictive entropy search (MF-PES) algorithm

that can jointly and naturally optimize the exploration-exploitation trade-off without

needing to manually tune any such parameters or that of EI to be discussed next.

5.3 Multi-Fidelity PES

Information-based acquisition functions (e.g., ES [Hennig and Schuler, 2012] and PES

[Hernández-Lobato et al., 2014]) have been constructed to enable the conventional BO

algorithms to improve the belief of the maximizer of an unknown target function. In

multi-fidelity BO, we can similarly define a belief of the maximizer x∗i of each i-th

function fi as

p(x∗i |yX) , p(fi(x∗i) = max
x∈D

fi(x)|yX)

for i = 1, ...,M . To achieve the objective of maximizing only the target function in

multi-fidelity BO, ES can be directly used to measure the information gain of only

the target maximizer x∗t from selecting the next input tuple 〈x, i〉 for evaluating the
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i-th function fi (i.e., possibly auxiliary) at x given the past observations (X, yX):

α(yX , 〈x, i〉),H(x∗t|yX)− Ep(y〈x,i〉|yX)[H(x∗t|yX∪{〈x,i〉})]. (5.6)

The multi-task ES (MT-ES) algorithm [Swersky et al., 2013] has used Monte Carlo

sampling to approximate (5.6) but faced two critical limitations: (a) Computing (5.6)

incurs cubic time in the size of the discretized input domain and is thus expensive

to evaluate with a large input domain (or risks being approximated poorly), and (b)

to reduce the considerable time in evaluating (5.6) over the entire discretized input

domain and perform competitively, MT-ES heuristically prunes this search space to

a small set of input candidates that are selected by applying EI to only the target

function, hence artificially constraining the exploration of auxiliary functions and

requiring a parameter in EI (i.e., to control the exploration-exploitation trade-off) to

be manually tuned to fit different real-world applications.

To circumvent the above-mentioned issues, we can exploit the symmetric property

of conditional mutual information and rewrite (5.6) as

α(yX , 〈x, i〉) =H(y〈x,i〉|yX)− Ep(x∗t |yX)[H(y〈x,i〉|yX , x∗t)] (5.7)

which we call multi-fidelity PES (MF-PES). Intuitively, the selection of an input tuple

〈x, i〉 to maximize (5.7) has to trade off between exploration of every target and auxil-

iary function (hence inducing a large Gaussian predictive entropy H(y〈x,i〉|yX)) vs. ex-

ploitation of the current belief p(x∗t |yX) of the target maximizer x∗t to choose a nearby

input x of a high-fidelity function fi (i.e., convolutional structures and maximizers of

the target and auxiliary functions are similar or close (Section 5.1)) to be evaluated

(hence inducing a small expected predictive entropy Ep(x∗t |yX)[H(y〈x,i〉|yX , x∗t)]) to

yield a highly informative observation that in turn improves the belief of x∗t .
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Due to (5.5), the first Gaussian predictive/posterior entropy term in (5.7) can be

computed analytically:

H(y〈x,i〉|yX) , 0.5 log(2πe(σ2
〈x,i〉|X + σ2

ni
)) (5.8)

where σ2
〈x,i〉|X , Σ{〈x,i〉}{〈x,i〉}|X (5.5). Unfortunately, the second term in (5.7) can-

not be evaluated in closed form. Although this second term appears to resemble

that in PES [Hernández-Lobato et al., 2014], their approximation method, however,

cannot be applied straightforwardly here since it cannot account for the complex

cross-correlation structure between the target and auxiliary functions. To achieve

this, we will first propose a novel multi-output random features approximation of the

CMOGP model whose cross-correlation (i.e., multi-fidelity) structure between the

target and auxiliary functions can be exploited for sampling the target maximizer x∗t

more accurately using the past observations (X, yX) from evaluating these functions

(especially when the target function is noisy and/or sparsely evaluated due to cost),

which is in turn used to approximate the expectation in (5.7). Then, we will for-

malize some practical constraints relating the global target maximizer to that of the

auxiliary functions, which are used to approximate the second entropy term within

the expectation in (5.7).

5.3.1 Multi-output random features (MRF) for sampling the tar-

get maximizer

To approximate the expectation in (5.7) efficiently by averaging over samples of the

target maximizer from p(x∗t |yX) in a continuous input domain, we will derive an an-

alytic sample of the unknown target function4 ft given the past observations (X, yX),

4Note that (5.5) gives an analytic expression of the CMOGP predictive mean of ft(x) but not of
ft(x) itself. So, maximizing its predictive mean over x is not equivalent to maximizing ft(x).

57



Chapter 5. Predictive Entropy Search (PES) for Multi-Fidelity BO

which is differentiable and can be optimized by any existing gradient-based optimiza-

tion method to search for its maximizer. Unlike the work of Hernández-Lobato et

al. (2014) that achieves this in PES using the single-output random features (SRF)5

method [Rahimi and Recht, 2007], we have to additionally consider how the complex

cross-correlation (i.e., multi-fidelity) structure between the target and auxiliary func-

tions can be exploited for sampling the target maximizer x∗t more accurately, which

is in turn used to approximate the expectation in (5.7). To address this, we will now

present a novel multi-output random features (MRF) approximation of the CMOGP

model by first deriving an analytic form of the latent function L with SRF and then

an analytic approximation of fi using the convolutional structure of the CMOGP

model.

Using the results of Rahimi and Recht (2007), the prior covariance of the GP

modeling L (Section 5.1) can be rewritten as

σxx′ = α

∫
p(w) e−jw

>(x−x′) dw

= 2α Ep(w,b)[cos(w>x+ b) cos(w>x′ + b)]
(5.9)

where p(w) , s(w)/α, s(w) is the Fourier dual of σxx′ , and b ∼ U [0, 2π]. Let φ(x)

denote a random vector of an m-dimensional feature mapping of the input x:

φ(x) ,
√

2α/m cos(W>x+B) (5.10)

where W , (wq)q=1,...,m and B , (bq)
>
q=1,...,m with wq and bq sampled from p(w) and

p(b), respectively. From (5.9) and (5.10), the prior covariance σxx′ can be approx-

imated by σxx′ ≈ φ(x)>φ(x′) and the latent function L can be approximated by a

5SRF has also been used by Lázaro-Gredilla et al. (2010) to derive a sparse spectrum (single-
output) GP approximation.
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linear model:

L(x) ≈ φ(x)>θ (5.11)

where θ ∼ N (0, I) is an m-dimensional vector of weights. The derivations of (5.9)

and (5.11) are shown in Appendix A of [Hernández-Lobato et al., 2014]. Then,

interestingly, by exploiting the convolutional structure of the CMOGP model in (5.2)

and the SRF results in (5.10) and (5.11), fi(x) can also be approximated analytically

by a linear model:

fi(x) ≈ φi(x)>θ (5.12)

where the random vector

φi(x) , σsi diag(e−
1
2
W>P−1

i W ) φ(x) (5.13)

can be interpreted as input features of fi(x)6 and function diag(A) returns a diagonal

matrix with the same diagonal components as A. The derivation of (5.12) is in

Appendix B.1.

Using (5.12), we will now show how a sample of ft can be constructed from a linear

combination of samples of features φt and from the posterior of weights θ given the

past observations (X, yX). It follows from (5.1) and (5.12) that yXi
is conditionally

independent of fX\Xi
, W , and B given fXi

for i = 1, . . . ,M and fX1 , . . . , fXM
are

conditionally independent given θ, W , and B, respectively. Then,

p(yX |θ,W,B) =
M∏
i=1

∫
p(yXi

|fXi
) p(fXi

|θ,W,B) dfXi
= N (yX |Φ>θ,Σε)

where Φ , (φj(x))〈x,j〉∈X .

6The approximated covariance σ〈x,i〉〈x′,j〉 ≈ φi(x)>φj(x
′) then characterizes the correlation within

each function (i.e., i = j) and the cross-correlation between different functions (i.e., i 6= j).
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As a result, the posterior distribution of θ is

p(θ|yX ,W,B) = N (θ|A−1ΦΣ−1
ε yX , A

−1) (5.14)

where A = ΦΣ−1
ε Φ> + I. Let φ

[s]
i and θ[s] denote vectors of features and weights

sampled from (5.13) and (5.14), respectively. The i-th function fi can then be ap-

proximated by

f
[s]
i (x) , φ

[s]
i (x)>θ[s] . (5.15)

Consequently, the expectation in (5.7) can be approximated by averaging over S

samples of the target maximizer x
[s]
∗t of f

[s]
t to yield the following approximation of

MF-PES:

α(yX , 〈x, i〉) ≈ H(y〈x,i〉|yX)− S−1

S∑
s=1

H(y〈x,i〉|yX , x[s]
∗t ) (5.16)

where, for i = 1, . . . ,M ,

x[s]
∗i , arg max

x∈D
f

[s]
i (x) . (5.17)

Drawing a sample of x
[s]
∗i incurs O(m3 +m2|X|) time if m ≤ |X| and O(|X|3 + |X|2m)

time if m > |X|, which is more efficient than using Thompson sampling [Chapelle

and Li, 2011] to sample fi over a discretized input domain that incurs cubic time in

its size since a sufficiently fine discretization of the entire input domain is typically

larger in size than the number |X| of observations.

5.3.2 Approximating the predictive entropy conditioned on the

target maximizer

In this subsection, we will discuss how the second entropy term in (5.16) is approx-

imated. Firstly, the posterior distribution of y〈x,i〉 given the past observations and
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target maximizer is computed by

p(y〈x,i〉|yX , x∗t) =

∫
p(y〈x,i〉|fi(x)) p(fi(x)|yX , x∗t) dfi(x) (5.18)

where p(y〈x,i〉|fi(x)) is a Gaussian distribution and p(fi(x)|yX , x∗t) will be approxi-

mated by expectation propagation (EP), as detailed later. As shown in Section 5.1,

the Gaussian predictive distribution p(fi(x)|yX) can be computed analytically using

(5.5). Then, p(fi(x)|yX , x∗t) can be considered as a constrained version of p(fi(x)|yX)

by further conditioning on the target maximizer x∗t . It is intuitive that the posterior

distribution of fi(x) is constrained by

fi(x) ≤ fi(x∗i),∀〈x, i〉 ∈ D+ .

However, since only the target maximizer x∗t is of interest, how should the value of

fi(x) be constrained by x∗t instead of x∗i if i 6= t? To resolve this, we introduce a

slack variable ci to formalize the relationship between maximizers of the target and

auxiliary functions:

fi(x) ≤ fi(x∗t) + ci ∀x ∈ D, i 6= t (5.19)

where ci , Ep(x∗i |yX)[fi(x∗i)] − Ep(x∗t |yX)[fi(x∗t)] measures the gap between the ex-

pected maximum of fi and the expected output of fi evaluated at x∗t and can, surpris-

ingly, be approximated efficiently using the result of MRF even though fi is unknown,

as detailed later. To capture above-mentioned constraints analytically, the following

simplified constraints instead of (5.19) are used to approximate p(fi(x)|yX , x∗t):

C1. fi(x) ≤ fi(x∗t) + δici for a given 〈x, i〉 ∈ D+ where δi equals to 0 if i = t, and 1

otherwise.

C2. fj(x∗t) + δjcj ≥ ymaxj
+ εj for j = 1, . . . ,M where ymaxj

, max〈x,i〉∈Xj
y〈x,i〉 is
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the largest among the noisy outputs observed by evaluating fj at Xj.

The first constraint C1 keeps the influence of x∗t to the next input tuple 〈x, i〉 to be

selected by MF-PES. Instead of constraining all unknown functions over the entire

input domain, C2 relaxes (5.19) to be valid only for the noisy outputs observed from

evaluating these functions. Using these constraints, we will first derive a tractable

approximation of the posterior distribution p(fi(x∗t)|yX , C2) which does not depend

on the next selected input x. Note that such terms can be computed once and reused

in the approximation of p(fi(x)|yX , x∗t) in (5.18) which depends on x, as detailed

later.

5.3.2.1 Approximating terms independent of x

Let f ∗j , fj(x∗t) and f ∗ , (f ∗j )>j=1,...,M . We can use the cdf of a standard Gaussian

distribution to represent the probability of C2 and constrain the posterior distribution

p(f ∗|yX) with C2 by

p(f ∗|yX , C2) ∝ p(f ∗|yX)
M∏
j=1

Φcdf

(
(fj(x∗t) + cj − ymaxj

)/σnj

)
. (5.20)

Interestingly, by sampling the target and auxiliary maximizers x∗t and x∗j using the

method proposed in Section 5.3.1, the value of cj in (5.20) can be approximated in

practice by Monte Carlo sampling7:

cj = Ep(x∗j |yX)[fj(x∗j)]− Ep(x∗t |yX)[fj(x∗t)] ≈ S−1

S∑
s=1

(
f

[s]
j (x[s]

∗j )− f [s]
j (x[s]

∗t )
)
.

With the multiplicative form of (5.20) , p(f ∗|yX , C2) can be approximated to be a

multivariate Gaussian distribution N (f ∗|µ,Σ) using EP by approximating each non-

7When j = t, cj is equal to 0 since x∗j = x∗t .
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Gaussian factor (i.e., Φcdf) in (5.20) to be a Gaussian, as detailed in Appendix B.2.

Consequently, the posterior distribution p(f ∗i |yX , C2) can be approximated by a Gaus-

sian N (f ∗i |µi, τi) where µi is the i-th component of µ and τi is the i-th diagonal

component of Σ.

5.3.2.2 Approximating terms that depend on x

In C2, f ∗i is the only term that is related to C1. It follows that fi(x) is conditionally

independent of C2 given f ∗i . Let f+ , [fi(x∗t); fi(x)], then

p(f+|yX , C2) = p(fi(x)|yX , f ∗i ) p(f ∗i |yX , C2) = N (f+|µ+,Σ+) (5.21)

where µ+ and Σ+ can be computed analytically using µi, τi and (5.5), as detailed in

Appendix B.3.

To involve C1, an indicator function I(fi(x) ≤ fi(x∗t) + δici) is used to represent

the probability that C1 holds. Then, p(fi(x)|yX , x∗t) ≈
∫
p(f+|yX , C1, C2) df ∗i where

p(f+|yX , C1, C2) ≈ Z ′
−1
p(f+|yX , C2) I(fi(x) ≤ fi(x∗t) + δici) (5.22)

Since the posterior of fi(x∗t) has been updated according to C2 (5.20), ci in (5.22) is

updated likewise:

ci ≈ S−1

S∑
s=1

(
f

[s]
i (x[s]

∗i )− µ[s]
i

)
where µ

[s]
i is computed in (5.20) using a sampled x

[s]
∗t . Similar to that in [Hernández-

Lobato et al., 2014], a one-step EP can be used to approximate (5.22) as a multivariate

Gaussian distribution with posterior covariance matrix

Σf+ , Σ+ − v−1γ(γ − (η − δici)/
√
v) Σ+aa>Σ+ (5.23)

63



Chapter 5. Predictive Entropy Search (PES) for Multi-Fidelity BO

where a = [−1; 1], γ , φ((δici − η)/
√
v)/Φcdf((δici − η)/

√
v), η , a>µ+, and v ,

a>Σ+a. The derivation of (5.23) is in Appendix B.4. So, the posterior variance of

p(fi(x)|yX , x∗t) can be approximated using the (2, 2)-th component of Σf+ denoted

by vfi and its posterior entropy can consequently be approximated by

H(y〈x,i〉|yX , x∗t) ≈ 0.5 log(2πe(vfi + σ2
ni

)) (5.24)

due to (5.18). Using (5.8) and (5.16), it follows that MF-PES (5.7) can be approxi-

mated by

α(yX , 〈x, i〉) ≈
1

2
log
(
σ2
〈x,i〉|X + σ2

ni

)
− 1

2S

S∑
s=1

log
(
v

[s]
fi

+ σ2
ni

)
.

When the costs of evaluating target vs. auxiliary functions differ, we use the following

cost-sensitive MF-PES instead: αcost(yX , 〈x, i〉) , α(yX , 〈x, i〉)/cost(i) which can be

interpreted as the information gain of the target maximizer per cost of evaluating the

i-th function fi from selecting the next input tuple 〈x, i〉. Since such a cost (e.g., time

incurred to train a ML model) is usually not known, we need a method to estimate

it in real-world applications, which will be discussed later in Section 5.4.

5.4 Experiments and Discussion

This section empirically evaluates the multi-fidelity BO performance of our MF-PES

algorithm against that of (a) PES [Hernández-Lobato et al., 2014], (b) MT-ES [Swer-

sky et al., 2013] performing Monte Carlo approximation of (5.6), (c) MF-GP-UCB

with all parameters trading off between exploitation vs. exploration set according

to that recommended in [Kandasamy et al., 2016], (d) MF-GP-UCB*: MF-GP-UCB
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with carefully fine-tuned parameters8, and (e) MF-rand: an additional baseline which

selects the value of i from 1, ...,M randomly and then use PES over the selected

function fi to choose x, which is used to elaborate the advantage of MF-PES in auto-

matically selecting the type of function (i.e., target or auxiliary function) to evaluate.

For a fair comparison, CMOGP is used to model multiple functions in all tested

algorithms since the tested algorithms (MT-ES and MF-GP-UCB) can cater to any

GP model and their performance would thus be improved by using CMOGP which

has been empirically demonstrated by [Álvarez and Lawrence, 2011] to outperform

the models used by MT-ES and MF-GP-UCB. Note that the multi-fidelity sequential

kriging optimization algorithm [Huang et al., 2006] is not evaluated here since MF-

GP-UCB outperforms it in both synthetic and real-world experiments, as empirically

demonstrated in [Kandasamy et al., 2016].

In all experiments, we use m , 200 random features and S , 50 samples of the

target maximizer in MF-PES. The CMOGP hyperparameters are learned via max-

imum likelihood estimation [Álvarez and Lawrence, 2011]. The performance of the

tested algorithms are evaluated using immediate regret (IR) |ft(xt∗)− ft(x̃t∗)| where

x̃t∗ , arg maxx∈D µ{〈x,t〉}|X is their recommended target maximizer. In each experi-

ment, one observation of the target function is randomly selected as the initialization.

The standard error is computed as the error bar in all the results. Costs of evaluating

the target and auxiliary functions are assumed to be, respectively, 10 and 1 in all

synthetic experiments.

8Using the parameters recommended in [Kandasamy et al., 2016], MF-GP-UCB does not perform
well in most of our experiments. To achieve a fair comparison, we carefully fine-tune its parameters
to make it perform well in every experiment.
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Figure 5.1: (a-b) Examples of the synthetic functions where ’4’ is the global target
maximizer. (c) Graphs of log10(averaged IR) vs. cost incurred by tested algorithms for
synthetic functions.

5.4.1 Synthetic experiments

The performance of the tested algorithms are first evaluated using the following syn-

thetic and benchmark functions.

Synthetic functions. The synthetic functions are generated with different fi-

delities using M , 2 and D , [0, 1]2. To do this, the CMOGP hyperparameters with

one latent function are first fixed as P0 , diag[100, 100], P1 , diag[2000, 100], P2 ,

diag[100, 2000], σs1 , σs2 , 1, σ2
n1
, 0.01, and σ2

n2
, 0.001 which are also used in the

tested algorithms as optimal hyperparameters. Then, a set X of 450 input tuples is

uniformly sampled from D+ and their corresponding outputs are sampled from the

CMOGP prior. The target and auxiliary functions are set to be the predictive mean

µ{〈x,i〉}|X of the CMOGP model with i = 1 and i = 2, respectively. An example of

the synthetic functions can be found in Fig. 5.1a-b. Ten pairs (i.e., one target and

one auxiliary) of synthetic functions are generated using the above procedure. An

averaged IR is obtained by optimizing the target function in each of them with 10

different initializations for each tested algorithm.

Hartmann-6D function. In these experiments, the original Hartmann-6D func-

tion is used as target function and M , 2 or 3. Similar to that in [Kandasamy et

al., 2016], three auxiliary functions of varying degrees of fidelity are constructed by
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(a) [H−6D,func1], cost=[10,1], M=2
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(b) [H−6D,func2], cost=[10,1], M=2
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(d) [H−6D,func1,func2], cost=[10,3,1], M=3
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Figure 5.2: Graphs of log10(averaged IR) vs. cost incurred by tested algorithms for
Hartmann-6D (H-6D) function and its auxiliary functions func1, func2, and func3 with
the respective fidelities ρ1, ρ2, and ρ3 computed using (5.4) where ρ1 > ρ2 > ρ3. The
type, cost, and number of the functions used in each experiment are shown in the title
of each graph. The number Q (B.18) of latent functions used in CMOGP to model the
target and auxiliary functions is Q = 1, Q = 2, Q = 2 and Q = 2, respectively, for
(a)-(d).

tweaking the Hartmann-6D function, as detailed in Appendix B.6. The experiments

are run with 10 different initializations.

Figs. 5.1c and 5.2 show results of all tested algorithms for synthetic and Hart-

mann functions, respectively, with a cost budget of 500. It can be observed from

Figs. 5.1c, 5.2a-b and 5.2d that MF-PES can achieve a much lower averaged IR with

considerably less cost than PES, which implies that the BO performance can be im-

proved by auxiliary function(s) of sufficiently high fidelity and low evaluation cost

and noise. Both the Hartmann and synthetic functions are difficult to optimize due
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to their multimodal nature (e.g., induced by large values in P0) and/or large input

domain, which causes MT-ES and MF-GP-UCB to be trapped easily in some local

maximum and hence perform not as well. We have dedicated time to carefully fine-

tune the parameters of MF-GP-UCB* such that it explores more to perform better

than MF-GP-UCB but is still outperformed by MF-PES. In contrast, MF-PES is

rarely trapped in a local maximum and performs significantly better than all the

other tested algorithms by naturally exploring more over these multimodal functions.

Moreover, Fig. 5.2c shows that when the fidelity of the auxiliary function is very

low (ρ3 = 0.0037, as shown in Appendix B.6), MF-PES can achieve a comparable

performance to PES, hence demonstrating its robustness to a low-fidelity auxiliary

function. Lastly, as shown in Figs. 5.1, 5.2a-b and 5.2d, the performance of MF-rand

is between that of PES and MF-PES when the auxiliary function(s) has sufficiently

high fidelity. Conversely, when the auxiliary function has very low fidelity (Fig. 5.2c),

the performance of MF-rand is similar to that of PES. Such observations showed

that MF-PES naturally provides better strategies for selecting the type of function

compared to the random method.

Branin-Hoo function. The performance of MF-PES is also evaluated using aux-

iliary functions with different fidelities based on the well-known benchmark Branin-

Hoo function as the target function. Three auxiliary functions func1, func2, and

func3 with the corresponding fidelities ρ1, ρ2, and ρ3 are constructed by, respectively,

(a) decreasing only the noise variance, (b) shifting Branin-Hoo along both axes, and

(c) using the Currin exponential function to yield ρ1 > ρ2 > ρ3, as detailed in Ap-

pendix B.6.

Fig. 5.3 shows results of the averaged IR over 50 different initializations. Similar

to the results for Hartmann-6D, MF-PES achieves a much lower averaged IR with

less cost than PES when the auxiliary function is of a sufficiently high fidelity and

low evaluation cost (i.e., Fig. 5.3a-b). Also, the performance of MF-PES relative
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Figure 5.3: Graphs of log10(averaged IR) vs. cost incurred by tested algorithms for Branin
function and its auxiliary functions func1, func2, and func3 with the respective fidelities
ρ1, ρ2, and ρ3 computed using (5.4) where ρ1 > ρ2 > ρ3. The type, cost, and number
of the functions used in each experiment are shown in the title of graph. The number
Q (B.18) of latent functions used in CMOGP to model the target and auxiliary functions
is Q = 1, Q = 1, Q = 2, respectively, for (a)-(c).

to that of PES reveals that the BO performance can be improved by an auxiliary

function func1 less noisy than (but identical to) the target function due to a smaller

noise variance. As shown in Fig. 5.3c, the performance of MF-PES is initially hurt

by an auxiliary function with an extremely low fidelity (i.e., func3 with ρ3
2 = 0.0683)

but eventually converges to the same performance as PES with enough observations.

Finally, the performance of MF-PES is similar to that of MT-ES and MF-GP-UCB*

in Fig. 5.3. This is because Branin function which has three global maxima and no

local maximum is very easy to be optimized. This easy-to-optimize Branin function

makes MF-PES loses its advantage of rarely being trapped in a local maximum as

mentioned in Section 5.4.

We have also investigated the effectiveness of the MRF approximation in im-

proving the belief of the target maximizer of the Branin-Hoo function over the SRF

method as shown in Fig. 5.4. In particular, it can be observed from Fig. 5.4 that

MRF can sample the target maximizer more accurately than SRF.
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Figure 5.4: Surface plots of the (a) true Branin-Hoo function as the target function (note
that the auxiliary function is constructed by shifting 10% of this function along both
axes), (b) predicted target function by SRF with 10 observations from evaluating the
target function, and (c) predicted target function by MRF with 10 and 50 observations
from evaluating the target and auxiliary functions, respectively. Note that ‘+’ denotes a
location of the sampled target maximizer.

5.4.2 Real-world experiments

In this subsection, the tested algorithms are used to automatically tune the hyperpa-

rameters of ML models in two image classification tasks:

• Logistic regression (LR) with MNIST dataset. The four LR hyperparam-

eters to be tuned in our experiments are the learning rate of stochastic gradient

descent (SGD) in the range of [10−5, 1], l2 regularization parameter in the range

of [10−5, 1], batch size in the range of [20, 1000], and number of learning epochs

in the range of [5, 100].

• Convolutional neural network (CNN) with CIFAR-10 dataset. The six

CNN9 hyperparameters to be tuned in our experiments are the learning rate of

SGD in the range of [10−5, 1], three dropout rates in the range of [0, 1], batch

size in the range of [100, 1000], and number of learning epochs in the range of

[100, 1000].

9We use the same CNN structure as the example code of keras: https://github.com/fchollet/
keras/blob/master/examples/cifar10_cnn.py and switch the optimizer in their code to SGD.
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Figure 5.5: Graphs of log10(averaged IR) vs. cost incurred by tested algorithms for (a)
LR and (b) CNN.

For each task, we use training and validation data of size 50000 and 10000, re-

spectively. The unknown target function to be maximized is the validation accuracy

evaluated by training the ML model with all the training data. The unknown aux-

iliary function is also the validation accuracy evaluated by training the same ML

model but with a smaller fixed dataset of size 10000 randomly selected from the orig-

inal training data. The evaluation cost should be the time for training the ML model.

However, since the training time is not known and varies with different settings of

hyperparameters, the costs for evaluating the target and auxiliary functions are esti-

mated to be, respectively, 5 and 1 according to their training data size. The actual

total training time is shown in the results of all our experiments. Furthermore, since

the optimal hyperparameters (i.e., global target maximizer x∗t) is now known in these

real-world problems, ft(xt∗) = 1 is used to compute IR and ft(x̃t∗) is evaluated by

training the ML model with x̃t∗ for the tested algorithms.

Fig. 5.5a-b shows the results of the tested algorithms with 10 (5) different initial-

izations for the image classification task using LR (CNN). It can be observed that

MF-PES converges faster to a smaller IR than other tested algorithms. Also, MF-

PES improves the performance of CNN compared to the baseline achieved using the

default hyperparameters in the existing code, which shows that MF-PES is promising
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in finding more competitive hyperparameters of complex ML models.

5.5 Summary

This chapter describes a novel MF-PES algorithm for multi-fidelity BO that can nat-

urally trade off between exploitation vs. exploration over the target and auxiliary

functions with varying fidelities without needing to manually tune any such param-

eters. Our MF-PES algorithm utilizes a novel MRF approximation of the CMOGP

model whose cross-correlation (i.e., multi-fidelity) structure between the target and

auxiliary functions can be exploited for sampling the target maximizer more accu-

rately using the observations from evaluating these functions. Empirical evaluation

on synthetic functions, benchmark functions and image classification tasks using LR

and CNN with real-world MNIST and CIFAR-10 datasets shows that MF-PES out-

performs the state-of-the-art multi-fidelity BO algorithms.

However, one limitation of the experiments is that of the prior trained hyper-

parameters: The results in Figs 5.5 are achieved with fixed CMOGP/GP hyperpa-

rameters which are learned via maximum likelihood estimation using prior collected

observations. Such step is used to make a fair comparison of all tested multi-fidelity

BO algorithms by avoiding the effect of the non-stable CMOGP hyperparameters

learning. Compared to the single-fidelity BO algorithm (i.e., PES), 18.5% and 21.1%

additional time is used to collect the auxiliary observations as training data for LR

and CNN, respectively. Therefore, the training time of CMOGP in multi-fidelity BO

is not much larger than that of single-fidelity BO. Such prior trained CMOGP/GP

hyperparameters, however, is still a little bit unfair for PES, which will be resolved in

our future work by developing stable CMOGP hyperparameters training algorithm

such that the CMOGP hyperparameters could be updated on-the-fly in all tested BO

algorithms.
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PES for High-Dimensional BO

In Chapter 5, we have generalized the PES acquisition function to multi-fidelity BO.

This chapter will focus on another technical challenge of BO (i.e., high input dimen-

sions) and present a novel generalization of PES for high-dimensional BO. In partic-

ular, to improve the scalability of PES in the number of input dimensions, we exploit

the structure of additive GP (Section 3.3) such that the original PES can be decom-

posed into a sum of local PESs, each of which depends only on a subset of low input

dimensions, and thus, could be optimized independently. However, such an additive

PES (add-PES) cannot be computed by applying the approximation algorithm of

PES [Hernández-Lobato et al., 2014] straightforwardly to each local component since

the constraints required for making an efficient approximation of each local PES are

not independent. To resolve this issue, novel approximation steps of add-PES are

derived in Section 6.2. More interestingly, compared to the state-of-the-art high-

dimensional BO algorithms, we empirically demonstrate that our add-PES can easily

achieve an appropriate exploration-exploitation trade-off without the effort in tuning

such parameter in all tested functions (Section 6.3), which makes it very promising

to work well in different real-world applications.
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6.1 High-Dimensional BO

Let f(x) be a black-box function defined over a bounded d-dimensional input do-

main D ⊂ Rd such that each input x ∈ D is associated with a noisy output

yx ∼ N (f(x), σ2
n). Recall that BO is used to globally optimize such a function f(x)

when its derivatives are unknown and its evaluation at some x ∈ D is very expensive.

Let yX , (yx)
>
x∈X denote a vector of noisy outputs observed by evaluating f at a

set X ⊂ D of inputs. Conventionally, a BO algorithm iteratively selects the next in-

put x+ for evaluating the function f at x+ by maximizing some choice of acquisition

function given the past observations (X, yX):

x+ , arg max
x∈D

α(yX , x) (6.1)

and updates X ← X∪{x} until the budget is expended. Although it’s usually easy to

evaluate α(yX , x) and its gradients, the computational cost of (6.1), however, grows

exponentially in d and is very expensive for high input dimensions (i.e., large d).

To resolve this issue, we will exploit the structure of additive GP (Section 3.3)

for improving the scalability of (6.1) in the number of input dimensions. Recall from

Section 3.3 that an additive GP assumes that the function f(x) can be decomposed

into a sum of independent local functions:

f(x) = f (1)(x(1)) + f (2)(x(2)) + ...+ f (C)(x(C)) (6.2)

where f (i)(x(i)) depends only on a di-dimensional input x(i), di � d and x(i) are

disjoint components of x for i = 1, ..., C. Let each {f (i)(x(i))}x(i)∈D(i) be an inde-

pendent GP for i = 1, ..., C. Then, the additive GP model can provide a Gaussian

predictive distribution N (µ
(i)

x(i)|X ,Σ
(i)

x(i)x(i)|X) of f (i)(x(i)) for any x(i) ∈ D(i) using (3.8).

Given such a local predictive distribution, Kandasamy et al. (2015) has generalized
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UCB acquisition function to high-dimensional BO using α(yX , x) ,
∑C

i=1 µ
(i)

x(i)|X +√
βΣ

(i)

x(i)x(i)|X . Their algorithm, however, requires this parameter β to be carefully set

for achieving good exploration-exploitation trade-off, which is not easy in practice

since setting beta requires the consideration of several variables like input dimension

and time step1. In contrast, we will propose an additive PES (add-PES) algorithm

which is less tedious in finding an appropriate exploration-exploitation trade-off to

achieve good BO performance for different functions with varying input dimensions,

as will be discussed next.

6.2 Additive PES for High-Dimensional BO

Recall that in conventional BO algorithms, information-based acquisition functions

(e.g., ES [Hennig and Schuler, 2012] and PES [Hernández-Lobato et al., 2014]) has

been constructed to improve the belief p(x∗|yx) of the target maximizer x∗ where

x∗ , arg maxx∈D f(x). To make such acquisition functions scale well in the number of

input dimensions, we exploit the independent structure in additive GP and construct

an alternative acquisition function which improves the belief of the maximizer for

each local function f (i) independently:

α(x, yX) =
C∑
i=1

(
H(x(i)

∗ |yX)− Ep(f (i)(x(i)))|yX)[H(x(i)
∗ |yX , f (i)(x(i)))]

)
(6.3)

where x
(i)
∗ , arg maxx(i)∈D(i) f (i)(x(i)). However, it is very expensive to approximate

(6.3) since p(x
(i)
∗ |yX) is analytically intractable [Hennig and Schuler, 2012]. To resolve

this issue, Wang and Jegelka (2017) proposed an additive max-value ES (add-MES)

1Although Kandasamy et al. (2015) has provided an expression of β to achieve no regret in the
limit, such an expression of β either (a) typically yields a value that does not achieve a good BO
performance fast enough in practice due to a limited sampling budget, or (b) is too complicated to be
computed in practice. So, they suggested a heuristic equation for computing β in their experiments
which unfortunately still doesnt perform as well as expected, as will be shown in Section 6.3.
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algorithm which simplified (6.3) by replacing all x
(i)
∗ in (6.3) with f (i)(x

(i)
∗ ). In other

words, their algorithm aims to improve the belief of the maximal function value

f(x∗) instead of the maximizer x∗. As will be demonstrated in Section 6.3, such a

simplifying assumption by add-MES can result in a false sense of certainty about the

maximizer x∗ (when, in reality, it should be highly uncertain) due to a high degree of

certainty about the maximum f(x∗) arising from the presence of local maxima. When

this happens, add-MES can be trapped easily in a local maximum since it wrongly

perceives that it does not need to explore more. Our add-PES algorithm avoids above

issue of add-MES and is designed to approximate the original form of (6.3) directly,

as will be shown next.

Similar to Section 5.3, we exploit the symmetric property of conditional mutual

information and rewrite (6.3) as

α(x, yX) =
C∑
i=1

(
H(f (i)(x(i))|yX)− E

p(x
(i)
∗ |yX)

[H(f (i)(x(i))|yX , x(i)
∗ )]
)

(6.4)

Since maxα(x, yX) = max
∑C

i=1 α
(i)(x(i), yX) =

∑C
i=1 maxα(i)(x(i), yX) where

α(i)(x(i), yX) , H(f (i)(x(i))|yX)− E
p(x

(i)
∗ |yX)

[H(f (i)(x(i))|yX , x(i)
∗ )] (6.5)

and depends on only a disjoint subset of x, we can select the next input x to be

evaluated for f(x) by maximizing each local acquisition function α(i)(x(i), yX) for i =

1, ..., C independently: x+ , arg maxx∈D α(x, yX) = ⊕Ci=1 arg maxx(i)∈D(i) α(i)(x(i), yX).

Due to (3.8), the first Gaussian predictive entropy term in (6.5) can be computed an-

alytically:

H(f (i)(x(i))|yX) , 0.5 log(2πeΣ
(i)

x(i)x(i)|X) (6.6)

To approximate the second term, we will first approximate the expectation using
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an additive form of random features for sampling x(i), and then, propose some novel

practical constraint for approximating the conditional entropy term, as detailed later.

6.2.1 Additive random features for sampling the high-dimensional

target maximizer

Recall from Section 5.3.1 that an unknown function f(x) modeled using GP can

be approximated analytically by a linear model using single-output random features

(SRF) [Rahimi and Recht, 2007] method. The original PES algorithm [Hernández-

Lobato et al., 2014] has exploited this result to sample x∗ by maximizing samples of

the linear model. Such a sampling method, however, also scales poorly in the number

of input dimensions due to the optimization step. To resolve this issue, Wang and

Jegelka (2017) has derived an additive random features (add-RF) method which will

be used in this work for approximating the expectation in (6.5) efficiently.

Using the result of SRF [Rahimi and Recht, 2007] which has been reviewed in

Section 5.3.1, each local function f (i)(x(i)) can be approximated by a linear model:

f (i)(x(i)) ≈ φ(i)(x(i))>θ(i) (6.7)

where φ(i)(x(i)) ,
√

2α/m cos(W>
i x

(i) + Bi) for i = 1, ..., C, Wi and Bi are defined

same as in (5.10). Then, due to (6.2) and (6.7), f(x) can also be approximated by a

linear model:

f(x) =
C∑
i=1

f (i)(x(i)) ≈
C∑
i=1

φ(i)(x(i))>θ(i) = φ(x)>θ (6.8)

where φ(x) , (φ(i)(x(i))>)>i=1,...,C , θ , (θ(i)>)>i=1,...,C . Then, due to (6.8) and yx ∼
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N (f(x), σ2
n),

p(yX |θ,W,B) =

∫
p(yX |fX)p(fX |θ,W,B)dfX = N (yX |Φ>θ, σ2

nI)

where Φ , (φ(x))x∈X . As a result, the posterior of θ is

p(θ|yX ,W,B) = N (θ|σ−2
n A−1ΦyX , A

−1) (6.9)

where A , σ−2
n ΦΦ>+ I. Let θ[s] denote a sample of θ from (6.9). The ith component

of θ[s] can be treated as a sample of θ(i), and thus, be used with a sample of φ(i)(x(i))

to approximated a sample of f (i)(x(i)) using (6.7). As a result, a sample of x(i) can

be achieved by maximizing the sample of f (i)(x(i)) for i = 1, ..., C independently. Let

X
(i)
∗ denote a set of samples of x(i) for i = 1, ..., C. Then, the expectation in (6.5) can

be approximated by averaging over the samples in X
(i)
∗ :

α(i)(x(i), yX) ≈ H(f (i)(x(i))|yX)− 1

|X(i)
∗ |

∑
x
(i)
∗ ∈X

(i)
∗

H(f (i)(x(i))|yX , x(i)
∗ ) . (6.10)

6.2.2 Approximating the additive PES

In this subsection, we will discuss how the second entropy them in (6.10) is approx-

imated. As has been mentioned in Section 5.3.2, for any i = 1, .., C, the condi-

tional probability p(f (i)(x(i))|yX , x(i)
∗ ) can be considered as a constrained version of

p(f (i)(x(i))|yX) by further conditioning on the local maximizer x
(i)
∗ , where p(f (i)(x(i))|yX)

has been shown to be Gaussian and can be computed analytically using (3.8). Intu-

itively, the posterior distribution of f (i)(x(i)) is constrained by

f (i)(x(i)) ≤ f (i)(x(i)
∗ ), ∀x(i) ∈ D(i) (6.11)
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Note that (6.11) appears to resemble that in the original PES. To formally character-

ize such a constraint, Hernández-Lobato et al. (2014) has simplified their constraint

as (a) only the function value of the next input to be selected by PES is smaller than

f (i)(x
(i)
∗ ), and (b) f (i)(x

(i)
∗ ) is larger than the noisy outputs in the past observations,

the latter of which, however, cannot be applied to our add-PES acquisition function

because the noisy output yx can only be observed for f(x) instead of each local func-

tion f (i)(x(i)). To resolve this issue, we propose the following simplified constraints

of (6.11) to approximate p(f (i)(x(i))|yX , x(i)
∗ ):

C1. f (i)(x(i)) ≤ f (i)(x
(i)
∗ ) for a given x(i) ∈ D(i) for i = 1, ..., C.

C2.
∑C

i=1 f
(i)(x

(i)
∗ ) ≥ ymax + ε where ymax , maxx∈X yx is the largest noisy output

observed by evaluating f(x) at X.

Note that C2 is defined jointly for {f (i)(x
(i)
∗ )}i=1,...,C , which fortunately, will not be an

issue for optimizing (6.4) independently for each i = 1, ..., C since C2 is independent

of x(i) and can be computed once jointly for {f (i)(x
(i)
∗ )}i=1,...,C and reused in the

approximation of C1 for each i = 1, ..., C, as detailed later.

6.2.2.1 Approximating constraint C2 which is independent of x(i)

Let f
(i)
∗ , f (i)(x

(i)
∗ ) and f∗ , (f

(i)
∗ )>i=1,...,C . We can use the cdf of a standard Gaus-

sian distribution to represent the probability of C2 and constrain the posterior joint

distribution p(f
(1)
∗ , ..., f

(C)
∗ |yX) with C2 by

p(f
(1)
∗ , ..., f

(C)
∗ |yX , C2) ≈ 1

Z
p(f (1)
∗ , ..., f (C)

∗ |yX)Φcdf(
a>f∗ − ymax

σn
)

=
1

Z
N (f∗|µ,Σ)Φcdf(

a>f∗ − ymax

σn
)

(6.12)

where a is a C-dimensional vector with all the entries of value 1, µ and Σ can be

computed analytically using (3.8). Then, the result of (6.12) can be approximated as
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a multivariate Gaussian distribution N (f ∗|µ′,Σ′) using a one step EP. Let m , a>µ,

v , a>Σa, t , (m− ymax)/
√
σ2
n + v and γ , φpdf(t)/Φcdf(t). Then,

µ′ = µ+
γ√
σ2
n + v

Σa , Σ′ = Σ− γ2 + γt

σ2
n + v

Σaa>Σ (6.13)

The derivation of µ′ and Σ′ is in Appendix C.1. As a result,

p(f (i)
∗ |yX , C2) =

∫
p(f∗|yX , C2)df (1)

∗ ...df (i−1)
∗ df (i+1)

∗ df (C)
∗ = N (f (i)

∗ |µ′i, v′i)

where µ′i , [µ′]i and v′i , [Σ′]ii.

6.2.2.2 Approximating constraint C1 which depends on x(i)

Next, we approximate C1 using the similar steps to that in Section 5.3.2.2. In par-

ticular, let f+ , [f
(i)
∗ ; f (i)(x(i))]. Then,

p(f+|yX , C2) = p(f (i)(x(i))|yX , f (i)
∗ )p(f (i)

∗ |yX , C2) = N (f+|µ+,Σ+)

where µ+ and Σ+ can be computed analytically using µ′i and the same steps as in

Appendix B.3. Let a1 , [−1; 1], m′ , a>1 µ+, v′ , a>1 Σ+a1, t′ , −m′/
√
v′ and γ′ ,

φpdf(t)/Φcdf(t). We can represent C1 using an indicator function and approximate

p(f (i)(x(i))|yX , C1, C2) as follows:

p(f (i)(x(i))|yX , C1, C2) ≈
∫

1

Z ′
p(f+|yX , C2)I(f (i)(x(i)) ≤ f (i)

∗ )df (i)
∗

≈
∫
N (f+|µ′+,Σ′+)df (i)

∗ = N (f (i)(x(i))|µ(i), v(i))

where v(i) , [Σ′+]22 and

Σ′+ = Σ+ −
1

v′
γ′(γ′ + t′)Σ+a1a

>
1 Σ+ . (6.14)
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The derivation of Σ′+ is same as that in Appendix B.4 with ci = 0. Let v(i)(x
(i)
∗ ) denote

v(i) computed using a sample x
(i)
∗ ∈ X

(i)
∗ of the local target maximizer of f (i)(x(i)).

Consequently, using (6.6), (6.10) and (6.14), the add-PES acquisition function can be

approximated by

α(i)(x(i), yX) ≈ 1

2
log(Σ

(i)

x(i)x(i)|X)− 1

2|X(i)
∗ |

∑
x
(i)
∗ ∈X

(i)
∗

log(v(i)(x(i)
∗ )) . (6.15)

The steps of add-PES is presented in Algorithm 3.

6.3 Experiments and Discussion

This section evaluates the high-dimensional BO performance of our add-PES algo-

rithm against that of (a) PES [Hernández-Lobato et al., 2014], (b) add-MES [Wang

and Jegelka, 2017] which maximizes the information gain of the maximal value

f (i)(x(i)) instead of the maximizer x(i) and (c) add-GP-UCB with β set according

to that recommended in [Kandasamy et al., 2015].

The synthetic functions with varying input dimensions are generated with (d, di) ,

(10, 2), (24, 3), (32, 4), (50, 5) and D , [0, 1]d. To do this, we used the following mean

and covariance functions for the GP of each local function

µ(i)(x(i)) , 0, σ(i)(x(i)
p , x

(i)
q ) , σ2

s exp

(
−||x

(i)
p − x(i)

q ||2

2l2

)

for i = 1, ..., C and set l2 , 0.01 when d = 10, l2 , 0.1 when d = 24, 32, 50 and σ2
s , 1

for all synthetic functions. All above hyperparameters are also used in the tested algo-

rithms to compute their acquisition functions. Then, a set X of 500 inputs is sampled

randomly from D and their corresponding outputs are sampled from the GP prior

with mean function µ(x) , 0 and covariance function σ(xp, xq) ,
∑M

i=1 σ
(i)(x

(i)
p , x

(i)
q ).
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The synthetic function is set to be the predictive mean function µx|X of this GP.

First, we show the difference between p(x
(i)
∗ |yX) and p(f (i)(x

(i)
∗ )|yX) by sampling

f (1)(x
(1)
∗ ) of the synthetic function with d = 10, which is used to demonstrate the ad-

vantage of add-PES compared to add-MES as mentioned in Section 6.2. An example

of 3 samples achieved using add-RF given 50 observations is shown in Figs. 6.1(a)-

(c). As can be seen, even though the locations of the maximizer vary a lot (i.e., large

uncertainty in x
(1)
∗ ) in these 3 samples, the maximal values (i.e., 2.1622, 2.1555 and

2.1706) of the sampled functions are very similar to each other (i.e., small uncertainty

in f (1)(x
(1)
∗ )). In such case, maximizing the information gain of x

(1)
∗ using add-PES

is expected to achieve a lot more information than maximizing the information gain

of f (1)(x
(1)
∗ ) using add-MES. To further demonstrate this, we present the acquisition

functions α(1)(x(1), yX) of add-MES and add-PES computed using above three sam-

ples in Figs. 6.1(e) and 6.1(f), respectively. The ground true of local function f (1)(x(1))

and its observations are also shown in Fig. 6.1(d). As can be seen, although the local

maximum area highlighted using a black box has been well exploited, add-MES still

gives large acquisition function values for this area, which makes it to trap in this

local maximum for longer time. In contrast, add-PES gives small acquisition function

values in this well-exploited area, and thus, shows better exploratory behavior than

add-MES as we have expected.

Next, we compare the performance of all tested algorithms by optimizing each

synthetic function with a budget of 500 observations. As has been shown in Wang

and Jegelka (2017) and Hernández-Lobato et al. (2017), a small number of samples

could help to improve the exploratory behavior of the algorithm, which is important

to globally optimize a function with high input dimensions (i.e., very larger search

space). To demonstrate this, we used 1 (i.e., add-PES-1 and add-MES-1) and 50 (i.e.,

add-PES-50 and add-MES-50) samples to approximate the acquisition functions of

both add-PES and add-MES. The performance of the tested algorithms are evaluated
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Figure 6.1: Surface plots of (a-c) samples of the first local function f (1)(x1) (d1 = 2)

of the synthetic function with d = 10 where ’4’ is the sample of local maximizer x
(i)
∗

and the number next to ’4’ is the sampled value of f (i)(x
(i)
∗ ), (d) the true local function

f (1)(x1) where ’+’ is the local input x(1) of existing observations and (e)-(f) the acquisition
function α(1)(x(1), yX) of add-MES and add-PES, respectively.

using immediate regret (IR) |f(x∗)− f(x̃∗)| where x̃∗ , ⊕Ci=1 arg maxx(i)∈D(i) µ
(i)

x(i)|X is

the recommended maximizer of the additive methods and x̃∗ , arg maxx∈D µx|X is the

recommended maximizer of PES. In each experiment, 10 observations are randomly

selected as the initialization. An averaged IR is obtained by optimizing each synthetic

function with 10 different initializations for each tested algorithm.

As shown in Fig. 6.2, add-PES can achieve a much lower averaged IR than PES,

which means that BO performance with high input dimensions can be improved

considerably by exploiting an additive structure of the function. For all tested func-

tions, add-GP-UCB and add-MES are shown to be trapped very easily in some local

maximum such that they cannot achieve a small averaged IR as that of add-PES-

1. Compared to add-PES-50, add-PES-1 can always perform better by using only
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(c) Synthetic − (32, 4)
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(d) Synthetic − (50, 5)
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Figure 6.2: Graphs of log10(averaged IR) vs. no. of iterations by tested algorithms for
synthetic functions with varying input dimensions. The input dimension d and di of x and
x(i), respectively, are shown in the title of each graph as (d, di).

a single sample. Furthermore, when the number of input dimensions is increased

from Fig. 6.2(a) to 6.2(d), the performance advantage arising from strong exploration

behavior through the use of a single sample of x∗ becomes obvious. This clear perfor-

mance advantage of simply choosing a single sample eliminates the need to carefully

set the number of samples to make add-PES perform well.

6.4 Summary

This chapter describes an add-PES algorithm for high-dimensional BO which is a

generalization of the PES by assuming an additive structure of the unknown func-
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tion. Novel constraint is proposed and approximated efficiently for achieving good

scalability of add-PES in the number of input dimensions. The empirical evaluation

on synthetic functions with varying input dimensions shows that add-PES outper-

forms the state-of-the-art high-dimensional BO algorithms and is very easy to decide

its parameter for achieving a good exploration-exploitation trade-off, which makes it

promising to perform well in different real-world applications.

However, the additive structure of the synthetic function is assumed to be known

in all above experiments, which is not true in the real-world applications. To learn the

additive structure when it is unknown, maximum likelihood estimation can be used

to select the best decomposition among a set of randomly selected ones [Kandasamy

et al., 2015]. More synthetic/real-world functions with unknown additive structure

will be used to test the performance of our algorithm in the future work.
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Algorithm 3 Additive PES (add-PES) for High-Dimensional BO

Input: A budget B; Input domain D; A set of random initializations (Xinit, yXinit
)

1: X ← Xinit;
2: while B ≥ 0 do
3: Sample a set of X

(i)
∗ for i = 1, ..., C;

4: for {x(i)
∗ }i=1,...,C in {X(i)

∗ }i=1,...,C do
5: Compute µ′ and Σ′ using (6.13); . Approximate constraint C2.
6: end for
7: x+ ← []; . Select the next input to evaluate f(x).
8: for i = 1 to C do
9: α(i)(· , yX)← ADDPES(X, yX , X

(i)
∗ , µ′,Σ′)

10: x(i) ← arg maxx(i)∈D(i) α(i)(x(i), yX)
11: x+ ← x+ ⊕ x(i); . Connect the selected input component.
12: end for
13: evaluate function f(x) at the selected input x+ to get the observation yx+ ;
14: X ← X ∪ {x+};
15: B ← B − cost(x);
16: end while
17: x̃∗ ← []; . Compute the maximizer of predictive mean for each local function.
18: for i = 1 to C do
19: x̃

(i)
∗ ← arg maxx(i)∈D(i) µ(i)(x(i)|yX); . µ(i)(· |yX) is constructed using (3.8).

20: x̃∗ ← x̃∗ ⊕ x̃(i)
∗ ;

21: end for
22: return x̃∗;
23:

24: procedure ADDPES(X, yX , , X
(i)
∗ , µ′,Σ′) . Approximate constraint C1.

25: for each x
(i)
∗ in X

(i)
∗ do

26: µ′i ← [µ′]i, v
′
i ← [Σ′]ii;

27: Compute µ+ and Σ+ using Appendix B.3;
28: Compute Σ′+ using (6.14);

29: v(i)(x
(i)
∗ )← [Σ′+]22

30: end for
31: return α(i)(· , yX) computed using (6.15)
32: end procedure
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Conclusion and Future Work

7.1 Conclusion

This thesis generalizes two data-efficient ML approaches (i.e., AL and BO) to mul-

tiple output types and high input dimensions. By exploiting the structure of some

form of GP-based probabilistic regression models, all the proposed algorithms in this

thesis have achieved better performance in selecting and gathering the most informa-

tion observations for learning the target variable(s) of interest more accurately and

efficiently given some budget constraints. The specific contributions for each work

are listed below:

1. Active learning of MOGP [Zhang et al., 2016]

• Novel active learning criterion for MOGP model. To resolve the scalability

issue in optimizing the conventional entropy criterion, we exploit a structure

common to a unifying framework of sparse MOGP models for deriving a novel

active learning criterion.

• Approximation algorithm with performance guarantee. To approximately op-
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timize the new criterion in a polynomial time, the ε-submodularity property

of our new criterion is exploited for devising a polynomial time approximation

algorithm that guarantees a constant factor approximation of that achieved by

the optimal set of selected observations.

• Empirical evaluation. Via evaluating the performance of our proposed algo-

rithm using three real-world datasets, we empirically show that our approxi-

mation algorithm m-Greedy outperforms existing algorithms for active learning

of MOGP and single-output GP models, especially when measurements of the

primary output types are more noisy than that of the auxiliary types.

2. PES for multi-fidelity BO

• Generalizing PES to multi-fidelity BO. To exploit the less noisy and/or cheaper

auxiliary function(s) of varying fidelities for accelerating the optimization of

the target function, we generalize the PES to multi-fidelity BO by modeling

the unknown target and auxiliary functions jointly as a CMOGP whose covari-

ance structure, interestingly, is used to formalize the fidelity of each auxiliary

function. More importantly, the proposed MF-PES algorithm can naturally

trade off between exploration vs. exploitation of the target and auxiliary func-

tions without needing to manually tune any such parameters, which makes it a

superior alternative among the limited selection of multi-fidelity BO algorithms

• Approximation of MF-PES. Since the proposed MF-PES acquisition function is

analytically intractable, we derive an efficient approximation of MF-PES via a

novel MRF approximation of the CMOGP model. In particular, MRF is first

used to improve the belief of the target maximizer, and then, is exploited to

approximate our newly proposed practical constraints for relating the global

target maximizer to that of auxiliary functions.
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• Empirical evaluation. We empirically evaluate and verify the superior perfor-

mance of our MF-PES algorithm over that of the state-of-the-art multi-fidelity

BO algorithms in both synthetic experiment and real-world hyperparameters

tuning applications.

3. PES for high-dimensional BO

• Additive PES (add-PES) for high-dimensional BO. To scale up the state-of-the-

art BO algorithm to high input dimensions, we proposed an additive form of

PES (i.e., add-PES) which selects each local and low-dimensional input compo-

nent independently for achieving the next input to evaluate the function. Inter-

estingly, although the practical constraints for approximating add-PES can only

be defined jointly over all input components, we show that it is still possible

to optimize an add-PES over each local input component independently using

some new EP steps.

• Empirical evaluation. We empirically demonstrate that our add-PES algo-

rithm achieves much better BO performance than the state-of-the-art high-

dimensional BO algorithms by simply using a single sample of the target maxi-

mizer for synthetic functions with varying input dimensions. Such results show

that our add-PES is much easier to decide its parameter (e.g., one sample) for

achieving appropriate exploration-exploitation trade-off, which makes it promis-

ing to perform well in different real-world applications.

7.2 Future Work

There are a few directions that can be pursued as continuation to the works in this

thesis.
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Firstly, in our works about data-efficient ML for multiple output types, we have

assumed that the hyperparameters (i.e., σsi , σni
, P0 and Pi for i = 1, ...,M in (3.2))

of CMOGP are point-based values and learned via maximum likelihood estimation

[Álvarez and Lawrence, 2011], which might not be efficient enough in practice when

the observations are too sparse to find the correct hyperparameters or too dense

such that updating CMOGP hyperparameters with a new observation requires long

training time. To resolve above issues, we would like to consider using probabilistic

hyperparameters instead of the point-based ones and marginalizing them for com-

puting the integrated acquisition function [Snoek et al., 2012] for multi-fidelity BO,

which can make the algorithm more robust to the sparse and/or noisy observations,

and thus, allows the CMOGP hyperparameters to be updated more accurately on

the fly of the AL/BO process. Furthermore, it’s also worth to investigate whether

the CMOGP hyperparameters can be updated incrementally at every iteration of the

proposed algorithms.

Secondly, another direction of multi-fidelity BO is to explore how to automatically

select the fidelity of the auxiliary function for trading off between the accuracy in

reproducing the target function and the cost. Using the hyperparameters tuning

application (Section 5.4) as an example: The auxiliary function in this problem is

constructed by training the ML model with a small subset of training data which

has a fixed size and is randomly selected . Given a time budget constraint, how to

select this subset of data for constructing auxiliary function(s) with specified fidelities

which able to achieve good BO performance has not been studied. To address this

issue, we can consider fusing our AL algorithm with multi-fidelity BO such that the

auxiliary function(s) can be more accurately constructed and the BO performance

can be improved as a consequence.

Thirdly, as has been mentioned at the end of Section 6.3, we will consider applying

our add-PES algorithm to some real-world applications such as the configuration set-
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ting of mobility-on-demand systems [Chen et al., 2013] and swarm robotics [Brambilla

et al., 2013]. In such applications, the parameters to be tuned are usually in super

high dimensions where a good high-dimensional BO algorithm is required. However,

for constructing an accurate additive model in this case, the optimal decomposition of

the high input dimensions need to be learned from the observations or some specific

features of the application, which is very difficult in practice due to the sparsity of

observations collected using BO, and thus, is a non-trivial and interesting issue to be

exploited in the future.

Finally, although both MF-PES and add-PES are generalizations of the PES algo-

rithm, they cannot be applied together straightforwardly since the additive structure

assumption used in add-PES has not been generalized to any multi-output GP model.

To resolve this issue, we can consider assuming an additive structure for either the

latent function L(x) or the original target and auxiliary functions fi(x) in CMOGP.

Then, a combination of the approximation steps in MF-PES (Chapter 5) and add-

PES (Chapter 6) will be considered for developing an algorithm of multi-fidelity BO

with high-dimensional input, which is a more general BO algorithm and may have

interesting real-world applications.
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Appendix A

Appendix of Chapter 4

A.1 Derivation of Novel Active Learning Criterion in

Equation (4.4)

arg minX:|X|=N H(YVt\Xt|YX)

= arg maxX:|X|=N H(YVt|LU)−H(YVt\Xt |YX)

= arg maxX:|X|=N H(YVt|LU)−H(YVt\Xt |LU) +H(YVt\Xt |LU) −

H(YVt\Xt |YX , LU) +H(YVt\Xt|YX , LU)−H(YVt\Xt |YX)

= arg maxX:|X|=N H(YXt |LU , YVt\Xt) + I(YVt\Xt ;YX |LU)− I(LU ;YVt\Xt |YX)

= arg maxX:|X|=N H(YXt |LU)− I(LU ;YVt\Xt |YX) .

The first equality follows from the fact that H(YVt |LU) is a constant. The third equal-

ity is due to the chain rule for entropy H(YVt|LU) = H(YVt\Xt |LU)+H(YXt |LU , YVt\Xt)

as well as the definition of conditional mutual information

I(YVt\Xt ;YX |LU) , H(YVt\Xt |LU)−H(YVt\Xt|YX , LU)
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and

I(LU ;YVt\Xt |YX) , H(YVt\Xt |YX)−H(YVt\Xt|YX , LU).

The last equality follows from structural property P2 shared by sparse CMOGP

regression models in the unifying framework [Álvarez and Lawrence, 2011] described in

Section 3.2.2, which results inH(YXt |LU , YVt\Xt)=H(YXt |LU) and I(YVt\Xt ;YX |LU)=0.

A.2 Time Complexity of Evaluating Active Learning

Criterion in Equation (4.4)

Due to (4.1), the first term of (4.4) can be written as

H(YXt |LU) =
1

2
log(2πe)|Xt||ΣXtXt|U |

where ΣXtXt|U = ΣXtXt − ΣXtUΣ−1
UUΣUXt by definition (see last paragraph of Sec-

tion 3.2.2). So, evaluating H(YXt |LU) incurs O(|U |3 + N3) time for every X ⊂ V ;

this worst-case time complexity occurs when all the tuples in X are of measurement

type t (i.e., X = Xt). Then, the second term of (4.4) can be written as

I(LU ;YVt\Xt|YX) = H(LU |YX)−H(LU |YX∪Vt\Xt)

=
1

2
log

|ΣUU |X |
|ΣUU |X∪Vt\Xt |

=
1

2
log

|ΣUU |X |
|ΣUU |

⋃
i6=tXi∪Vt |

where

ΣUU |A = ΣUU(ΣUU + ΣUAΛ−1
A ΣAU)−1ΣUU

for any A ⊂ D+, as derived in [Álvarez and Lawrence, 2011]. Therefore, evaluating

|ΣUU |X | incurs O(|U |3 + N3) time for every X ⊂ V ; this worst-case time complexity
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occurs when all the tuples in X are of one measurement type.

Let A ,
⋃
i 6=tXi ∪ Vt. Then, by the definition of ΛA (see last paragraph of

Section 3.2.2),

ΣUAΛ−1
A ΣAU =

∑
i 6=t

ΣUXi
Σ−1
XiXi|UΣXiU + ΣUVtΣ

−1
VtVt|UΣVtU .

Evaluating the
∑

i 6=t ΣUXi
Σ−1
XiXi|UΣXiU term incurs O(|U |3 + N3) time for every

X ⊂ V ; this worst-case time complexity occurs when all the tuples in X are of one

measurement type. Note that the ΣUVtΣ
−1
VtVt|UΣVtU term remains the same for every

X ⊂ V (i.e., since it is independent of X) and hence only needs to be computed once

in O(|Vt|3) time. Therefore, evaluating |ΣUU |
⋃

i 6=tXi∪Vt| = |ΣUU |A| incurs O(|U |3 +N3)

time for every X ⊂ V and a one-off cost of O(|Vt|3) time. Consequently, evaluating

I(LU ;YVt\Xt |YX) incurs O(|U |3 + N3) time for every X ⊂ V and a one-off cost of

O(|Vt|3) time. So, evaluating our active learning criterion in (4.4) incurs O(|U |3 +N3)

time for every X ⊂ V and a one-off cost of O(|Vt|3) time.

A.3 Derivation of Greedy Criterion in Equation (4.7)

If i = t, then

F (X ∪ {〈x, t〉})− F (X)

= H(YXt∪{〈x,t〉}|LU)− (H(LU |YX∪{〈x,t〉})−H(LU |YX∪{〈x,t〉}∪Vt\(Xt∪{〈x,t〉})))

−(H(YXt |LU)− (H(LU |YX)−H(LU |YX∪Vt\Xt)))

= H(YXt∪{〈x,t〉}|LU)−H(YXt |LU) + (H(LU |YX)−H(LU |YX∪{〈x,t〉}))

= H(Y〈x,t〉|YXt , LU) +H(Y〈x,t〉|YX)−H(Y〈x,t〉|YX , LU)

= H(Y〈x,t〉|LU) +H(Y〈x,t〉|YX)−H(Y〈x,t〉|LU)

= H(Y〈x,t〉|YX) .

(A.1)
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The first equality follows from (4.4) and (4.6). The second equality is due to

H(LU |YX∪{〈x,t〉}∪Vt\(Xt∪{〈x,t〉})) = H(LU |YX∪Vt\Xt). The third equality is due to the

chain rule for entropy H(YXt∪{〈x,t〉}|LU) = H(YXt |LU) + H(Y〈x,t〉|YXt , LU) as well

as the definition of conditional mutual information I(LU ;Y〈x,t〉|YX) , H(LU |YX) −

H(LU |YX∪{〈x,t〉}) = H(Y〈x,t〉|YX)−H(Y〈x,t〉|YX , LU). The second last equality follows

from structural property P2 shared by sparse CMOGP regression models in the uni-

fying framework [Álvarez and Lawrence, 2011] described in Section 3.2.2.

Otherwise (i.e., i 6= t),

F (X ∪ {〈x, i〉})− F (X)

= H(YXt |LU) − (H(LU |YX∪{〈x,i〉})−H(LU |YX∪{〈x,i〉}∪Vt\Xt))

−(H(YXt|LU)− (H(LU |YX)−H(LU |YX∪Vt\Xt)))

= H(YXt|LU)−H(YXt|LU) + (H(LU |YX) −

H(LU |YX∪{〈x,i〉})) +H(LU |YX∪Vt\Xt∪{〈x,i〉})−H(LU |YX∪Vt\Xt)

= H(Y〈x,i〉|YX)−H(Y〈x,i〉|LU , YX) +

H(Y〈x,i〉|YX∪Vt\Xt , LU)−H(Y〈x,i〉|YX∪Vt\Xt)

= H(Y〈x,i〉|YX)−H(Y〈x,i〉|LU) +H(Y〈x,i〉|LU)−H(Y〈x,i〉|YX∪Vt\Xt)

= H(Y〈x,i〉|YX)−H(Y〈x,i〉|YX∪Vt\Xt) .

(A.2)

The first equality follows from (4.4) and (4.6). The third equality is due to the

definition of conditional mutual information

I(LU ;Y〈x,i〉|YX) , H(LU |YX)−H(LU |YX∪{〈x,i〉}) = H(Y〈x,i〉|YX)−H(Y〈x,i〉|LU , YX)

and

I(LU ;Y〈x,i〉|YX∪Vt\Xt) , H(LU |YX∪Vt\Xt)−H(LU |YX∪Vt\Xt∪{〈x,i〉})

= H(Y〈x,i〉|YX∪Vt\Xt)−H(Y〈x,i〉|YX∪Vt\Xt , LU).
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The second last equality follows from structural properties P1 and P2 shared by

sparse CMOGP regression models in the unifying framework [Álvarez and Lawrence,

2011] described in Section 3.2.2. Therefore, (4.7) results.

A.4 Proof of Proposition 1

Before proving Proposition 1, the following lemmas are needed:

Lemma 3. For all X ⊂ V and 〈x, i〉 ∈ V \X, ΣPITC

〈x,i〉〈x,i〉|X ≥ σ2
ni

.

Its proof follows closely to that of Lemma 6 in [Cao et al., 2013].

Lemma 4. Assuming absence of suppressor variables, for all X ⊂ V and 〈x, i〉, 〈x′, j〉 ∈

V \X, |ΣPITC

〈x,i〉〈x′,j〉|X | ≤ 2|σ〈x,i〉〈x′,j〉|.

Proof. If i = j, then

|ΣPITC

〈x,i〉〈x′,j〉| = |σ〈x,i〉〈x′,j〉| ≤ 2|σ〈x,i〉〈x′,j〉| . (A.3)

If i 6= j, then

|ΣPITC

〈x,i〉〈x′,j〉| = |Γ〈x,i〉〈x′,j〉|

= |σ〈x,i〉〈x′,j〉 − Σ〈x,i〉〈x′,j〉|U |

≤ |σ〈x,i〉〈x′,j〉|+ |Σ〈x,i〉〈x′,j〉|U |

≤ 2|σ〈x,i〉〈x′,j〉| .

(A.4)

The first equality is due to (3.4) while the second equality follows from the definition

of Γ〈x,i〉〈x′,j〉 (see last paragraph of Section 3.2.2). The last inequality follows from

the practical assumption of absence of suppressor variables [Das and Kempe, 2008]:

|Σ〈x,i〉〈x′,j〉|U | ≤ |σ〈x,i〉〈x′,j〉|. Then,

|ΣPITC

〈x,i〉〈x′,j〉|X | ≤ |ΣPITC

〈x,i〉〈x′,j〉| ≤ 2|σ〈x,i〉〈x′,j〉| .
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The first inequality follows from the practical assumption of absence of suppressor

variables [Das and Kempe, 2008]. The second inequality is due to (A.3) and (A.4). �

Main Proof. Let B , Vt \ Xt. Using the spectral theorem, (ΣPITC

BB|X)−1 = WQW>

where the columns of W are the eigenvectors of (ΣPITC

BB|X)−1 and Q is a diagonal matrix

comprising the eigenvalues of (ΣPITC

BB|X)−1. Let λmax(A) and λmin(A) denote, respec-

tively, the maximum and minimum eigenvalues of matrix A, and α , W>ΣPITC

B〈x,i〉|X .

ΣPITC

〈x,i〉〈x,i〉|X − ΣPITC

〈x,i〉〈x,i〉|X∪Vt\Xt

= ΣPITC

〈x,i〉〈x,i〉|X −
(
ΣPITC

〈x,i〉〈x,i〉|X − ΣPITC

〈x,i〉B|X(ΣPITC

BB|X)−1ΣPITC

B〈x,i〉|X
)

= ΣPITC

〈x,i〉B|X(ΣPITC

BB|X)−1ΣPITC

B〈x,i〉|X

= ΣPITC

〈x,i〉B|XWQW>ΣPITC

B〈x,i〉|X

= α>Qα

≤ λmax((ΣPITC

BB|X)−1)α>α

=
ΣPITC

〈x,i〉B|XWW>ΣPITC

B〈x,i〉|X

λmin(ΣPITC

BB|X)

=
‖ΣPITC

〈x,i〉B|X‖2
2

λmin(ΣPITC

BB|X)

=

∑
〈x′,t〉∈B |ΣPITC

〈x,i〉〈x′,t〉|X |2

λmin(ΣPITC

BB|X)

≤
∑
〈x′,t〉∈B 4|σ〈x,i〉〈x′,t〉|2

λmin(ΣPITC

BB|X)

≤
4σ2

si
σ2
st

∑
〈x′,t〉∈BN (x− x′|0, P−1

0 + P−1
i + P−1

t )2

σ2
nt

= 4ρtσ
2
si
R(〈x, i〉, B) .

(A.5)

The first equality is due to the incremental update formula of GP posterior variance

(see Appendix C in [Xu et al., 2014]). The first inequality is due to the fact that Q is

a diagonal matrix comprising the eigenvalues of (ΣPITC

BB|X)−1. The fifth equality is due
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to a property of eigenvalues that λmax(A−1) = 1/λmin(A). The sixth equality follows

from the fact thatWW> = I. The second inequality follows from Lemma 4. The third

inequality is due to (3.2) and the fact that λmin(ΣPITC

BB|X) = λmin(ΣPITC

BB|X−σ2
nt
I+σ2

nt
I) =

λmin(ΣPITC

BB|X − σ2
nt
I) + σ2

nt
≥ σ2

nt
since λmin(ΣPITC

BB|X − σ2
nt
I) ≥ 0 (i.e., ΣPITC

BB|X − σ2
nt
I is a

positive semi-definite matrix). Then,

H(Y〈x,i〉|YX)−H(Y〈x,i〉|YX∪Vt\Xt)

=
1

2
log

ΣPITC

〈x,i〉〈x,i〉|X

ΣPITC

〈x,i〉〈x,i〉|X∪B

≤ 1

2
log

ΣPITC

〈x,i〉〈x,i〉|X∪B + 4ρtσ
2
si
R(〈x, i〉, B)

ΣPITC

〈x,i〉〈x,i〉|X∪B

≤ 1

2
log

(
1 +

4ρtσ
2
si
R(〈x, i〉, B)

σ2
ni

)
=

1

2
log(1 + 4ρtρiR(〈x, i〉, B)) .

The first inequality is due to (A.5) while the second inequality follows from Lemma 3.

A.5 Proof of Theorem 1

If i = t, then

H(Y〈x,t〉|YX) =
1

2
log(2πe)ΣPITC

〈x,t〉〈x,t〉|X

where ΣPITC

〈x,t〉〈x,t〉|X is previously defined in (3.4). So, evaluating H(Y〈x,t〉|YX) incurs

O(|U |2) time for every 〈x, t〉 ∈ Vt \Xt and O(|U |3 + N3) time in each iteration; this

worst-case time complexity occurs when all the tuples in X are of one measurement

type.
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Otherwise (i.e., i 6= t),

H(Y〈x,i〉|YX)−H(Y〈x,i〉|YX∪Vt\Xt) =
1

2
log

ΣPITC

〈x,i〉〈x,i〉|X

ΣPITC

〈x,i〉〈x,i〉|X∪Vt\Xt

=
1

2
log

ΣPITC

〈x,i〉〈x,i〉|X

ΣPITC

〈x,i〉〈x,i〉|
⋃

i 6=tXi∪Vt

where ΣPITC

〈x,i〉〈x,i〉|X and ΣPITC

〈x,i〉〈x,i〉|
⋃

i6=tXi∪Vt are previously defined in (3.4). Therefore,

evaluating ΣPITC

〈x,i〉〈x,i〉|X incurs O(|U |2) time for every 〈x, i〉 ∈ V-t \X-t and O(|U |3 +N3)

time in each iteration; this worst-case time complexity occurs when all the tuples in

X are of one measurement type.

Let A ,
⋃
i 6=tXi ∪ Vt. Then, by the definition of ΛA (see last paragraph of

Section 3.2.2),

ΣUAΛ−1
A ΣAU =

∑
i 6=t

ΣUXi
Σ−1
XiXi|UΣXiU + ΣUVtΣ

−1
VtVt|UΣVtU .

Evaluating the
∑

i 6=t ΣUXi
Σ−1
XiXi|UΣXiU term incurs O(|U |3 + N3) time in each it-

eration; this worst-case time complexity occurs when all the tuples in X are of

one measurement type. Note that the ΣUVtΣ
−1
VtVt|UΣVtU term remains the same in

each iteration (i.e., since it is independent of X) and hence only needs to be com-

puted once in O(|Vt|3) time in our approximation algorithm. As a result, evaluat-

ing ΣPITC

〈x,i〉〈x,i〉|
⋃

i 6=tXi∪Vt = ΣPITC

〈x,i〉〈x,i〉|A (specifically, its efficient formulation exploiting

ΣUAΛ−1
A ΣAU , as shown in [Álvarez and Lawrence, 2011]) incurs O(|U |2) time for ev-

ery 〈x, i〉 ∈ V-t \ X-t and O(|U |3 + N3) time in each iteration, and a one-off cost

of O(|Vt|3) time. Consequently, evaluating H(Y〈x,i〉|YX) − H(Y〈x,i〉|YX∪Vt\Xt) incurs

O(|U |2) time for every 〈x, i〉 ∈ V-t \X-t and O(|U |3 +N3) time in each iteration, and

a one-off cost of O(|Vt|3) time.

Since |U | ≤ |Vt| < |V |, our approximation algorithm thus incurs O(N(|V ||U |2 +

N3) + |Vt|3) time.
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A.6 Proof of Lemma 1

To prove that F (X) is ε-submodular, we have to show that

F (X ′ ∪ {〈x, i〉})− F (X ′) ≤ F (X ∪ {〈x, i〉})− F (X) + ε

for any X ⊆ X ′ ⊆ V and 〈x, i〉 ∈ V \X ′. Before doing this, the following lemma is

needed:

Lemma 5. Suppose that ε1 ≥ 0 is given. For any 〈x, i〉 ∈ V-t\X ′-t, if ΣPITC

〈x,i〉〈x,i〉|X∪Vt\X′t
−

ΣPITC

〈x,i〉〈x,i〉|X′∪Vt\X′t
≤ ε1, then I(Y〈x,i〉;YVt\X′t |YX′) ≤ I(Y〈x,i〉;YVt\X′t|YX) + ε where ε =

0.5 log(1 + ε1/σ
2
n∗).

Proof. Let X̄ , X ′ \X. Then,

I(Y〈x,i〉;YX̄ |YX∪Vt\X′t)

= H(Y〈x,i〉|YX∪Vt\X′t)−H(Y〈x,i〉|YX̄∪X∪Vt\X′t)

=
1

2
log

ΣPITC

〈x,i〉〈x,i〉|X∪Vt\X′t
ΣPITC

〈x,i〉〈x,i〉|X̄∪X∪Vt\X′t

≤ 1

2
log

ΣPITC

〈x,i〉〈x,i〉|X̄∪X∪Vt\X′t
+ ε1

ΣPITC

〈x,i〉〈x,i〉|X̄∪X∪Vt\X′t

=
1

2
log

(
1 +

ε1
ΣPITC

〈x,i〉〈x,i〉|X̄∪X∪Vt\X′t

)
≤ 1

2
log

(
1 +

ε1
σ2
ni

)
≤ 1

2
log

(
1 +

ε1
σ2
n∗

)
.

(A.6)

The first inequality is due to the sufficient condition. The second inequality follows

from Lemma 3. Then, by the definition of conditional mutual information,
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I(Y〈x,i〉;YVt\X′t|YX̄∪X) + I(Y〈x,i〉;YX̄ |YX)

= H(Y〈x,i〉|YX̄∪X)−H(Y〈x,i〉|YX̄∪X∪Vt\X′t) +H(Y〈x,i〉|YX)−H(Y〈x,i〉|YX̄∪X)

= H(Y〈x,i〉|YX)−H(Y〈x,i〉|YX̄∪X∪Vt\X′t)

= H(Y〈x,i〉|YX)−H(Y〈x,i〉|YX∪Vt\X′t) +H(Y〈x,i〉|YX∪Vt\X′t)−H(Y〈x,i〉|YX̄∪X∪Vt\X′t)

= I(Y〈x,i〉;YVt\X′t|YX) + I(Y〈x,i〉;YX̄ |YX∪Vt\X′t) .

Therefore,

I(Y〈x,i〉;YVt\X′t |YX′) = I(Y〈x,i〉;YVt\X′t |YX̄∪X)

= I(Y〈x,i〉;YVt\X′t |YX) + I(Y〈x,i〉;YX̄ |YX∪Vt\X′t)− I(Y〈x,i〉;YX̄ |YX)

≤ I(Y〈x,i〉;YVt\X′t |YX) + I(Y〈x,i〉;YX̄ |YX∪Vt\X′t)

≤ I(Y〈x,i〉;YVt\X′t |YX) + 0.5 log

(
1 +

ε1
σ2
n∗

)
.

The first inequality is due to the fact that conditional mutual information is non-

negative. The last inequality follows from (A.6). �

Main Proof. To prove that F (X) is ε-submodular, we have to show thatH(Y〈x,i〉|YX′)−

δiH(Y〈x,i〉|YX′∪Vt\X′t) ≤ H(Y〈x,i〉|YX) − δiH(Y〈x,i〉|YX∪Vt\Xt) + ε for any X ⊆ X ′ ⊆ V

and 〈x, i〉 ∈ V \X ′.

If i = t, then H(Y〈x,i〉|YX′) ≤ H(Y〈x,i〉|YX) ≤ H(Y〈x,i〉|YX) + ε for any ε ≥ 0 due to

the “information never hurts” bound for entropy [Cover and Thomas, 1991].

Otherwise (i.e., i 6= t),

H(Y〈x,i〉|YX′)−H(Y〈x,i〉|YX′∪Vt\X′t)

≤ H(Y〈x,i〉|YX)−H(Y〈x,i〉|YX∪Vt\X′t) + ε

≤ H(Y〈x,i〉|YX)−H(Y〈x,i〉|YX∪Vt\Xt) + ε
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where ε = 0.5 log (1 + ε1/σ
2
n∗). The first inequality is due to Lemma 5. The second

inequality follows from the “information never hurts” bound for entropy [Cover and

Thomas, 1991]: H(Y〈x,i〉|YX∪Vt\X′t) ≥ H(Y〈x,i〉|YX∪Vt\Xt) since (Vt \X ′t) ⊆ (Vt \Xt).

A.7 Proof of Theorem 2

Our proof here is similar to that of Theorem 1.5 in [Krause and Golovin, 2014] which

is a generalization of the well-known result of Nemhauser et al. (1978). The key

difference is that we exploit ε-submodularity of F (X) (i.e., Lemma 1) instead of

submodularity, as shown below for completeness.

Let X∗ , {〈x1, s1〉∗, . . . , 〈xN , sN〉∗} be the optimal set of selected observations, Xk

be the set of tuples selected by our approximation algorithm in iteration k = 1, . . . , N ,

X0 , ∅, and ∆(〈x, i〉|X) , F (X ∪ {〈x, i〉})− F (X) . Then,

F (X∗)

≤ F (X∗ ∪Xk)

= F (Xk) +
N∑
j=1

∆

(
〈xj, sj〉∗

∣∣∣∣∣
j−1⋃
r=1

{〈xr, sr〉∗} ∪Xk

)

≤ F (Xk) +
N∑
j=1

(
∆(〈xj, sj〉∗|Xk) + ε

)
≤ F (Xk) +

N∑
j=1

(
F (Xk+1)− F (Xk) + ε

)
≤ F (Xk) +N

(
F (Xk+1)− F (Xk) + ε

)
.

The first inequality follows from the nondecreasing property of F (X). The first

equality is a straightforward telescoping sum. The second inequality follows from the

ε-submodularity of F (X), as proven in Lemma 1. The third inequality follows from
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(4.7). Then,

F (X∗)− F (Xk) ≤ N
(
F (Xk+1)− F (Xk) + ε

)
. (A.7)

Let ζk , F (X∗) − F (Xk). Then, (A.7) can be rewritten as ζk ≤ N(ζk − ζk+1 + ε)

which can be rearranged to yield

ζk+1 ≤
(

1− 1

N

)
ζk + ε . (A.8)

Then, by recursion of (A.8), it is straightforward to get

ζk ≤
(

1− 1

N

)k
ζ0 +N

(
1−

(
1− 1

N

)k)
ε . (A.9)

Then, by substituting ζk = F (X∗)−F (Xk) and ζ0 = F (X∗)−F (X0) = F (X∗), (A.9)

can be rearranged to

F (Xk) ≥

(
1−

(
1− 1

N

)k)
(F (X∗)−Nε)

≥ (1− e−k/N)(F (X∗)−Nε) .

The second inequality follows from the well-known inequality e−x ≥ 1 − x. Finally,

Theorem 2 is obtained when k = N and ε = 0.5 log(1+ε1/σ
2
n∗), as defined in Lemma 1.
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A.8 Proof of Lemma 2

Let B , X̃ ∪ Vt \Xt and A , X \ X̃. From the incremental update formula of GP

posterior variance (see Appendix C in [Xu et al., 2014]),

ΣPITC

〈x,i〉〈x,i〉|B − ΣPITC

〈x,i〉〈x,i〉|B∪A

= ΣPITC

〈x,i〉〈x,i〉|B −
(
ΣPITC

〈x,i〉〈x,i〉|B − ΣPITC

〈x,i〉A|B(ΣPITC

AA|B)−1ΣPITC

A〈x,i〉|B
)

= ΣPITC

〈x,i〉A|B(ΣPITC

AA|B)−1ΣPITC

A〈x,i〉|B .

(A.10)

Let ΣPITC

AA|B , C+E where C is defined as a matrix with the same diagonal components

as ΣPITC

AA|B and off-diagonal components 0 while E is defined as a matrix with diagonal

components 0 and the same off-diagonal components as ΣPITC

AA|B. Then,

‖C−1‖2 = λmax(C−1)

=
1

λmin(C)

=
1

min〈x,i〉∈A ΣPITC

〈x,i〉〈x,i〉|B

≤ 1

σ2
ni

≤ 1

σ2
n∗
.

(A.11)

The first equality is due to a property of matrix norm in Section 10.4.5 in [Petersen

and Pedersen, 2012]. The second equality is due to a property of eigenvalues that

λmax(C−1) = 1/λmin(C). The third equality is due to the diagonal property of C.

The first inequality is due to Lemma 3.

Matrix E comprises off-diagonal components ΣPITC

〈x,i〉〈x′,j〉|B for all 〈x, i〉, 〈x′, j〉 ∈ A
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such that 〈x, i〉 6= 〈x′, j〉, each of which has an absolute value not more than 2σ2
s∗ξ

p2 :

|ΣPITC

〈x,i〉〈x′,j〉|B|

≤ 2|σ〈x,i〉〈x′,j〉|

= 2|σsiσsj |N (x− x′|0, P−1
0 + P−1

i + P−1
j )

= 2|σsiσsj | exp

{
−1

2

d∑
v=1

(xv − x′v)2

`ijv

}

≤ 2|σsiσsj | exp

{
−(x1 − x′1)2

2`ij1

}
≤ 2|σsiσsj | exp

{
−p

2ω2

2`

}
= 2|σsiσsj |ξp

2

≤ 2σ2
s∗ξ

p2

where xv is the v-th component of a d-dimensional location vector x and `ijv denotes

the v-th diagonal component of P−1
0 + P−1

i + P−1
j . The first inequality follows from

Lemma 4. The second equality is due to the precision matrices being diagonal. The

third inequality follows from ` , maxi,j∈{1,...,M} `
ij
1 and the fact that the distance

between x1 and x′1 of any 〈x, i〉, 〈x′, j〉 ∈ A must be at least pω due to the construction

of V −. Therefore,

‖E‖2 ≤ 2Nσ2
s∗ξ

p2 (A.12)

due to a property that the 2-norm of a matrix is at most its largest absolute component

multiplied by its dimension [Golub and Van Loan, 1996].

Similarly, ΣPITC

〈x,i〉A|B comprises components ΣPITC

〈x,i〉〈x′,j〉|B for all 〈x′, j〉 ∈ A, each of

which has an absolute value not more than 2σ2
s∗ξ

p2 :

|ΣPITC

〈x,i〉〈x′,j〉|B| ≤ 2|σ〈x,i〉〈x′,j〉| ≤ 2σ2
s∗ξ

p2 . (A.13)
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Now,

ΣPITC

〈x,i〉A|B(C + E)−1ΣPITC

A〈x,i〉|B − ΣPITC

〈x,i〉A|BC
−1ΣPITC

A〈x,i〉|B

= ΣPITC

〈x,i〉A|B
{

(C + E)−1 − C−1
}

ΣPITC

A〈x,i〉|B

≤ ‖ΣPITC

〈x,i〉A|B‖2
2‖(C + E)−1 − C−1‖2

≤
∑
〈x′,j〉∈A

|ΣPITC

〈x,i〉〈x′,j〉|B|2
‖C−1‖2‖E‖2

1
‖C−1‖2 − ‖E‖2

≤ 4Nσ4
s∗ξ

2p2 ‖C−1‖2‖E‖2

1
‖C−1‖2 − ‖E‖2

.

(A.14)

The first inequality is due to Cauchy-Schwarz inequality and submultiplicativity of

the matrix norm [Stewart and Sun, 1990]. The second inequality follows from an

important result in the perturbation theory of matrix inverses (in particular, Theorem

III.2.5 in [Stewart and Sun, 1990]). It requires the assumption ‖C−1E‖2 < 1. Using

(A.11), (A.12), and the matrix norm property in Section 10.4.2 in [Petersen and

Pedersen, 2012], this assumption can be satisfied by

‖C−1E‖2 ≤ ‖C−1‖2‖E‖2 ≤
2Nσ2

s∗ξ
p2

σ2
n∗

< 1.

Then,

p2 > log

(
σ2
n∗

2Nσ2
s∗

)/
log ξ . (A.15)

The last inequality in (A.14) is due to (A.13).
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Then, from both (A.10) and (A.14),

ΣPITC

〈x,i〉〈x,i〉|B − ΣPITC

〈x,i〉〈x,i〉|B∪A

= ΣPITC

〈x,i〉A|B(C + E)−1ΣPITC

A〈x,i〉|B

≤ ΣPITC

〈x,i〉A|BC
−1ΣPITC

A〈x,i〉|B + 4Nσ4
s∗ξ

2p2 ‖C−1‖2‖E‖2

1
‖C−1‖2 − ‖E‖2

≤ ‖ΣPITC

〈x,i〉A|B‖2
2‖C−1‖2 + 4Nσ4

s∗ξ
2p2 ‖C−1‖2‖E‖2

1
‖C−1‖2 − ‖E‖2

≤ 4Nσ4
s∗ξ

2p2‖C−1‖2 + 4Nσ4
s∗ξ

2p2 ‖C−1‖2‖E‖2

1
‖C−1‖2 − ‖E‖2

= 4Nσ4
s∗ξ

2p2‖C−1‖2

(
1 +

‖E‖2

1
‖C−1‖2 − ‖E‖2

)
=

4Nσ4
s∗ξ

2p2

1
‖C−1‖2 − ‖E‖2

≤ 4Nσ4
s∗ξ

2p2

σ2
n∗ − 2Nσ2

s∗ξ
p2
.

The first inequality is due to (A.14). The second inequality is due to Cauchy-Schwarz

inequality. The third inequality is due to (A.13). The last inequality follows from

(A.11) and (A.12).

To satisfy (4.8) in Lemma 1, let

4Nσ4
s∗ξ

2p2

σ2
n∗ − 2Nσ2

s∗ξ
p2
≤ ε1 .

Then,

p2 ≥ log

{
1

4σ2
s∗

(√
ε21 +

4ε1σ2
n∗

N
− ε1

)}/
log ξ . (A.16)

Finally, from both (A.15) and (A.16), Lemma 2 results.
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B.1 Derivation of (5.12)

Firstly, let A be a d × d positive-definite diagonal matrix and x, x′, w, and b be

d-dimensional vectors. Then the following convolutional result can be derived to be

used in our derivation of (5.12):∫
x′∈D

e−
1
2

(x−x′)>A(x−x′)ej(w
>x′+b) dx′

= ejb
∫
x′∈D

e−
1
2

(x>Ax−2x>Ax′+x′>Ax′)+jw>x′ dx′

= e−
1
2
x>Ax+jb

∫
x′∈D

e−
1
2
x′>Ax′+(x>A+jw>)x′ dx′

=

√
(2π)d

|A|
e−

1
2
x>Ax+jbe

1
2

(x>A+jw>)A−1(x>A+jw>)>

=

√
(2π)d

|A|
e−

1
2
x>Ax+jb+ 1

2
x>Ax+jx>w− 1

2
w>A−1w

=

√
(2π)d

|A|
ej(b+x

>w)− 1
2
w>A−1w.

(B.1)
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The third equality follows from a result generalizing the Gaussian integral described

at https://en.wikipedia.org/wiki/Gaussian integral#Generalizations.

From (5.2),

fi(x) =

∫
x′∈D

Ki(x− x′) L(x′) dx′

≈
∫
x′∈D

Ki(x− x′) φ(x′)>θ dx′

=
√

2α/m× θ>
(∫

x′∈D
Ki(x− x′) cos(w>q x

′ + bq) dx′
)>
q=1,...,m

= σsi

√
2α

m(2π)d|P−1
i |
× θ>

(∫
x′∈D

e−
1
2

(x−x′)>Pi(x−x′) cos(w>q x
′ + bq) dx′

)>
q=1,...,m

= σsi

√
2α

m(2π)d|P−1
i |
× θ>

(
1

2

∫
x′∈D

e−
1
2

(x−x′)>Pi(x−x′)
(
ej(w

>
q x
′+bq) + e−j(w

>
q x
′+bq)

)
dx′
)>
q=1,...,m

=
1

2
σsi

√
2α

m(2π)d|P−1
i |
×

√
(2π)d

|Pi|
× θ>

(
ej(bq+x>wq)− 1

2
w>q P

−1
i wq + e−j(bq+x>wq)− 1

2
w>q P

−1
i wq

)>
q=1,...,m

= σsi

√
2α

m
× θ>

(
1

2
e−

1
2
w>q P

−1
i wq

(
ej(bq+x>wq) + e−j(bq+x>wq)

))>
q=1,...,m

= σsi
√

2α/m× θ>
(
e−

1
2
w>q P

−1
i wq cos(w>q x+ bq)

)>
q=1,...,m

= σsi
√

2α/m× θ>diag(e−
1
2
W>P−1

i W ) cos(W>x+B)

= σsiθ
>diag(e−

1
2
W>P−1

i W )φ(x).

where wq is the q-th column of W and bq is the q-th component of B. The first

approximation is due to (5.11). The second and last equalities follow from (5.10). The

third equality is due to the definition of the convolved kernel: Ki(x) , σsiN (x|0, P−1
i ).

The fourth and third last equalities follow from the fact that cos(x) = 1
2
(ejx + e−jx)

which can be derived from the Euler’s formula. The fifth equality is due to (B.1).
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B.2 EP Approximation for (5.20)

Let tj(f
∗
j ) , Φcdf((fj(x∗t) + cj − ymaxj

)/σnj
) for j = 1, . . . ,M . Then, p(f ∗|yX , C2)

can be approximated by a multivariate Gaussian q(f ∗) such that each non-Gaussian

factor is replaced by a Gaussian factor, that is, tj(f
∗
j ) ≈ t̃j(f

∗
j ) , N (f ∗j |µ̃j, τ̃j). Let

µ̃ , (µ̃j)
>
j=1,...,M and Σ̃ be a M ×M diagonal matrix with Σ̃jj , τ̃j for j = 1, . . . ,M .

Then,

p(f ∗|yX , C2) =
1

Z
p(f ∗|yX)

M∏
j=1

tj(f
∗
j ) ≈ q(f ∗) , N (f ∗|µ,Σ)

=
1

Z
N (f ∗|µ0,Σ0)

M∏
j=1

N (f ∗j |µ̃j, τ̃j) (B.2)

where µ , Σ(Σ̃−1µ̃+ Σ−1
0 µ0) and Σ , (Σ̃−1 + Σ−1

0 )−1 can be obtained using Gaussian

identities, and µ0 and Σ0 are, respectively, the posterior mean vector and covariance

matrix of the Gaussian predictive distribution p(f ∗|yX) computed analytically us-

ing (5.5). With the multiplicative form of (B.2), EP [Minka, 2001] can be used to

compute the Gaussian factors t̃j(f
∗
j ) = N (f ∗j |µ̃j, τ̃j) for j = 1, . . . ,M in (B.2). Briefly

speaking, EP will start from some initial values for (µ̃j, τ̃j) and iteratively refine them,

as shown in next subsection.

From (B.2), the posterior distribution p(fi(x∗t)|yX , C2) can be approximated by

p(fi(x∗t)|yX , C2) =

∫
p(f ∗|yX , C2) df ∗1 . . . df

∗
i−1df ∗i+1 . . . df

∗
M

≈
∫
q(f ∗) df ∗1 . . . df

∗
i−1df ∗i+1 . . . df

∗
M = N (fi(x∗t)|µi, τi)

(B.3)

where µi is the i-th component of µ and τi is the i-th diagonal component of Σ.
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B.2.1 Steps for EP approximation

EP is a procedure that starts from some initial values for the parameters (µ̃j, τ̃j) of

the Gaussian factors t̃j(f
∗
j ) = N (f ∗j |µ̃j, τ̃j) for j = 1, ...,M and iteratively refines

these quantities. At each iteration, for every Gaussian factor t̃j(f
∗
j ), its contribution

is removed to form the cavity distribution

q−j(f
∗) ∝ q(f ∗)/t̃j(f

∗
j ) = N (f ∗|µ−j,Σ−j) .

Then, the cavity distribution q−j(f
∗
j ) follows a Gaussian distribution N (f ∗j |µ̄j, τ̄j)

with mean µ̄j , τ̄j(τ
−1
j µj − τ̃−1

j µ̃j) and variance τ̄j , (τ−1
j − τ̃−1

j )−1.

Let q̂(f ∗j ) , N (f ∗j |µ̂j, τ̂j) ∝ q−j(f
∗
j )tj(f

∗
j ) denote a new Gaussian distribution

whose j-th Gaussian factor t̃j(f
∗
j ) is replaced by its corresponding real factor tj(f

∗
j ). It

is well-known that when q(f ∗) is Gaussian, the distribution that minimizes KL(q̂(f ∗j )||q(f ∗j ))

is one whose first and second moments match that of q̂(f ∗j ). Let

Zj , log

∫
N (f ∗j |µ̄j, τ̄j) tj(f ∗j ) df ∗j . (B.4)

Then, the moments can be updated to

µ̂j , µ̄j + τ̄j
∂Zj

∂µ̄j
and τ̂j , τ̄j − τ̄ 2

j

([
∂Zj

∂µ̄j

]2

− 2
∂Zj

∂τ̄j

)
. (B.5)

The parameters of the Gaussian factor t̃j(f
∗
j ) = N (f ∗j |µ̃j, τ̃j) can be computed with

µ̃j = τ̃j(τ̂
−1
j µ̂j − τ̄−1

j µ̄j) and τ̃j = (τ̂−1
j − τ̄−1

j )−1 . (B.6)

By applying the results in Appendix B.2 in [Hernández-Lobato et al., 2014] to (B.4), (B.5),
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and (B.6), the parameters of t̃j(f
∗
j ) can be refined to

µ̃j = µ̄j + κ−1 and τ̃j = β−1 − τ̄j

where

α ,
µ̄j + cj − ymaxj√

τ̄j + σ2
nj

, β ,
φ(α)

Φcdf(α)

[
φ(α)

Φcdf(α)
+ α

]
1

τ̄j + σ2
nj

, and κ ,

[
φ(α)

Φcdf(α)
+ α

]
1√

τ̄j + σ2
nj

for j = 1, . . . ,M .

B.3 Derivation of Posterior Distribution p(f+|yX , C2)

Let X† , X ∪ {〈x∗t , i〉},

p(f+|yX , C2) = p(fi(x)|yX , f ∗i ) p(f ∗i |yX , C2) = N (f+|µ+,Σ+) (B.7)

with posterior mean vector µ+ , [µi; Ψ[yX ;µi]] and covariance matrix

Σ+ ,

 τi τiψ

ψτi σ2
〈x,i〉|X† + ψ2τi


where Ψ , Σ{〈x,i〉}X†Σ

−1
X†X†

and ψ is the last component of Ψ. Next, we will give the

derivation of µ+ and Σ+.

First, the following lemma is needed.

Lemma 6. Let a, b, c be three random vectors with dimension na, nb, nc and

p(a|c) = N (a|µa,Σa)
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p(b|a, c) = N (b|µb|a,c,Σb|a,c)

where µb|a,c , M1a + M2c + s = [M1,M2][a; c] + s. Then, the conditional joint

distribution of a and b given c is

p(a, b|c) = N ([a; b]|µa,b|c,Σa,b|c)

where

µa,b|c ,

 µa

[M1,M2][µa; c] + s

 and Σa,b|c ,

 Σa ΣaM
>
1

M1Σa Σb|a,c +M1ΣaM
>
1

 .
Proof. From the definition of multivariate Gaussian distribution,

p(a, b|c) = p(a|c) p(b|a, c) =
(2π)−(na+nb)/2√
|Σb|a,c||Σa|

e−
1
2
E (B.8)

where E , (b− µb|a,c)>Σ−1
b|a,c(b− µb|a,c) + (a− µa)>Σ−1

a (a− µa).

Let f , b−M1µa −M2c− s and e , a− µa. Then,

E = (b−M1a−M2c− s)>Σ−1
b|a,c(b−M1a−M2c− s) + (a− µa)>Σ−1

a (a− µa)

= (f −M1e)
>Σ−1

b|a,c(f −M1e) + e>Σ−1
a e

=

 a− µa
b−M1µa −M2c− s

>R−1

 a− µa
b−M1µa −M2c− s


(B.9)

where

R =

M>
1 Σ−1

b|a,cM1 + Σ−1
a −M>

1 Σ−1
b|a,c

−Σ−1
b|a,cM1 Σ−1

b|a,c

−1

=

 Σa ΣaM
>
1

M1Σa Σb|a,c +M1ΣaM
>
1

 .
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The last equality of (B.9) can be computed from equation 50 in [Schön and Lindsten,

2011] and the second equality of R is due to equation 9d in [Schön and Lindsten,

2011]. Also,
1

|R|
=

1

|Σa||Σb|a,c|

due to equation 51 in [Schön and Lindsten, 2011]. Therefore, (B.8) can be written as

p(a, b|c)

=
(2π)−(na+nb)/2√

|R|
exp

−1

2

 a− µa
b−M1µa −M2c− s

>R−1

 a− µa
b−M1µa −M2c− s




= N

[a; b]

∣∣∣∣∣
 µa

[M1,M2][µa; c] + s

 , R
 .

(B.10)

Then, in (B.7), we know that p(fi(x)|yX , f ∗i ) = N (fi(x)|µ〈x,i〉|X† , σ2
〈x,i〉|X†) with

µ〈x,i〉|X† , Σ{〈x,i〉}X†Σ
−1
X†X†

[yX ; f ∗i ] and p(f ∗i |yX , C2) = N (f ∗i |µi, τi) (B.3). There-

fore, (B.7) can be easily obtained by replacing a, b, and c in Lemma 6 with f ∗i , fi(x),

and yX , respectively.

B.4 Derivation of Posterior Covariance Matrix in (5.23)

Let r , a>f+. From (B.7) and (5.22),

Z ′ =

∫
N (f+|µ+,Σ+) I(fi(x)− fi(x∗t) ≤ δici) df+

=

∫
N (r|η, v) I(r ≤ δici) dr = Φcdf

(
δici − η√

v

)
.

(B.11)
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Let Z
′
, logZ ′. Then, the derivative of Z

′
with respect to the posterior mean vector

µ+ and covariance matrix Σ+ can be computed as follows:

∂Z
′

∂µ+
=
∂Z
′

∂η

∂η

∂µ+
=

1

Φcdf((δici − η)/
√
v)

φ

(
δici − η√

v

)(
− 1√

v

)
a = − γ√

v
a

∂Z
′

∂Σ+
=
∂Z
′

∂v

∂v

∂Σ+
=

1

Φcdf((δici − η)/
√
v)

φ

(
δici − η√

v

)
η − δici
2v
√
v
aa> =

γ(η − δici)
2v
√
v

aa>.

Then,

Σf+ = Σ+ − Σ+

[ ∂Z ′
∂µ+

][
∂Z
′

∂µ+

]>
− 2

∂Z
′

∂Σ+

Σ+

= Σ+ − Σ+

(
γ2

v
aa> − γ(η − δici)

v
√
v

aa>
)

Σ+

= Σ+ − γ

v

(
γ − η − δici√

v

)
Σ+aa>Σ+.

(B.12)

The first equality is due to (B.5).

B.5 Generalizing to Multiple Latent Functions

B.5.1 CMOGP with multiple latent functions

Let {Lq(x)}q=1,...,Q denote a set of Q independent latent functions. Then, CMOGP

defines each i-th function fi as

fi(x) ,
Q∑
q=1

∫
x′∈D

Kiq(x− x′) Lq(x′) dx′ . (B.13)

Similar to CMOGP with only one latent function, the work of [Álvarez and Lawrence,

2011] has shown that if every {Lq(x)}x∈D is an independent GP for q = 1, . . . , Q, then

{fi(x)}〈x,i〉∈D+ is also a GP. Specifically, let {Lq(x)}x∈D be a GP with prior covariance
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σqxx′ , N (x− x′|0, P−1
0q ) and Kiq(x) , σsiqN (x|0, P−1

i ). Then,

σ〈x,i〉〈x′,j〉 =

Q∑
q=1

σsiqσsjqN (x− x′|0, P−1
0q + P−1

i + P−1
j ) . (B.14)

The Gaussian predictive distribution in (5.5) and the subsequent results in Sec-

tion 5.3 related to CMOGP remain valid by computing its posterior covariance matrix

with (B.14) instead of (5.3).

Similar to that in Section 5.1, the fidelity of an auxiliary function fi with respect

to target function ft can be computed using (B.14) as

ρi , σ〈x∗i ,i〉〈x∗t ,t〉/(σ
′
si
σ′st) (B.15)

where σ′si ,
(∑Q

q=1 σ
2
siq
/(2π|P−1

0q + 2P−1
i |)1/2

)1/2

. Note that (B.15) reduces to (5.4)

when Q = 1.

B.5.2 MRF approximation with multiple latent functions

In this subsection, we will extend the MRF approximation described in Section 5.3.1

to approximate the CMOGP model with multiple latent functions.

Similar to that in Section 5.3.1, the covariance function of the GP modeling Lq

can be written as

σqxx′ = αq

∫
p(wq) e

−jw>q (x−x′) dwq

= 2αq Ep(wq ,bq)[cos(w>q x+ bq) cos(w>q x
′ + bq)]

where p(wq) , s(wq)/αq, s(wq) is the Fourier dual of σqxx′ , and bq ∼ U [0, 2π]. Then,

126



Chapter B. Appendix of Chapter 5

each latent function Lq can be approximated by a linear model:

Lq(x) ≈ φq(x)>θq (B.16)

where φq(x) ,
√

2αq/m cos(W>
q x + Bq) for q = 1, . . . , Q, and Wq and Bq consist of

m stacked samples from p(wq) and p(bq), respectively. Let

fiq(x) ,
∫
x′∈D

Kiq(x− x′) Lq(x′) dx′ . (B.17)

Then,

fi(x) =

Q∑
q=1

fiq(x) =

Q∑
q=1

φiq(x)>θq = Φi(x)>θ (B.18)

where θ , (θ>q )>q=1,...,Q, Φi(x) , (φiq(x)>)>q=1,...,Q, and

φiq(x) , σsiq diag(e−
1
2
W>q P

−1
i Wq) φq(x)

can be interpreted as the input features of function fi(x) corresponding to the latent

function Lq(x). The first equality is due to (B.13) and (B.17). The second equality

is due to (5.12), (B.16), and (B.17).

Since (B.18) has exactly the same form as (5.12), all the results in Section 5.3.1

will remain valid for MRF approximation with multiple latent functions.

B.6 Details of the Benchmark Functions

Let x(i) be the i-th component of an input x. The following benchmark functions are

used in our experiments:

Hartmann-6D function. D , [0, 1]6, fi(x) ,
∑4

j=1 β
(i)
j exp(

∑6
k=1Ajk(x(k) −

Pjk)) where A,P ∈ R4×6 are fixed matrices:
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A ,


10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

 ,

P , 10−4 ×


1312 1696 5569 124 8283 5886

2329 4135 8307 3736 1004 9991

2348 1451 3522 2883 3047 6650

4047 8828 8732 5743 1091 381


and β

(i)
j is the j-th component of the vector β(i) which varies for different functions,

as shown in Table B.1 below.

Name Function expression σ2
ni

Degree ρi of

fidelity

target f1(x) with β(1) , [1.0, 1.2, 3.0, 3.2] 10−3 1

func1 fi(x) with β(i) , β(1) + [0.1,−0.1,−0.01, 0.01] 10−4 0.9995

func2 fi(x) with β(i) , β(1) + [1, 1,−1,−1] 10−4 0.8759

func3 fi(x) with β(i) , β(1) + [4, 4,−4,−4] 10−4 0.0037

Table B.1: The target and 3 different auxiliary functions for Hartmann-6D. The fidelity ρi
of the auxiliary function is calculated using the generalized expression (B.15) for multiple
latent functions.

Branin-Hoo function. For all the target and auxiliary functions, D , [0, 1]2.

The noise variance σ2
ni

is set to be 10−3 and 10−4 for the outputs of Branin function

(i.e., target) and auxiliary function (i.e., func1, func2 or func3), respectively.
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Name Function expression
Degree ρi

of fidelity

target
f1(x) , − 1

51.95

[(
x̄2 − 5.1x̄21

4π2 + 5x̄1
π
− 6
)2

+
(
10− 10

8π

)
cos(x̄1)− 44.81

]
where x̄1 , 15x(1) − 5, x̄2 , 15x(2)

1

func1 f2(x) , f1(x) 0.9997

func2
f2(x) , − 1

51.95

[(
x̄2 − 5.1x̄21

4π2 + 5x̄1
π
− 6
)2

+
(
10− 10

8π

)
cos(x̄1)− 44.81

]
where x̄1 , 15(x(1) + 0.01)− 5, x̄2 , 15(x(2) + 0.01)

0.9992

func3
f2(x) ,

(
1− exp( −1

2x(2)
)
)(

2300x3
(1)

+1900x2
(1)

+2092x(1)+60

100x3
(1)

+500x2
(1)

+4x(1)+20

)
(i.e., Currin exponential function)

0.0683

Table B.2: The target and 3 different auxiliary functions for Branin-Hoo. The fidelity ρi
of the auxiliary function is calculated using the generalized expression (B.15) for multiple
latent functions. The fidelity of auxiliary function func1 is not exactly 1 due to the
trained hyperparameters P1 6= P2 because the limited training data/observations gathered
from evaluating the target and auxiliary functions are corrupted by different noises and
correspond to different sets of inputs such that the trained CMOGP model cannot achieve
the true cross-correlation between these functions.
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Appendix of Chapter 6

C.1 Derivation of (6.13)

Let r , a>f ∗. The normalization term Z in (6.12) can be computed as

Z =

∫
N (f∗|µ,Σ)Φcdf(

a>f∗ − ymax

σn
)df∗

=

∫
N (r|m, v)Φcdf(

r − ymax

σn
)dr = Φ(t)

The last equality is due to equation (3.82) in [Rasmussen and Williams, 2006]. Let

Z ′ , logZ. Then, the derivative of Z ′ with respect to the posterior mean vector µ

and covariance matrix Σ can be computed as follows:

∂Z ′

∂µ
=
∂Z ′

∂m

∂m

∂µ
=

1

Φcdf(t)
φpdf(t)

1√
σ2
n + v

a =
γa√
σ2
n + v

∂Z ′

∂Σ
=
∂Z ′

∂v

∂v

∂Σ
=

1

Φcdf(t)
φpdf(t)(m− ymax)(−1

2
)(σ2

n + v)−
3
2aa> = − γt

2(σ2
n + v)

aa>

where γ , φpdf(t)/Φcdf(t). Then, using the result in (B.5), we can approximate the

distribution of p(f
(1)
∗ , ..., f

(C)
∗ |yX , C2) as a multivariate Gaussian with the following
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posterior mean vector and covariance matrix:

µ′ = µ+ Σ
∂Z ′

∂µ
= µ+

γ√
σ2
n + v

Σa

Σ′ = Σ− Σ

([
∂Z ′

∂µ

] [
∂Z ′

∂µ

]>
− 2

∂Z ′

∂Σ

)
Σ

= Σ− Σ

(
γ2

σ2
n + v

aa> +
γt

σ2
n + v

aa>
)

Σ

= Σ− γ2 + γt

σ2
n + v

Σaa>Σ
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