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Abstract

Recent advances in Bayesian optimization (BO) have delivered a promising suite

of tools for optimizing an unknown expensive to evaluate black-box objective func-

tion with a finite budget of evaluations. A significant advantage of BO is its general

formulation: BO can be utilized to optimize any black-box objective function. As a

result, BO has been applied in a wide range of applications such as automated ma-

chine learning, robotics or environmental monitoring, among others. Furthermore, its

general formulation makes BO attractive for deployment in new applications. How-

ever, potential new applications can have additional requirements not satisfied by the

classical BO setting. In this thesis, we aim to address some of these requirements in

order to scale up BO technology for the practical use in new real-world applications.

Firstly, this thesis tackles the problem of data privacy, which is not addressed by

the standard setting of BO. Specifically, we consider the outsourced setting where the

entity holding the dataset and the entity performing BO are represented by different

parties, and the dataset cannot be released non-privately. For example, a hospital

holds a dataset of sensitive medical records and outsources the BO task on this dataset

to an industrial AI company. We present the private-outsourced-Gaussian process-

upper confidence bound (PO-GP-UCB) algorithm, which is the first algorithm for

privacy-preserving BO in the outsourced setting with a provable performance guar-

antee. The key idea of our approach is to make the BO performance of our algo-

rithm similar to that of non-private GP-UCB run using the original dataset, which is

achieved by using a random projection-based transformation that preserves both pri-

vacy and the pairwise distances between inputs. Our main theoretical contribution is

to show that a regret bound similar to that of the standard GP-UCB algorithm can be

established for our PO-GP-UCB algorithm. We empirically evaluate the performance

of our algorithm with synthetic and real-world datasets.
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Secondly, we consider applications of BO for hotspot sampling in spatially varying

phenomena. For such applications, we exploit the structure of the spatially varying

phenomenon in order to increase the BO lookahead and, as a result, improve the

performance of the algorithm and make it more suitable for practical use in real-

world scenarios. To do this, we present a principled multi-staged Bayesian sequential

decision algorithm for nonmyopic adaptive BO that, in particular, exploits macro-

actions for scaling up to a further lookahead to match up to a larger available budget.

To achieve this, we first generalize GP-UCB to a new acquisition function defined

with respect to a nonmyopic adaptive macro-action policy, which, unfortunately, is

intractable to be optimized exactly due to an uncountable set of candidate outputs.

The key novel contribution of our work here is to show that it is in fact possible

to solve for a nonmyopic adaptive ε-Bayes-optimal macro-action BO (ε-Macro-BO)

policy given an arbitrary user-specified loss bound ε via stochastic sampling in each

planning stage which requires only a polynomial number of samples in the length of

macro-actions. To perform nonmyopic adaptive BO in real time, we then propose an

asymptotically optimal anytime variant of our ε-Macro-BO algorithm with a perfor-

mance guarantee. Empirical evaluation on synthetic and real-world datasets shows

that our proposed approach outperforms existing state-of-the-art algorithms.

Finally, this thesis proposes a black-box attack for adversarial machine learning

based on BO. Since the dimension of the inputs in adversarial learning is usually too

high for applying BO directly, our proposed attack applies dimensionality reduction

and searches for an adversarial perturbation in a low-dimensional latent space. The

key idea of our approach is to automate both the selection of the latent space dimen-

sion and the search of the adversarial perturbation in the selected latent space by using

BO. Additionally, we use Bayesian optimal stopping to boost the query efficiency of

our attack. Performance evaluation using image classification datasets shows that our

proposed method outperforms the state-of-the-art black-box adversarial attacks.
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Chapter 1

Introduction

1.1 Motivation

Design problems are central to developing complex systems in various domains of

technology: in healthcare, doctors and pharmacologists need to design new drugs

and tools for treating their patients; in manufacturing, engineers need to design

new machines and mechanisms efficiently; in software engineering and computer sci-

ence, researchers and practitioners need to design advanced programs, algorithms

and libraries. All complex systems mentioned above can have dozens of different

parameters, e.g., parameters of a treatment protocol in healthcare, parameters of a

production line in engineering or parameters of a program configuration in software

engineering. These parameters can dramatically impact the behavior of the whole

complex system. Therefore, finding their optimal values is a crucial part of the sys-

tem design strategy. However, the process of parameter selection can be very costly,

since it can require restarting the clinical trial of the drug or the production line of a

mechanism. As a consequence, many parameters of complex systems similar to those

described above are often manually set, resulting in potentially suboptimal system
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behavior. Additionally, due to the complex structure of the system, these design

objectives cannot be expressed in closed form and their gradient information is not

available. Therefore, optimizing the performance of the complex system as a function

of its parameters can be formulated as black-box optimization – global optimization

of functions which are expensive to evaluate and do not have a closed form, analytical

description or access to gradient information.

Bayesian optimization (BO) has become an increasingly popular method for opti-

mizing highly complex black-box functions due to its sample efficiency. BO has been

applied in a wide range of applications like automated machine learning [Bergstra et

al., 2011; Hoffman et al., 2014; Snoek et al., 2012; Swersky et al., 2013; Thornton

et al., 2013], robotics [Lizotte et al., 2007; Martinez-Cantin et al., 2007], sensor net-

works [Garnett et al., 2010], reinforcement learning [Brochu et al., 2010] or synthesis

of new materials [Li et al., 2017], among others. BO is a sequential design strategy:

It maintains a statistical model of the unknown objective function and uses an ac-

quisition function to repeatedly select an input for evaluating the unknown objective

function until the budget is exhausted.

A significant advantage of BO is its general formulation: BO can be utilized to

optimize any black-box objective function. As a result, BO algorithms have been used

in a wide range of problems, as discussed in the previous paragraph. Furthermore,

its general formulation and considerable success make BO technology attractive for

deployment in new applications. However, potential new applications can have addi-

tional requirements not satisfied by the classical BO setting. In this thesis, we aim

to address some of these requirements in order to scale up BO technology for the

practical use in new real-world applications. In particular, this thesis aims to address

the following limitations of the current BO algorithms in order to facilitate future

deployment of BO in new applications:
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1. Privacy-preserving BO in outsourced setting. In many applications,

general-purpose optimization is provided by commercial companies. In re-

cent years, such scenarios of optimization as a service have become increasingly

prevalent: SigOpt uses BO as a commercial service for black-box global opti-

mization by providing query access to the users [Dewancker et al., 2016], Google

Cloud AutoML offers the optimization of the architectures of neural networks as

a cloud service and Microsoft Azure provides tools for tuning the hyperparame-

ters of machine learning models as a service. In all these examples, optimization

is performed in the outsourced setting, in which the entity holding the dataset

(referred to as the curator hereafter) and the entity performing optimization

(referred to as the modeler hereafter) are represented by different parties.

From the point of view of the entity holding the dataset (the curator), the

outsourced setting of optimization naturally has to account for privacy issues.

These privacy issues arise due to the widespread use of machine learning (ML)

models in applications dealing with sensitive datasets such as health care [Yu

et al., 2013], insurance [Chong et al., 2005] and fraud detection [Ngai et al.,

2011]. On the other hand, the commercial company (the modeler) is often

unwilling to share the details of their proprietary optimization algorithm and

its implementation. Therefore, for the case of general-purpose optimization in

the outsourced setting, the curator and the modeler are represented by differ-

ent parties with potentially conflicting interests, as further illustrated with the

following examples:

• A hospital is trying to find out which patients are likely to be readmitted

soon based on the result of an expensive medical test [Yu et al., 2013].

Due to cost and time constraints, the hospital (curator) is only able to

perform the test for a limited number of patients, and thus outsources the
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task of selecting candidate patients for testing to an industrial AI company

(modeler). In this case, the inputs to BO are medical records of individual

patients and the function to maximize (the output measurement) is the

outcome of the medical test for different patients, which is used to assess

the possibility of readmission. The hospital is unwilling to release the

medical records, while the AI company does not want to share the details

of their proprietary algorithm.

• A bank aims to identify the loan applicants with the highest return on

investment and outsources the task to a financial AI consultancy. In this

case, each input to BO is the data of a single loan applicant and the output

measurement to be maximized is the return on investment for different ap-

plicants. The bank (curator) is unable to disclose the raw data of the loan

applicants due to privacy and security concerns, whereas the AI consul-

tancy (modeler) is unwilling to share the implementation of their selection

strategy.

• A real estate agency attempts to locate the cheapest private properties in

an urban city. Since evaluating every property requires sending an agent

to the corresponding location, the agency (curator) outsources the task of

selecting candidate properties for evaluation to an AI consultancy (mod-

eler) to save resources. Each input to BO is a set of features representing a

single property and the function to minimize (the output measurement) is

the evaluated property price. The agency is unable to disclose the particu-

lars of their customers due to legal implications, while the AI consultancy

refuses to share their decision-making algorithm.

A popular way of protecting the privacy of the dataset, as required by the sce-

narios mentioned above, is to apply the cryptographic framework of differential
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privacy (DP) [Dwork et al., 2006], which has become the state-of-the-art tech-

nique for private data release and has been widely adopted in ML [Sarwate

and Chaudhuri, 2013]. However, DP is usually achieved by adding noise, which

might negatively affect the performance of the optimization algorithm. There-

fore, in order to provide a practical BO solution for outsourced setting, our

aim is in designing a BO algorithm, which provides privacy guarantees for the

dataset and reliable BO performance.

2. Nonmyopic BO for hotspot sampling. Black-box optimization can be

applied to many practical problems for hotspot sampling in spatially varying

phenomena: environmental sensing (e.g., finding a hotspot of peak phytoplank-

ton abundance [Pennington et al., 2016]), mobile sensor networks (e.g., find-

ing a hotspot of road traffic phenomena [Chen et al., 2015]) or monitoring

of the indoor environmental quality (e.g., finding a hotspot of indoor tem-

perature phenomena [Choi et al., 2012]). Obtaining samples in such appli-

cations can be prohibitively expensive, which typically results in a limited

sampling budget. Therefore, the known convergence rates (i.e., asymptotic

performance guarantees in the limit) [Bull, 2011; Vazquez and Bect, 2010;

Srinivas et al., 2010] of existing myopic BO algorithms are not applicable here,

making these algorithms suboptimal in this case. To this end, an optimal BO

algorithm could be constructed by performing optimization with respect to the

given finite budget, thus motivating the need for nonmyopic BO algorithms.

However, most of the existing nonmyopic BO algorithms have been empirically

demonstrated to be effective and tractable for at most a lookahead of 5 ob-

servations, which is usually much smaller than the size of the available budget

in practice, and causes these algorithms to behave suboptimally. Scaling up a

BO algorithm to a further lookahead to match up to a larger available bud-
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get would significantly improve the performance of the algorithm and make it

more suitable for practical use in real-world scenarios. In the context of hotspot

sampling, a natural way to approach the problem of increasing the lookahead

would be by exploiting the structure of the spatially varying phenomenon. The

question is, therefore, how the structure and correlation within the spatially

varying phenomenon can be utilized in order to increase the BO lookahead.

3. BO for adversarial learning. Significant advances in artificial intelligence

(AI) in recent years have resulted in the remarkable rate of adoption of AI tools

in various industries. Among others, these tools have been used in applications

with high security risks such as identity verification [Liu et al., 2018], financial

services [Heaton et al., 2017] or autonomous driving [Bojarski et al., 2016].

Naturally, this has raised concerns on whether AI technologies, in particular,

deep neural networks are vulnerable to adversarial attacks. In response to these

concerns, adversarial machine learning, which studies vulnerabilities in machine

learning algorithms, has emerged as an important area of research.

In contrast to the traditional machine learning algorithms, which were originally

designed for benign environments, the adversarial learning setting assumes the

presence of an attacker (adversary). The attacker tries to fool the target ma-

chine learning model by querying it with a malicious input. In the context of

image classification using deep neural networks, the attacker adds a small per-

turbation which is imperceptible by humans to an input image with the goal of

making the network classify the perturbed image incorrectly. In real-life appli-

cations, such attacks can lead to devastating consequences. For instance, the

attacker can paste a small, specially crafted patch on a “Stop” road sign. While

most humans would not find this patch suspicious, the deep learning based sys-

tem used by an autonomous vehicle would misclassify the sign with the added
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patch as “Speed Limit 45” [Eykholt et al., 2018].

The majority of adversarial attacks proposed in the literature are white-box :

they assume that the attacker has a full knowledge of the target model ar-

chitecture [Moosavi-Dezfooli et al., 2016; Kurakin et al., 2016; Carlini and

Wagner, 2017; Chen et al., 2018]. However, if the target model is already

deployed, the attacker is not aware of the model’s implementation and is only

able to query it with a malicious input and observe the corresponding output,

that is, attempt a black-box attack [Papernot et al., 2017b; Tu et al., 2019;

Ru et al., 2020]. Furthermore, the attacker has to use a limited number of

queries to the target model in order to avoid detection. Therefore, the task of

searching for a malicious input in a black-box attack can be framed as a black-

box optimization problem under a limited budget. Such problem is exactly the

one tackled by BO.

Unfortunately, the dimension of the input images is usually too high for ap-

plying BO directly: for example, the dimension of the flattened features of

the popular CIFAR-10 dataset is 3072. To improve the query efficiency, ex-

isting black-box attacks [Chen et al., 2017; Tu et al., 2019; Ru et al., 2020]

usually apply dimensionality reduction techniques and search for an adversar-

ial perturbation in a low-dimensional latent space. While the authors of the

existing works emphasize the importance of dimensionality reduction on per-

formance of their attacks, they either treat the dimension of the latent space

as a hyperparameter [Ru et al., 2020] or set it manually [Chen et al., 2017;

Tu et al., 2019]. Providing a principled way for selecting the dimension of the

latent space could increase the attack success rate under a limited query bud-

get. The challenge, therefore, is in designing a BO algorithm for performing a

black-box adversarial attack, which automatically selects the dimension of the
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latent space while being query efficient.

1.2 Objective

The main focus of this thesis is to address the following question:

How can BO be scaled up to satisfy the additional requirements of new

real-world applications?

Specifically, the works in this thesis attempt to scale up BO to the following new

real-world applications by addressing their corresponding additional requirements:

• Privacy-preserving BO in outsourced setting. How do we design a BO

algorithm in the outsourced setting where the entity holding the dataset and

the entity performing BO are represented by different parties, and the dataset

cannot be released non-privately? Is it possible to ensure the privacy protection

of the dataset and, at the same time, obtain theoretical performance guarantees

and empirical effectiveness for such an algorithm?

• Nonmyopic BO for hotspot sampling. How can the structure of the spa-

tially varying phenomenon be exploited for scaling up a BO algorithm to a fur-

ther lookahead to match up to a larger available budget in hotspot sampling

applications? Is it possible to achieve optimal expected performance with respect

to the given finite budget?

• BO for adversarial learning. In order to design a practical BO algorithm for

performing a black-box adversarial attack, how can the dimension of the latent

space be selected in a principled way? How can the designed algorithm ensure

the query efficiency?
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The questions mentioned above are then considered and tackled in this thesis as

described next.

1.3 Contributions

With regard to the objectives introduced in the previous section, the works in this

thesis support the following statements:

• It is possible to construct a privacy-preserving and empirically effective Bayesian

optimization algorithm in outsourced setting. The constructed algorithm protects

the privacy of the dataset using differential privacy, fulfills theoretical perfor-

mance guarantees and shows the empirical effectiveness.

• Exploiting macro-actions can scale a Bayesian optimization algorithm up to a

further lookahead to match up to a larger available budget. For a given finite

budget, it is possible to guarantee an ε-Bayes-optimal expected performance for

such an algorithm with respect to an arbitrary, user-defined loss bound ε, by

using the notion of Bayes-optimality.

• Selection of the dimension of the latent space can be automated using Bayesian

optimization. Bayesian optimal stopping can be used in order to preserve the

query efficiency of the designed algorithm.

These claims are substantiated by the following novel contributions:

1. Private Outsourced BO (Chapter 3).

We propose the private-outsourced-Gaussian process-upper confidence bound

(PO-GP-UCB) algorithm, which is the first algorithm for BO with differen-

tial privacy in the outsourced setting with a provable performance guarantee.

The key idea of our approach is to make the Gaussian Process (GP) predictions
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and hence the BO performance of our algorithm similar to those of non-private

GP-UCB [Srinivas et al., 2010] run using the original dataset. To achieve this,

instead of standard differential privacy methods, we use a privacy-preserving

transformation based on random projection [Johnson and Lindenstrauss, 1984],

which approximately preserves the pairwise distances between inputs. We show

that preserving the pairwise distances between inputs leads to preservation of

the GP predictions and therefore the BO performance in the outsourced setting

(compared with the standard setting of running non-private GP-UCB [Srinivas

et al., 2010] on the original dataset). Our main theoretical contribution is to

show that a regret bound similar to that of the standard GP-UCB algorithm

can be established for our PO-GP-UCB algorithm. We empirically evaluate the

performance of our algorithm with synthetic and real-world datasets.

2. Nonmyopic BO with macro-actions (Chapter 4).

We present a principled multi-staged Bayesian sequential decision algorithm for

nonmyopic adaptive BO that, in particular, exploits macro-actions inherent to

the structure of several real-world task environments/applications for scaling

up to a further lookahead (as compared to the existing nonmyopic adaptive

BO algorithms [Lam et al., 2016; Lam and Willcox, 2017; Ling et al., 2016;

Marchant et al., 2014; Osborne et al., 2009]) to match up to a larger available

budget. To achieve this, we first generalize GP-UCB [Srinivas et al., 2010] to a

new acquisition function defined with respect to a nonmyopic adaptive macro-

action policy, which, unfortunately, is intractable to be optimized exactly due

to an uncountable set of candidate outputs. The key novel contribution of our

work here is to show that it is in fact possible to solve for a nonmyopic adap-

tive ε-Bayes-optimal macro-action BO (ε-Macro-BO) policy given an arbitrary

user-specified loss bound ε via stochastic sampling in each planning stage which
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requires only a polynomial number of samples in the length of macro-actions.

To perform nonmyopic adaptive BO in real time, we then propose an asymptot-

ically optimal anytime variant of our ε-Macro-BO algorithm with a performance

guarantee. We empirically evaluate the performance of our ε-Macro-BO algo-

rithm and its anytime variant in BO with synthetic and real-world datasets.

3. Black-box adversarial attack automated with BO (Chapter 5).

We propose a novel Bayesian-Optimization-with-dimension-selection-and-Bayesian-

optimal-stopping (BOS2) black-box adversarial attack. The key idea of our ap-

proach is to increase the attack success rate by using BO for automating both

the selection of the latent space dimension and the search of the adversarial per-

turbation in the selected latent space. Our attack consists of two stages. In the

first stage we use BO to select the dimension of the latent space for projecting

the high-dimensional input space into (the dimension BO loop). In the second

stage we use Add-GP-UCB algorithm [Kandasamy et al., 2015] to search for

the adversarial perturbation in the latent space (the perturbation BO loop). To

boost the query efficiency of our BOS2 attack, we use Bayesian optimal stop-

ping [Dai et al., 2019] to early-stop the execution of the perturbation BO loop

for those latent dimensions, which will end up under-performing, hence elimi-

nating unnecessary queries. We evaluate the performance of our BOS2 attack

using MNIST and CIFAR-10 datasets to show that our method outperforms

the existing black-box adversarial attacks.

1.4 Organization

The remaining chapters of this thesis are organized as follows. Section 2.1 briefly

describes the problem setting of BO. The related works are discussed in Section 2.2
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(privacy-preserving BO), Section 2.3 (nonmyopic BO) and Section 2.4 (adversarial

attacks). Chapter 3 presents our privacy-preserving BO algorithm for outsourced

setting PO-GP-UCB. Our nonmyopic BO algorithm for hotspot sampling in spatially

varying phenomena is reported in Chapter 4. The BOS2 black-box adversarial attack

using BO is proposed in Chapter 5. Finally, the conclusion and the future works of

this thesis are presented in Chapter 6.
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Related Works

2.1 Bayesian Optimization

Bayesian optimization (BO) has become an increasingly popular method for optimiz-

ing highly complex black-box functions with expensive function evaluations. Such

optimization problems frequently appear in a wide range of applications like auto-

mated machine learning [Bergstra et al., 2011; Hoffman et al., 2014; Snoek et al.,

2012; Swersky et al., 2013; Thornton et al., 2013], robotics [Lizotte et al., 2007;

Martinez-Cantin et al., 2007], sensor networks [Garnett et al., 2010], reinforcement

learning [Brochu et al., 2010], among others.

Traditional optimization methods are not applicable for such optimization prob-

lems, because the objective function does not have analytical expression or access to

gradient information and is expensive to evaluate. The most straightforward way to

approach the optimization problem would be using grid search, which exhaustively

explores the grid of candidate parameter values until a reasonable performance has

been reached. However, such an approach is not scalable in terms of the number

of parameters. A slightly more advanced random search, instead of using a grid,
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randomly samples the candidate parameter values. While this approach empirically

outperforms its deterministic grid counterpart, it is still time-consuming and poorly

scalable to large dimensions. Another approach would be using evolutionary algo-

rithms, however, they are non-deterministic, sensitive to the choice of initialization,

and are easily stuck in a local optima1.

Conventionally, a BO algorithm models the unknown objective function with a

Gaussian Process (GP) and uses a heuristic called acquisition function (AF) to guide

the algorithm’s search for the global maximum. Specifically, a BO algorithm exploits

the chosen AF to repeatedly select an input for evaluating the unknown objective

function that trades off between observing a likely maximum based on a GP be-

lief of the unknown objective function (exploitation) vs. improving the GP belief

(exploration). After obtaining the candidate input recommended by the AF, a BO

algorithm evaluates the objective function at this input, and updates the GP model

using the newly obtained value of the objective function. The whole procedure2 is

repeated until the budget is expended. Therefore, in contrast to the grid and ran-

dom search strategies, a BO algorithm is able to learn from the whole history of past

data/observations, resulting in a better performance.

The following sections of this chapter discuss the existing works related to privacy-

preserving BO (Section 2.2), nonmyopic BO (Section 2.3) and BO for adversarial

attacks on machine learning models (Section 2.4).

1In certain cases evolutionary strategies perform better than BO. For example, [Mori et al., 2005]

showed that evolutionary strategies outperformed BO on an number of simulated problems. However,
a significant number of novel BO algorithms have been proposed after this paper had been published.
On the other hand, in the context of black-box adversarial machine learning (Chapter 5), both
BO-based attacks (BayesOpt attack [Ru et al., 2020] and our proposed BOS2 attack) outperform
GenAttack [Alzantot et al., 2019] based on evolutionary strategies.

2See Algorithm 1 in Section 3.1 for illustration of the procedure of the general BO algorithm.
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2.2 Privacy-preserving Bayesian Optimization

The number of prior works on privacy-preserving BO is limited. A work by Kusner

et al. [2015] proposed a DP variant of GP-UCB algorithm [Srinivas et al., 2010].

The authors consider the task of hyperparameter tuning for machine learning mod-

els and introduce methods for privatizing the best hyperparameter configuration and

classification accuracy (i.e., best input and output measurement found by GP-UCB)

by computing their respective non-private values and releasing them using standard

DP mechanisms (Section 3.4). However, such an approach implies that the entity

holding the data (the curator) and the entity performing BO (the modeler) are rep-

resented by the same party and thus both entities have full access to the sensitive

dataset and detailed knowledge of the BO algorithm. In our outsourced setting, in

contrast, the modeler only has access to the transformed privatized dataset, while the

curator is unaware of the details of the BO algorithm, as described in our motivating

scenarios (Section 1.1). Furthermore, in contrast to our work, Kusner et al. [2015]

do not provide any regret bound and the approximated quality of their computed

privatized estimates of the best hyperparameters and classifier accuracy proposed by

the authors, in fact, degrades when the number of BO budget increases.

A recent work of Nguyen et al. [2018] considers a setting, which resembles that

of ours. However, the authors use a self-proposed notion of privacy instead of the

widely recognized DP. Furthermore, Nguyen et al. [2018] protect the privacy of only

the output measurements (in our case, that would be, for example, the outcome of

the medical test for the patient or the return on investment for the loan applicant).

In contrast, we aim at preserving the privacy of the inputs: For instance, if the input

is a medical record, releasing it may unveil the identity of the patient, while releasing

only the outcome of the medical test (the output measurement) would not. Similarly,

releasing the raw data of the loan applicant may unveil her identity, as opposed to
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releasing only the value of the return on investment. Note that, both Kusner et al.

[2015] and Nguyen et al. [2018] do not provide any provable performance bound,

while the performance of our algorithm (Chapter 3) is theoretically guaranteed.

2.3 Nonmyopic Bayesian Optimization

In contrast to the existing BO algorithms, our proposed nonmyopic adaptive algo-

rithm ε-Macro-BO scales up to a further lookahead (as compared to the existing

nonmyopic adaptive BO algorithms) and provides a theoretical guarantee for the ex-

pected performance loss. These characteristics distinguish our algorithm from the

existing works and are discussed in greater detail with the related work below.

2.3.1 Single-point vs. batch algorithms

Conventionally, a BO algorithm exploits the chosen acquisition function to repeat-

edly select an input for evaluating the unknown objective function until the budget

is expended. Such an algorithm selects one candidate input at a time, hence we

call it single-point. A number of myopic (nonmyopic approaches will be discussed

later in Section 2.3.2) single-point algorithms were proposed in the literature, in-

cluding probability of improvement (PI) or expected improvement (EI) over currently

found maximum [Shahriari et al., 2016], information-based [Hennig and Schuler, 2012;

Hernández-Lobato et al., 2014; Villemonteix et al., 2009], or upper confidence bound

(UCB) [Srinivas et al., 2010].

Unfortunately, such a conventional BO algorithm is greedy/myopic and hence

performs suboptimally with respect to the given finite budget: While acquisition

functions like EI [Bull, 2011; Vazquez and Bect, 2010] and UCB [Srinivas et al.,

2010] offer theoretical guarantees for the convergence rate of their BO algorithms
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(i.e., in the limit) via regret bounds, in practice, since the budget is limited, such

bounds are suboptimal as they cannot be specified to be arbitrarily small. In contrast,

the performance loss of our proposed algorithm ε-Macro-BO can be bounded in the

expected sense by an arbitrary user-specified value for a given BO budget.

To be nonmyopic, the BO algorithm’s policy to select the next input has to

additionally account for its subsequent selections of inputs for evaluating the un-

known objective function. Perhaps surprisingly, this can be partially achieved by

batch BO algorithms [Azimi et al., 2010; Contal et al., 2013; Desautels et al., 2014;

González et al., 2016a; Chevalier and Ginsbourger, 2013; Daxberger and Low, 2017;

Shah and Ghahramani, 2015; Wu and Frazier, 2016]. In contrast to conventional BO

algorithms described above, batch BO algorithms repeatedly select a set of multi-

ple inputs for querying the objective in parallel at every iteration – a batch. Batch

BO algorithms can be classified into two types. Greedy batch BO algorithms [Az-

imi et al., 2010; Contal et al., 2013; Desautels et al., 2014; González et al., 2016a]

select the inputs of a batch one at a time in a greedy manner and hence are myopic.

In contrast, others [Chevalier and Ginsbourger, 2013; Daxberger and Low, 2017;

Shah and Ghahramani, 2015; Wu and Frazier, 2016] are capable of jointly optimizing

a batch of inputs because their selection of each input has to account for that of all

other inputs of the batch3. However, since the batch size is typically set to be much

smaller than the given budget, batch BO algorithms have to repeatedly select the

next batch greedily. Furthermore, unlike the conventional BO algorithms described

above, their selection of each input is independent of the outputs observed from eval-

uating the objective function at the other selected inputs of the batch, thus sacrificing

some degree of adaptivity. Hence, batch BO algorithms also perform suboptimally

with respect to the given budget. In contrast, our proposed algorithm ε-Macro-BO

3Batch BO is traditionally considered when resources are available to evaluate the objective
function in parallel. We deviate from such a tradition here and suggest a further possibility of using
batch BO for nonmyopic selection of inputs.
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is fully adaptive and selects the next macro-action (i.e., the next batch of inputs)

in an adaptive nonmyopic manner, thus resolving both the drawbacks of batch BO

algorithms described above.

2.3.2 Myopic vs. nonmyopic algorithms

Some nonmyopic adaptive BO algorithms [Lam and Willcox, 2017; Lam et al., 2016;

Ling et al., 2016; Marchant et al., 2014; Osborne et al., 2009] have been recently

developed to resolve the drawbacks of conventional greedy/myopic BO algorithms

described in Section 2.3.1. But, they have been empirically demonstrated to be

effective and tractable for at most a lookahead of 5 observations which is usually

much less than the size of the available budget in practice, thus causing them to

behave myopically in this case. To increase the lookahead, the work of González

et al. [2016b] has proposed a two-staged approach that utilizes a greedy batch BO

algorithm in its second stage to efficiently but myopically optimize all but the first

input afforded by the budget. Note that the above works on nonmyopic adaptive

BO do not provide theoretical performance guarantees except for that of Ling et

al. [2016]. In contrast, our approach can empirically scale to a lookahead of up to

20 observations (and hence match up to a larger budget) and is still amenable to a

theoretical analysis of its performance.

2.3.3 Adaptive vs. non-adaptive algorithms

Adaptive algorithms exploit the outputs observed from evaluating the objective func-

tion at the previously selected inputs for selecting the new input. In contrast,

non-adaptive algorithms do not use the past history of observations, and hence,

the new inputs to be selected can be determined prior to execution of the algo-

rithm. Adaptive algorithms usually outperform the non-adaptive ones, so most of
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the single-point myopic algorithms [Hennig and Schuler, 2012; Srinivas et al., 2010;

Hernández-Lobato et al., 2014; Villemonteix et al., 2009] are adaptive. As pointed

out in Section 2.3.1, batch BO algorithms sacrifice some adaptivity, because the in-

puts within a batch are independent of the observations within this batch. Designing

an adaptive nonmyopic BO algorithm is very challenging and computationally in-

volved, so some proposed nonmyopic BO algorithms are non-adaptive [Marchant et

al., 2014]. The existing adaptive algorithms [Lam and Willcox, 2017; Lam et al., 2016;

Ling et al., 2016; Marchant et al., 2014; Osborne et al., 2009] are able to scale to the

lookahead of only up to 5 observations, which is usually much smaller than the sam-

pling budget for BO tasks. In contrast, our proposed algorithm is adaptive and

scales to a larger lookahead of up to 20 observations, resulting in its superior BO

performance, as compared to existing works.

2.4 Adversarial attacks on machine learning models

In contrast to the existing adversarial attacks, our proposed BOS2 attack is a black-

box evasion attack, which applies BO to automate both the selection of the latent

space dimension and the search of the adversarial perturbation, and uses Bayesian

optimal stopping [Dai et al., 2019] in order to boost its query efficiency. We discuss

these characteristics, which distinguish our algorithm from the prior works, in the

following section.

2.4.1 Poisoning vs. evasion attacks

The two most popular adversarial attack types are poisoning attacks and evasion

attacks. To perform a poisoning attack, the adversary injects the malicious data in

the training set of the model, aiming to degrade the performance of the model during
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Figure 2.1: Visual illustration of an evasion attack. Image courtesy of [Goodfellow et al.,
2014].

testing or deployment, i.e., the adversary is “poisoning” the model [Xiao et al., 2012;

Newell et al., 2014; Mei and Zhu, 2015; Koh and Liang, 2017; Feng et al., 2019;

Xiao et al., 2015; Burkard and Lagesse, 2017]. On the other hand, in an evasion

attack setting, the adversary is attacking a model which is already trained. In this

case, the attacker is querying the model with a malicious input. This malicious input

is formed by adding a small perturbation to a benign input (which would be classified

correctly), such that the model would output an incorrect answer for the perturbed

malicious input with high confidence. This setting is visually illustrated in a famous

image (Fig. 2.1) from the work of Goodfellow et al. [2014]. Since our BOS2 attack

is an evasion attack, we describe the existing attacks of this category in the next few

subsections.

2.4.2 Targeted vs. untargeted attacks

The aim of an untargeted attack [Kwon et al., 2018; Wu et al., 2019; Suya et al.,

2017] is to cause the model to provide the erroneous output (e.g., misclassify the

input adversarial image). Targeted attacks [Chen et al., 2017; Tu et al., 2019; Ru et

al., 2020], in addition to that, aim not only to misclassify the input, but to make the
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model predict a given target class. Targeted attacks give the adversary more control

over the attacked model, since she can force the model to predict the required target

class. Our BOS2 attack is a targeted attack.

2.4.3 White-box vs. black-box attacks

The majority of evasion attacks proposed in the literature are white-box : they assume

that the attacker has a full knowledge of the model’s architecture and implementa-

tion [Goodfellow et al., 2014; Gu and Rigazio, 2014; Moosavi-Dezfooli et al., 2016;

Kurakin et al., 2016; Carlini and Wagner, 2017; Chen et al., 2018]. In this case, the

attacker, for instance, can obtain the exact gradients of the model and perform back-

propagation in order to search for a successful adversarial perturbation. However,

typically (e.g., if the machine learning model is already deployed), the attacker would

have access only to the output measurements for a given input, which results in a

black-box attack. Black-box attacks are much more challenging due to very limited in-

formation available to the attacker. Since our BOS2 attack falls in the latter category,

existing black-box attacks are discussed in more detail in the next subsection.

2.4.4 Black-box attacks

One class of black-box attacks uses the outputs obtained from the attacked model

to train a substitute machine learning model [Papernot et al., 2016]. The adversary

then can attack the substitute model in an easier white-box setting and use the

successful adversarial example for the substitute model to attack the original model.

However, to train a substitute model with similar properties as the original model,

the attacker either needs to have access to the training data or to generate a synthetic

training dataset by excessively querying the original model. This restriction about

training data makes such attacks infeasible for data-intensive domains (e.g., ImageNet
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dataset), as pointed out in a number of existing works [Brendel et al., 2017; Liu et

al., 2016].

Another approach to black-box attacks is to estimate gradients using zeroth-order

optimization (ZOO) [Chen et al., 2017] and then use this estimate to attack the model

in a white-box setting. However, the method of Chen et al. [2017] requires a large

number of queries to the attacked model in order to estimate the gradient accurately

and, as a result, is very computationally involved. AutoZOOM [Tu et al., 2019] im-

proves the query efficiency of ZOO attack by considering random vectors to estimate

model gradients. While the authors of AutoZOOM emphasize the importance of di-

mensionality reduction on the performance of their method, they set the dimension

of the latent space manually. In contrast, our BOS2 attack provides a principled way

to select the latent dimension using BO. Another work by Ilyas et al. [2018] uses

natural evolution strategy in order to estimate model gradients.

In addition to the attacks mentioned above, a number of other approaches were

proposed. As an example, Brendel et al. [2017] introduced the Boundary Attack,

which starts from a huge adversarial perturbation (hence, resulting in the misclassi-

fication of the perturbed image) and then gradually reduces the perturbation using

random walks along the decision boundary. However, this attack has a very high com-

putational complexity due to a very large number of queries required to reduce the

distortion. Different from Brendel et al. [2017], GenAttack introduced by Alzantot

et al. [2019] uses genetic algorithms to iteratively evolve the population of candidate

adversarial examples.

2.4.5 BO for adversarial attacks

There are a few existing works using BO for adversarial attacks. The earlier work

of Suya et al. [2017] uses a simple BO method to propose an untargeted attack
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on low-dimensional spam email dataset with 57 input features. This method is not

scalable to attacks on images with thousands of dimensions, which is the most popular

application of adversarial learning. Another work is that of Zhao et al. [2019]. The

authors apply BO directly on the original high-dimensional input space, resulting in

a large distortion of found adversarial examples, since BO is known to work poorly in

large dimensions. To make the problem more amenable to BO, our BOS2 attack uses

dimensionality reduction and searches for an adversarial perturbation in the latent

space, resulting in smaller distortion.

The closest related work to ours is the recent BayesOpt attack by Ru et al. [2020].

The authors use bilinear interpolation to project the original input space into a latent

space of lower dimension and then search for an adversarial perturbation in this latent

space. However, they treat the latent dimension as a hyperparameter and optimize

it without considering the BO procedure. In contrast, our BOS2 attack learns the

optimal latent dimension with BO. To do this, our attack exploits the results of

the BO performances from the previously observed latent dimensions. Furthermore,

Ru et al. [2020] update the latent dimension after a fixed number of queries to the

attacked model. As a result, if the BO procedure in the selected latent space is under-

performing, the attack of Ru et al. [2020] would keep sending unnecessary queries to

the model till the next update. In contrast, our BOS2 attack uses Bayesian optimal

stopping [Dai et al., 2019] to early-stop the execution of the perturbation BO loop

if the BO performance for the current dimension is unsatisfactory and, hence, avoids

redundant queries to the model.
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Private Outsourced Bayesian

Optimization

This chapter of the thesis proposes the private-outsourced-Gaussian process-upper

confidence bound (PO-GP-UCB) algorithm. To the best of our knowledge, our algo-

rithm is the first algorithm for BO with differential privacy (DP) in the outsourced

setting with a provable performance guarantee.

To recall, in the outsourced setting the curator is unable to release the original

dataset due to privacy concerns, and therefore has to provide a transformed privatized

dataset to the modeler. Then, the modeler can perform BO (specifically, the GP-UCB

algorithm) on the transformed dataset. A natural choice for the privacy-preserving

transformation is to apply standard DP methods such as the Laplace or Gaussian

mechanisms [Dwork and Roth, 2014] directly to the original dataset. However, the

theoretically guaranteed convergence of the GP-UCB algorithm [Srinivas et al., 2010]

is only valid if it is run using the original dataset. Therefore, as a result of the

privacy-preserving transformation required in the outsourced setting, it is unclear

whether the theoretical guarantee of GP-UCB can be preserved and thus whether
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reliable performance can be delivered. To resolve this complication, we follow a

different approach: our main idea is to make the GP predictions (and hence the BO

performance) of our algorithm similar to those of non-private GP-UCB run using

the original dataset. To achieve this, we design a privacy-preserving transformation

based on random projection [Johnson and Lindenstrauss, 1984], instead of using the

standard DP methods. Such a transformation approximately preserves the pairwise

distances between inputs. We show that preserving the pairwise distances between

inputs results in preservation of the GP predictions and therefore the BO performance

in the outsourced setting (compared with the standard setting of running non-private

GP-UCB on the original dataset). We prove that a regret bound similar to that of

the standard GP-UCB algorithm can be established for our PO-GP-UCB algorithm,

which is our key theoretical contribution.

The rest of this chapter is organized as follows. Some background about BO and

GP is stated in Section 3.1. The celebrated GP-UCB algorithm [Srinivas et al., 2010]

is summarized in Section 3.2. The problem setting of outsourced BO is introduced in

Section 3.3. The framework of differential privacy is reviewed in Section 3.4. Our PO-

GP-UCB algorithm, its theoretical performance guarantee and analysis are described

in Section 3.5. Experiments using synthetic and real-world datasets for empirical

performance evaluation of our PO-GP-UCB algorithm are presented in Section 3.6.

3.1 Background

3.1.1 Formal problem statement of Bayesian Optimization

Bayesian Optimization is tackling the problem of sequentially maximizing an unknown

objective function f : X → R, in which X ⊂ Rd denotes a domain of d-dimensional

inputs:
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max
x∈X

f(x).

We assume that f is an unknown (possibly noisy, non-convex, and/or with no

closed-form expression/derivative) objective function, which is very expensive to eval-

uate, such that only a small number of function evaluations can be made. Further-

more, function f is accessible through the noisy output measurements

y(x) , f(x) + εGP , (3.1)

in which εGP ∼ N (0, σ2
n) is a zero-mean Gaussian noise with noise variance σ2

n.

Conventionally, a BO algorithm consists of two major components: the model

of the unknown objective function and the acquisition function (AF). The model is

typically represented by a Gaussian Process (GP) (see Section 3.1.2 for details about

GP). The AF serves as a heuristic to guide the algorithm’s search for the global

maximum of the objective function. Specifically, the BO algorithm exploits the chosen

AF to repeatedly select an input for evaluating the unknown objective function that

trades off between observing a likely maximum based on a GP belief of the unknown

objective function (exploitation) vs. improving the GP belief (exploration) until the

budget is expended. In each iteration t = 1, . . . , T , an unobserved input xt ∈ X is

selected to query the unknown objective function by maximizing the AF, yielding

a noisy output measurement yt , f(xt) + εGP , in which εGP ∼ N (0, σ2
n) is a zero-

mean Gaussian noise with noise variance σ2
n, as defined in (3.1). This procedure is

illustrated in Algorithm 1 below.

The AF should be designed to allow the BO algorithm to approach the global

maximum f(x∗) rapidly, in which x∗ , argmaxx∈X f(x). This can be achieved by

minimizing a standard BO objective such as regret. The notion of regret intuitively

refers to a loss in reward resulting from not knowing x∗ beforehand. Formally, the
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Algorithm 1 General BO algorithm

1: Input: Input domain X , sampling budget T , acquisition function α
2: for t = 1, . . . , T do
3: Select new input xt by optimizing the acquisition function α using the currently

available data Dt−1: xt ← argmaxx α(x,Dt−1)
4: Query the objective function for the noisy output measurement yt
5: Augment data Dt ← {Dt−1, (xt, yt)}
6: Update the GP model
7: return the largest found value maxt=1,...,T yt

instantaneous regret incurred in iteration t is defined as

rt , f(x∗)− f(xt).

Cumulative regret is defined as the sum of all instantaneous regrets, i.e.,

RT ,
T∑
t=1

rt,

and simple regret is defined as the minimum among all instantaneous regrets, i.e.,

ST , min
t=1,...,T

rt.

It is desirable for a BO algorithm to achieve no regret asymptotically, i.e.,

lim
T→∞

ST ≤ lim
T→∞

RT/T = 0,

which implies that it will eventually converge to the global maximum, since the cur-

rently found maximum after T iterations is no further away from f(x∗) than RT/T .
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3.1.2 Gaussian Process (GP)

In order to facilitate the design of the AF to minimize the regret, we model our belief

of the unknown objective function f using a Gaussian Process (GP) [Rasmussen and

Williams, 2006]. Let f(x)x∈X denote a GP, which is formally defined below:

Definition 3.1. A Gaussian process (GP) is a collection of random variables, any

finite number of which have joint Gaussian distributions [Quiñonero-Candela and

Rasmussen, 2005].

Then, the GP is fully specified by its prior mean µx , E[f(x)] and covariance

function (kernel) kxx′ , cov[f(x), f(x′)] for all x, x′ ∈ X . Without loss of generality,

we assume µx = 0 for every x ∈ X . Next we discuss the common choices of covari-

ance function kxx′ in Section 3.1.3, followed by the description of GP regression in

Section 3.1.4.

3.1.3 Common choices of covariance function

The common choices of covariance function (which we also call kernels) kxx′ are:

1. The linear kernel is defined as

kxx′ , x>x′.

Using GP with a linear kernel is a special case of Bayesian linear regression.

2. The non-isotropic squared exponential (SE) kernel is defined as

kxx′ , σ2
y · e(x−x′)>Γ−2(x−x′),

in which Γ is a diagonal matrix with length-scale components [l1, . . . , ld] con-

trolling the correlation or “similarity” between output measurements and σ2
y is
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the signal variance controlling the intensity of output measurements. When all

length-scale components are equal to l, the non-isotropic SE kernel reduces to

the isotropic SE kernel defined as

kxx′ , σ2
y · e−0.5‖x−x′‖2/l2 .

Note that any non-isotropic SE kernel can be easily transformed to an isotropic

one by preprocessing the inputs, i.e., dividing each dimension of inputs x, x′ by

the respective length-scale component li.

3. The Matérn kernel is given by

k(x, x′) ,
(
21−ν/Γ(ν)

)
· rνBν(r)

where r , (
√

2ν/l)‖x− x′‖. Parameters ν, l control the correlation or “similar-

ity” between output measurements and Bν is the modified Bessel function of

the second kind. Note that as ν → ∞, appropriately rescaled Matérn kernel

converges to the isotropic SE kernel.

3.1.4 Gaussian Process regression

Given a set x1:t , {x1, . . . , xt} of inputs after t iterations and a column vector

y1:t , [yi]
>
1,...,t of their corresponding noisy output measurements, a GP model can

perform probabilistic regression by providing a posterior distribution of the noisy

output measurement y(x) at unobserved input x ∈ X . The distribution of y(x) at

any input x ∈ X is a Gaussian distribution with the following posterior mean and
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variance [Rasmussen and Williams, 2006]:

µt+1(x) , Kxx1:t(Kx1:tx1:t + σ2
nI)−1y1:t

σ2
t+1(x) , kxx + σ2

n −Kxx1:t(Kx1:tx1:t + σ2
nI)−1Kx1:tx,

(3.2)

in which Kxx1:t , (kxx′)x′∈x1:t is a row vector, vector Kx1:tx , K>xx1:t
is the transpose

of Kxx1:t , and matrix Kx1:tx1:t , (kx′x′′)x′,x′′∈x1:t .

A key property of the GP model is that, different from µt+1, σ2
t+1 is independent

of the output measurements y1:t.

3.2 GP-UCB algorithm

GP-UCB algorithm [Srinivas et al., 2010] has become a classic BO algorithm due to

its simplicity and strong theoretical performance guarantees. Its popularity resulted

in a great number of works providing extensions and generalizations [Krause and Ong,

2011; Contal et al., 2013; Desautels et al., 2014; Kusner et al., 2015; Ling et al., 2016;

Bogunovic et al., 2016; Daxberger and Low, 2017; Dai et al., 2019; Sessa et al., 2019].

Since our works in Chapter 3 and Chapter 4 draw inspiration from GP-UCB algorithm

as well, we review it in the following section of the thesis.

The AF adopted by the GP-UCB algorithm [Srinivas et al., 2010] is the upper

confidence bound (UCB) of the objective function f induced by the posterior GP

model. In each iteration t, an input xt ∈ X is selected to query by trading off

between (a) sampling close to an expected maximum (i.e., with large posterior mean

µt(xt)) given the current GP belief (i.e., exploitation) vs. (b) sampling an input with

high predictive uncertainty (i.e., with large posterior standard deviation σt(xt)) to

improve the GP belief of f over X (i.e., exploration). Specifically,

xt , argmaxx∈X µt(x) + β
1/2
t σt(x),
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in which the parameter βt > 0 is set to trade off between exploitation vs. exploration.

A remarkable property of the GP-UCB algorithm shown by the work of Srinivas et

al. [2010] is that it achieves no regret asymptotically if the parameters βt > 0 are

chosen properly:

Theorem 3.1 (Srinivas et al. [2010]). Let δucb ∈ (0, 1) and βt = 2 log(|X |t2π2/6δucb).

Running GP-UCB with βt for a sample f of a GP with mean function zero and

covariance function k(x, x′), we obtain a regret bound of O(
√
TγT log(|X |)) with high

probability. Precisely,

P (RT ≤
√
C1TβTγT ∀T ≥ 1) ≥ 1− δucb

where C1 , 8 log(1 + σ−2
n ), γT , maxx1:T⊂X I[f(X ); y1:T ] and f(X ) , {f(x)}x∈X .

Srinivas et al. [2010] also provide a bound for the maximum information gain

γT on the function f from any set of noisy output measurements of size T , which,

together with Theorem 3.1 above, result in the asymptotic no-regret property of GP-

UCB algorithm:

Theorem 3.2 (Srinivas et al. [2010]). Let X ⊂ Rd be compact and convex, d ∈ N.

Assume the covariance function satisfies k(x, x′) ≤ 1. Then

1. For the linear kernel γT = O(d log T ).

2. For the non-isotropic SE kernel γT = O
(
(log T )d+1

)
.

3. For the Matérn kernel with ν > 1 γT = O(T
d(d+1)

2ν+d(d+1) log T ).

3.3 Problem setting

Privacy-preserving BO in the outsourced setting involves two parties: the curator

who holds the sensitive dataset (e.g., a list of medical records), and the modeler who
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Figure 3.1: Visual illustration of the problem setting of outsourced BO.

performs the outsourced BO on the transformed dataset provided by the curator (see

Fig. 3.1 for a visual illustration of this setting). The curator holds the original dataset

represented as a set X ⊂ Rd formed by n d-dimensional inputs. The curator and the

modeler intend to maximize an unknown expensive-to-evaluate objective function f

defined over X . At the beginning, the curator performs a privacy-preserving trans-

formation of the original dataset X to obtain a transformed dataset Z ⊂ Rr formed

by n r-dimensional inputs. As a result, every original input x ∈ X has an image,

which is the corresponding transformed input z ∈ Z. Then, the curator releases the

transformed dataset Z to the modeler, who can subsequently start to run the BO

algorithm on Z. We assume that the BO procedure uses a GP with an isotropic1 SE

covariance function kxx′ and zero mean µx. Furthermore, without loss of generality,

we assume kxx′ ≤ 1 for all x, x′ ∈ X .

In each iteration t = 1, . . . , T , the modeler selects a transformed input zt ∈ Z to

query and notifies the curator about the choice of zt. Next, the curator identifies xt

which is the preimage of zt under the privacy-preserving transformation2, and then

computes f(xt) to yield a noisy output measurement: yt , f(xt) + εGP , in which

1 As pointed out in Section 3.1.2, non-isotropic covariance functions can be easily transformed
to isotropic ones.

2We assume that X and Z describe the entire optimization domain, i.e., every zt ∈ Z has a
preimage xt ∈ X .
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εGP ∼ N (0, σ2
n) is a zero-mean Gaussian noise with noise variance σ2

n. We assume

that yt is unknown to the curator in advance and is computed only when requested

by the modeler, which is reasonable in all motivating scenarios in Section 1.1. The

curator then sends yt to the modeler for performing the next iteration of BO. We

have assumed that in contrast to the input xt, the noisy output measurement yt

does not contain sensitive information and can thus be non-privately released. This

assumption is reasonable in our setting, e.g., if yt represents the outcome of a medical

test, revealing yt does not unveil the identity of the patient. We leave the extension

of privately releasing yt for future work and briefly discuss it in Section 6.2.1.

3.4 Differential privacy

Differential privacy [Dwork et al., 2006] has become the state-of-the-art technique

for private data release. DP is a cryptographic framework which provides rigorous

mathematical guarantees on privacy, typically by adding some random noise during

the execution of the data release algorithm. DP has been widely adopted by the ML

community for such methods as support vector machines [Rubinstein et al., 2012],

decision trees [Jagannathan et al., 2012], Gaussian Processes [Smith et al., 2018] and

deep neural networks [Abadi et al., 2016], among others. See the work of Sarwate

and Chaudhuri [2013] for a detailed survey on applications of DP in ML.

Intuitively, DP promises that changing a single input of the dataset imposes only

a small change in the output of the data release algorithm, hence the output does

not depend significantly on any individual input. As a result, an attacker is not able

to tell if an input is changed in the dataset just by looking at the output of the data

release algorithm.

Randomization is essential for achieving DP: all DP algorithms include random-

ness. For completeness, we include the definition of a randomized algorithm and a
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probability simplex necessary to define the former [Dwork and Roth, 2014]:

Definition 3.2. Given a discrete set B, the probability simplex over B, denoted

∆(B), is defined to be:

∆(B) ,

{
x , (x1, . . . x|B|) ∈ R|B| : xi ≥ 0 for all xi and

|B|∑
i=1

xi = 1

}
.

Definition 3.3. A randomized algorithm M with domain A and discrete range B

is associated with a mapping M : A → ∆(B). On input a ∈ A, the algorithm M
outputs M(a) = b with probability (M(a))b for each b ∈ B. The probability space is

over the coin flips of the algorithm M.

To define DP, we also need to introduce the notion of neighboring datasets. Fol-

lowing the prior works on DP [Blocki et al., 2012; Hardt and Roth, 2012], we define

two neighboring datasets as those differing only in a single row (i.e., a single input)

with the norm of the difference bounded by 1:

Definition 3.4. Let X ,X ′ ∈ Rn×d denote two datasets viewed as matrices3 with d-

dimensional inputs {x(i)}ni=1 and {x′(i)}ni=1 as rows respectively. We call datasets X
and X ′ neighboring if there exists an index i∗ ∈ 1, . . . , n such that ‖x(i∗) − x′(i∗)‖ ≤ 1,

and ‖x(j) − x′(j)‖ = 0 for any index j ∈ 1, . . . , n, j 6= i∗.

A randomized algorithm is differentially private if, for any two neighboring datasets,

the distributions of the outputs of the algorithm calculated on these datasets are sim-

ilar. Formally:

Definition 3.5. A randomized algorithm M is (ε, δ)-differentially private for ε > 0

and δ ∈ (0, 1) if, for all O ⊂ Range(M) (where Range(M) is the range of the outputs

3 We slightly abuse the notation and view the dataset X (Z) as an n × d (n × r) matrix where
each of the n rows corresponds to an original (transformed) input.
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of the randomized algorithm M) and for all neighboring datasets X and X ′, we have

P (M(X ) ∈ O) ≤ exp(ε) · P (M(X ′) ∈ O) + δ.

Note that the definition above is symmetric in terms of X and X ′. A (ε, 0)-

differentially private algorithm is usually called ε-differentially private. The DP pa-

rameters ε, δ control the privacy-utility trade-off : The smaller they are, the tighter

the privacy guarantee is, at the expense of lower accuracy due to the increased

amount of noise required to satisfy DP. The DP parameter δ is usually set smaller

than 1/n where n is the number of inputs in the dataset [Dwork and Roth, 2014;

Abadi et al., 2016; Foulds et al., 2016; Papernot et al., 2017a], while the DP parameter

ε is usually set in the single-digit range, as can be seen from the state-of-the-art works

on the application of DP in machine learning [Abadi et al., 2016; Foulds et al., 2016;

Papernot et al., 2017a].

3.4.1 Common DP mechanisms

In this section we review some common DP techniques, such as Laplace and Gaussian

mechanisms. For these mechanisms we first define an intermediate quantity called

the sensitivity describing how much the output of the objective function f changes

on the neighboring datasets:

Definition 3.6. The `p-sensitivity of a function f is defined as

∆pf , max
X ,X ′
‖f(X )− f(X ′)‖p

where X and X ′ are neighboring datasets and ‖·‖p is `p norm.

The sensitivity of a function f captures the magnitude by which a single indi-

vidual’s data can change the output of function f in the worst case. Therefore, this
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quantity is related to the amount of noise required to hide such a change in the

dataset from the attacker who observes the output of the DP mechanism. We now

show how sensitivity can be used to construct DP mechanisms for releasing the output

of function f .

Laplace mechanism. This mechanism computes f and perturbs each coordinate

with noise drawn from the Laplace distribution with the scale proportional to the

l1-sensitivity of function f :

Definition 3.7. Given any function f computed over a dataset X with a value in Rk

the Laplace mechanism is defined as:

ML(X , f, ε) , f(x) + (Y1, . . . , Yk)

where Yi are i.i.d. random variables drawn from Laplace distribution Laplace(∆1f/ε).

Theorem 3.3. The Laplace mechanism preserves ε-differential privacy.

See Section 3.3 of [Dwork and Roth, 2014] for the proof.

Gaussian mechanism. This mechanism is similar to the Laplace mechanism, but uses

Gaussian noise instead of Laplace noise. Additionally, the noise added is proportional

to the l2-sensitivity of f and not to the l1-sensitivity, as in the previous case:

Definition 3.8. Given any function f computed over a dataset X with a value in Rk

the Gaussian mechanism is defined as:

MG(X , f, σ) , f(x) + (Y1, . . . , Yk)

where Yi are i.i.d. random variables drawn from Gaussian distribution N (0, σ2).

Theorem 3.4. Let ε > 0 and δ ∈ (0, 1) be given. For c2 > ln(1.25/δ) the Gaussian

mechanism with parameter σ ≥ c∆2f/ε is (ε, δ)-differentially private.
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See Appendix A of [Dwork and Roth, 2014] for the proof.

Note that despite the similar formulation, Gaussian and Laplace mechanisms have

certain distinctions: They use different sensitivities (l1 vs. l2) and satisfy different

DP guarantees (ε-DP vs. (ε, δ)-DP). Refer to the work of [Dwork and Roth, 2014] for

more details about DP.

3.5 Private Outsourced Bayesian Optimization

In our PO-GP-UCB algorithm, the curator needs to perform a privacy-preserving

transformation of the original dataset X ⊂ Rd and release the transformed dataset

Z ⊂ Rr to the modeler. Subsequently, the modeler runs BO (i.e., GP-UCB) using

Z. When performing the transformation, the goal of the curator is two-fold: Firstly,

the transformation has to be differentially private with given DP parameters ε, δ

(Definition 3.5); secondly, the transformation should allow the modeler to obtain

good BO performance on the transformed dataset (in a sense to be formalized later

in this section).

3.5.1 Transformation via Random Projection

Good BO performance by the modeler (i.e., the second goal of the curator) can

be achieved by making the GP predictions (3.2) (on which the performance of the

BO algorithm depends) using the transformed dataset Z close to those using the

original dataset X . To this end, we ensure that the distances between all pairs of

inputs are approximately preserved after the transformation. This is motivated by

the fact that the GP predictions (3.2) and hence the BO performance, depend on the

inputs only through the value of covariance, which, in the case of isotropic covariance

functions1, only depends on the pairwise distances between inputs. Consequently, by
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preserving the pairwise distances between inputs, the performance of the BO (GP-

UCB) algorithm run by the modeler on Z is made similar to that of the non-private

GP-UCB algorithm run on the original dataset X , for which theoretical convergence

guarantee has been shown [Srinivas et al., 2010]. As a result, the BO performance

in the outsourced setting can be theoretically guaranteed (Section 3.5.3) and thus

practically assured.

Therefore, to achieve both goals of the curator, we need to address the question

as to what transformation preserves both the pairwise distances between inputs and

DP. A natural approach is to add noise directly to the matrix of pairwise distances

between the original inputs from X using standard DP methods such as the Laplace

or Gaussian mechanisms (Section 3.4.1). However, the resulting noisy distance matrix

is not guaranteed to produce an invertible covariance matrix KXtXt + σ2
nI, which is

a requirement for the GP predictions (3.2). Instead, we perform the transformation

through a technique based on random projection, which satisfies both goals of the

curator. Firstly, random projection through random samples from standard normal

distribution has been shown to preserve DP [Blocki et al., 2012]. Secondly, as a result

of the Johnson-Lindenstrauss lemma [Johnson and Lindenstrauss, 1984], random pro-

jection is also able to approximately preserve the pairwise distances between inputs,

as shown in the following lemma:

Lemma 3.1. Let ν ∈ (0, 1/2), µ ∈ (0, 1), d ∈ N and a set X ⊂ Rd of n row vectors

be given. Let r ∈ N and M be a d × r matrix whose entries are i.i.d. samples from

N (0, 1). If r ≥ 8 log(n2/µ)/ν2, the probability of

(1− ν)‖x− x′‖2 ≤ r−1‖xM − x′M‖2 ≤ (1 + ν)‖x− x′‖2

for all x, x′ ∈ X is at least 1− µ.
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Remark 3.1. Parameter r controls the dimension of the random projection, while

parameters ν and µ control the accuracy. Lemma 3.1 corroborates the intuition that

a smaller value of r leads to larger values of ν and µ, i.e., lower random projection

accuracy.

The proof (Appendix A.1) consists of a union bound applied to the Johnson-

Lindenstrauss lemma [Johnson and Lindenstrauss, 1984], which is a result from ge-

ometry stating that a set of points in a high-dimensional space can be embedded into

a lower-dimensional space such that the pairwise distances between the points are

nearly preserved. The lemma has been used in many domains of computer science

such as graph embeddings [Linial et al., 1995], information retrieval [Papadimitriou

et al., 1995], compressed sensing [Baraniuk et al., 2008] and ML [Balcan et al., 2006].

Formally, it is stated below.

Theorem 3.5. [Johnson-Lindenstrauss lemma [Johnson and Lindenstrauss, 1984]]

Let ν ∈ (0, 1/2), r ∈ N and d ∈ N be given. Let M ′ be a r × d matrix whose entries

are i.i.d. samples from N (0, 1). Then for any vector y ∈ Rd

P
(

(1− ν)‖y‖2 ≤ r−1‖M ′y‖2 ≤ (1 + ν)‖y‖2
)
≥ 1− 2 exp(−ν2r/8).

We now design a DP dataset transformation based on the random projection.

3.5.2 The Curator Part

The curator part (Algorithm 2) of our PO-GP-UCB algorithm takes as input the

original dataset X viewed as an n×d matrix3, the DP parameters ε, δ (Definition 3.5)

and the random projection parameter r (Lemma 3.1)4. To begin with, the curator

4 Note that in Theorem 3.8, the parameter r is calculated based on specific values of the param-
eters µ and ν (Lemma 3.1) in order to achieve the performance guarantee. However, in practice, µ
and ν are not required to specify the value of r for Algorithm 2.
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subtracts the mean from each column of X (line 2), and then picks a matrix M of

samples from standard normal distribution N (0, 1) to perform random projection

(line 3). Next, if the smallest singular value σmin(X ) of the centered dataset X is

not less than a threshold ω (calculated in line 5), the curator outputs the random

projection Z , r−1/2XM of the centered dataset X (line 7). Otherwise, the curator

increases the singular values of the centered dataset X (line 9) to obtain a new dataset

X̃ and outputs the random projection Z , r−1/2X̃M of the new dataset X̃ (line 10).

Lastly, the curator releases Z to the modeler (line 11).

Algorithm 2 PO-GP-UCB (The curator part)

1: Input: X , ε, δ, r
2: X ← X − 11>X/n where 1 is a n× 1 vector of 1’s
3: Pick a d× r matrix M of i.i.d. samples from N (0, 1)
4: Compute the SVD of X = UΣV >

5: ω ← 16
√
r log(2/δ)ε−1 log(16r/δ)

6: if σmin(X ) ≥ ω then
7: return Z ← r−1/2XM
8: else
9: X̃ ← U

√
Σ2 + ω2In×dV

> where Σ2 (In×d) is an n × d matrix whose main
diagonal has squared singular values of X (ones) in each coordinate and all
other coordinates are 0

10: return Z ← r−1/2X̃M
11: Release dataset Z to the modeler

The fact that Algorithm 2 both preserves DP and approximately preserves the

pairwise distances between inputs is stated in Theorems 3.6 and 3.7 below.

Theorem 3.6. Algorithm 2 preserves (ε, δ)-DP.

In the proof of Theorem 3.6 (Appendix A.2), all singular values of the dataset X
are required to be not less than ω (calculated in line 5). This explains the necessity

of line 9, where we increase the singular values of the dataset X if σmin(X ) < ω, to

ensure that this requirement is satisfied.
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Theorem 3.7. Let a dataset X ⊂ Rd be given. Let ν ∈ (0, 1/2), µ ∈ (0, 1) be given.

Let r ∈ N, such that r ≥ 8 log(n2/µ)/ν2. Then, the probability of

(1− ν)‖x− x′‖2 ≤ ‖z − z′‖2 ≤ (1 + ν)C ′‖x− x′‖2

for all x, x′ ∈ X and their images z, z′ ∈ Z is at least 1 − µ, in which C ′ , 1 +

1σmin(X )<ωω
2/σ2

min(X ).

The proof (see Appendix A.3) consists of bounding the change in distances be-

tween inputs due to the increase of the singular values of the dataset X (line 9 of

Algorithm 2) and applying Lemma 3.1. It can be observed from Theorem 3.7 that

when σmin(X ) ≥ ω, C ′ = 1 and hence Algorithm 2 approximately preserves the

pairwise distances between inputs.

There are several important differences between our Algorithm 2 and the work

of Blocki et al. [2012]. Firstly, Algorithm 3 of Blocki et al. [2012] releases a DP

estimate of the dataset covariance matrix, while our Algorithm 2 outputs a DP trans-

formation of the original dataset. Secondly, Algorithm 3 of Blocki et al. [2012] does

not have the “if/else” condition (line 6 of Algorithm 2) and always increases the sin-

gular values as in line 9 of Algorithm 2. In our case, however, if the singular values

are increased due to the condition σmin(X ) < ω (i.e., the “else” clause, line 8 of Algo-

rithm 2), the pairwise input distances of the dataset X are no longer approximately

preserved in Z (Theorem 3.7), which results in a slightly different regret bound (see

Theorem 3.8 and Remark 3.2 below). This requires us to introduce the “if/else” con-

dition in Algorithm 2. We discuss these changes in greater detail in Appendix A.2.
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3.5.3 The Modeler Part

The modeler part of our PO-GP-UCB algorithm (Algorithm 3) takes as input the

transformed dataset Z ⊂ Rr received from the curator as well as the GP-UCB pa-

rameter δ′, and runs the GP-UCB algorithm for T iterations on Z. In each iteration

t, the modeler selects the candidate transformed input zt by maximizing the GP-UCB

AF (line 4), and queries the curator for the corresponding noisy output measurement

yt (line 5). To perform such a query, the modeler can send the index (row) it of the

selected transformed input zt in the dataset Z viewed as a matrix3 to the curator.

The curator can then find the preimage xt of zt by looking into the same row it of the

dataset X viewed as a matrix3. After identifying xt, the curator can compute f(xt)

to yield a noisy output measurement yt , f(xt) + εGP and send it to the modeler.

The modeler then updates the GP posterior belief (line 6) and proceeds to the next

iteration t+ 1.

Algorithm 3 PO-GP-UCB (The modeler part)

1: Input: Z, δ′, T
2: for t = 1, . . . , T do
3: Set βt ← 2 log(nt2π2/6δ′)

4: zt ← argmaxz∈Z µ̃t(z) + β
1/2
t σ̃t(z)

5: Query the curator for yt
6: Update GP posterior belief: µ̃t+1(z) and σ̃t+1(z)

In our theoretical analysis, we make the assumption of the diagonal dominance

property of the covariance matrices, which was also used by previous works on GP

with DP [Smith et al., 2018] and active learning [Hoang et al., 2014]:

Definition 3.9. Let a dataset X ⊂ Rd and a set X0 ⊆ X be given. The covariance

matrix KX0X0 is said to be diagonally dominant if for any x ∈ X0

kxx ≥
(√
|X0| − 1 + 1

)∑
x′∈X0\x

kxx′ .
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Note that this assumption is adopted mainly for the theoretical analysis, and is

thus not strictly required in order for our algorithm to deliver competitive practical

performance (Section 3.6). Theorem 3.8 below presents the theoretical guarantee on

the BO performance of our PO-GP-UCB algorithm run by the modeler (Algorithm 3).

Theorem 3.8. Let εucb > 0, δucb ∈ (0, 1), T ∈ N, DP parameters ε and δ, and a

dataset X ⊂ Rd be given. Let d , diam(X )/l where diam(X ) is the diameter of X
and l is the GP length-scale. Suppose for all t = 1, . . . , T , |yt| ≤ L and Kx1:t−1x1:t−1 is

diagonally dominant. Suppose r ≥ 8 log(n2/µ)/ν2 (Algorithm 2) where µ , δucb/2 and

ν , min(εucb/(2
√

3d2L), 2/d2, 1/2), and δ′ , δucb/2 (Algorithm 3). If σmin(X ) ≥ ω,

then the simple regret ST incurred by Algorithm 3 run by the modeler satisfies

ST ≤
(
ε2
ucb + 24(C2 + C1β

1/2
T )2 log T/T + 24/ log(1 + σ−2

n ) · βTγT/T
)1/2

with probability at least 1 − δucb, in which γT is the maximum information gain

on the function f from any set of noisy output measurements of size T , C1 ,

O
(
σy
√
σ2
y + σ2

n(σ2
y/σ

2
n + 1)

)
and C2 , O(σ2

y/σ
2
n · L).

The key idea of the proof (Appendix A.5) is to ensure that every value of the

GP-UCB AF computed on the transformed dataset Z is close to the value of the

corresponding GP-UCB AF computed on the original dataset X . Consequently, the

regret of the PO-GP-UCB algorithm run on Z can be analyzed using similar tech-

niques as those adopted in the analysis of the non-private GP-UCB algorithm run on

the original dataset X [Srinivas et al., 2010], which leads to the regret bound shown

in Theorem 3.8. Note that Srinivas et al. [2010] has shown that γT = O((log T )d+1)

for the squared exponential kernel (see Theorem 3.2 in Section 3.2).

Remark 3.2. If σmin(X ) < ω, a similar upper bound on the regret can be proved

with the difference that εucb specified by the curator is replaced by a different con-

stant, which, unlike εucb, cannot be set arbitrarily. This results from the fact that
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if σmin(X ) < ω, Algorithm 2 increases the singular values of the dataset X (see line

9). As a consequence, the pairwise distances between inputs are no longer approx-

imately preserved after the transformation (see Theorem 3.7), resulting in a looser

regret bound (see Remark A.2 in Appendix A.5).

Remark 3.3. The presence of the constant εucb makes the regret upper bound of PO-

GP-UCB slightly different from that of the original GP-UCB algorithm. εucb can

be viewed as controlling the trade-off between utility (BO performance) and privacy

preservation (see more detailed discussion in Section 3.5.4). In contrast, the only prior

works on privacy-preserving BO by Kusner et al. [2015] and Nguyen et al. [2018] do

not provide any regret bounds.

Remark 3.4. The upper bound on the simple regret ST in Theorem 3.8 indirectly

depends on the DP parameter ε: the bound holds under the condition σmin(X ) ≥ ω,

in which ω depends on ε (line 5 of Algorithm 2). Moreover, when σmin(X ) < ω ,

εucb (which appears in the regret bound) is replaced by a different constant, which

depends on ε (see Remark 3.2).

3.5.4 Analysis and Discussion

Interestingly, our theoretical results are amenable to elegant interpretations regarding

the privacy-utility trade-off.

The flexibility to tune the value of ω to satisfy the condition required by Theo-

rem 3.8 (i.e., σmin(X ) ≥ ω) incurs an interesting trade-off. Specifically, if σmin(X ) <

ω, we have two choices:

(a) to run PO-GP-UCB without modifying any parameter;

(b) to reduce ω by tuning the algorithmic parameters to satisfy the condition

σmin(X ) ≥ ω.
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Both of these choices incur some costs. In case (a), the resulting regret bound is

looser as explained in Remark 3.2, which might imply worse BO performance. In

case (b), to reduce the value of ω, we can again have two options:

(i) to increase the DP parameters ε and δ which deteriorates the DP guarantee;

(ii) decrease the value of r. A smaller value of r implies larger values of µ and ν

as required by Theorem 3.8 (r ≥ 8 log(n2/µ)/ν2) and thus larger values of εucb

and δucb as seen in the definitions of µ and ν in Theorem 3.8.

This consequently results in a worse regret upper bound (Theorem 3.8) and thus

deteriorated BO performance. Therefore, the privacy-utility trade-off is involved in

our strategy to deal with the scenario where σmin(X ) < ω.

For a fixed value of ω such that σmin(X ) ≥ ω, the privacy-utility trade-off can also

be identified and thus utilized to adjust the the algorithmic parameters: ε, δ, εucb and

δucb. Specifically, decreasing the values of the DP parameters ε and δ improves the

privacy guarantee. However, in order to fix the value of ω (to ensure that the condition

σmin(X ) ≥ ω remains satisfied), the value of r needs to be reduced, which results in

larger values of εucb and δucb and thus worse BO performance (as discussed in the

previous paragraph). Similar analysis reveals that decreasing the values of εucb and

δucb improves the BO performance, at the expense of looser privacy guarantee (i.e.,

larger required values of ε and δ). Furthermore, the role played by ω in Algorithm 2

provides a guideline on the practical design of the algorithm. In particular, for a

fixed desirable level of privacy (i.e., fixed values of ε and δ), the value of r should

be made as large as possible while still ensuring that the condition σmin(X ) ≥ ω is

satisfied, since larger r improves the BO performance until this condition is violated.

This guideline will be exploited and validated in the experiments.

These insights regarding the privacy-utility trade-off serve as intuitive justifica-

tions of our algorithm and provide useful guidelines for its practical deployment.
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3.6 Experimental results

In this section, we empirically evaluate the performance of our PO-GP-UCB algorithm

using four datasets:

• Synthetic GP dataset. The original inputs for this experiment are 2-dimensional

vectors arranged into a uniform grid and discretized into a 100 × 100 input

domain (i.e., d = 2 and n = 10000). The function to maximize is sampled from

a GP with the GP hyperparameters µx = 0, l = 1.25, σ2
y = 1 and σ2

n = 10−5.

• Real-world loan applications dataset. A bank is selecting the loan applicants

with the highest return on investment (ROI) and outsources the task to a

financial AI consultancy. For this experiment we use the public data from

https://www.lendingclub.com/. The inputs to BO are the data of 36000

loan applicants, each consisting of three features: the total amount commit-

ted by investors for the loan at that point in time, the interest rate on the

loan and the annual income provided by the applicant during registration (i.e.,

n = 36000 and d = 3). The function to maximize (the output measurement) is

the ROI for an applicant. The original ROI measurements are log-transformed

to remove skewness and extremity for stabilizing the GP covariance structure

and the GP hyperparameters µx = −2.742, l1 = 18985.93 dollars, l2 = 10.505

percent, l3 = 171490.464 dollars, σ2
y = 2.118 and σ2

n = 0.83 are then learned

using maximum likelihood estimation [Rasmussen and Williams, 2006]. The

original inputs are preprocessed to form an isotropic covariance function1.

• Real-world private property price dataset. A real estate agency is trying to lo-

cate the cheapest private properties and outsources the task of selecting the

candidate properties to an AI consultancy. The original inputs are the longi-

tude/latitude coordinates of 2004 individual properties (i.e., n = 2004 and d =
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2). We use the public data from https://www.ura.gov.sg/realEstateIIWeb/

transaction/search.action. The function to minimize is the evaluated prop-

erty price measured in dollars per square meter. The original property price

measurements are log-transformed to remove skewness and extremity for sta-

bilizing the GP covariance structure and the GP hyperparameters µx = 6.85,

l = 0.555, σ2
y = 0.545 and σ2

n = 0.527 are then learned using maximum likeli-

hood estimation [Rasmussen and Williams, 2006].

• Branin-Hoo benchmark function. The original inputs for this experiment are 2-

dimensional vectors arranged into a uniform grid and discretized into a 31× 31

input domain (i.e., d = 2 and n = 961). The function to maximize is sampled

from the negation of Branin-Hoo function. The original output measurements

are log-transformed to remove skewness and extremity in order to stabilize the

GP covariance structure. The GP hyperparameters are learned using maximum

likelihood estimation [Rasmussen and Williams, 2006]. The original inputs are

preprocessed to form an isotropic covariance function1.

The performances of our algorithm are compared with that of the non-private GP-

UCB algorithm run using the original datasets [Srinivas et al., 2010]. The performance

metric used is simple regret. All results are averaged over 50 random runs, each

of which uses a different set of initializations for BO. Each random run uses an

independent realization of the matrix M of i.i.d. samples from N (0, 1) for performing

random projection (line 3 of Algorithm 2).

We set the GP-UCB parameter δucb = 0.05 (Theorem 3.8) and normalize the

inputs to have a maximal norm of 25 in all experiments. Following the guidelines

by the state-of-the-art works in DP [Dwork and Roth, 2014; Abadi et al., 2016;

Foulds et al., 2016; Papernot et al., 2017a], we fix the value of the DP parameter δ

(Definition 3.5) to be smaller than 1/n in all experiments (see Section 3.4).
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Note that setting the values of the parameters µ, ν (Lemma 3.1) and the GP-

UCB parameter εucb (Theorem 3.8), as well as assuming the diagonal dominance of

covariance matrices (Definition 3.9) is required only for our theoretical analysis and

thus not necessary in the practical employment of our algorithm.

In every experiment that varies the value of the DP parameter ε (Definition 3.5),

the PO-GP-UCB algorithm with the largest value of ε under consideration satis-

fies the condition σmin(X ) ≥ ω (i.e., the “if” clause, line 6 of Algorithm 2), while

the algorithms with all other values of ε under consideration satisfy the condition

σmin(X ) < ω (i.e., the “else” clause, line 8 of Algorithm 2). This is explained by the

fact that further increasing the value of ε will only decrease the value of ω (see line 5

of Algorithm 2), so the condition σmin(X ) ≥ ω will remain satisfied. As a result, the

dataset Z returned by Algorithm 2 and hence the performance of PO-GP-UCB will

stay the same.

3.6.1 Synthetic GP dataset

For this experiment we set the parameter r = 10 (Algorithm 2), DP parameter

δ = 10−5 (Definition 3.5) and the GP-UCB parameter T = 50.

Fig. 3.2 shows the performances of PO-GP-UCB with different values of ε and

that of non-private GP-UCB. It can be observed that smaller values of ε (tighter

privacy guarantees) result in larger simple regret, which is consistent with the privacy-

utility trade off. PO-GP-UCB with the largest value of ε = exp(1.1) satisfying the

condition σmin(X ) ≥ ω achieves only 0.011σy more simple regret than non-private

GP-UCB after 50 iterations. Interestingly, despite having a looser regret bound (see

Remark 3.2), the PO-GP-UCB algorithm with some smaller values of ε satisfying

the condition σmin(X ) < ω also only incurs slightly larger regret than non-private

GP-UCB. In particular, PO-GP-UCB with ε = exp(0.9) (ε = exp(0.0)) achieves only
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Figure 3.2: Simple regrets achieved by tested BO algorithms (with fixed r and different
values of ε) vs. the number of iterations for the synthetic GP dataset, r = 10.

0.069σy (0.099σy) more simple regret after 50 iterations. Therefore, our algorithm is

able to achieve favorable performance with the values of ε in the single-digit range,

which is consistent with the practice of the state-of-the-art works on the application

of DP in machine learning [Abadi et al., 2016; Foulds et al., 2016; Papernot et al.,

2017a]. This implies our algorithm’s practical capability of simultaneously achieving

tight privacy guarantee and obtaining competitive BO performance.

We also investigate the impact of varying the value of the random projection

parameter r on the performance of PO-GP-UCB. In particular, we consider 3 different

values of DP parameter ε: ε = exp(1.1), ε = exp(1.3) and ε = exp(1.5). We then

fix the value of ε and vary the value of r. The largest value of r satisfying the

condition σmin(X ) ≥ ω is r = 10 for ε = exp(1.1), r = 15 for ε = exp(1.3) and
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r = 20 for ε = exp(1.5). Tables 3.1, 3.2 and 3.3 reveal that the largest values of

r satisfying the condition σmin(X ) ≥ ω lead to the smallest simple regret after 50

iterations. Decreasing the value of r increases the simple regret, which agrees with

our analysis in Section 3.5.4 (i.e., smaller r results in worse regret upper bound).

On the other hand, increasing r such that the condition σmin(X ) < ω is satisfied

also results in larger simple regret, which is again consistent with the analysis in

Remark 3.2 stating that the regret upper bound becomes looser in this scenario. This

experiment suggests that, in practice, for a fixed desirable privacy level (i.e., if the

values of the DP parameters ε and δ are fixed), r should be chosen as the largest

value satisfying the condition σmin(X ) ≥ ω.

Table 3.1: Simple regrets achieved by PO-GP-UCB with fixed ε = exp(1.1) and different
values of r after 50 iterations for the synthetic GP dataset. The largest value of r satisfying
the condition σmin(X ) ≥ ω is r = 10.

r 3 6 8 10 15 20
S50 0.073 0.038 0.018 0.014 0.118 0.137

Table 3.2: Simple regrets achieved by PO-GP-UCB with fixed ε = exp(1.3) and different
values of r after 50 iterations for the synthetic GP dataset. The largest value of r satisfying
the condition σmin(X ) ≥ ω is r = 15.

r 3 9 12 15 20 30
S50 0.091 0.009 0.019 0.008 0.127 0.134

Table 3.3: Simple regrets achieved by PO-GP-UCB with fixed ε = exp(1.5) and different
values of r after 50 iterations for the synthetic GP dataset. The largest value of r satisfying
the condition σmin(X ) ≥ ω is r = 20.

r 5 10 15 20 30 50
S50 0.05 0.021 0.003 0.002 0.094 0.142
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Figure 3.3: Simple regrets achieved by tested BO algorithms (with fixed r and different
values of ε) vs. the number of iterations for loan applications dataset, r = 15.

3.6.2 Real-world loan applications dataset

For this experiment we set r = 15 (Algorithm 2), DP parameter δ = 10−5 (Defini-

tion 3.5) and the GP-UCB parameter T = 50.

Fig. 3.3 presents the results of varying the value of ε. Similar to the synthetic

GP dataset, after 50 iterations, the simple regret achieved by PO-GP-UCB with the

largest value of ε = exp(2.9) satisfying the condition σmin(X ) ≥ ω is slightly larger (by

0.003σy) than that achieved by non-private GP-UCB. Moreover, PO-GP-UCB with

some values of ε in the single-digit range satisfying the condition σmin(X ) < ω shows

marginally worse performance compared with non-private GP-UCB. In particular,

after 50 iterations, ε = exp(2.0) and ε = exp(1.0) result in 0.019σy and 0.05σy more

simple regret than non-private GP-UCB respectively.
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We examine the effect of r on the performance of PO-GP-UCB, by fixing the value

of DP parameter ε and changing r. We consider 3 different values of DP parameter

ε: ε = exp(2.7), ε = exp(2.9) and ε = exp(3.1). The largest value of r satisfying the

condition σmin(X ) ≥ ω is r = 10 for ε = exp(2.7), r = 15 for ε = exp(2.9) and r = 20

for ε = exp(3.1). The results are presented in Tables 3.4, 3.5 and 3.6. PO-GP-UCB

with the largest r satisfying the condition σmin(X ) ≥ ω in general leads to the best

performance, i.e., it achieves the smallest simple regret in Tables 3.4 and 3.5, and

the second smallest simple regret in Table 3.6. Similar insights to the results of the

synthetic GP dataset can also be drawn: reducing the value of r and increasing the

value of r to satisfy the condition σmin(X ) < ω both result in larger simple regret,

which again corroborates our theoretical analysis.

Table 3.4: Simple regrets achieved by PO-GP-UCB with fixed ε = exp(2.7) and different
values of r after 50 iterations for the real-world loan applications dataset. The largest
value of r satisfying the condition σmin(X ) ≥ ω is r = 10.

r 3 6 8 10 15 20
S50 0.083 0.088 0.078 0.069 0.081 0.076

Table 3.5: Simple regrets achieved by PO-GP-UCB with fixed ε = exp(2.9) and different
values of r after 50 iterations for the real-world loan applications dataset. The largest
value of r satisfying the condition σmin(X ) ≥ ω is r = 15.

r 3 9 12 15 20 30
S50 0.091 0.076 0.078 0.077 0.1 0.096

Table 3.6: Simple regrets achieved by PO-GP-UCB with fixed ε = exp(3.1) and different
values of r after 50 iterations for the real-world loan applications dataset. The largest
value of r satisfying the condition σmin(X ) ≥ ω is r = 20.

r 5 10 15 20 30 50
S50 0.097 0.091 0.069 0.084 0.104 0.127
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3.6.3 Real-world private property price dataset
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Figure 3.4: Simple regrets achieved by tested BO algorithms (with fixed r and different
values of ε) vs. the number of iterations for private property price dataset, r = 15.

For this experiment we set r = 15 (Algorithm 2), DP parameter δ = 10−4 (Defi-

nition 3.5) and the GP-UCB parameter T = 100.

The results of this experiment for different values of ε are displayed in Fig. 3.4.

Similar observations can be made that are consistent with the previous experiments.

In particular, smaller values of ε (tighter privacy guarantees) generally lead to worse

BO performance (larger simple regret); PO-GP-UCB with the largest value of ε =

exp(2.8) satisfying the condition σmin(X ) ≥ ω incurs slightly larger simple regret

(0.051σy) than non-private GP-UCB after 100 iterations; PO-GP-UCB with some

values of ε in the single-digit range satisfying the condition σmin(X ) < ω exhibits

small disadvantages compared with non-private GP-UCB after 100 iterations in terms
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of simple regrets: ε = exp(1.0) and ε = exp(0.5) result in 0.017σy and 0.082σy more

simple regret respectively.

We again empirically inspect the impact of r on the performance of PO-GP-UCB

in the same manner as the previous experiments: we fix the value of ε and vary

the value of r. We consider 3 different values of DP parameter ε: ε = exp(2.6), ε =

exp(2.8) and ε = exp(3.0). The largest value of r satisfying the condition σmin(X ) ≥ ω

is r = 10 for ε = exp(2.6), r = 15 for ε = exp(2.8) and r = 20 for ε = exp(3.0).

Tables 3.7, 3.8 and 3.9 show that the smallest simple regret is achieved by the

largest values of r satisfying the condition σmin(X ) ≥ ω. Similar to the previous

experiments, smaller values of r and larger values of r that satisfy the condition

σmin(X ) < ω both lead to larger simple regret, further validating the practicality of

our guideline on the selection of r (Section 3.5.4).

Table 3.7: Simple regrets achieved by PO-GP-UCB with fixed ε = exp(2.6) and different
values of r after 100 iterations for the real-world property price dataset. The largest value
of r satisfying the condition σmin(X ) ≥ ω is r = 10.

r 3 6 8 10 15 20
S100 0.682 0.516 0.495 0.485 0.485 0.493

Table 3.8: Simple regrets achieved by PO-GP-UCB with fixed ε = exp(2.8) and different
values of r after 100 iterations for the real-world property price dataset. The largest value
of r satisfying the condition σmin(X ) ≥ ω is r = 15.

r 3 9 12 15 20 30
S100 0.567 0.553 0.479 0.453 0.493 0.52

Table 3.9: Simple regrets achieved by PO-GP-UCB with fixed ε = exp(3.0) and different
values of r after 100 iterations for the real-world property price dataset. The largest value
of r satisfying the condition σmin(X ) ≥ ω is r = 20.

r 5 10 15 20 30 50
S100 0.591 0.523 0.486 0.482 0.489 0.488
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3.6.4 Branin-Hoo benchmark function

We set the parameter r = 10 (Algorithm 2), DP parameter δ = 10−3 (Definition 3.5)

and the GP-UCB parameter T = 50 for this experiment.

Fig. 3.5 shows the performances of PO-GP-UCB with different values of ε and

that of non-private GP-UCB. The results are consistent with the previous experi-

ments. Smaller values of ε (tighter privacy guarantees) generally lead to larger simple

regret; PO-GP-UCB with the largest value of ε = exp(2.3) satisfying the condition

σmin(X ) ≥ ω incurs only 0.004σy more simple regret than non-private GP-UCB after

50 iterations; PO-GP-UCB with some values of ε in the single-digit range satisfying

the condition σmin(X ) < ω exhibits small difference in simple regret compared with

non-private GP-UCB after 50 iterations: ε = exp(2.0) and ε = exp(1.8) result in

0.023σy and 0.051σy more simple regret, respectively.

Similarly to the previous experiments, we investigate the impact of varying the

value of the random projection parameter r on the performance of PO-GP-UCB.

We consider 3 different values of DP parameter ε: ε = exp(2.3), ε = exp(2.5) and

ε = exp(2.7). We fix the value of ε and vary the value of r. The largest value

of r satisfying the condition σmin(X ) ≥ ω is r = 10 for ε = exp(2.3), r = 15 for

ε = exp(2.5) and r = 20 for ε = exp(2.7). Tables 3.10, 3.11 and 3.12 reveal that the

largest values of r satisfying the condition σmin(X ) ≥ ω lead to the smallest simple

regret after 50 iterations. Decreasing the value of r increases the simple regret, which

agrees with our analysis in Section 3.5.4 (i.e., smaller r results in worse regret upper

bound). Increasing r such that the condition σmin(X ) < ω is satisfied, on the other

hand, also results in larger simple regret, which is again consistent with the analysis

in Remark 3.2 stating that the regret upper bound becomes looser in this scenario.

These observations are consisted with those for a synthetic GP dataset, a real-world

loan applications dataset and a real-world property price dataset.
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Figure 3.5: Simple regrets achieved by tested BO algorithms (with fixed r = 10 and
different values of ε) vs. the number of iterations for the Branin-Hoo function dataset.

Table 3.10: Simple regrets achieved by PO-GP-UCB with fixed ε = exp(2.3) and different
values of r after 50 iterations for the Branin-Hoo function dataset. The largest value of
r satisfying the condition σmin(X ) ≥ ω is r = 10.

r 3 6 8 10 15 20
S50 0.53 0.184 0.038 0.0 0.005 0.024

Table 3.11: Simple regrets achieved by PO-GP-UCB with fixed ε = exp(2.5) and different
values of r after 50 iterations for the Branin-Hoo function dataset. The largest value of
r satisfying the condition σmin(X ) ≥ ω is r = 15.

r 3 9 12 15 20 30
S50 0.259 0.001 0.0 0.0 0.014 0.026
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Table 3.12: Simple regrets achieved by PO-GP-UCB with fixed ε = exp(2.7) and different
values of r after 50 iterations for the Branin-Hoo function dataset. The largest value of
r satisfying the condition σmin(X ) ≥ ω is r = 20.

r 5 10 15 20 30 50
S50 0.152 0.0 0.0 0.0 0.005 0.073
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Chapter 4

Nonmyopic Bayesian Optimization

with Macro-Actions

This chapter of the thesis presents a principled multi-staged Bayesian sequential

decision algorithm for nonmyopic adaptive BO for hotspot sampling in spatially

varying phenomena. Our proposed algorithm scales up to a further lookahead (as

compared to the existing nonmyopic adaptive BO algorithms [Lam et al., 2016;

Lam and Willcox, 2017; Ling et al., 2016; Marchant et al., 2014; Osborne et al.,

2009]) to match up to a larger available budget. To achieve this, we exploit the

structure of the spatially varying phenomenon. Specifically, we rely on the notion

of macro-actions (i.e., each denoting a sequence of primitive actions executed in full

without considering any observation taken after performing each primitive action in

the sequence) inherent to the structure of several real-world applications such as en-

vironmental sensing and monitoring, mobile sensor networks, and robotics. Some

examples are given below:

• In monitoring of algal bloom in the coastal ocean, an autonomous underwater

vehicle (AUV) is deployed on board a research vessel in search for a hotspot
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of peak phytoplankton abundance and tasked to take dives from the vessel to

gather “Gulper” water samples for on-deck testing that can be cast as macro-

actions [Pennington et al., 2016];

• In servicing the mobility demand within an urban city, an autonomous robotic

vehicle in a mobility-on-demand system cruises along different road trajectories

abstracted as macro-actions to find a hotspot of highest mobility demand to

pick up a user [Chen et al., 2015];

• In monitoring of the indoor environmental quality of an office environment [Choi

et al., 2012], a mobile robot mounted with a weather board is tasked to find a

hotspot of peak temperature by exploring different stretches of corridors that

can be naturally abstracted into macro-actions;

• In monitoring of algal bloom in the coastal ocean, an underwater glider is tasked

to find a hotspot of peak chlorophyll fluorescence by optimizing its search tra-

jectory tractably over simple ellipses of varying sizes [Leonard et al., 2007] that

constitute different macro-actions.

Macro-actions have in fact been well-studied and used by the planning community

to scale up algorithms for planning under uncertainty to a further lookahead [He et

al., 2010; He et al., 2011; Lim et al., 2011], which is realized from a much reduced

space of possible sequences of primitive actions (i.e., macro-actions) induced by the

structure of the input domain/application. Additionally, macro-actions are also stud-

ied in reinforcement learning community but named as options instead [Barto and

Mahadevan, 2003; Konidaris and Barto, 2007; Stolle and Precup, 2002].

In BO context, each macro-action denotes a sequence of inputs for evaluating the

unknown objective function. The use of macro-actions for nonmyopic adaptive BO

poses an interesting research question: How can an acquisition function be defined
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with respect to a nonmyopic adaptive macro-action policy and optimized tractably to

yield such a policy with a provable performance guarantee for a given finite budget?

The main technical difficulty in answering this question stems from the need to

account for the correlation of outputs to be observed from evaluating the unknown

objective function at inputs found within a macro-action and between different macro-

actions. Such a correlation structure is the chief ingredient to be exploited for selecting

informative observations to find the global maximum.

To design our algorithm, we first generalize GP-UCB [Srinivas et al., 2010] to

a new acquisition function defined with respect to a nonmyopic adaptive macro-

action policy. However, an uncountable set of candidate outputs makes this policy

intractable to be optimized exactly. To resolve this issue, we use stochastic sampling

in each planning stage to solve for a nonmyopic adaptive ε-Bayes-optimal macro-

action BO (ε-Macro-BO) policy given an arbitrarily user-specified loss bound ε and

a finite budget of function evaluations, which is a key novel contribution of our work

here. Additionally, we show that our proposed algorithm requires only a polynomial

number of samples in the length of macro-actions1 (Section 4.2). To perform nonmy-

opic adaptive BO in real time, we then propose an asymptotically optimal anytime

variant of our ε-Macro-BO policy with a performance guarantee (Section 4.3). We

use synthetic and real-world datasets to empirically evaluate the performance of our

ε-Macro-BO policy and its anytime variant in BO (Section 4.4).

4.1 Problem setting

To simplify exposition of our work here, for the rest of this chapter we will assume

the input domain X to be the domain of a spatially varying phenomenon (e.g., indoor

1In contrast, though the nonmyopic adaptive BO algorithm of [Ling et al., 2016] based on de-
terministic sampling can be naively generalized to exploit macro-actions, it requires an exponential
number of samples per planning stage (iteration), as detailed in Remark 4.3.
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environmental quality of an office environment, plankton bloom in the ocean, mobility

demand within an urban city, as described in the previous section). A mobile sensing

agent utilizes our proposed nonmyopic adaptive ε-Macro-BO policy or its anytime

variant to select and gather observations from the input domain for finding the global

maximum. Furthermore, for the rest of this chapter we will use the term “input

location” instead of “input” to match the setting of the problem. The problem setting

is visually illustrated in Fig. 4.1.

To recall, let X be the domain of a spatially varying phenomenon corresponding

to a set of input locations. In every iteration t > 0, the agent executes one of the

available macro-actions of length κ at its current input location by deterministically

moving through a sequence of κ input locations, denoted by a vector xt ∈ A(xt−1), and

observes the corresponding noisy output measurements yt ∈ Rκ, where A(xt−1) ⊆ X κ

denotes a finite set of available macro-actions at the agent’s current input location2

(see visual illustration in Fig. 4.1 and its caption b). The state of the agent at its

initial starting input location is represented by prior observations/data d0 , 〈x0,y0〉
available before planning where x0 and y0 denote, respectively, vectors comprising

input locations visited and corresponding output measurements observed by the agent

prior to planning. The agent’s initial starting input location is the last component

of x0. In iteration t > 0, the state of the agent is represented by observations/data

dt , 〈x1:t,y1:t〉 where x1:t , x0⊕ . . .⊕xt and y1:t , y0⊕ . . .⊕yt denote, respectively,

vectors comprising input locations visited and corresponding output measurements

observed by the agent up till iteration t and ‘⊕’ denotes vector concatenation.

The spatially varying phenomenon is modeled as a realization of a GP (Sec-

tion 3.1.2): Each input location x ∈ X is associated with an output measurement

f(x). We assume that the covariance function kxx′ is defined by the non-isotropic SE

2Note that A(xt−1) depends on the agent’s current input location which corresponds to the last
component of macro-action xt−1 executed in the previous iteration t− 1.
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kernel (Section 3.1.2) with the signal variance σ2
y and length-scale components `1 and

`2 controlling the spatial correlation or “similarity” between output measurements in

the respective east-west and north-south directions of the 2D phenomenon3.

Supposing the agent has gathered observations dt = 〈x1:t,y1:t〉 from iterations 0 to

t the GP model can exploit these observations dt to perform probabilistic regression

by providing a Gaussian posterior distribution/belief of noisy output measurements

for any κ input locations xt+1 ⊂ X with the following posterior mean vector and

covariance matrix, respectively [Rasmussen and Williams, 2006]:

µt+1(xt+1) , Kxt+1x1:t(Kx1:tx1:t + σ2
nI)−1y>1:t

Σt+1(xt+1) , Kxt+1xt+1 + σ2
nI −Kxt+1x1:t(Kx1:tx1:t + σ2

nI)−1Kx1:txt+1

(4.1)

where Kxt+1x1:t is a matrix with covariance components kxx′ for every input x of xt+1

and x′ of x1:t, Kx1:txt+1 is the transpose of Kxt+1x1:t , and Kx1:tx1:t (Kxt+1xt+1) is a

matrix with covariance components kxx′ for every pair of inputs x, x′ of x1:t (xt+1).

Note that (4.1) is very similar to (3.2) in Section 3.1.2 with the difference that in (4.1)

we are interested in simultaneous GP prediction for κ input locations xt+1.

4.2 ε-Bayes-Optimal Macro-BO

To cast nonmyopic adaptive macro-action BO (Macro-BO) as a Bayesian sequential

decision problem, we define a nonmyopic adaptive macro-action policy π to sequen-

tially decide in each iteration t the next macro-action π(dt) ∈ A(xt) to be executed for

gathering κ new observations based on the current observations dt over a finite plan-

ning horizon of H iterations (i.e., a lookahead of κH observations). The goal of the

3While such setting implies that we assume the dimension of inputs to be d = 2, this choice is
only motivated by our motivating applications. All our results hold for any other input dimension
d and kernel kxx′ .
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Figure 4.1: Example of monitoring indoor environmental quality of an office environ-
ment [Choi et al., 2012]: (a) A mobile robot mounted with a weather board is tasked to
find a hotspot of peak temperature by exploring different stretches of corridors that can
be naturally abstracted into macro-actions. (b) In iteration t = 1, the robot is at its initial
starting input location (green dot). It can decide to execute macro-action x1 (translucent
red arrow), which is a sequence of κ = 3 primitive actions (opaque red arrows) moving
it through a sequence of κ = 3 input locations (black dots) to arrive at input location
x1,3. So, x1 , (x1,1, x1,2, x1,3). (c) To derive a myopic Macro-BO or ε-Macro-BO policy
with H = 1, the last stages of Bellman equations in (4.5)-(4.9) require macro-actions
x1 and x′1 as inputs. To derive a nonmyopic one with H = 2, they require macro-action
sequences x1 ⊕ x2 and x′1 ⊕ x′2 as inputs instead.
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agent is to plan/decide its macro-actions to visit input locations x1:H = x1⊕ . . .⊕xH

with the maximum total corresponding output measurements

1>y1:H =
H∑
t=1

1>yt =
H∑
t=1

κ∑
i=1

yt,i

where y1:H = y1 ⊕ . . . ⊕ yH and yt = (yt,1, . . . , yt,κ). However, since only the prior

observations/data d0 are known, the Macro-BO problem involves finding a non-

myopic adaptive macro-action policy π to select input locations x1:H to be visited

by the agent with the maximum expected total corresponding output measurements

Ey1:H |d0,π[1>y1:H ] instead.

Supposing the size of the available budget in a real-world task environment exceeds

the lookahead of κH observations, it can afford a stronger exploration behavior by

including an additional weighted exploration term β I[f(X ); y1:H |d0, π] where f(X ) ,

{f(x)}x∈X . Its effect on BO performance is empirically investigated in Section 4.4.

The conditional mutual information I[f(X ); y1:H |d0, π] here can be interpreted as the

information gain on the phenomenon over the entire domain X (i.e., equivalent to

f(X )) from gathering observations 〈x1:H ,y1:H〉 selected according to the nonmyopic

adaptive macro-action policy π given the prior data d0. Then, the acquisition function

w.r.t. a nonmyopic adaptive macro-action policy π when starting in d0 and following

π thereafter can be defined as

V π
0 (d0) , Ey1:H |d0,π[1>y1:H ] + β I[f(X ); y1:H |d0, π] . (4.2)

Applying the chain rule for mutual information and a few other information-theoretic

results to (4.2) yields the following H-stage Bellman equations:

V π
t (dt) , Qπ

t (π(dt), dt) ,

Qπ
t (xt+1, dt) , R(xt+1, dt) + Eyt+1|xt+1,dt [V

π
t+1(〈x1:t+1,y1:t⊕yt+1〉)]

(4.3)
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for stages t = 0, . . . , H − 1 where V π
H(dH) , 0 and

R(xt+1, dt) , 1>µt(xt+1) + 0.5β log |I + σ−2
n Σt(xt+1)| . (4.4)

See Appendix B.1.1 for the derivation.

To solve the Macro-BO problem, Bayes-optimality4 is exploited to select input

locations to be visited by the agent that maximize the expected total corresponding

output measurements (and, if the budget can afford, the additional weighted ex-

ploration term representing the information gain on the phenomenon) with respect

to all possible induced sequences of future GP posterior beliefs p(yt+1|xt+1, dt) for

t = 0, . . . , H−1. Formally, this involves choosing a nonmyopic adaptive macro-action

policy π to maximize V π
0 (d0), which we call the Bayes-optimal Macro-BO policy π∗.

That is,

V ∗0 (d0) , V π∗

0 (d0) = max
π

V π
0 (d0).

Plugging π∗ into V π
t (dt) and Qπ

t (xt+1, dt) (4.3) gives

V ∗t (dt) , maxxt+1∈A(xt)Q
∗
t (xt+1, dt) ,

Q∗t (xt+1, dt) , R(xt+1, dt) + Eyt+1|xt+1,dt [V
∗
t+1(〈x1:t+1,y1:t⊕yt+1〉)]

(4.5)

for stages t = 0, . . . , H − 1 where V ∗H(dH) , 0.5 When the lookahead of κH ob-

servations matches up to the available budget, the Bayes-optimal Macro-BO policy

π∗ can naturally trade off between exploration vs. exploitation without needing the

4Bayes-optimality is previously studied in discrete Bayesian reinforcement learning
(BRL) [Poupart et al., 2006] but its assumed discrete-valued output measurements and Markov
property do not hold in Macro-BO. Continuous BRLs [Dallaire et al., 2009; Ross et al., 2008] as-
sume a known parametric observation function, the reward function to be independent of output
measurements and previous input locations, and/or, when using GP, the most likely observations
during planning with no performance guarantee.

5To understand the effect of H on how much macro-action sequence information are required
as inputs to the Bellman equations in (4.5)-(4.9), refer to Fig. 4.1 and its caption c for a visual
illustration.
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additional weighted exploration term in (4.2) or (4.4) (i.e., β = 0): Its selected macro-

action π∗(dt) = argmaxxt+1∈A(xt) Q
∗
t (xt+1, dt) in each iteration t has to trade off be-

tween exploiting the current GP posterior belief p(yt+1|π∗(dt), dt) to maximize the ex-

pected total corresponding output measurements R(π∗(dt), dt) = 1>µt(π
∗(dt)) vs. im-

proving the GP posterior belief of the phenomenon (i.e., exploration) so as to maxi-

mize the expected total output measurements Eyt+1|π∗(dt),dt [V
∗
t+1(〈x1:t ⊕ π∗(dt),y1:t ⊕

yt+1〉)] in the later stages.

When the available budget is larger than the lookahead of κH observations, it

can afford a stronger exploration behavior by setting a positive weight β > 0 on the

exploration term 0.5 log |I + σ−2
n Σt(π

∗(dt))| in (4.4); its effect on BO performance is

empirically investigated in Section 4.4. This exploration term can be interpreted as

the information gain I[f(X ); yt+1|dt, π∗(dt)]] on the phenomenon (Appendix B.1.1)

from executing the macro-action π∗(dt) to gather κ new observations. As such, the

macro-action π∗(dt) can gain more information on the phenomenon (larger exploration

term) by gathering observations with higher uncertainty (larger individual posterior

variance) but lower correlation (smaller magnitude of posterior covariance) between

them.

In general, the Macro-BO policy π∗ cannot be derived exactly because the ex-

pectation term in (4.5) (and hence Q∗t and V ∗t ) often cannot be evaluated in closed

form due to an uncountable set of candidate output measurements. To overcome this

difficulty, we will derive a nonmyopic adaptive ε-Macro-BO policy πε whose expected

performance loss is theoretically guaranteed to be within an arbitrarily user-specified

loss bound ε. Preliminary to its design is the approximation of the expectation term

in (4.5) for each candidate macro-action xt+1 in every iteration using stochastic sam-

pling of N i.i.d. multivariate Gaussian vectors y1, . . . ,yN from the GP posterior
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belief p(yt+1|xt+1, dt) (4.1), as illustrated in Fig. 4.2a:

Vt(dt) , maxxt+1∈A(xt)Qt(xt+1, dt) ,

Qt(xt+1, dt) , R(xt+1, dt)+
1

N

N∑
`=1

Vt+1(〈x1:t+1,y1:t⊕y`〉)
(4.6)

for stages t = 0, . . . , H − 1 where VH(dH) , 0.5 We prove in Appendix B.1.4 that

Qt(xt+1, dt) (4.6) can approximate Q∗t (xt+1, dt) (4.5) arbitrarily closely for all xt+1 ∈
A(xt) with a high probability of at least 1 − δ requiring only a polynomial number

N of samples in the macro-action length κ per planning stage:

Theorem 4.1. Suppose that the observations dt, H ∈ Z+, a budget of κ(H− t) input

locations for t = 0, . . . , H − 1, δ ∈ (0, 1), and λ > 0 are given. Then, the probability

of

|Qt(xt+1, dt)−Q∗t (xt+1, dt)| ≤ λH

for all xt+1 ∈ A(xt) is at least 1− δ by setting

N = O((κ2H/λ2) log(κA/(δλ))) (4.7)

where A denotes the largest number of candidate macro-actions available at any input

location in X .

Remark 4.1. Since |Vt(dt) − V ∗t (dt)| ≤ maxxt+1∈A(xt) |Qt(xt+1, dt) − Q∗t (xt+1, dt)|, it

immediately follows from Theorem 4.1 that the probability of |Vt(dt)−V ∗t (dt)| ≤ λH

is at least 1− δ.

Remark 4.2. It can be observed from Theorem 4.1 that the number N of stochastic

samples increases6 with (a) a tighter bound λ on the error |Qt(xt+1, dt)−Q∗t (xt+1, dt)|
6In fact, N also increases when a larger H is available and the spatial phenomenon varies

with more intensity and less noise (larger σ2
y/σ

2
n) (Appendix B.1.4). These constants are omitted

from (4.10) to ease clutter.
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due to stochastic sampling, (b) a higher probability 1− δ of Qt (4.6) approximating

Q∗t (4.5) closely, (c) a larger number A of candidate macro-actions available at any

input location in X , and (d) a greater macro-action length κ.

Deriving the above probabilistic bound usually requires using a concentration

inequality involving independent Gaussian random variables. However, the compo-

nents of the multivariate Gaussian random vector yt+1 in (4.5) are correlated output

measurements corresponding to the κ input locations found within the candidate

macro-action xt+1. To resolve this complication, we exploit a change of variables

trick (i.e., to make the components independent) and the Lipschitz continuity of

R(xt+1, dt) (Lemma B.1) for enabling the use of the Tsirelson-Ibragimov-Sudakov in-

equality [Boucheron et al., 2013] to prove the probabilistic bound in Theorem 4.1, as

shown in Appendix B.1.4.

stochastic

……

mle new	combined

…

True False

…

|Q0(s1, d0)�Q0(s1, d0)|
 �H + ✓

Figure 4.2: Visual illustrations of policies induced by (a) stochastic sampling (4.6), (b)
most likely observations (4.8), and (c) our ε-Macro-BO policy πε (4.9). Circles denote
nodes dt. Squares denote nodes 〈x1:t+1,y1:t〉.

Theorem 4.1, however, only entails probabilistic bounds on how far Vt(dt) (4.6)

is from V ∗t (dt) (4.5) (see Remark 4.1) and on the resulting policy loss. We will

prove a stronger non-trivial result: In the unlikely event (with an arbitrarily small

probability of at most δ) that Qt(xt+1, dt) (4.6) is far from Q∗t (xt+1, dt) (4.5) for some
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xt+1, we instead rely on the κ most likely observations7 µt(xt+1) for approximating

the expectation term in (4.5) (see Fig. 4.2b):

Vt(dt) , maxxt+1∈A(xt)Qt(xt+1, dt) ,

Qt(xt+1, dt) , R(xt+1, dt)+Vt+1(〈x1:t+1,y1:t⊕µt(xt+1)〉)
(4.8)

for stages t = 0, . . . , H−1 where VH(dH) , 0.5 Unlike Qt(xt+1, dt) (4.6), the approx-

imation quality of Qt(xt+1, dt) (4.8) can be deterministically bounded but cannot

be user-specified to be arbitrarily good, as shown in Theorem 4.2 below (see Ap-

pendix B.1.5 for the proof). To ease understanding, we visually illustrate in Fig. 4.2

how the policies induced by stochastic sampling (4.6) vs. most likely observations (4.8)

differ and are used to design our ε-Macro-BO policy πε (4.9).

Theorem 4.2. Suppose that the observations dt, H ∈ Z+, and a budget of κ(H − t)
input locations for t = 0, . . . , H − 1 are given. Then,

|Qt(xt+1, dt)−Q∗t (xt+1, dt)| ≤ θ

for all xt+1 ∈ A(xt) where θ , O(κH+1/2).

Remark 4.3. Vt (4.8) can be potentially generalized to resemble Vt (4.6) by approx-

imating the expectation term in (4.5) for each candidate macro-action xt+1 in ev-

ery stage via deterministic sampling from the GP posterior belief p(yt+1|xt+1, dt) =

N (µt(xt+1),Σt(xt+1)) (4.1) over the κ-dimensional output measurement space of yt+1.

To do this, the nonmyopic adaptive BO algorithm of [Ling et al., 2016] can be

extended to handle macro-actions by uniformly partitioning and sampling the κ-

dimensional space of yt+1 but would consequently incur an exponential number of

7Though the nonmyopic BO algorithm of [Marchant et al., 2014] assumes the most likely obser-
vations during planning, it does not consider macro-actions nor give a performance guarantee.
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Sketch	for	condition	I Sketch	for	condition	II

(a) (b)

Figure 4.3: (a) When |Qt(xt+1, dt) − Q∗t (xt+1, dt)| ≤ λH, |Qt(xt+1, dt) − Qt(xt+1, dt)|
(green) is at most λH + θ (red) and hence Qε

t(xt+1, dt) = Qt(xt+1, dt). (b) When
|Qt(xt+1, dt) − Q∗t (xt+1, dt)| > λH and |Qt(xt+1, dt) − Qt(xt+1, dt)| ≤ λH + θ,
Qε
t(xt+1, dt) = Qt(xt+1, dt) due to (4.9) and |Qε

t(xt+1, dt) − Q∗t (xt+1, dt)| (green) is
at most λH+2θ (red). All other cases (e.g., when both Qt(xt+1, dt) and Qt(xt+1, dt) are
larger than Q∗t (xt+1, dt) in (a) or |Qt(xt+1, dt)−Q∗t (xt+1, dt)| > λH and |Qt(xt+1, dt)−
Qt(xt+1, dt)| > λH + θ in (b), Qε

t(xt+1, dt) = Qt(xt+1, dt) due to (4.9)) are covered by
our rigorous analysis of the implications of the if condition in (4.9) in the main text.

samples (in κ) per planning stage. In contrast, our ε-Macro-BO policy πε only requires

a polynomial number (in κ) of samples per planning stage, as shown in Theorem 4.3.

The key question remains: Under what condition(s) should our ε-Macro-BO policy

πε decide to follow that induced by stochastic sampling (4.6) and, if so, what is

the required number N of samples in (4.6) such that its expected performance loss

can be deterministically guaranteed to be within an arbitrarily user-specified bound

ε? Ideally, this can be decided if we can directly assess whether Qt(xt+1, dt) (4.6)

approximates Q∗t (xt+1, dt) (4.5) closely (i.e., |Qt(xt+1, dt) − Q∗t (xt+1, dt)| ≤ λH) for

all xt+1 ∈ A(xt), which unfortunately is not possible since Q∗t (xt+1, dt) cannot be

tractably evaluated, as explained previously. To overcome this technical difficulty, we

propose a nonmyopic adaptive ε-Macro-BO policy πε that decides to strictly follow

that induced by stochastic sampling (4.6) only if Qt(xt+1, dt) (4.6) is boundedly close
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to Qt(xt+1, dt) (4.8) for all xt+1 ∈ A(xt):

πε(dt) , argmaxxt+1∈A(xt) Q
ε
t(xt+1, dt) ,

Qε
t(xt+1, dt) ,


Qt(xt+1, dt)

if |Qt(xt+1, dt)−Qt(xt+1, dt)|

≤ λH + θ ,

Qt(xt+1, dt) otherwise;

(4.9)

for stages t = 0, . . . , H− 1.5 Like the Bayes-optimal Macro-BO policy π∗, πε can also

naturally trade off between exploration vs. exploitation, by the same reasoning as

earlier. Unlike the deterministic policy π∗, πε is stochastic due to its use of stochastic

sampling in Q̃t (4.6). Of noteworthy interest and discussion are the implications

of the tractable choice of the if condition in (4.9) for theoretically guaranteeing the

performance of our ε-Macro-BO policy πε. We illustrate these implications in Fig. 4.3.

I. In the likely event (with a high probability of at least 1−δ) that |Qt(xt+1, dt)−
Q∗t (xt+1, dt)| ≤ λH for all xt+1 ∈ A(xt) (Theorem 4.1),

|Qt(xt+1, dt)−Qt(xt+1, dt)|
≤ |Qt(xt+1, dt)−Q∗t (xt+1, dt)|+ |Q∗t (xt+1, dt)−Qt(xt+1, dt)|
≤ λH + θ

for all xt+1 ∈ A(xt) such that the first inequality is due to triangle inequality and the

second inequality is due to Theorems 4.1 and 4.2. Consequently, according to (4.9),

Qε
t(xt+1, dt) = Qt(xt+1, dt) for all xt+1 ∈ A(xt) and πε(dt) thus selects the same

macro-action as the policy induced by stochastic sampling (4.6).

II. In the unlikely event (with an arbitrarily small probability of at most δ)

that Qt(xt+1, dt) (4.6) is unboundedly far from Q∗t (xt+1, dt) (4.5) (i.e., |Qt(xt+1, dt)−
Q∗t (xt+1, dt)| > λH) for some xt+1 ∈ A(xt), π

ε(dt) (4.9) guarantees that, for any
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selected macro-action xt+1 ∈ A(xt),

|Qε
t(xt+1, dt)−Q∗t (xt+1, dt)|

=


|Qt(xt+1, dt)−Q∗t(xt+1, dt)| if |Qt(xt+1, dt)−Qt(xt+1, dt)| ≤ λH + θ,

|Qt(xt+1, dt)−Q∗t(xt+1, dt)| otherwise;

≤


|Qt(xt+1, dt)−Qt(xt+1, dt)|+ |Qt(xt+1, dt)−Q∗t(xt+1, dt)|

if |Qt(xt+1, dt)−Qt(xt+1, dt)|

≤ λH + θ,

θ otherwise;

≤ λH + 2θ , by triangle inequality and Theorem 4.2.

The above two implications of our tractable choice of the if condition in (4.9) are

central to establishing our main result deterministically bounding the expected per-

formance loss of πε relative to that of Bayes-optimal Macro-BO policy π∗, that is,

policy πε is ε-Bayes-optimal.

Theorem 4.3. Suppose that the observations d0, H ∈ Z+, a budget of κH input loca-

tions, and a user-specified loss bound ε > 0 are given. Then, V ∗0 (d0)−Eπε [V πε

0 (d0)] ≤ ε

by setting θ , O(κH+1/2) according to Theorem 4.2, δ = ε/(8θH), and λ = ε/(4H2)

in Theorem 4.1 to yield

N = O((κ2H/ε2) log(κA/ε)) (4.10)

where A denotes the largest number of candidate macro-actions available at any input

location in X .

Remark 4.4. It can be observed from Theorem 4.3 that the number N of stochastic

samples increases6 with (a) a tighter user-specified loss bound ε, (b) a larger number A

of candidate macro-actions at any input location in X , and (c) a greater macro-action
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length κ.

4.3 Anytime ε-Bayes-Optimal Macro-BO

Unlike the Bayes-optimal policy π∗, our policy πε can be derived exactly since its

incurred time does not depend on the size of the uncountable set of candidate output

measurements. But, deriving πε (4.9) requires expanding an entire search tree of

O(NH) nodes to solve the H-stage Bellman equations of Vt (4.6), which is not always

needed to achieve ε-Bayes optimality in practice. To ease this computational burden

(e.g., for real-time planning), we propose an asymptotically optimal anytime variant

of our ε-Macro-BO policy that can attain good BO performance quickly and improve

its approximation quality over time.

The intuition behind our anytime ε-Macro-BO algorithm is to incrementally ex-

pand a search tree by iteratively simulating greedy exploration paths down the par-

tially constructed tree and expanding the sub-trees rooted at nodes with the largest

uncertainty of their corresponding values V ∗t (dt) so as to improve their approximation

quality. Such an uncertainty at each encountered node dt is quantified by the gap

between its maintained upper and lower heuristic bounds V
∗
t (dt) and V ∗t (dt) for the

corresponding value V ∗t (dt) A new node is iteratively expanded during the execution

by maximizing the gap between bounds, resulting in selecting the most uncertain

regions of the state space. The bounds are then refined with the means of backprop-

agation from the leaves up to the root of the newly constructed sub-tree using the

Lipschitz property of optimal value V ∗t (dt).

Consequently, each iteration of our anytime ε-Macro-BO algorithm only incurs

linear time in N . The formulation of our anytime variant resembles that of ε-Macro-

BO policy πε (4.9) except that it utilizes the lower heuristic bound instead of Qt (4.6)

and a modified if condition to bound its expected performance loss likewise.
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4.3.1 Pseudocode

The pseudocode of our anytime ε-Macro-BO algorithm is presented in Algorithm 4.

The essential steps of the main function Anytime-ε-Macro-BO are as follows:

1. Preprocessing (lines 40-42): Compute Σt(xt+1) (4.1), Lt+1(x1:t+1) (an auxiliary

quantity defined in Definition B.1), and Qt(xt+1, dt) (4.8) for all x1:t+1 reachable

from s0 and t = 0, . . . , H − 1, and set θ according to Theorem 4.2;

2. Iteratively and incrementally expand the partially constructed search tree rooted

at node d0 by calling the recursive function ConstructTree (lines 44-45) so as

to tighten the upper heuristic bound V
∗
0(d0) and lower heuristic bound V ∗0(d0)

of V ∗0 (d0), hence reducing the gap ω , V
∗
0(d0)− V ∗0(d0) (line 46); and

3. Compute our anytime 〈ω, ε〉-Macro-BO policy πωε(d0) according to (4.12) (lines

47-51).

The recursive function ConstructTree traverses down the partially constructed search

tree by repeatedly selecting nodes dt with the largest uncertainty of their correspond-

ing values V ∗t (dt) (i.e., largest gap V
∗
t (dt) − V ∗t (dt) between the upper and lower

heuristic bounds of V ∗t (dt) so as to tighten them) until an unexplored node is reached.

Specifically, if the function ConstructTree selects an explored node dt, then the fol-

lowing steps are performed:

1. Choose the macro-action xt+1 with the tightest lower heuristic boundQ∗
t
(xt+1, dt)

of Q∗t (xt+1, dt) (line 26);

2. Retrieve the samples {y`}`=1,...,N previously generated by function ExpandTree

at node dt for macro-action xt+1 (line 27);

3. Recursively and incrementally expand the partially constructed sub-tree rooted

at node 〈x1:t+1,y1:t⊕y`
∗〉 with the largest uncertainty of its corresponding value

74



Chapter 4. Nonmyopic Bayesian Optimization with Macro-Actions

V ∗t+1(〈x1:t+1,y1:t ⊕ y`
∗〉), i.e., largest gap

V
∗
t+1(〈x1:t+1,y1:t ⊕ y`

∗〉)− V ∗t+1(〈x1:t+1,y1:t ⊕ y`
∗〉)

between the upper and lower heuristic bounds of V ∗t+1(〈x1:t+1,y1:t ⊕ y`
∗〉) so as

to tighten them (lines 28-29);

4. Use the tightened upper and lower heuristic bounds of V ∗t+1(〈x1:t+1,y1:t ⊕ y`
∗〉)

at node 〈x1:t+1,y1:t ⊕ y`
∗〉 to refine the heuristic bounds at its siblings (see

Corollary 1 in Appendix B.1.7) by exploiting the Lipschitz continuity of V ∗t+1

(Theorem B.1 in Appendix B.1.3) (line 30); and

5. Backpropagate the tightened/refined heuristic bounds at node 〈x1:t+1,y1:t⊕y`
∗〉

and its siblings to that at their parent node dt (lines 31-35).

Otherwise, the function ConstructTree selects an unexplored node dt and constructs

a “minimal” sub-tree rooted at node dt via the function ExpandTree (line 38), the

latter of which involves the following steps:

1. For every macro-action xt+1 ∈ A(xt),

(a) Draw N i.i.d. multivariate Gaussian vectors {y`}`=1,...,N from GP posterior

belief p(yt+1|xt+1, dt) (line 5);

(b) For every child node 〈x1:t+1,y1:t⊕y`〉, initialize the upper and lower heuris-
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tic bounds of V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉) (lines 6-8) using Theorem 4.2:

|Vt+1(〈x1:t+1,y1:t ⊕ y`〉)− V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉)|
= | max

xt+2∈A(xt+1)
Qt+1(xt+2, 〈x1:t+1,y1:t ⊕ y`〉)

− max
xt+2∈A(xt+1)

Q∗t+1(xt+2, 〈x1:t+1,y1:t ⊕ y`〉)|

≤ max
xt+2∈A(xt+1)

|Qt+1(xt+2, 〈x1:t+1,y1:t ⊕ y`〉)−Q∗t+1(xt+2, 〈x1:t+1,y1:t ⊕ y`〉)|

≤ θt+1

(4.11)

where the equality is due to (4.5) and (4.8) and θt+1 is defined in Theo-

rem 4.2;

(c) Recursively expand/construct a “minimal” sub-tree rooted at the child

node 〈x1:t+1,y1:t ⊕ y`〉 using the most likely sample y` (lines 9-10);

(d) Use the tightened upper heuristic bound V
∗
t+1(〈x1:t+1,y1:t⊕y`〉) and lower

heuristic bound V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉) of V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉) at node

〈x1:t+1,y1:t ⊕ y`〉 to refine the heuristic bounds at its unexplored siblings

(see Corollary 1 in Appendix B.1.7) by exploiting the Lipschitz continuity

of V ∗t+1 (Theorem B.1 in Appendix B.1.3) (line 11); and

2. Backpropagate the tightened/refined heuristic bounds at node 〈x1:t+1,y1:t⊕y`〉
and its siblings to that at their parent node dt (lines 12-16).

4.3.2 Theoretical analysis

Suppose Algorithm 4 terminates at ω , V
∗
0(d0)−V ∗0(d0) (see line 46 in Algorithm 4).

We will now give an anytime analogue/variant of our nonmyopic adaptive ε-Macro-BO
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Algorithm 4 Anytime ε-Macro-BO

1: function ExpandTree(t, dt, λ)
2: if t = H then
3: return 〈0, 0〉
4: for all xt+1 ∈ A(xt) do
5: {y`}`=1,...,N ← Draw N i.i.d. multivariate Gaussian vectors from GP posterior belief

p(yt+1|xt+1, dt) (4.1)
6: for all y` do
7: V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉)← Vt+1(〈x1:t+1,y1:t ⊕ y`〉)− θt+1 (4.11)

8: V
∗
t+1(〈x1:t+1,y1:t ⊕ y`〉)← Vt+1(〈x1:t+1,y1:t ⊕ y`〉) + θt+1 (4.11)

9: `← argmin`∈{1,...,N} ‖y` − µt(xt+1)‖
10: 〈V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉), V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉)〉 ← ExpandTree(t+ 1, 〈x1:t+1,y1:t ⊕ y`〉, λ)

11: RefineBounds(t, dt,xt+1, `)
12: R(xt+1, dt)← 1>µt(xt+1) + 0.5β log |I + σ−2

n Σt(xt+1)|
13: Q∗

t
(xt+1, dt)← R(xt+1, dt) +N−1 ∑N

`=1 V
∗
t+1(〈x1:t+1,y1:t ⊕ y`〉)− λ

14: Q
∗
t (xt+1, dt)← R(xt+1, dt) +N−1 ∑N

`=1 V
∗
t+1(〈x1:t+1,y1:t ⊕ y`〉) + λ

15: V ∗t (dt)← maxxt+1∈A(xt)Q
∗
t
(xt+1, dt)

16: V
∗
t (dt)← maxxt+1∈A(xt)Q

∗
t (xt+1, dt)

17: return 〈V ∗t (dt), V ∗t (dt)〉
18: function RefineBounds(t, dt,xt+1, j)
19: {y`}`=1,...,N ← RetrieveSamples(t, dt,xt+1)
20: for all i 6= j do
21: b← Lt+1(x1:t+1)‖yi − yj‖
22: V ∗t+1(〈x1:t+1,y1:t ⊕ yi〉)← max(V ∗t+1(〈x1:t+1,y1:t ⊕ yi〉), V ∗t+1(〈x1:t+1,y1:t ⊕ yj〉)− b)
23: V

∗
t+1(〈x1:t+1,y1:t ⊕ yi〉)← min(V

∗
t+1(〈x1:t+1,y1:t ⊕ yi〉), V ∗t+1(〈x1:t+1,y1:t ⊕ yj〉) + b)

24: function ConstructTree(t, dt, λ)
25: if dt has been explored then
26: xt+1 ← argmaxx′t+1∈A(xt)

Q∗
t
(x′t+1, dt)

27: {y`}`=1,...,N ← RetrieveSamples(t, dt,xt+1)

28: `∗ ← argmax`∈{1,...,N} V
∗
t+1(〈x1:t+1,y1:t ⊕ y`〉)− V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉)

29: 〈V ∗t+1(〈x1:t+1,y1:t⊕y`
∗
〉), V ∗t+1(〈x1:t+1,y1:t⊕y`

∗
〉)〉 ← ConstructTree(t+1, 〈x1:t+1,y1:t⊕y`

∗
〉, λ)

30: RefineBounds(t, dt,xt+1, `
∗)

31: R(xt+1, dt)← 1>µt(xt+1) + 0.5β log |I + σ−2
n Σt(xt+1)|

32: Q∗
t
(xt+1, dt)← R(xt+1, dt) +N−1 ∑N

`=1 V
∗
t+1(〈x1:t+1,y1:t ⊕ y`〉)− λ

33: Q
∗
t (xt+1, dt)← R(xt+1, dt) +N−1 ∑N

`=1 V
∗
t+1(〈x1:t+1,y1:t ⊕ y`〉) + λ

34: V ∗t (dt)← maxxt+1∈A(xt)Q
∗
t
(xt+1, dt)

35: V
∗
t (dt)← maxxt+1∈A(xt)Q

∗
t (xt+1, dt)

36: return 〈V ∗t (dt), V ∗t (dt)〉
37: else
38: return ExpandTree(t, dt, λ)
39: function Anytime-ε-Macro-BO(d0, ε,H)
40: for all x1:t+1 reachable from s0 and t = 0, . . . , H − 1 do
41: Compute Σt(xt+1) (4.1), Lt+1(x1:t+1) (Definition B.1), and Qt(xt+1, dt) (4.8)
42: Set θ according to Theorem 4.2
43: λ← 1/(4H/ε+ 1/(2θ)), δ ← ε/(8θH)
44: while resources permit do
45: 〈V ∗0(d0), V ∗0(d0)〉 ← ConstructTree(0, d0, λ)

46: ω ← V
∗
0(d0)− V ∗0(d0)

47: for all x1 ∈ A(x0) do
48: Qωε0 (x1, d0)← Q∗

0
(x1, d0)

49: if |Qωε0 (x1, d0)−Q0(x1, d0)| > 2λ+ ω + θ then
50: Qωε0 (x1, d0)← Q0(x1, d0)
51: return πωε(d0)← argmaxx1∈A(x0)

Qωε0 (x1, d0) (4.12)

77



Chapter 4. Nonmyopic Bayesian Optimization with Macro-Actions

policy πε (4.9), which we call the 〈ω, ε〉-Macro-BO policy πωε:

πωε(dt) , argmaxxt+1∈A(xt)Q
ωε
t (xt+1, dt)

Qωε
t (xt+1, dt) ,

Q
∗
t
(xt+1, dt) if

∣∣∣Q∗
t
(xt+1, dt)−Qt(xt+1, dt)

∣∣∣ ≤ 2λ+ ω + θ,

Qt(xt+1, dt) otherwise;

(4.12)

for stages t = 0, . . . , H−1 where Qt(xt+1, dt) and θ are previously defined in (4.8) and

Theorem 4.2, respectively. The implications of the tractable choice of the if condition

in (4.12) for theoretically guaranteeing the performance of our 〈ω, ε〉-Macro-BO policy

πωε as well as its theoretical analysis are similar to those of our ε-Macro-BO policy

πε (4.9), and are rigorously derived in Appendix B.1.7. They result in the following

theorem:

Theorem 4.4. Suppose that the observations d0, H ∈ Z+, a budget of κH input

locations, and an arbitrarily user-specified loss bound ε > 0 are given and Algorithm 4

terminates at ω , V
∗
0(d0) − V ∗0(d0) (see line 46 in Algorithm 4). Then, V ∗0 (d0) −

Eπωε [V πωε

0 (d0)] ≤ 2ωH + ε by setting θ according to Theorem 4.2, δ = ε/(8θH) and

λ = 1/(4H/ε+ 1/(2θ)) in Theorem 4.1 to yield

N = O
(
κ2H

ε2
log

κA

ε

)
.

4.4 Experimental results

This section empirically evaluates the performance of our nonmyopic adaptive ε-

Macro-BO policy and its anytime variant for a given finite budget with three datasets:

• Simulated plankton density phenomena. An autonomous underwater vehicle

(AUV) is deployed on board of a research vessel (RV) in search for a hotspot
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of peak phytoplankton abundance (i.e., algal bloom) in coastal ocean. The

AUV and RV are initially positioned near the center of the plankton density

(mg/m3) phenomenon spatially distributed over a 5 km by 5 km region that

is discretized into a 50 × 50 grid of input locations. The phenomenon is mod-

eled as a realization of a GP and simulated using the GP hyperparameters

µs = 0, `1 = `2 = 0.5 km, σ2
y = 1, and σ2

n = 10−5. The AUV is tasked to

execute the selected macro-action of a straight dive (due to limited maneuver-

ability) along one of the 4 cardinal directions from the RV to gather “Gulper”

water samples/observations over κ = 4 input locations for precise on-deck test-

ing [Pennington et al., 2016]; given a budget of 20 observations, this is repeated

for 5 times (i.e. 5 iterations) from the input location that it has previously

surfaced.

• Real-world traffic phenomenon. To service the mobility demands within the

central business district of an urban city, an autonomous vehicle (AV) in a

mobility-on-demand system cruises along different road trajectories to find a

hotspot of highest mobility demand to pick up a user. The 29.4 km by 11.9 km

service area is gridded into 100 × 50 input regions, of which only 2506 input

regions are accessible to the AV via the road network. The AV can cruise from

input region s to an adjacent input region s′ using one primitive action iff at least

one road segment in the road network starts in s and ends in s′; the maximum

outdegree from any input region is 8. In any input region, a surrogate demand

measurement is obtained by counting the number of pickups8 from all historic

taxi trajectories generated by a major taxi company during 9:30-10 p.m. on

August 2, 2010 [Chen et al., 2015]; the resulting mobility demand pattern is

8A distributed gossip-based protocol can be used to aggregate these pickup information from the
AVs in the input region that are connected via an ad hoc wireless communication network [Chen et
al., 2015]. Any AV entering the input region can then access its pickup count by joining its ad hoc
network.
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visualized in Fig.4.4. The original demand measurements are log-transformed

to remove skewness and extremity for stabilizing the GP covariance structure

and the GP hyperparameters µs = 1.5673, `1 = 0.1689 km, `2 = 0.1275 km,

σ2
y = 0.7486, and σ2

n = 0.0111 are then learned using maximum likelihood

estimation [Rasmussen and Williams, 2006]; note that the length-scales and

signal-to-noise ratio are relatively smaller than that of the simulated plankton

density phenomena. The AV is tasked to execute the selected macro-action

of a cruising trajectory along κ = 5 adjacent input regions to observe their

corresponding demand measurements; given a budget of 20 observations, this

will be repeated for 4 times from the input region that it has previously cruised

to. Since every input region s has a large number of available macro-actions

(i.e., with an average of 178 and maximum of 1193 macro-actions), 20 of them

are randomly9 selected to form its representative set of candidate macro-actions.

• Real-world temperature phenomenon. In monitoring of the indoor environmen-

tal quality of an office environment [Choi et al., 2012], a mobile robot mounted

with a weather board is tasked to find a hotspot of peak temperature by ex-

ploring different stretches of corridors that can be naturally abstracted into

macro-actions. The temperature (◦C) phenomenon is spatially distributed over

the Intel Berkeley Research Lab (of about 41 m by 32 m in size) with 41 deployed

temperature sensors (see Fig. 4.5) and modeled as a realization of a GP. Using

the observations/data gathered by the 41 temperature sensors10, the GP hy-

perparameters µs = 17.8513, `1 = 4.0058 m, `2 = 11.3811 m, σ2
y = 0.5964, and

σ2
n = 0.0597 are learned using maximum likelihood estimation [Rasmussen and

Williams, 2006]. Then, using these learned hyperparameters and the observa-

9The BO performance of ε-Macro-BO and its anytime variant can be potentially improved by
using macro-action generation algorithms [He et al., 2011] instead of random selection.

10http://db.csail.mit.edu/labdata/labdata.html
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tions/data gathered by the 41 temperature sensors, we exploit the GP posterior

mean (3.2) to predict the temperature measurements at the 104 input locations

shown in Fig. 4.5; these predictions together with the data obtained from the

41 sensors serve as the dataset for the experiment here. The mobile robot is

tasked to execute the selected macro-action of a motion path along a stretch of

κ = 5 input locations on one of the corridors in the lab to observe their cor-

responding temperature measurements; given a budget of 20 observations, this

will be repeated for 4 times from the input location that it has previously moved

to. Since every input location s has a large number of available macro-actions

(i.e., with an average of 27 and maximum of 114 macro-actions), 20 of them are

randomly9 selected to form its representative set of candidate macro-actions.

10 20 30 40 50 60 70 80 90 100
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Figure 4.4: Mobility demand pattern spatially distributed over the central business district
of an urban city during 9:30-10 p.m. on August 2, 2010: “Hotter” regions indicate larger
numbers of pickups (Image courtesy of [Chen et al., 2015]).

The performances of our ε-Macro-BO policy and its anytime variant are com-

pared with that of state-of-the-art (a) nonmyopic GP-UCB [Marchant et al., 2014]

generalized to handle macro-actions that coincides with our deterministic policy (4.8)

exploiting the most likely observations during planning, (b) distributed batch GP-UCB

(DB-GP-UCB) [Daxberger and Low, 2017] that casts a macro-action as a batch to
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Figure 4.5: The temperature measurements at the 104 input locations (not circled) in
the Intel Berkeley Research lab are predicted using the GP posterior mean (3.2) based
on the data gathered by the 41 temperature sensors (circled); these predictions together
with the data obtained from the 41 sensors serve as the dataset for the experiment here.

be optimized and is thus equivalent to ε-Macro-BO with H = 1, (c) q-EI [Chevalier

and Ginsbourger, 2013] that does likewise, and (d) greedy batch BO algorithms11

such as GP-BUCB [Desautels et al., 2014], GP-UCB-PE [Contal et al., 2013], and

BBO-LP [González et al., 2016a] whose implementations are detailed in Table 4.1. It

is not obvious to us how GLASSES [González et al., 2016b] and Rollout [Lam et al.,

2016] can be modified to handle macro-actions and are thus not empirically compared

here. However, since Rollout [Lam et al., 2016] also exploits Bellman equations, it

is compared with our ε-Macro-BO in Section 4.4.4 by setting macro-action length to

κ = 1 (i.e., primitive action).

Four performance metrics are used: (a) average normalized12 output measure-

ments observed by the agent (larger average output measurements imply less aver-

age/cumulative regret), (b) simple regret, (c) no. of explored nodes in all constructed

11Unlike DB-GP-UCB and q-EI, a greedy batch BO algorithm cannot exploit the full informa-
tiveness of any candidate macro-action for its macro-action selection: Since it selects the inputs of
a batch one at a time myopically, its first few selected input locations immediately decide its chosen
macro-action and consequently the remaining sequence of input locations found within.

12To ease interpretation of results, the prior mean is subtracted from each output measurement
to normalize it.
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Table 4.1: Details on the available implementations of the batch BO algorithms for
comparison with ε-Macro-BO in our experiments.

BO Algorithm Language URL of Source Code
GP-BUCB MATLAB http://www.gatsby.ucl.ac.uk/~tdesautels/

GP-UCB-PE MATLAB http://econtal.perso.math.cnrs.fr/software/

q-EI Python https://github.com/oxfordcontrol/Bayesian-Optimization

BBO-LP Python http://sheffieldml.github.io/GPyOpt/

search trees (more nodes incur more time), and (d) average runtime per iteration.

4.4.1 Simulated plankton density phenomena

Figs. 4.6a and 4.6b show results of the performances of ε-Macro-BO with H = 2, 3, 4

(lookahead of, respectively, 8, 12, 16 observations), β = 0, and N = 100,13 and the

other tested BO algorithms averaged over 250 independent realizations of the simu-

lated phenomena. It can be observed that as the number of observations increases,

the nonmyopic adaptive BO algorithms generally outperform the myopic ones. In

particular, the performance of ε-Macro-BO improves considerably by increasing H:

ε-Macro-BO with the furthest lookahead (i.e., H = 4) achieves the largest average

normalized output measurements observed by the AUV and smallest simple regret

after 20 observations at the cost of a larger number of explored nodes (see Table 4.2).

For example, the nonmyopic ε-Macro-BO with H = 4 achieves 0.093σy (0.059σy) more

average output measurements and 0.211σy (0.148σy) less simple regret than myopic

DB-GP-UCB (nonmyopic GP-UCB with the same horizon H = 4 but assuming most

likely observations during planning), which are expected.

Figs. 4.6c and 4.6d show the effect of varying exploration weights β on the per-

formance of ε-Macro-BO with H = 2 and H = 3, respectively. It can be observed

from Fig. 4.6c that when H = 2, ε-Macro-BO with β = 0.1 achieves 0.064σy more

average normalized output measurements than that with β = 0 after 20 observations,

13Specifying the value of N (instead of ε) may yield a loose ε based on Theorem 4.3. Nevertheless,
the resulting ε-Macro-BO with H = 3,4 empirically outperforms other tested BO algorithms.
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Figure 4.6: Graphs of (a) average normalized12 output measurements observed by AUV,
(b) simple regrets achieved by tested BO algorithms, average normalized output measure-
ments achieved by ε-Macro-BO (ε-M-BO in the graphs) with (c) H = 2 and (d) H = 3
and varying exploration weights β vs. no. of observations for simulated plankton density
phenomena. Standard errors are given in Tables B.1 and B.2 in Appendix B.2.1.

which indicates the need of a slightly stronger exploration behavior. Fig. 4.6d shows

that by increasing to a lookahead of 12 observations (i.e., H = 3), ε-Macro-BO no

longer needs the additional weighted exploration term in (4.4) (i.e., β = 0) since it

can naturally trade off between exploration vs. exploitation, as explained previously

(Section 4.2). It can also be observed from Figs. 4.6c and 4.6d that β = 10 greatly

hurts its performance due to an overly aggressive exploration.

Table 4.2: No. of explored nodes by ε-Macro-BO (when H = 1, it corresponds to
DB-GP-UCB) for simulated plankton density phenomena.

H = 1 H = 2 H = 3 H = 4
2.50× 10 8.01× 103 2.40× 106 6.41× 108

4.4.2 Real-world traffic phenomenon

Figs. 4.7a and 4.7b show results of the performances of anytime ε-Macro-BO with H =

2, 3, 4 (a lookahead of, respectively, 10, 15, 20 observations), β = 0, and N = 300 after
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Figure 4.7: Graphs of (a) average normalized12 output measurements observed by the AV
and (b) simple regrets achieved by the tested BO algorithms, and average normalized out-
put measurements achieved by anytime ε-Macro-BO with (c) H = 2 and (d) H = 3 and
varying exploration weights β vs. no. of observations for real-world traffic phenomenon.
The standard errors are given in Tables B.3 and B.4 in Appendix B.2.2.

running for 1500 iterations13, and the other tested BO algorithms averaged over 35

random starting input regions of the AV. Similar to the results for simulated plankton

density phenomena, it can be observed that the performance of anytime ε-Macro-

BO improves considerably by increasing H: Anytime ε-Macro-BO with the furthest

lookahead (i.e., H = 4) achieves the largest average normalized output measurements

observed by the AV and among the least simple regret after 20 observations at the cost

of a larger number of explored nodes (see Table 4.3). For example, the nonmyopic

anytime ε-Macro-BO with H = 4 achieves 0.069σy (0.05σy) more average output

measurements and 0.188σy (0.219σy) less simple regret than myopic DB-GP-UCB

(nonmyopic GP-UCB with H = 4), which are expected. Interestingly, GP-BUCB

and GP-UCB-PE can achieve simple regret comparable to that of anytime ε-Macro-

BO with H = 4 even though they perform very poorly in terms of average output

measurements.

Figs. 4.7c and 4.7d show the effect of varying exploration weights β on the per-
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Table 4.3: No. of explored nodes by anytime ε-Macro-BO (when H = 1, it corresponds
to DB-GP-UCB) for the real-world traffic phenomenon (i.e., mobility demand pattern).

H = 1 H = 2 H = 3 H = 4
8.29× 10 9.52× 104 1.29× 106 1.34× 107
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Figure 4.8: Graphs of (a) average normalized output measurements observed by the AV
and (b) simple regrets achieved by anytime ε-Macro-BO with H = 2, 4 and 20 randomly
selected macro-actions per input region, anytime ε-Macro-BO with H = 2 and all available
macro-actions (the no. of available macro-actions per input region is enclosed in brackets),
and EI with all available macro-actions of length 1 vs. no. of observations for real-world
traffic phenomenon. Standard errors are given in Table B.5 in Appendix B.2.2.

formance of anytime ε-Macro-BO with H = 2 and H = 3, respectively. It can be

observed from Fig. 4.7c that when H = 2, anytime ε-Macro-BO with β = 0.2 achieves

0.022σy more average normalized output measurements than that with β = 0 after

20 observations, which indicates the need of a slightly stronger exploration behavior.

Fig. 4.7d shows that by increasing to a lookahead of 15 observations(i.e., H = 3), any-

time ε-Macro-BO no longer needs the additional weighted exploration term in (4.4)

(i.e., β = 0) since it can naturally trade off between exploration vs. exploitation, as

explained previously (Section 4.2). It can also be observed from Figs. 4.7c and 4.7d

that β ≥ 0.5 hurts its performance due to overly aggressive exploration.

Lastly, we investigate the effect of downsampling the number of available macro-
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Table 4.4: No. of explored nodes by anytime ε-Macro-BO (the no. of available macro-
actions per input region is enclosed in brackets) for the real-world traffic phenomenon
(i.e., mobility demand pattern).

H = 2 (20) H = 2 (all) H = 4 (20)
0.95× 105 1.26× 106 1.34× 107

actions per input region to 20 on the performance of anytime ε-Macro-BO. To do this,

the performances of anytime ε-Macro-BO with H = 2, 4 and 20 randomly selected

macro-actions per input region are compared with that of anytime ε-Macro-BO with

H = 2 and all available macro-actions as well as myopic EI [Shahriari et al., 2016]

with all available macro-actions of length 1. It can be observed from Figs. 4.8a

and 4.8b that when H = 2, downsampling the number of available macro-actions per

input region to 20 decreases average normalized output measurements by 0.032σy and

increases simple regret by 0.112σy after 20 observations, but also reduces the number

of explored nodes by more than 1 order of magnitude (see Table 4.4). By increasing

to a lookahead of 20 observations, anytime ε-Macro-BO with H = 4 and 20 randomly

selected macro-actions per input region achieves 0.008σy more average normalized

output measurements and 0.116σy less simple regret than that with H = 2 and all

available macro-actions at the cost of a larger number of explored nodes. Though EI

can access all available macro-actions of length 1 (i.e, no restriction on action space of

AV), it obtains much less average normalized output measurements and more simple

regret than anytime ε-Macro-BO with H = 4 and 20 randomly selected macro-actions

per input region due to its myopia.

4.4.3 Real-world temperature phenomenon

Figs. 4.9a and 4.9b show results of the performances of anytime ε-Macro-BO with

H = 2, 3, 4 (lookahead of, respectively, 10, 15, 20 observations), β = 0, and N = 300

after running for 1500 iterations13, and the other tested BO algorithms averaged over
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Figure 4.9: Graphs of (a) average normalized12 output measurements observed by the
mobile robot and (b) simple regrets achieved by the tested BO algorithms vs. no. of
observations, and average normalized output measurements achieved by anytime ε-Macro-
BO with (c) H = 2 and (d) H = 3 and varying exploration weights β vs. no. of
observations for the real-world temperature phenomenon over the Intel Berkeley Research
Lab. The standard errors are given in Tables B.6 and B.7 in Appendix B.2.3.

35 random initial starting input locations of the mobile robot. Similar to the re-

sults for simulated plankton density phenomena and real-world traffic phenomenon,

it can be observed that as the number of observations increases, the nonmyopic

adaptive BO algorithms generally outperform the myopic ones. In particular, the

performance of anytime ε-Macro-BO improves considerably by increasing H such

that anytime ε-Macro-BO with the furthest lookahead (i.e., H = 4) achieves the

largest average normalized output measurements observed by the mobile robot and

smallest simple regret after 20 observations at the cost of a larger number of ex-

plored nodes (see Table 4.5). For example, the nonmyopic anytime ε-Macro-BO with

H = 4 achieves 0.194σy (0.086σy) more average normalized output measurements

and 0.345σy (0.239σy) less simple regret than the myopic DB-GP-UCB (nonmyopic

GP-UCB with the same horizon H = 4 but assuming most likely observations during

planning), which are expected.

Figs. 4.9c and 4.9d show the effect of varying exploration weights β on the per-
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Table 4.5: No. of explored nodes by anytime ε-Macro-BO (when H = 1, it corresponds to
DB-GP-UCB) for the real-world temperature phenomenon over the Intel Berkeley Research
Lab.

H = 1 H = 2 H = 3 H = 4
7.51× 10 8.88× 104 1.13× 106 1.12× 107

formance of anytime ε-Macro-BO with H = 2 and H = 3, respectively. It can be

observed from Fig. 4.9c that when H = 2, anytime ε-Macro-BO with β = 1 achieves

0.092σy more average normalized output measurements than that with β = 0 after

20 observations, which indicates the need of a slightly stronger exploration behavior.

Fig. 4.9d shows that by increasing to a lookahead of 15 observations (i.e., H = 3), any-

time ε-Macro-BO no longer needs the additional weighted exploration term in (4.4)

(i.e., β = 0) since it can naturally trade off between exploration vs. exploitation, as

explained previously (Section 4.2). It can also be observed from Figs. 4.9c and 4.9d

that β ≥ 3 hurts its performance due to overly aggressive exploration.

Lastly, we investigate the effect of downsampling the number of available macro-

actions per input location to 20 on the performance of anytime ε-Macro-BO. Similar

to that for the real-world traffic phenomenon, the performances of anytime ε-Macro-

BO with H = 2, 4 and 20 randomly selected macro-actions per input location are

compared with that of anytime ε-Macro-BO with H = 2 and all available macro-

actions as well as myopic EI [Shahriari et al., 2016] with all available macro-actions

of length 1. It can be observed from Figs. 4.10a and 4.10b that when H = 2, down-

sampling the number of available macro-actions per input location to 20 decreases

average normalized output measurements by 0.106σy and increases simple regret by

0.064σy after 20 observations, but also reduces the number of explored nodes (see

Table 4.6). By increasing to a lookahead of 20 observations, anytime ε-Macro-BO

with H = 4 and 20 randomly selected macro-actions per input location achieves

average normalized output measurements comparable to that with H = 2 and all
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available macro-actions, but 0.136σy less simple regret at the cost of a larger num-

ber of explored nodes. Though EI can access all available macro-actions of length 1

(i.e, no restriction on action space of the mobile robot), it obtains much less average

normalized output measurements and considerably more simple regret than anytime

ε-Macro-BO with H = 4 and 20 randomly selected macro-actions per input location

due to its myopia.
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Figure 4.10: Graphs of (a) average normalized12 output measurements observed by the
mobile robot and (b) simple regrets achieved by anytime ε-Macro-BO with H = 2, 4 and
20 randomly selected macro-actions per input region, anytime ε-Macro-BO with H = 2
and all available macro-actions (the no. of available macro-actions per input region is
enclosed in brackets), and EI with all available macro-actions of length 1 vs. no. of
observations for the real-world temperature phenomenon over the Intel Berkeley Research
Lab. The standard errors are given in Table B.8 in Appendix B.2.3.

Table 4.6: No. of explored nodes by anytime ε-Macro-BO (the no. of available macro-
actions per input region is enclosed in brackets) for the real-world temperature phe-
nomenon over the Intel Berkeley Research Lab.

H = 2 (20) H = 2 (all) H = 4 (20)
8.88× 104 2.49× 105 1.12× 107
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4.4.4 Comparison with Rollout [Lam et al., 2016]

Our proposed algorithms are not benchmarked against Rollout [Lam et al., 2016]

because Rollout [Lam et al., 2016] is not designed to handle macro-actions that are

inherent to the structure of the task environments/applications considered in our work

and experiments. So, such a comparison would not be fair. For a fair comparison with

Rollout [Lam et al., 2016], we set the macro-action length to κ = 1 (i.e., primitive

action) for our ε-Macro-BO and evaluate their performances using the metrics of

average normalized output measurements observed by the agent and simple regret,

and the synthetic dataset featuring the simulated plankton density phenomena in

Section 4.4.
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Figure 4.11: Graphs of (a) average normalized12 output measurements observed by AUV
and (b) simple regrets achieved by ε-Macro-BO with H = 4 and Rollout-4-10 vs. no. of
observations for simulated plankton density phenomena (Section 4.4).

Figs. 4.11a and 4.11b show results of the performances of ε-Macro-BO (H = 4, β =

0, and N = 20) and the best-performing Rollout (H = 4, γ = 1.0, base policy: greedy

EI-based policy defined in equations 22 and 23 in [Lam et al., 2016]) reported on page

7 in [Lam et al., 2016] averaged over 106 independent realizations of the simulated

phenomena. It can be observed that ε-Macro-BO achieves 0.143σy more average
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normalized output measurement and 0.173σy less simple regret than Rollout [Lam et

al., 2016]. To explain this, ε-Macro-BO considers all available actions from each input

location during planning (equations 4.6, 4.8, and 4.9) while Rollout utilizes only the

action selected by the base policy (e.g., greedy EI) and ignores all the other available

actions during planning, thus resulting in its suboptimal behavior.

4.4.5 Behavior of a myopic vs. nonmyopic method

In this section we illustrate the difference in behaviors of a nonmyopic vs. myopic

method using our nonmyopic ε-Macro-BO policy with a lookahead of 8 observations

(H = 4, N = 1) in Fig. 4.12a vs. greedy/myopic DB-GP-UCB [Daxberger and Low,

2017] in Fig. 4.12c with macro-action length κ = 2 and budget of 20 observations.

We use the setting of controlling an AUV to gather observations for finding a hotspot

(i.e., global maximum) in a simulated plankton density phenomenon (Section 4.4).

Prior observations are at the AUV’s initial starting input location (blue circle) and

buoy’s location (0, 0) (not shown here).

Up till t = 5, both ε-Macro-BO and DB-GP-UCB produce the same trajectories

to reach the input location denoted by a black circle. At t = 5, since ε-Macro-

BO is able to look ahead and plan its macro-actions in the later planning stages, it

moves the AUV left to reach the region containing the global maximum (Fig. 4.12a).

On the other hand, DB-GP-UCB moves the AUV right towards the local maximum

(Fig. 4.12c).

This behavior is further explained in Fig. 4.12b and Fig. 4.12d. These figures plot

maps of GP posterior mean (3.2) over the phenomenon at iteration t = 5. The maps

are identical for both algorithms, since till t = 5, both ε-Macro-BO and DB-GP-UCB

produce the same trajectories. The green arrow in Fig. 4.12b denotes the macro-action

selected by ε-Macro-BO at iteration t = 5, while the red arrows denote the macro-
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Figure 4.12: Illustrating the behaviors of our nonmyopic ε-Macro-BO policy with a looka-
head of 8 observations (H = 4, N = 1) (a,b) vs. greedy/myopic DB-GP-UCB [Daxberger
and Low, 2017] (c,d) with macro-action length κ = 2 in controlling an AUV to gather
observations for finding a hotspot (i.e., global maximum) in a simulated plankton density
phenomenon.
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actions selected by 3 later stages of computing the 4-stage Bellman equations (4.6) at

this iteration. That is, ε-Macro-BO at iteration t = 5 selects the macro-action denoted

by the green action, because the trajectory of these 4 macro-actions denoted by arrows

results in the highest reward during the planning/computation of Bellman equations

due to its direction towards the global maximum. Note that only the macro-action

denoted by the green arrow is executed at this iteration. Therefore, the nonmyopic

behavior of ε-Macro-BO results in turning left to reach the region containing the

global maximum. In contrast, DB-GP-UCB selects the macro-action with the highest

immediate reward and moves the AUV right towards the local maximum (Fig. 4.12d).

So, by utilizing lookahead, our nonmyopic ε-Macro-BO policy can outperform the

myopic DB-GP-UCB.

4.4.6 Comparison in terms of runtime

In general, nonmyopic methods are expected to be less time-efficient than myopic

ones. Fortunately, our nonmyopic ε-Macro-BO algorithm with a fixed horizon H

offers an advantage of being able to trade off its BO performance for time efficiency

by decreasing the number N of stochastic samples. This observation is theoretically

validated in Theorem 4.3 and empirically illustrated in Fig. 4.13.

Figs. 4.13a and 4.13b show results of the performances of ε-Macro-BO with H = 4

(lookahead of 16 observations), β = 0, and N = 5, 25, 50, and the other tested

BO algorithms averaged over 35 independent realizations of the simulated plankton

density phenomena. It can be observed that as the number of samples N increases,

the nonmyopic adaptive BO algorithms outperform the myopic ones. In particular,

the performance of ε-Macro-BO improves considerably by increasing N : ε-Macro-

BO with the largest number of samples (i.e., N = 50) achieves the largest average

normalized output measurements observed by the AUV and smallest simple regret
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Figure 4.13: Graphs of (a) average normalized12 output measurements observed by AUV,
(b) simple regrets achieved by tested BO algorithms vs. average time per iteration for
simulated plankton density phenomena.

after 20 observations at the cost of larger average time per iteration. For example,

the nonmyopic ε-Macro-BO with H = 4 and N = 50 achieves 0.26σy (0.083σy) more

average output measurements and 0.21σy (0.233σy) less simple regret than myopic

GP-BUCB (nonmyopic GP-UCB with the same horizon H = 4 but assuming most

likely observations during planning), but needs 2085.37 (2084.84) more seconds per

iteration.
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Black-box adversarial attack

automated with BO

This chapter of the thesis proposes and evaluates our novel Bayesian-Optimization-

with-dimension-selection-and-Bayesian-optimal-stopping (BOS2) black-box adversar-

ial attack. Firstly, we describe the problem setting of a general black-box adversarial

attack in Section 5.1. We then proceed to describing the BOS2 attack itself (Sec-

tion 5.2) and start by summarizing it with pseudocode in Section 5.2.1. Specifically,

our BOS2 attack consists of two stages: the dimension BO loop (Section 5.2.2) which

selects the dimension of the latent space, and the perturbation BO loop (Section 5.2.3)

which searches for the adversarial perturbation in the selected latent space. The key

idea of our approach is to increase the attack success rate by using BO for automat-

ing both the stages. To boost the query efficiency of our BOS2 attack, we also use

Bayesian optimal stopping [Dai et al., 2019] to early-stop the execution of the per-

turbation BO loop for those latent dimensions, which will end up under-performing,

hence eliminating unnecessary queries to the attacked machine learning model. Fi-

nally, the performance of our BOS2 attack is evaluated in Section 5.3 using MNIST
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and CIFAR-10 datasets to show that our method outperforms the existing state-of-

the-art black-box adversarial attacks.

5.1 Problem setting

To recall, we consider the black-box setting where the attacker has access only to

the outputs of the attacked machine learning model for a given input, but not to the

architecture or implementation of the model. Specifically, denote the attacked model

as a function F (x) : RD → [0, 1]C where x is a D-dimensional input, which is mapped

into one of C classes {ci}i=1,...,C . Furthermore, we consider a targeted attack, which is

more challenging to execute successfully than the untargeted attack (see Section 2.4.2

for the summary of related works on targeted and untargeted attacks). In the setting

of targeted black-box attack, for a given benign input x0 ∈ RD correctly classified by

the model F with class c (i.e., argmaxi=1,...,C F (x0)ci = c), we are interested in finding

an adversarial example xadv, which is close to x0, but is classified by the model F

with a given target class ctarget 6= c, that is, argmaxi=1,...,C F (xadv)ci = ctarget. Here

F (x)ci denotes the score of model F on input x for i-th class ci.

Closeness of the adversarial input xadv and the benign input x0 is defined in terms

of Lp norm, where p is usually set to either p = 2 or p = ∞. Following prior state-

of-the-art works [Hazan et al., 2017; Alzantot et al., 2019; Ru et al., 2020] we choose

p =∞ and hence L∞ norm to design our attack. Furthermore, we adopt a common

practice in the adversarial machine learning literature and instead of searching for

the adversarial example xadv, aim to find the adversarial perturbation δ , xadv − x0.

In this case, the problem in question can be formulated as finding the adversarial

perturbation δ satisfying

argmax
i=1,...,C

F (x0 + δ)ci = ctarget such that δ ∈ RD and ‖δ‖∞ ≤ δmax (5.1)
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for a pre-defined fixed maximum norm of the adversarial perturbation δmax.

To perform our attack, we re-formulate (5.1) and adopt the following objective

function, which was previously used by a number of prior attacks [Alzantot et al.,

2019; Ru et al., 2020]. For a given benign input x0 ∈ RD we aim to maximize the

following function:

y(δ) , logF (x0+δ)ctarget−log
∑

c6=ctarget

F (x0+δ)c such that δ ∈ RD and ‖δ‖∞ ≤ δmax.

(5.2)

If y(δ) > 0, then δ is a successful adversarial perturbation satisfying (5.1). To elabo-

rate, in this case, the score F (x0 + δ)ctarget of the target class ctarget is larger than the

sum
∑

c 6=ctarget F (x0+δ)c of all other classes’ scores due to monotonicity of logarithmic

function. As a result, since all the scores F (x0+δ)c are assumed to be in [0, 1] interval,

F (x0 + δ)ctarget is the highest score among all classes and the input x0 + δ is classified

as ctarget and, hence, δ is a successful adversarial perturbation. The logarithmic func-

tion in (5.2) is used to reduce the numerical instabilities [Carlini and Wagner, 2017;

Alzantot et al., 2019; Tu et al., 2019; Ru et al., 2020].

The aim of a black-box adversarial attack is to find a successful adversarial pertur-

bation δ (i.e., such that (5.1) holds). This can be achieved by maximizing y(δ) (5.2)

and finding δ with a positive value of y(δ) > 0, as explained in the paragraph above.

The attack is considered successful if such an adversarial perturbation δ is found after

using less than T queries to the attacked machine learning model where T ∈ N is a

given parameter. In the next section we will show how to efficiently search for an

adversarial perturbation δ with our BOS2 attack.
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5.2 Bayesian Optimization with dimension selection

and Bayesian optimal stopping (BOS2) attack

BO could be directly applied for performing the black-box attack by maximizing

function y(δ) (5.2). However, the dimension D of the inputs in problem (5.2) is

usually too high to effectively apply existing BO algorithms. To make the search for

a successful adversarial perturbation δ easier, we perform dimensionality reduction to

project the original input space into a latent space of a lower dimension d and search

for an adversarial perturbation using BO in this latent space. Formally, denote a

function g : Rd → RD projecting the latent space Rd back to the original input space

RD. Then (5.2) can be re-written as a lower-dimensional optimization problem in Rd:

y(δ) , logF (x0+g(δ))ctarget−log
∑

c 6=ctarget

F (x0+g(δ))c such that δ ∈ Rd and ‖δ‖∞ ≤ δmax.

(5.3)

We use bilinear resizing (bilinear interpolation), which has been shown to be effec-

tive by a number of prior works [Alzantot et al., 2019; Tu et al., 2019; Ru et al., 2020],

as a dimensionality reduction technique. Other techniques such as autoencoders can

be considered instead of bilinear resizing too [Tu et al., 2019], but they require addi-

tional resources for training and access to the training dataset of the attacked model.

In contrast, bilinear resizing can be performed very fast and requires access only to

the current input.

To efficiently maximize the objective function (5.3), we propose a novel Bayesian-

Optimization-with-dimension-selection-and-Bayesian-optimal-stopping (BOS2) black-

box adversarial attack. In contrast to existing adversarial attacks, we use BO to

automate both the selection of the latent space dimension d in (5.3) and the search of
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the adversarial perturbation in the selected latent space Rd. To do this, we decompose

our BOS2 attack into two stages. In the first stage we use BO to select the dimension

of the latent space d for projecting the high-dimensional input space RD into, which

we call the dimension BO loop. In the second stage (the perturbation BO loop), we

perform BO with Bayesian optimal stopping in the latent space Rd in order to find a

successful adversarial perturbation δ satisfying y(δ) > 0 (5.3). The two stages of our

BOS2 attack are described in detail in the next two subsections.

5.2.1 BOS2 attack summary

The pseudocode of our BOS2 attack is presented in Algorithm 5. As input it receives

the total query budget T (i.e., the maximum allowed number of queries to the at-

tacked model), the query budget imax for a fixed latent dimension (i.e., the maximum

allowed number of queries to the attacked model for the perturbation BO loop with

a fixed latent dimension) and the initial data. Each element of the dataset Dper for

the perturbation BO loop is a pair (δ0, y0) where δ0 is a perturbation and y0 is its

corresponding output measurement (5.3). Each element of the dataset Ddim for the

dimension BO loop is a pair
(
(d0, t0), y0

)
where d0 is a latent dimension, t0 is the total

number of queries to the attacked model performed at the end of the perturbation BO

loop with latent dimension d0, and y0 is the best value of output measurement (5.3)

found during the perturbation BO loop with latent dimension d0.

Our BOS2 attack (Algorithm 5) proceeds as follows: while the current number t of

queries to the attacked model is smaller than the total query budget T , it uses BO to

select the next latent dimension d∗ (the dimension BO loop, line 4). Next it projects

the set Dper of previously found perturbations into the latent space of the currently

selected dimension d∗ and performs BO in this latent space for at most imax iterations

(the perturbation BO loop, line 5). The actual number i of BO iterations run by
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the perturbation BO loop in line 5 can be smaller than imax since our perturbation

BO loop uses Bayesian optimal stopping. After obtaining the set of i perturbations

{δj}ij=1 and their corresponding output measurements {yj}ij=1 (5.3), the algorithm

augments the new data (lines 6-7). The perturbation BO data Dper is updated with

all newly found perturbations and their corresponding output measurements (line 6).

In line 7, the dimension BO data Ddim is updated with the current latent dimension

d∗, the total number t + i of BO iterations after the execution of line 5 and the

best found output measurement max{yj}ij=1 (5.3) found during the execution of the

perturbation BO loop in line 5. If the successful adversarial perturbation (i.e., the

one satisfying (5.1)) is found at any moment, Algorithm 5 stops immediately and

returns this perturbation.

Algorithm 5 BOS2 attack

1: Input: Initial dimension BO data Ddim, initial perturbation BO data Dper, total
query budget T , query budget for a fixed latent dimension imax, list of allowed
latent dimensions dallowed

2: t← 0
3: while t < T do
4: Select a new latent dimension: d∗ ← DimensionBO(Ddim, t, imax, dallowed)
5: Perform BO with Bayesian optimal stopping in the latent dimension d∗:

i, {δj}ij=1, {yj}ij=1 ← PerturbationBO(Dper, d∗, imax)
6: Augment perturbation BO data: Dper ← Dper ∪ {(δj, yj)}ij=1

7: Augment dimension BO data: Ddim ← Ddim ∪
(
(d∗, t + i),max{yj}ij=1

)
and

update the GP model
8: t← t+ i
9: return the successful adversarial perturbation (if found)

5.2.2 The dimension BO loop

In this section we show how the first stage of our BOS2 attack selects the dimension

of the latent space in a principled way (line 4 of Algorithm 5). In contrast to the

existing black-box adversarial attacks, which either set this dimension manually or
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treat it as a hyperparameter, our BOS2 attack learns it from the previous data.

Specifically, it uses BO to optimize the best output measurement (i.e., the maximum

output measurement (5.3)) discovered by the perturbation BO loop as a function of a

latent dimension. We choose BO for this optimization problem, because the number

of previously explored dimensions for learning is very limited due to the tight total

query budget, and BO is known to work well under limited budget constraints. This

makes BO a perfect fit for learning the dimension of the latent space for our proposed

BOS2 attack.

Algorithm 6 The dimension BO loop (DimensionBO function)

1: Input: Dimension BO data Ddim, current number of queries to the attacked
model t0, query budget for a fixed latent dimension imax, list of allowed latent
dimensions dallowed

2: for d0 ∈ dallowed do
3: x← (d0, t0 + imax)
4: Compute GP posterior mean and variance µ(x,Ddim), σ2(x,Ddim)
5: Compute GP-UCB acquisition function α(d0)← µ(x,Ddim) + 2 · σ(x,Ddim)
6: d∗ ← argmaxd0∈dallowed α(d0)
7: return d∗

Algorithm 6 uses two-dimensional tuples (d0, t0) where d0 is a latent dimension and

t0 is the total number of queries to the attacked model at the end of the perturbation

BO loop with this latent dimension d0 (i.e., after executing line 5 of Algorithm 5

with latent dimension d0) as inputs to BO. The second component t0 here is required

in order to distinguish between the same dimension d0 being selected multiple times

during the execution of our BOS2 attack. Algorithm 6 uses BO to predict which

dimension d∗ would produce the best results after executing the perturbation BO

loop for imax BO iterations (i.e., after t0 + imax queries to the attacked model). To do

this, it first combines d0 and t0 + imax into a tuple for every d0 in the list of allowed

latent dimensions dallowed (line 3). It then computes the GP posterior prediction
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(line 4) and GP-UCB1 acquisition function [Srinivas et al., 2010] (line 5). Finally, it

maximizes the GP-UCB acquisition function over all latent dimensions d0 from the

set dallowed (line 6) and returns the maximizing dimension d∗. The dimension BO

data Ddim is augmented after the execution of the perturbation BO loop run in the

latent space of the selected dimension d∗, and the dimension GP model is updated

(line 7 of Algorithm 5).

To illustrate the execution of the BO procedure in Algorithm 6, assume that the

current number of queries to the attacked model is t = 50 and the query budget for

a fixed latent dimension is imax = 40. Then line 3 of Algorithm 6 will compute the

tuples (d0, 90) for d0 ∈ dallowed. Assume that the maximizer in line 6 of Algorithm 6

is d∗ = 196 and the perturbation BO loop (line 5 of Algorithm 5) runs for i = 40

iterations, i.e., no early stopping, and finds the maximum output measurement of

−10.3. In this case, in line 7 of Algorithm 5, the data Ddim is augmented with an

element
(
(196, 90),−10.3

)
. Suppose that d∗ = 196 is selected again at t = 150, and

the perturbation BO loop (line 5 of Algorithm 5) runs for i = 23 iterations, i.e., with

early stopping, and discovers the maximum output measurement of −2.4. So, in line

7 of Algorithm 5, the data Ddim is augmented with an element
(
(196, 173),−2.4

)
since

t+ i = 150 + 23 = 173.

5.2.3 The perturbation BO loop

After the dimension of the latent space is selected by the dimension BO loop (line 4 of

Algorithm 5), our BOS2 attack proceeds to execute the perturbation BO loop, which is

the search for a successful adversarial perturbation in the latent space (Algorithm 7).

The perturbation BO loop consists of two major components: BO algorithm and

early-stopping. The combination of these two components allows our BOS2 attack to

1We use a constant β
1/2
t = 2 in line 5 of Algorithm 6 as recommended in the source code

by Srinivas et al. [2010]. For more details about GP-UCB algorithm, see Section 3.2.
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search for a successful adversarial perturbation effectively while reducing the number

of queries to the attacked model.

The first component of the perturbation BO loop is a BO algorithm performed

in the latent space. While the dimension of the latent space is significantly smaller

than the dimension of the original input space, it can still be high, making the search

with BO challenging. To tackle this challenge, we use Add-GP-UCB algorithm [Kan-

dasamy et al., 2015], which is a popular generalization of GP-UCB [Srinivas et al.,

2010] for high-dimensional BO. Add-GP-UCB algorithm approximates the objective

function y(δ) (5.3) by assuming it to be decomposable into a sum of independent

local functions y(1), . . . , y(M), each of which involves only a small subset of input

dimensions:

y(δ) = y(1)(δ(1)) + . . .+ y(M)(δ(M))

where δ(j) ∈ Rdj are disjoint lower dimensional components of the input vector δ in

the latent space Rd (i.e., δ ∈ Rd) such that δ(1)⊕. . .⊕δ(M) = δ. Interestingly, by using

the additive GP model [Duvenaud et al., 2011], this assumption allows to approximate

the GP-UCB acquisition function as a sum of independent local acquisition functions.

As a result, the acquisition function used by Add-GP-UCB algorithm at iteration i

has the following form:

αi(δ) ,
M∑
j=1

µ
(j)
i (δ(j)) + β

1/2
i σ

(j)
i (δ(j)) (5.4)

where each µ
(j)
i (δ(j)) +β

1/2
i σ

(j)
i (δ(j)) is a GP-UCB acquisition function for the respec-

tive local function y(j)(δ(j)) at iteration i.

The decomposition (5.4) provides two significant advantages for scalability of BO

to higher dimensions. Firstly, the acquisition function µ
(j)
i (δ(j)) + β

1/2
i σ

(j)
i (δ(j)) for

each local function y(j)(δ(j)) can be maximized independently, which is much cheaper
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than optimizing the standard GP-UCB acquisition function for the full objective

function y(δ) (5.3). Secondly, the BO procedure for each δ(j) ∈ Rdj is less vulnerable

to the curse of dimensionality due to the lower dimension of optimization problem in

hand. We exploit these advantages for the perturbation BO loop and apply Add-GP-

UCB algorithm to search for an adversarial perturbation in the latent space. Since

the optimal decomposition of the objective function y(δ) into y(j)(δ(j)) in (5.4) is

unknown, we follow the guideline from the original work of Kandasamy et al. [2015] by

randomly sampling several decompositions and choosing the one maximizing marginal

likelihood.

The second component of the perturbation BO loop of our BOS2 attack is the

Bayesian optimal stopping [Dai et al., 2019], which is used to improve the query

efficiency. Specifically, the execution of the perturbation BO loop is early-stopped

for those latent dimensions, which will end up under-performing. In contrast, the

only adversarial black-box attack which selects the dimension of the latent space

adaptively [Ru et al., 2020] updates the latent dimension with a fixed interval of

queries to the attacked model. In this case, if the BO loop in the selected latent

dimension is performing poorly, the attack of Ru et al. [2020] would still keep querying

the attacked model unnecessarily till the next update of the latent dimension. As a

result, our BOS2 attack is more query-efficient than the attack of Ru et al. [2020], as

empirically verified by our experiments in Section 5.3.

Bayesian optimal stopping is a principled mechanism for making a Bayes-optimal

decision to stop the execution of an algorithm using a limited number of observations.

In each BO iteration i of the perturbation BO loop, the goal of the Bayesian optimal

stopping problem is to decide whether to stop and conclude either hypothesis θ = θ1 or

θ = θ2 corresponding to terminal decisions D1 or D2, or to gather one more observation

via the continuation decision D0. The decision is made based on minimizing the
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expected loss among all decisions

ρi(y1:i) , min{Eθ|y1:i
[l(D1, θ)],Eθ|y1:i

[l(D2, θ)], cD0 + Eyi+1|y1:i
[ρi+1(y1:i+1)]} (5.5)

for i = 1, . . . , imax−1 and ρimax(y1:imax) , min{Eθ|y1:imax
[l(D1, θ)],Eθ|y1:imax

[l(D2, θ)]}.
The loss function l here reflects the cost of making the wrong decision about stopping

the execution, y1:i , [yj]
>
1,...,i is the vector of output measurements of the current

perturbation BO loop, the first two terms in (5.5) are the expected losses of terminal

decisions D1 and D2, and the last term is the sum of the immediate cost cD0 and

expected future loss of making the continuation decision D0 to continue executing the

perturbation BO loop.

The problem (5.5) is usually approximately solved using approximate backward

induction [Müller et al., 2007]. Its main ideas include using summary statistics to

represent the posterior beliefs, discretizing the space of summary statistics, and ap-

proximating the expectation terms via sampling [Dai et al., 2019]. After solving the

problem (5.5) we obtain a Bayes-optimal decision rule for every iteration of the per-

turbation BO loop: either early-stop the execution, if the decision rule is one of the

terminal decisions D1 and D2, or continue the execution for one more iteration (i.e.,

take the continuation decision D0).

Let y∗ be the maximum output measurement obtained by our BOS2 attack be-

fore the beginning of the current perturbation BO loop. In the context of BO,

Bayesian optimal stopping is tasked to decide whether the current run of the per-

turbation BO loop would result in finding an output measurement better than y∗

(i.e., maxj=1,...,imax yj > y∗). Then, the terminal decisions D1 and D2 and the contin-

uation decision D0 are defined as follows [Dai et al., 2019]: D1 stops and concludes

that maxj=1,...,imax yj ≤ y∗, D2 stops and concludes that maxj=1,...,imax yj > y∗ and D1

continues running the perturbation BO loop for one more iteration. Then, the event
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θ mentioned before (5.5) becomes

θ =

θ1 if maxj=1,...,imax yj ≤ y∗ ,

θ2 otherwise.

Note that terminal decision D2 (i.e., the one which stops the execution and concludes

that maxj=1,...,imax yj > y∗) does not align with the BO objective of sequentially max-

imizing the objective function. So, when the Bayesian optimal stopping recommends

the decision D2, there is no early stopping and the perturbation BO loop continues

for one more iteration.

Algorithm 7 The perturbation BO loop (PerturbationBO function)

1: Input: Perturbation BO data Dper, dimension of the latent space d∗, query
budget for a fixed latent dimension imax

2: Dprojper ← projection of Dper into the latent space Rd∗ using bilinear resizing
3: for i = 1, . . . , i0 do
4: Find the next perturbation by maximizing Add-GP-UCB acquisition func-

tion (5.4): δi = argmaxαi(δ)
5: Compute the output measurement yi = y(δi) (5.3)
6: Augment the data Dprojper ← Dprojper ∪ (δi, yi)
7: Update the GP model
8: Solve Bayesian optimal stopping problem (5.5) to obtain decision rules
9: i← i0

10: repeat
11: Find the next perturbation by maximizing Add-GP-UCB acquisition func-

tion (5.4): δi = argmaxαi(δ)
12: Compute the output measurement yi = y(δi) (5.3)
13: Augment the data Dprojper ← Dprojper ∪ (δi, yi)
14: Update the GP model
15: i← i+ 1
16: until i = imax or Bayesian optimal stopping decision rule in iteration i outputs

the stopping decision D1

17: return the number i of iterations run, found perturbations {δj}ij=1 projected
back to the original input space, found output measurements {yj}ij=1
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The Bayesian optimal stopping method for our BOS2 attack is based on the BO-

BOS algorithm by Dai et al. [2019]. BO-BOS algorithm was designed for optimizing

the hyperparameters of machine learning models, which require running an iterative

training procedure (e.g., stochastic gradient descent for training deep neural net-

works), with Bayesian early stopping. For our BOS2 attack, we use the Bayesian

optimal stopping procedure of Dai et al. [2019] in a novel context. To elaborate,

Dai et al. [2019] early-stop the training of a machine learning model with a given

set of hyperparameters in order to improve the epoch efficiency, so their Bayesian

optimal stopping method operates on epochs. On the other hand, our BOS2 attack

uses Bayesian optimal stopping to decide on early-stopping the whole BO loop for a

fixed dimension of the latent space. That is, it uses Bayesian optimal stopping for

improving the query efficiency of the method.

To summarize, the perturbation BO loop of our BOS2 attack (Algorithm 7) pro-

ceeds as follows: as input it gets the perturbation BO data Dper, the dimension d∗ of

the latent space selected by the dimension BO loop (line 4 of Algorithm 5) and the

query budget imax for a fixed latent dimension (i.e., the maximum allowed number of

queries to the attacked model for the perturbation BO loop with the latent dimension

d∗). Algorithm 7 first projects the perturbation BO data Dper into the latent space

of dimension d∗ using bilinear resizing (line 2). After that it runs the BO loop for i0

initial iterations2 by optimizing the Add-GP-UCB acquisition function (5.4) without

early stopping (lines 3− 7). Next the algorithm solves the Bayesian optimal stopping

problem (5.5) using approximate backward induction [Dai et al., 2019] to obtain the

decision rules (line 8). After obtaining the decision rules the algorithm continues

running the BO loop (lines 11 − 15) either until the query budget imax is exhausted

(i.e., no early-stopping) or until the stopping decision D1 is discovered (line 16).

2For our experiments i0 is set as i0 , imax/5.
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5.3 Experimental results

In this section, we empirically evaluate the performance of our BOS2 attack using

two state-of-the-art datasets for image classification MNIST [LeCun et al., 1998] and

CIFAR-10 [Krizhevsky et al., 2009].

The performances of our algorithm are compared with those of the state-of-the-art

black-box adversarial attacks such as GenAttack [Alzantot et al., 2019], ZOO [Chen

et al., 2017], AutoZOOM [Tu et al., 2019] and BayesOpt [Ru et al., 2020]. We use

open source implementations of these algorithms with the default parameter settings

provided by the authors.

We use four performance metrics. The first and the most important performance

metric is the attack success rate (ASR), i.e., the percentage of the runs where the

attack discovered a successful adversarial example. The other three metrics are related

to the query count (that is, the number of queries to the attacked model): maximum,

mean and median.

We limit the maximum allowed number of queries to the attacked model to

T = 900 queries for our experiments. The list of allowed latent space dimensions

in Algorithm 6 is set to dallowed = {6× 6× c, 8× 8× c, 10× 10× c, 12× 12× c, 14×
14× c, 16× 16× c, 18× 18× c} where c is the number of channels (c = 1 for MNIST

and c = 3 for CIFAR-10) to ensure fair comparison with BayesOpt [Ru et al., 2020].

These dimensions are used to apply bilinear resizing on the original inputs.

For the dimension BO loop, GP with the Matérn kernel (ν = 5/2) is used. The GP

hyperparameters are learned using maximum likelihood estimation [Rasmussen and

Williams, 2006] and updated after every iteration. The acquisition function used for

BO procedure is GP-UCB [Srinivas et al., 2010] with a constant parameter β
1/2
t = 2.

For the perturbation BO loop, the query budget for a fixed latent dimension imax

is set to imax = 40. The number i0 of initial iterations (line 3 of Algorithm 7) is set to
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i0 = 8. The BO loop is performed using an additive GP [Duvenaud et al., 2011] and

Add-GP-UCB algorithm [Kandasamy et al., 2015] with M = 12 components (5.4).

The optimal decomposition in (5.4) is learned by maximizing marginal likelihood over

20 randomly selected decompositions. A new decomposition is learned every time the

dimension of the latent space is updated. The GP hyperparameters are learned using

maximum likelihood estimation [Rasmussen and Williams, 2006] and updated every

5 iterations. The parameters used for the Bayesian optimal stopping procedure are

those recommended by the open source implementation of BO-BOS [Dai et al., 2019].

To initialize our BOS2 attack, we first select 3 latent dimensions dinit = {6 ×
6 × c, 14 × 14 × c, 18 × 18 × c} where c is the number of channels, then randomly

sample 10 perturbations in each of these 3 latent spaces and obtain the corresponding

output measurements (5.3). The dimension BO loop is then initialized with 3 tuples(
(d, 10), y

)
where d ∈ dinit and y is maximum output measurement from all initial

perturbations sampled in the latent space of dimension d. The perturbation BO loop

is initialized with all 30 perturbations and their corresponding output measurements.

Note that the work of Ru et al. [2020] also uses 30 inputs to initialize their attack.

Both the attacked models used in our experiments were originally proposed by

Carlini and Wagner [2017] and used by a number of black-box attacks after that [Chen

et al., 2017; Tu et al., 2019; Alzantot et al., 2019; Ru et al., 2020]. Specifically, the

models are pre-trained CNN image classifiers with test accuracy of 99.5% for MNIST

dataset and test accuracy of 80% for CIFAR-10 dataset.

To perform our experiments, we randomly select a number of images from test

data: 50 images for MNIST dataset and 20 images for CIFAR-10 dataset. We select

only those images, which are correctly classified by the attacked model. We then

perform targeted attacks on these images. Each image in our experiments is attacked

9 times, targeting all classes except the true class. This setting results in 450 attack

instances for MNIST dataset and 180 attack instances for CIFAR-10 dataset.
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The maximum norm of the adversarial perturbation δmax is set as δmax = 0.3 for

MNIST and δmax = 0.05 for CIFAR-10 to ensure fair comparison with the previous

works [Alzantot et al., 2019; Ru et al., 2020] which used the same values of δmax.

5.3.1 MNIST dataset

Table 5.1 shows the performances of tested black-box attacks with the maximum al-

lowed number of queries to the attacked model T = 900 and δmax = 0.3 on MNIST

dataset. It can be observed that our BOS2 attack achieves the highest attack success

rate (ASR) of all the tested attacks. Specifically, the ASR of our attack is signifi-

cantly higher than the ASR of all other attacks, except BayesOpt [Ru et al., 2020].

Comparing to BayesOpt [Ru et al., 2020], our BOS2 attack not only achieves higher

ASR, but is also more query efficient: the median query count (mean query count)

of BOS2 attack is 20.25% (7.04%) smaller than that of BayesOpt [Ru et al., 2020].

Table 5.1: Performances of the tested black-box attacks with the maximum allowed
number of queries to the attacked model T = 900 queries and δmax = 0.3 on MNIST
dataset. The results are averaged over 450 attack instances. For ZOO and AutoZOOM,
max count, mean count and median count values refer to the initially found successful
adversarial perturbation.

Attack method ASR Max count Mean count Median count
BOS2 99% 897 108.75 63

GenAttack 64% 881 428.66 396
ZOO 1% 95 65.88 67

AutoZOOM 1% 77 72.5 72.5
BayesOpt 98% 817 116.99 79

The results of GenAttack [Alzantot et al., 2019] are consistent with those reported

in the original work: GenAttack achieves the ASR 100% on MNIST with a median

query of 996 queries (Table 1 in Alzantot et al. [2019]), which is larger than the

maximum allowed number of queries T = 900 we use in our experimental setting.
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ZOO [Chen et al., 2017] and AutoZOOM [Tu et al., 2019] both achieve a very low

ASR of 1%. This can be explained by the procedure of these attacks: they first find

an initial successful adversarial perturbation with a large distortion and then use the

subsequent queries to the attacked model to refine the initial perturbation. However,

the number of queries required to achieve the distortion similar to δmax = 0.3 is

very large (i.e., in the scale of thousands of queries), which is much higher than the

maximum allowed number of queries T = 900 we use in our experimental setting.

We consider the attacks produced by ZOO [Chen et al., 2017] and AutoZOOM [Tu

et al., 2019] successful only if their final adversarial perturbation discovered is within

δmax = 0.3 to the original image according to L∞ norm.

Table 5.2: Performances of the tested black-box attacks with the maximum allowed
number of queries to the attacked model T = 900 queries and δmax = 0.3 on MNIST
dataset. The results are averaged over 450 attack instances.

Attack method ASR Max count Mean count Median count
BOS2 99% 897 108.75 63

BOS2 (no stopping) 99% 895 133.34 88
BayesOpt 98% 817 116.99 79

We also empirically investigate the impact of the selection of the latent space

dimension using BO (Section 5.2.2) and Bayesian optimal stopping (Section 5.2.3)

on the performance of our BOS2 attack. To do this, we compare 3 attack methods:

BOS2 attack, BOS2 attack run without the use of Bayesian optimal stopping and

BayesOpt [Ru et al., 2020], which is similar to the latter one, but optimizes the

dimension of the latent space as a hyperparameter. It can be observed from Table 5.2

that BOS2 attack run without the use of Bayesian optimal stopping achieves higher

ASR than BayesOpt [Ru et al., 2020], which verifies our claim that selecting the

dimension of the latent space using BO can increase the ASR. Furthermore, it can be

observed from Table 5.2 that BOS2 attack run without the use of Bayesian optimal

stopping results in 39.68% larger median query count (22.61% larger mean query
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count) than BOS2 attack, which shows that Bayesian optimal stopping is able to

boost the query efficiency.

5.3.2 CIFAR-10 dataset

Table 5.3 presents the performances of tested black-box attacks with the maximum

allowed number of queries to the attacked model T = 900 queries and δmax = 0.05 on

CIFAR-10 dataset. The results are consistent with those for MNIST dataset in the

previous section: Our BOS2 attack achieves the highest ASR of all the tested attacks.

Furthermore, our BOS2 attack outperforms BayesOpt [Ru et al., 2020] by achieving

higher ASR, 7% smaller median query count and 9.54% smaller mean query count.

Table 5.3: Performances of the tested black-box attacks with the maximum allowed
number of queries to the attacked model T = 900 queries and δmax = 0.05 on CIFAR-10
dataset. The results are averaged over 180 attack instances. For ZOO and AutoZOOM,
max count, mean count and median count values refer to the initially found successful
adversarial perturbation.

Attack method ASR Max count Mean count Median count
BOS2 84% 877 253.5 164.5

GenAttack 64% 891 410.7 386
ZOO 20% 452 142.28 104

AutoZOOM 1% 176 169.5 169.5
BayesOpt 79% 883 247.49 176.5

The results of GenAttack [Alzantot et al., 2019] agree with the original paper

since, according to Alzantot et al. [2019], GenAttack requires a median query count

of 804 in order to achieve the ASR of 96.5% on CIFAR-10 (Table 1 in Alzantot et al.

[2019]). The small values of ASR for ZOO [Chen et al., 2017] and AutoZOOM [Tu et

al., 2019] are explained by the larger number of queries required by these attacks, as

mentioned in the previous section.

We also examine the effect of the selection of the latent space dimension using BO

and Bayesian optimal stopping on the performance of our BOS2 attack. Similarly to
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the experiments on MNIST dataset in the previous section, we compare BOS2 attack,

BOS2 attack run without the use of Bayesian optimal stopping and BayesOpt [Ru et

al., 2020]. The observations from the results in Table 5.4 are consistent with those

for MNIST dataset in Table 5.2. Specifically, BOS2 attack run without Bayesian

optimal stopping outperforms BayesOpt [Ru et al., 2020] in terms of ASR, which

again shows that selecting the dimension of the latent space using BO can increase the

ASR. It can be also observed from Table 5.4 that BOS2 attack run without Bayesian

optimal stopping requires 10% larger median query count and almost similar mean

query count compared to those of BOS2 attack, which again supports our claim that

Bayesian optimal stopping improves the query efficiency of our BOS2 attack.

Table 5.4: Performances of the tested black-box attacks with the maximum allowed
number of queries to the attacked model T = 900 queries and δmax = 0.05 on CIFAR-10
dataset. The results are averaged over 180 attack instances.

Attack method ASR Max count Mean count Median count
BOS2 84% 877 253.5 164.5

BOS2 (no stopping) 83% 896 248.03 181
BayesOpt 79% 883 247.49 176.5
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Conclusion

This thesis has investigated the following question:

How can BO be scaled up to satisfy the additional requirements of new

real-world applications?

6.1 Summary of contributions

While working towards a satisfactory answer to the question stated above, we have

been able to make the following progress:

• We proposed PO-GP-UCB, which is the first algorithm for BO in the out-

sourced setting with differential privacy and theoretical performance guaran-

tee [Kharkovskii et al., 2020a].

• We presented a principled multi-staged Bayesian sequential decision algorithm

for nonmyopic adaptive BO for hotspot sampling in spatially varying phenomena

that exploits macro-actions for scaling up to a further lookahead comparing to

existing BO algorithms [Kharkovskii et al., 2020b].
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• We designed a novel algorithm for performing a black-box adversarial attack that

uses BO for automating both the selection of the latent space dimension and the

search of the adversarial perturbation in the selected latent space in order to

increase the attack success rate.

All of the items above are substantiated by the following specific contributions:

6.1.1 Private Outsourced BO (Chapter 3)

• Performance guarantee. We established a theoretical upper bound on the regret

similar to that of the original GP-UCB algorithm [Srinivas et al., 2010].

• Privacy-preserving property. We formally proved the privacy-preserving prop-

erty of our algorithm using the celebrated differential privacy framework and

empirically demonstrated the ability of our algorithm to achieve state-of-the-art

privacy guarantees in the single-digit range.

• Analysis of privacy-utility trade-off. We analyzed how our theoretical results

are amenable to interpretations regarding the privacy-utility trade-off by tuning

different parameters of our PO-GP-UCB algorithm.

• Empirical evaluation. We used both synthetic and real-world datasets to show

the empirical effectiveness of our algorithm.

6.1.2 Nonmyopic BO with Macro-Actions (Chapter 4)

• Novel acquisition function. We generalized GP-UCB to a novel acquisition

function defined with respect to a nonmyopic adaptive macro-action policy.

• Novel nonmyopic adaptive BO algorithm with performance guarantee. Since our

proposed acquisition function is intractable to be optimized exactly due to an
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uncountable set of candidate outputs, we proposed a nonmyopic adaptive ε-

Bayes-optimal macro-action BO (ε-Macro-BO) algorithm for hotspot sampling

in spatially varying phenomena by approximating the acquisition function using

stochastic sampling. We showed that our algorithm can achieve any arbitrary

user-specified loss bound ε, which requires only a polynomial number of samples

in the length of macro-actions in each planning stage.

• Anytime algorithm. To perform nonmyopic adaptive BO in real time, we pro-

posed an asymptotically optimal anytime variant of our ε-Macro-BO algorithm

with a performance guarantee.

• Empirical evaluation. Our experiments with synthetic and real-world datasets

revealed that a relatively small sample size (N=100-300) is needed for ε-Macro-

BO and its anytime variant to outperform state-of-the-art BO algorithms.

6.1.3 Adversarial attack automated with BO (Chapter 5)

• BO for increasing the attack success rate. To increase the attack success rate,

we used BO for automating both the latent space dimension using GP-UCB

algorithm [Srinivas et al., 2010] and the search of adversarial perturbation in the

selected latent space using Add-GP-UCB algorithm [Kandasamy et al., 2015].

• Bayesian optimal stopping for improving the query efficiency. We used Bayesian

optimal stopping [Dai et al., 2019] to boost the query efficiency of our BOS2

attack. Specifically, we early-stopped the execution of Add-GP-UCB algo-

rithm [Kandasamy et al., 2015] in those latent spaces, which would end up

under-performing, hence eliminating unnecessary queries to the attacked ma-

chine learning model.

• Empirical evaluation. We used the famous MNIST and CIFAR-10 datasets
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to demonstrate that our proposed BOS2 algorithm outperforms the existing

algorithms for black-box adversarial attacks.

6.2 Future Work

This section proposes and discusses potential research directions that could be pur-

sued as continuation of the works described in this thesis.

6.2.1 Private Outsourced BO (Chapter 3)

A natural way to extend this work would be investigating whether PO-GP-UCB can

be extended for privately releasing the output measurements yt. To this end, the

work of Hall et al. [2013] which provides a way for DP release of functional data

could potentially be applied.

Another potential direction would be to further improve the privacy guarantee of

our algorithm. For example, it would be interesting to research whether the work

of Kenthapadi et al. [2013] on DP random projection can be used as a privacy-

preserving mechanism in our outsourced BO framework.

6.2.2 Nonmyopic BO with Macro-Actions (Chapter 4)

There are a few directions that can be pursued as continuation of this work. One of

them would be to consider the macro-actions of variable length, similarly to options

in reinforcement learning [Barto and Mahadevan, 2003; Konidaris and Barto, 2007;

Stolle and Precup, 2002]. It would be interesting to investigate whether such a gener-

alization of our ε-Macro-BO algorithm would still be amenable to theoretical analysis.

Furthermore, it is also worth considering whether the empirical BO performance of ε-

Macro-BO and its anytime variant can be improved by using macro-action generation
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algorithms [He et al., 2011] instead of random selection, as we did in our experiments.

The GP hyperparameters are learned a priori using maximum likelihood esti-

mation [Rasmussen and Williams, 2006] for all our experiments (except simulated

plankton density), which is a common practice in the nonmyopic BO literature.

However, such an approach might result in performance loss due to model over-

fitting/misspecification. To this end, another potential direction for extending this

work would be to mitigate these negative effects by considering Bayesian treatment

of GP hyperparameters with stochastic sampling, similarly to the work of Hoang et

al. [2014].

6.2.3 Adversarial attack automated with BO (Chapter 5)

It would be interesting to find out whether the two-stage procedure we used in our

BOS2 attack could be transformed into a general BO algorithm on images. Such an

algorithm, for instance, could use BO to select parameters for transforming the given

set of images first (e.g., parameters used for image augmentation techniques such

as rotation, color space transformations or resizing) and then perform BO on the

transformed images. It could be also worth investigating whether our BOS2 attack is

amenable to theoretical performance analysis.
Another potential direction could be exploring if performance of our BOS2 attack

can be improved by using other high-dimensional BO algorithms [Hoang et al., 2018;
Rolland et al., 2018] or other methods for early-stopping [Domhan et al., 2015; Klein
et al., 2017].
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Appendix for Chapter 3

A.1 Proof of Lemma 3.1

Fix x, x′ ∈ X . It follows from Theorem 3.5 by setting vector y = (x− x′)> and r× d
matrix M ′ = M> that

1− 2 exp(−ν2r/8)

≤ P
(

(1− ν)‖(x− x′)>‖2 ≤ r−1‖M>(x− x′)>‖2 ≤ (1 + ν)‖(x− x′)>‖2
)

= P
(

(1− ν)‖x− x′‖2 ≤ r−1‖xM − x′M‖2 ≤ (1 + ν)‖x− x′‖2
)
.

(A.1)

Since there are no more than n2/2 pairs of inputs x, x′ ∈ X , applying the union bound
to (A.1) gives that the probability of

(1− ν)‖x− x′‖2 ≤ r−1‖xM − x′M‖2 ≤ (1 + ν)‖x− x′‖2

for all x, x′ ∈ X is at least 1− n2 exp(−ν2r/8).
To guarantee that the probability of (1 − ν)‖x − x′‖2 ≤ r−1‖Mx − Mx′‖2 ≤

(1 + ν)‖x − x′‖2 for all x, x′ ∈ X is at least 1 − µ, the value of r has to satisfy the
following inequality:

1− n2 exp(−ν2r/8) ≥ 1− µ,
which is equivalent to r ≥ 8 log(n2/µ)/ν2.
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A.2 Privacy guarantee of Algorithm 2

A.2.1 Comparison between Algorithm 2 and Algorithm 3 of Blocki
et al. [2012]

There are several important differences between our Algorithm 2 and the work of Blocki
et al. [2012]. Firstly, Algorithm 3 of Blocki et al. [2012] outputs a DP estimate
r−1X̃>M>MX̃ (in the notations of Algorithm 2) of the covariance matrix r−1X>X ,
while our Algorithm 2 outputs a DP transformation r−1/2XM (or r−1/2X̃M) of the
original dataset X . However, the authors of Blocki et al. [2012] prove the privacy
guarantee (see Theorem 4.1, p. 13 of their paper) by showing that releasing X̃>M>

(using matrix M of size r × n) preserves DP and then apply the post-processing
property of DP to reconstruct r−1X̃>M>MX̃ . This observation allows us to mod-
ify their proof for our Algorithm 2. Additionally, matrix X̃>M> (in the notations
of Algorithm 2) in the proof of Blocki et al. [2012] has size d × r, while matrices
r−1/2XM and r−1/2X̃M returned by our Algorithm 2 have size n× r, which requires
us to modify the proof of Blocki et al. [2012]. These modifications are discussed in
Section A.2.2 below.

Secondly, Algorithm 3 of Blocki et al. [2012] does not have the “if/else” condition
(line 6 of Algorithm 2) and always increases the singular values as in line 9 of Algo-
rithm 2, since the authors are able to offset the bias introduced to the estimate of
covariance of the dataset along a given dimension by increasing the singular values.
Specifically, they do it by subtracting ω2 from the computed estimate (see Algorithm 4
in Blocki et al. [2012]). For our case, however, the distances between the original
inputs from the dataset X are no longer approximately the same as the distances
between their images from the dataset Z when σmin(X ) < ω (i.e., the “else” clause,
line 8 of Algorithm 2), as shown in Theorem 3.7. Therefore, the case of σmin(X ) < ω
results in a slightly different regret bound (see Theorem 3.8 and Remark 3.2) and re-
quires us to introduce the “if/else” condition into Algorithm 2. Introducing such an
“if/else” condition, however, does not affect the proof of Theorem 4.1 of Blocki et al.
[2012] and our proof: the “if” clause (line 6 of Algorithm 2) is stated in the Corollary
(see p. 17 of Blocki et al. [2012]), while the “else” clause (line 8 of Algorithm 2) is
proved in Theorem 4.1 of Blocki et al. [2012].

A.2.2 Proof of Theorem 3.6

Fix two neighboring datasets X and X ′. Let E , X ′ − X , such that E is a rank 1
matrix. Without loss of generality, we assume that in the definition of neighboring
datasets (Definition 3.4) ‖x(i∗)−x′(i∗)‖ = 1. Then we can write E as the outer product

E = ei∗v
> where ei∗ is the indicator vector of row i∗ and v is the vector of norm 1.
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Then the singular values of E are exactly {1, 0, . . . , 0} (see Blocki et al. [2012], p.
14).

Similar to Theorem 4.1 of Blocki et al. [2012], the proof is composed of two stages.
For the first stage we work under the premise that both and X and X ′ have singular
values no less than ω (the “if” clause, line 6 of Algorithm 2). For the second stage we
denote X̃ and X̃ ′ as the respective matrices from “else” clause (line 8 of Algorithm 2)
and show what adaptations are needed to make the proof follow through.

We prove the theorem for the scaled output of the “if” clause of Algorithm 2
XM (the post-processing property of DP can be applied after that to reconstruct
r−1/2XM). XM is composed of r columns each is an i.i.d. sample from XY where
Y ∼ N (0, Id×d). The following lemma is similar to Claim 4.3 of Blocki et al. [2012](p.
14):

Lemma A.1. Let ε > 0, δ ∈ (0, 1), r ∈ N, d ∈ N, two neighboring datasets X and X ′
and Y sampled from N (0, Id×d) be given. Fix ε0 , ε/

√
4r log(2/δ) and δ0 , δ/(2r).

Denote

S , {ξ ∈ Rn : exp(−ε0)PDFX ′Y (ξ) ≤ PDFXY (ξ) ≤ exp(ε0)PDFX ′Y (ξ)}

where PDF is the probability density function. Then P (S) ≥ 1− δ0.

Proof. Similar to the proof of Claim 4.3 of Blocki et al. [2012], first we formally define
the PDF of the two distributions. We apply the fact that XY and X ′Y are linear
transformations of N (0, Id×d).

PDFXY (ξ) =
1√

(2π)n det(XX>)
exp

(
− 1

2
ξ>(XX>)−1ξ

)
PDFX ′Y (ξ) =

1√
(2π)n det(X ′X ′>)

exp
(
− 1

2
ξ>(X ′X ′>)−1ξ

)
.

If the matrix XX> (all the reasoning here is exactly the same for X ′X ′>) is not
full-rank, the SVD allows us to use similar notation to denote the generalizations of
the inverse and of the determinant: The Moore-Penrose inverse of any square matrix
M is M † , V Σ−1U> where M = UΣV > is the SVD of matrix M , and the pseudo-
determinant of M is d̃et(M) , Π

rank(M)
i=1 σi(M) where σi(M) are the singular values of

matrix M . Furthermore, if XX> has non-trivial kernel space (i.e., is not invertible)
then PDFXY in the equation above is technically undefined. However, if we restrict
ourselves only to the subspace V = (Ker(XX>))⊥, then PDFVXY is defined over V and

PDFVXY (ξ) , 1√
(2π)rank(XX>)d̃et(XX>)

exp
(
− 1

2
ξ>(XX>)†ξ

)
From now on, we omit the superscript from the PDF and refer to the above function
as the PDF of XY . See p. 4–5 of Blocki et al. [2012] for more details.
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Similar to the proof of Claim 4.3 of Blocki et al. [2012], first we show that

exp(−ε0/2) ≤
√

det(X ′X ′>)

det(XX>)
≤ exp(ε0/2).

The proof copies the derivation of eq. 4 in Blocki et al. [2012] (p. 15) with replacing
A to X>, A′ to X ′>, x to ξ and swapping n and d where necessary.

Next we prove an analogue of eq. 5 of Claim 4.3 of Blocki et al. [2012]:

Pξ

(
1

2
|ξ>
(
(XX>)−1 − (X ′X ′>)−1

)
ξ| ≥ ε0/2

)
≤ δ0. (A.2)

To do this:

ξ>
(
(XX>)−1 − (X ′X ′>)−1

)
ξ

= ξ>
(
(XX>)−1 − (X ′X ′>)−1XX>(XX>)−1

)
ξ

= ξ>
(
(XX>)−1 − (X ′X ′>)−1(X ′ − E)(X ′ − E)>(XX>)−1

)
ξ

= ξ>
(
(XX>)−1 − (X ′X ′>)−1(X ′X ′> − EX ′> −X ′E> + EE>)(XX>)−1

)
ξ

= ξ>
(
(XX>)−1 − (XX>)−1 − (X ′X ′>)−1(−EX ′> −X ′E> + EE>)(XX>)−1

)
ξ

= ξ>(X ′X ′>)−1(EX ′> + X ′E> − EE>)(XX>)−1ξ
= ξ>(X ′X ′>)−1(EX> + X ′E>)(XX>)−1ξ

(A.3)
where the second and the last equalities are due to E = X ′ − X . The expression in
the last line of (A.3) is very similar to the one in the derivation of eq. 5 in Blocki
et al. [2012] (p. 15). The difference is that in order for the proof to go through, we
need to multiply (X ′X ′>)−1 by XX>(XX>)−1 in the second line of (A.3), while the
original proof of Blocki et al. [2012] multiplies (X>X )−1 by X ′>X ′(X ′>X ′)−1 (in our
notations), see eq. in the bottom of p. 15 of Blocki et al. [2012].

Now denoting singular value decompositions of X = UΣV > and X ′ = U ′ΛV ′>,
and the fact that E = ei∗v

>, we continue (A.3):

ξ>(X ′X ′>)−1(EX> + X ′E>)(XX>)−1ξ
= ξ>(X ′X ′>)−1EX>(XX>)−1ξ + ξ>(X ′X ′>)−1X ′E>(XX>)−1ξ
= ξ>(U ′ΛV ′>V ′ΛU ′>)−1(ei∗ · v>V ΣU>)(UΣV >V ΣU>)−1ξ
+ξ>(U ′ΛV ′>V ′ΛU ′>)−1(U ′ΛV ′>v · e>i∗)(UΣV >V ΣU>)−1ξ
= ξ>U ′Λ−2U ′>ei∗ · v>V Σ−1U>ξ + ξ>U ′Λ−1V ′>v · e>i∗UΣ−2U>ξ

(A.4)

where the last equality is due to the properties of singular value decomposition.
So now, assume ξ is sampled from X ′Y (the case of XY is symmetric). That is,

assume that we’ve sampled χ from Y ∼ N (0, Id×d) and we have ξ = X ′χ = U ′ΛV ′>χ
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and equivalently ξ = (X + E)χ = UΣV >χ+ ei∗v
>χ. Plugging it into (A.4) gives:

|ξ>U ′Λ−2U ′>ei∗ · v>V Σ−1U>ξ + ξ>U ′Λ−1V ′>v · e>i∗UΣ−2U>ξ|
= |(U ′ΛV ′>χ)>U ′Λ−2U ′>ei∗ · v>V Σ−1U>(UΣV >χ+ ei∗v

>χ)
+(U ′ΛV ′>χ)>U ′Λ−1V ′>v · e>i∗UΣ−2U>(UΣV >χ+ ei∗v

>χ)|
= |χ>V ′ΛU ′>U ′Λ−2U ′>ei∗ · v>V Σ−1U>(UΣV >χ+ ei∗v

>χ)
+χ>V ′ΛU ′>U ′Λ−1V ′>v · e>i∗UΣ−2U>(UΣV >χ+ ei∗v

>χ)|
≤ term1 · term2 + term3 · term4

where for i = 1, 2, 3, 4 we have termi = |veci · χ| and

vec1

= (V ′ΛU ′>U ′Λ−2U ′>ei∗)
>

= (V ′Λ−1U ′>ei∗)
>

so ‖vec1‖ ≤ 1/λd;
vec2

= v>V Σ−1U>(UΣV > + ei∗v
>)

= v> + v>V Σ−1U>ei∗v
>

so ‖vec2‖ ≤ 1 + 1/σd;
vec3

= (V ′ΛU ′>U ′Λ−1V ′>v)>

= v>

so ‖vec3‖ ≤ 1;

vec4

= e>i∗UΣ−2U>(UΣV > + ei∗v
>)

= e>i∗UΣ−1V > + e>i∗UΣ−2U>ei∗v
>

so ‖vec4‖ ≤ 1/σd+1/σ2
d where σd and λd are the smallest singular values of X and X ′,

respectively. The remainder of the proof now follows the proof of Claim 4.3 of Blocki
et al. [2012] with replacing A to X>, A′ to X ′>, x to ξ and swapping n and d where
necessary.

For the second stage we assume that “else” clause (line 8 of Algorithm 2) is applied
and denote X̃ , U

√
Σ2 + ω2In×dV

> and X̃ ′ , U ′
√

Λ2 + ω2In×dV
′>. The theorem

requires an analogue of Lemma A.1 to hold, which depends on the following two
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conditions:

exp(−ε0/2) ≤
√

det(X̃ ′X̃ ′>)

det(X̃ X̃>)
≤ exp(ε0/2). (A.5)

Pξ

(
1

2
|ξ>
(
(X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1

)
ξ| ≥ ε0/2

)
≤ δ0. (A.6)

Derivation of (A.5) copies the derivation of eq. 6 in Blocki et al. [2012] (p. 16). To
derive (A.6), we start with an observation regarding X ′X ′> and X̃ ′X̃ ′>:

X ′X ′> = (X + E)(X + E)> = XX> + X ′E> + EX>
X̃ X̃> = U(Σ2 + ω2I)U> = UΣ2U> + ω2I = XX> + ω2I

X̃ ′X̃ ′> = U ′(Λ2 + ω2I)U ′> = U ′Λ2U ′> + ω2I = X ′X ′> + ω2I

=⇒ X̃ ′X̃ ′> − X̃ X̃> = X ′E> + EX>.
(A.7)

Now we can follow the same outline as in the proof of (A.2). Fix ξ, then

ξ>
(
(X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1

)
ξ

= ξ>
(
(X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1X̃ X̃>(X̃ X̃>)−1

)
ξ

= ξ>
(
(X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1(X̃ ′X̃ ′> −X ′E> − EX>)(X̃ X̃>)−1

)
ξ

= ξ>
(
(X̃ X̃>)−1 − (X̃ X̃>)−1 − (X̃ ′X̃ ′>)−1(−X ′E> − EX>)(X̃ X̃>)−1

)
ξ

= ξ>(X̃ ′X̃ ′>)−1(X ′E> + EX>)(X̃ X̃>)−1ξ

= ξ>(X̃ ′X̃ ′>)−1(X ′E> − EE> + EE> + EX>)(X̃ X̃>)−1ξ

= ξ>(X̃ ′X̃ ′>)−1((X ′ − E)E> + E(X> + E>))(X̃ X̃>)−1ξ

= ξ>(X̃ ′X̃ ′>)−1(X ′ − E)v · e>i∗(X̃ X̃>)−1ξ

+ξ>(X̃ ′X̃ ′>)−1ei∗ · v>(X> + E>)(X̃ X̃>)−1ξ

(A.8)

where the second equality follows from (A.7) and the last equality follows from E =
ei∗v

>. The expression in the last line of (A.8) is very similar to the one in the
derivation of equation in Blocki et al. [2012] (p. 17, second equation array from the
top). The difference is that in order for the proof to go trhough, we need to multiply
(X̃ ′X̃ ′>)−1 by X̃ X̃>(X̃ X̃>)−1 in the second line of (A.8), while the original proof
of Blocki et al. [2012] multiplies (X̃>X̃ )−1 by X̃ ′>X̃ ′(X̃ ′>X̃ ′)−1 (in our notations),
see second equation array from the top, p. 17 of Blocki et al. [2012]. The remainder
of the proof now follows the proof of Theorem 4.1 of Blocki et al. [2012] (p. 17).
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A.3 Proof of Theorem 3.7

Proof. Fix x, x′ ∈ X and their images z, z′ ∈ Z. If σmin(X ) ≥ ω, according to
Algorithm 2, Z = r−1/2XM (line 7) and

‖z − z′‖2

= ‖r−1/2xM − r−1/2x′M‖2

= r−1‖xM − x′M‖2

and Lemma 3.1 can be immediately applied.
If σmin(X ) < ω, according to Algorithm 2, Z = r−1/2X̃M (line 10) and

‖z − z′‖2

= ‖r−1/2x̃M − r−1/2x̃′M‖2

= r−1‖x̃M − x̃′M‖2

≤ (1 + ν)‖x̃− x̃′‖2

≤ (1 + ν)(1 + ω2/σ2
min(X ))‖x− x′‖2

where the first inequality follows from Lemma 3.1 and the second inequality follows
from Lemma A.6. Similarly,

‖z − z′‖2

= ‖r−1/2x̃M − r−1/2x̃′M‖2

= r−1‖x̃M − x̃′M‖2

≥ (1− ν)‖x̃− x̃′‖2

≥ (1− ν)‖x− x′‖2

where the first inequality follows from Lemma 3.1 and the second inequality follows
from Lemma A.6.

A.4 Bounding the covariance change

Theorem A.1. Let a dataset X ⊂ Rd be given and σmin(X ) > 0 be the smallest
singular value of X . Let r ∈ N be the input parameter of Algorithm 2, a dataset
Z ⊂ Rr be the output of Algorithm 2 and ω be defined in line 5 of Algorithm 2. Let
d = diam(X )/l where diam(X ) is the diameter of the dataset X . Let ν ∈ (0, 1/2),
µ ∈ (0, 1) be given. If ν ≤ 2/d2 and r ≥ 8 log(n2/µ)/ν2, then the probability of

|kzz′ − kxx′| ≤ C · kxx′
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for all x, x′ ∈ X and their images under Algorithm 2 z, z′ ∈ Z is at least 1−µ where

C ,

{
νd2 if σmin(X ) ≥ ω,

max
(
νd2, 1− exp (−0.5(ν + νω2/σ2

min(X ) + ω2/σ2
min(X ))d2)

)
otherwise.

(A.9)

Remark A.1. It immediately follows from Theorem A.1 that the probability of kzz′ ≤
(1 + C) · kxx′ for all x, x′ ∈ X and their images z, z′ ∈ Z is at least 1− µ.

Proof.

kzz′ − kxx′
= σ2

y exp
(
−0.5‖z − z′‖2/l2

)
− σ2

y exp
(
−0.5‖x− x′‖2/l2

)
≤ σ2

y exp
(
−0.5(1− ν)‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5‖x− x′‖2/l2

)
= kxx′

(
exp

(
0.5ν‖x− x′‖2/l2

)
− 1
)

≤ kxx′
(
2 ·
(
0.5ν‖x− x′‖2/l2

))
≤ kxx′ · νd2

where the first inequality follows from Theorem 3.7 (since the condition (1− ν)‖x−
x′‖2 ≤ ‖z − z′‖2 holds in both cases σmin(X ) ≥ ω and otherwise), and the second
inequality follows from the identity exp c ≤ 1 + 2c for c ∈ (0, 1) by setting c =
0.5ν‖x− x′‖2/l2 since ν ≤ 2/d2 and

0.5ν‖x− x′‖2/l2

≤ 0.5ν (diam(X ))2/l2

≤ 0.5 · 2/d2 · (diam(X ))2/l2

= 1.

(A.10)

If σmin(X ) ≥ ω,

kxx′ − kzz′
= σ2

y exp
(
−0.5‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5‖z − z′‖2/l2

)
≤ σ2

y exp
(
−0.5‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5(1 + ν)‖x− x′‖2/l2

)
= kxx′

(
1− exp

(
−0.5ν‖x− x′‖2/l2

))
= kxx′

(
exp

(
0.5ν‖x− x′‖2/l2

)
− 1
)

exp
(
−0.5ν‖x− x′‖2/l2

)
≤ kxx′

(
exp

(
0.5ν‖x− x′‖2/l2

)
− 1
)

≤ kxx′
(
2 ·
(
0.5ν‖x− x′‖2/l2

))
≤ kxx′ · νd2

where the first inequality follows from Theorem 3.7, since if σmin(X ) ≥ ω, C ′ = 1 in
the statement of Theorem 3.7, the second inequality follows from 0.5ν‖x−x′‖2/l2 ≥ 0
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and the third inequality follows from the identity exp c ≤ 1+2c for c ∈ (0, 1) by setting
c = 0.5ν‖x− x′‖2/l2 and (A.10).

Similarly, if σmin(X ) < ω,

kxx′ − kzz′
= σ2

y exp
(
−0.5‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5‖z − z′‖2/l2

)
≤ σ2

y exp
(
−0.5‖x− x′‖2/l2

)
− σ2

y exp
(
−0.5(1 + ν)(1 + ω2/σ2

min(X ))‖x− x′‖2/l2
)

= kxx′
(
1− exp

(
−0.5(ν + νω2/σ2

min(X ) + ω2/σ2
min(X ))‖x− x′‖2/l2

))
≤ kxx′

(
1− exp

(
−0.5(ν + νω2/σ2

min(X ) + ω2/σ2
min(X ))d2

))
where the first inequality follows from Theorem 3.7, since if σmin(X ) < ω, C ′ =
1 + ω2/σ2

min(X ) in the statement of Theorem 3.7.

A.5 Proof of Theorem 3.8

First we recall and introduce a few notations which we will use throughout this sec-
tion. Let X ⊂ Rd be a dataset and its image under Algorithm 2 be a dataset Z ⊂ Rr,
z1:t−1 , {z1, . . . , zt−1} be a set of transformed inputs selected by Algorithm 3 run on
transformed dataset Z after t − 1 iterations and the preimage of z1:t−1 under Algo-
rithm 2 be a set x1:t−1 , {x1, . . . , xt−1}. Let z ∈ Z be an (unobserved) transformed
input and x ∈ X be its preimage under Algorithm 2. Let f be a latent function
sampled from a GP. Define

f̃(z) , f(x)

αt(x,x1:t−1) , µt(x) + β
1/2
t σt(x)

αt(z, z1:t−1) , µ̃t(z) + β
1/2
t σ̃t(z)

zt , argmax
z∈Z

αt(z, z1:t−1).

(A.11)

That is, f̃ is the latent function f defined over the transformed dataset Z, αt(z, z1:t−1)
is the function maximized by Algorithm 3 at iteration t, αt(x,x1:t−1) is the function
maximized by GP-UCB algorithm run on the original dataset, zt is the transformed
input selected by Algorithm 3 at iteration t and xt is the preimage of zt under Algo-
rithm 2.

Lemma A.2. Let δ′ ∈ (0, 1) be given and βt , 2 log(nt2π2/6δ′). Then

|f(x)− µt(x)| ≤ β
1/2
t σt(x) ∀x ∈ X ∀t ∈ N

holds with probability at least 1− δ′.
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Proof. Lemma A.2 above corresponds to Lemma 5.1 in Srinivas et al. [2010]; see its
proof therein.

Lemma A.3. Let δ′ ∈ (0, 1) be given and βt , 2 log(nt2π2/6δ′). Then the probability
of

f̃(z∗)− f̃(zt) ≤ 2 max
x,z
|αt(z, z1:t−1)− αt(x,x1:t−1)|+ 2β

1/2
t σt(xt)

for all t ∈ N is at least 1 − δ′ where z∗ is the maximizer of f̃ and x ∈ X is the
preimage of z ∈ Z under Algorithm 2.

Proof.

f̃(z∗)− f̃(zt)
= f(x∗)− f(xt)
≤ αt(x

∗,x1:t−1)− f(xt)
= αt(x

∗,x1:t−1)− αt(z∗, z1:t−1) + αt(z
∗, z1:t−1)− f(xt)

≤ αt(x
∗,x1:t−1)− αt(z∗, z1:t−1) + αt(zt, z1:t−1)− f(xt)

= αt(x
∗,x1:t−1)− αt(z∗, z1:t−1) + αt(zt, z1:t−1)− αt(xt,x1:t−1) + αt(xt,x1:t−1)− f(xt)

≤ 2 max
x,z
|αt(z, z1:t−1)− αt(x,x1:t−1)|+ αt(xt,x1:t−1)− f(xt)

≤ 2 max
x,z
|αt(z, z1:t−1)− αt(x,x1:t−1)|+ 2β

1/2
t σt(xt)

where the first equality is due to (A.11) and x∗ is the maximizer of f , the first and
the last inequalities are due to Lemma A.2 and the second inequality is due to the
choice of zt in (A.11).

Lemma A.3 resembles Lemma 5.2 of Srinivas et al. [2010] with an added term
2 maxx,z |αt(z, z1:t−1)−αt(x,x1:t−1)|. It suggests that in order to bound regret f̃(z∗)−
f̃(zt) incurred by Algorithm 3 at iteration t, we need to bound |αt(z, z1:t−1)−αt(x,x1:t−1)|.
Using the diagonal dominance assumption (Definition 3.9), we do it in the following
two lemmas:

Lemma A.4. Let C > 0 be given. If for all x, x′ ∈ X and their images under
Algorithm 2 z, z′ ∈ Z holds |kzz′ − kxx′| ≤ C · kxx′, for all t = 1, . . . , T matrix
Kx1:t−1x1:t−1 is diagonally dominant, then for every unobserved transformed input z ∈
Z and its preimage under Algorithm 2 x ∈ X

|σ̃2
t (z)− σ2

t (x)| ≤ C1/
√
|x1:t−1|

where
C1 , Cσy

√
2σ2

y + σ2
n

(√
2(1 + C)2σ2

y/σ
2
n + (2 + C)C

)
.
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Proof.

|σ̃2
t (z)− σ2

t (x)|
= |
(
kzz −Kzz1:t−1(Kz1:t−1z1:t−1 + σ2

nI)−1Kz1:t−1z

)
−
(
kxx −Kxx1:t−1(Kx1:t−1x1:t−1 + σ2

nI)−1Kx1:t−1x

)
|

= |Kzz1:t−1(Kz1:t−1z1:t−1 + σ2
nI)−1Kz1:t−1z −Kxx1:t−1(Kx1:t−1x1:t−1 + σ2

nI)−1Kx1:t−1x|
≤ |Kzz1:t−1(Kz1:t−1z1:t−1 + σ2

nI)−1Kz1:t−1z −Kzz1:t−1(Kx1:t−1x1:t−1 + σ2
nI)−1Kz1:t−1z|

+ |Kzz1:t−1(Kx1:t−1x1:t−1 + σ2
nI)−1Kz1:t−1z −Kxx1:t−1(Kx1:t−1x1:t−1 + σ2

nI)−1Kz1:t−1z|
+ |Kxx1:t−1(Kx1:t−1x1:t−1 + σ2

nI)−1Kz1:t−1z −Kxx1:t−1(Kx1:t−1x1:t−1 + σ2
nI)−1Kx1:t−1x|

≤ (1 + C)2‖Kxx1:t−1‖ · σ2
y/σ

2
n ·
√

2C/
√
|x1:t−1|+ (2 + C)C · ‖Kxx1:t−1‖/

√
|x1:t−1|

= C‖Kxx1:t−1‖/
√
|x1:t−1|

(√
2(1 + C)2σ2

y/σ
2
n + (2 + C)C

)
≤ Cσy

√
2σ2

y + σ2
n/
√
|x1:t−1|

(√
2(1 + C)2σ2

y/σ
2
n + (2 + C)C

)
(A.12)

where the first equality is due to (3.2), the second equality is due to kxx = kzz = σ2
y for

every x and z, the first inequality is due to triangle inequality, the second inequality
is due to

|Kzz1:t−1(Kz1:t−1z1:t−1 + σ2
nI)−1Kz1:t−1z −Kzz1:t−1(Kx1:t−1x1:t−1 + σ2

nI)−1Kz1:t−1z|
= |Kzz1:t−1

(
(Kz1:t−1z1:t−1 + σ2

nI)−1 − (Kx1:t−1x1:t−1 + σ2
nI)−1

)
Kz1:t−1z|

≤ ‖Kzz1:t−1‖2 · ‖(Kz1:t−1z1:t−1 + σ2
nI)−1 − (Kx1:t−1x1:t−1 + σ2

nI)−1‖2

≤ (1 + C)2‖Kxx1:t−1‖2 · ‖(Kx1:t−1x1:t−1 + σ2
nI)−1 − (Kx1:t−1x1:t−1 + σ2

nI)−1‖2

≤ (1 + C)2‖Kxx1:t−1‖2 · ‖(Kz1:t−1z1:t−1 + σ2
nI)−1(Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1)‖2

·‖(Kx1:t−1x1:t−1 + σ2
nI)−1‖2

≤ (1 + C)2‖Kxx1:t−1‖2 · ‖(Kz1:t−1z1:t−1 + σ2
nI)−1‖2 · ‖Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1‖2

·‖(Kx1:t−1x1:t−1 + σ2
nI)−1‖2

≤ (1 + C)2‖Kxx1:t−1‖2 · 1/σ2
n · ‖Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1‖2 · ‖(Kx1:t−1x1:t−1 + σ2

nI)−1‖2

≤ (1 + C)2‖Kxx1:t−1‖2 · 1/σ2
n ·
√

2Cσ2
y/
√
|x1:t−1| · ‖(Kx1:t−1x1:t−1 + σ2

nI)−1‖2

≤ (1 + C)2‖Kxx1:t−1‖2 · 1/σ2
n ·
√

2Cσ2
y/
√
|x1:t−1| · 1/(

√
|x1:t−1|‖Kxx1:t−1‖)

= (1 + C)2‖Kxx1:t−1‖ · σ2
y/σ

2
n ·
√

2C/|x1:t−1|
≤ (1 + C)2‖Kxx1:t−1‖ · σ2

y/σ
2
n ·
√

2C/
√
|x1:t−1|

where the first inequality is due to property of quadratic forms |v>Av| ≤ ‖v‖2·‖A‖2 for
any vector v (see Theorem 2.11, Section II.2.2 in Stewart and Sun [1990]), the second
inequality follows from the statement of the lemma and Remark A.1 to Theorem A.1,
the third inequality follows from Theorem 2.5 (see Section III.2.2 in Stewart and Sun
[1990]), the fourth inequality is due to the submultiplicativity of the spectral norm
(see Section II.2.2, p. 69 in Stewart and Sun [1990]), the fifth inequality follows from
Lemma A.7, the sixth inequality follows from Lemma A.8, the second last inequality
follows from Lemma A.9 and the last inequality follows from |x1:t−1| ≥ 1;
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and

|Kzz1:t−1(Kx1:t−1x1:t−1 + σ2
nI)−1Kz1:t−1z −Kxx1:t−1(Kx1:t−1x1:t−1 + σ2

nI)−1Kz1:t−1z|
+ |Kxx1:t−1(Kx1:t−1x1:t−1 + σ2

nI)−1Kz1:t−1z −Kxx1:t−1(Kx1:t−1x1:t−1 + σ2
nI)−1Kx1:t−1x|

= |(Kzz1:t−1 −Kxx1:t−1)(Kx1:t−1x1:t−1 + σ2
nI)−1Kz1:t−1z|

+ |Kxx1:t−1(Kx1:t−1x1:t−1 + σ2
nI)−1(Kz1:t−1z −Kx1:t−1x)|

≤ ‖Kzz1:t−1 −Kxx1:t−1‖ · ‖(Kx1:t−1x1:t−1 + σ2
nI)−1‖2 · ‖Kz1:t−1z‖

+ ‖Kxx1:t−1‖ · ‖(Kx1:t−1x1:t−1 + σ2
nI)−1‖2 · ‖Kz1:t−1z −Kx1:t−1x‖

≤ (1 + 1 + C) · ‖Kzz1:t−1 −Kxx1:t−1‖ · ‖(Kx1:t−1x1:t−1 + σ2
nI)−1‖2 · ‖Kx1:t−1x‖

≤ (2 + C) · C‖Kxx1:t−1‖ · ‖(Kx1:t−1x1:t−1 + σ2
nI)−1‖2 · ‖Kxx1:t−1‖

≤ (2 + C) · C‖Kxx1:t−1‖ · 1/(
√
|x1:t−1|‖Kxx1:t−1‖) · ‖Kxx1:t−1‖

= (2 + C)C · ‖Kxx1:t−1‖/
√
|x1:t−1|

where the first inequality is due to property of bilinear forms |u>Av| ≤ ‖u‖·‖A‖2 ·‖v‖
for any vectors u, v (see Theorem 2.11, Section II.2.2 in Stewart and Sun [1990]),
the second and the third inequalities follow from the statement of the lemma and
Remark A.1 to Theorem A.1 and the last inequality follows from Lemma A.9.

The last inequality in (A.12) follows from

‖Kxx1:t−1‖2

= ‖Kxx1:t−1‖2 · ψ−1
max(Kx1:t−1x1:t−1 + σ2

nI) · ψmax(Kx1:t−1x1:t−1 + σ2
nI)

= ‖Kxx1:t−1‖2 · ψmin((Kx1:t−1x1:t−1 + σ2
nI)−1) · ψmax(Kx1:t−1x1:t−1 + σ2

nI)
= ‖Kxx1:t−1‖2 · ψmin((Kx1:t−1x1:t−1 + σ2

nI)−1) · ‖Kx1:t−1x1:t−1 + σ2
nI‖2

= ‖Kxx1:t−1‖2 · ψmin((Kx1:t−1x1:t−1 + σ2
nI)−1) · (‖Kx1:t−1x1:t−1‖2+σ2

n)
≤ ‖Kxx1:t−1‖2 · ψmin((Kx1:t−1x1:t−1 + σ2

nI)−1) · (2σ2
y + σ2

n)
≤ Kxx1:t−1(Kx1:t−1x1:t−1 + σ2

nI)−1Kx1:t−1x · (2σ2
y + σ2

n)
≤ kxx · (2σ2

y + σ2
n)

= σ2
y(2σ

2
y + σ2

n)

where ψmax(·) and ψmin(·) denote the largest and the smallest eigenvalues of a matrix,
respectively, the first fourth equalities are properties of eigenvalues, the first inequality
is due to Lemma A.10, the second inequality follows from Lemma A.11, the third
inequality follows from the fact that conditioning does not increase variance and the
last equality is due to kxx = σ2

y.

Lemma A.5. Let C > 0 be given. If for all x, x′ ∈ X and their images under Algo-
rithm 2 z, z′ ∈ Z holds |kzz′ − kxx′ | ≤ C · kxx′, for all t = 1, . . . , T matrix Kx1:t−1x1:t−1

is diagonally dominant and |yt| ≤ L, then for every unobserved transformed input
z ∈ Z and its preimage under Algorithm 2 x ∈ X

|µ̃t(z)− µt(x)| ≤ CL+ C2/
√
|x1:t−1|
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where
C2 =

√
2(1 + C) · Cσ2

y/σ
2
n · L.

Proof.

|µ̃t(z)− µt(x)|
= |Kzz1:t−1(Kz1:t−1z1:t−1 + σ2

nI)−1yt−1 −Kxx1:t−1(Kx1:t−1x1:t−1 + σ2
nI)−1yt−1|

≤ |Kzz1:t−1(Kx1:t−1x1:t−1 + σ2
nI)−1yt−1 −Kxx1:t−1(Kx1:t−1x1:t−1 + σ2

nI)−1yt−1|
+ |Kzz1:t−1(Kz1:t−1z1:t−1 + σ2

nI)−1yt−1 −Kzz1:t−1(Kx1:t−1x1:t−1 + σ2
nI)−1yt−1|

= |(Kzz1:t−1 −Kxx1:t−1)(Kx1:t−1x1:t−1 + σ2
nI)−1yt−1|

+ |Kzz1:t−1

(
(Kz1:t−1z1:t−1 + σ2

nI)−1 − (Kx1:t−1x1:t−1 + σ2
nI)−1

)
yt−1|

≤ C · L+ C2/
√
|x1:t−1|

where the first equality is due to (3.2), the first inequality is due to triangle inequality
and the second inequality follows from

|(Kzz1:t−1 −Kxx1:t−1)(Kx1:t−1x1:t−1 + σ2
nI)−1yt−1|

≤ ‖Kzz1:t−1 −Kxx1:t−1‖ · ‖(Kx1:t−1x1:t−1 + σ2
nI)−1‖2 · ‖yt−1‖

≤ C‖Kxx1:t−1‖ · ‖(Kx1:t−1x1:t−1 + σ2
nI)−1‖2 · ‖yt−1‖

≤ C‖Kxx1:t−1‖ · 1/(
√
|x1:t−1|‖Kxx1:t−1‖) · ‖yt−1‖

≤ C · L

where the first inequality is due to property of bilinear forms |u>Av| ≤ ‖u‖·‖A‖2 ·‖v‖
for any vectors u, v (see Theorem 2.11, Section II.2.2 in Stewart and Sun [1990]), the
second inequality follows from the statement of the lemma, the third inequality follows
from Lemma A.9 and the last inequality follows from the condition |yt| ≤ L for all
t = 1, . . . , T ;

and

|Kzz1:t−1

(
(Kz1:t−1z1:t−1 + σ2

nI)−1 − (Kx1:t−1x1:t−1 + σ2
nI)−1

)
yt−1|

≤ ‖Kzz1:t−1‖ · ‖(Kz1:t−1z1:t−1 + σ2
nI)−1 − (Kx1:t−1x1:t−1 + σ2

nI)−1‖2 · ‖yt−1‖
≤ ‖Kzz1:t−1‖ · ‖(Kz1:t−1z1:t−1 + σ2

nI)−1‖2

·‖(Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1)(Kx1:t−1x1:t−1 + σ2
nI)−1‖2 · ‖yt−1‖

≤ ‖Kzz1:t−1‖ · ‖(Kz1:t−1z1:t−1 + σ2
nI)−1‖2

·‖Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1‖2 · ‖(Kx1:t−1x1:t−1 + σ2
nI)−1‖2 · ‖yt−1‖

≤ ‖Kzz1:t−1‖ · 1/σ2
n · ‖Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1‖2 · ‖(Kx1:t−1x1:t−1 + σ2

nI)−1‖2 · ‖yt−1‖
≤ ‖Kzz1:t−1‖ · 1/σ2

n ·
√

2Cσ2
y/
√
|x1:t−1| · ‖(Kx1:t−1x1:t−1 + σ2

nI)−1‖2 · ‖yt−1‖
≤ ‖Kzz1:t−1‖ · 1/σ2

n ·
√

2Cσ2
y/
√
|x1:t−1| · 1/(

√
|x1:t−1|‖Kxx1:t−1‖) · ‖yt−1‖

≤ (1 + C)‖Kxx1:t−1‖ · 1/σ2
n ·
√

2Cσ2
y/
√
|x1:t−1| · 1/(

√
|x1:t−1|‖Kxx1:t−1‖) · ‖yt−1‖

≤
√

2(1 + C) · Cσ2
y/σ

2
n · L/

√
|x1:t−1|

= C2/
√
|x1:t−1|

144



Chapter A. Appendix for Chapter 3

where the first inequality is due to property of bilinear forms |u>Av| ≤ ‖u‖·‖A‖2 ·‖v‖
for any vectors u, v (see Theorem 2.11, Section II.2.2 in Stewart and Sun [1990]), the
second inequality follows from Theorem 2.5 (see Section III.2.2 in Stewart and Sun
[1990]), the third inequality is due to the submultiplicativity of the spectral norm (see
Section II.2.2, p. 69 in Stewart and Sun [1990]) the fourth inequality follows from
Lemma A.7, the fifth inequality follows from Lemma A.8, the third last inequality
follows from Lemma A.9, the second last inequality follows from the statement of
the lemma and Remark A.1 to Theorem A.1 and the last inequality follows from the
condition |yt| ≤ L for all t = 1, . . . , T .

Proof of the theorem. By Lemma A.3 for δ′ = δucb/2 and βt = 2 log(nt2π2/3δucb) for
all t ∈ N:

rt
= f(x∗)− f(xt)

= f̃(z∗)− f̃(zt)

≤ 2 max
x,z
|αt(z, z1:t−1)− αt(x,x1:t−1)|+ 2β

1/2
t σt(xt)

≤ 2 max
x,z
|µ̃t(z)− µt(x)|+ 2β

1/2
t max

x,z
|σ̃2
t (z)− σ2

t (x)|+ 2β
1/2
t σt(xt)

(A.13)

with probability at least 1−δucb/2 where the second equality follows from (A.11), the
first inequality follows from Lemma A.3 and the second inequality follows from trian-
gle inequality. Suppose ν ∈ (0,min(1/2, 2/d2)), µ ∈ (0, 1) are given (we will set the
exact values of µ, ν later) and the input parameter of Algorithm 2 r ≥ 8 log(n2/µ)/ν2.
By Theorem A.1 for all x, x′ ∈ X and their images under Algorithm 2 z, z′ ∈ Z holds
|kzz′ − kxx′| ≤ C · kxx′ with probability at least 1 − µ. Let µ = δucb/2. Then we can
apply Lemma A.4 and Lemma A.5 to (A.13). Using the union bound we obtain that
for all t = 1, . . . , T

rt
≤ 2 max

x,z
|µ̃t(z)− µt(x)|+ 2β

1/2
t max

x,z
|σ̃2
t (z)− σ2

t (x)|+ 2β
1/2
t σt(xt)

≤ 2(CL+ C2/
√
|x1:t−1|) + 2C1β

1/2
t /

√
|x1:t−1|+ 2β

1/2
t σt(xt)

(A.14)

with probability at least 1 − δucb where C1 and C2 are defined in Lemma A.4 and
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Lemma A.5, respectively. Summing over t = 1, . . . , T :

T∑
t=1

r2
t

≤ 4
T∑
t=1

(
CL+ C2/

√
|x1:t−1|+ C1β

1/2
t /

√
|x1:t−1|+ β

1/2
t σt(xt)

)2

≤ 12
T∑
t=1

(
C2L2 + (C2 + C1β

1/2
t )2/|x1:t−1|+ βtσ

2
t (xt)

)
= 12C2L2T + 12

T∑
t=1

(C2 + C1β
1/2
t )2|x1:t−1|+ 12

T∑
t=1

βtσ
2
t (xt)

≤ 12C2L2T + 24(C2 + C1β
1/2
T )2 log T + 12βT

T∑
t=1

σ2
t (xt)

≤ 12C2L2T + 24(C2 + C1β
1/2
T )2 log T + 12βT/ log(1 + σ−2

n )
T∑
t=1

log(1 + σ−2
n σ2

t (xt))

≤ 12C2L2T + 24(C2 + C1β
1/2
T )2 log T + 24βT/ log(1 + σ−2

n ) · γT
(A.15)

where the first inequality follows from (A.14), the second inequality follows from iden-
tity (a+ b+ c)2 ≤ 3(a2 + b2 + c2), the third inequality follows from

∑T
t=1 1/|x1:t−1| ≤∑T

t=1 1/t ≤ 2 log T and the fact that βt is nondecreasing, the fourth inequality cor-
responds to an intermediate step of Lemma 5.4 in Srinivas et al. [2010] and the
last step follows from Lemma 5.3 and Lemma 5.4 in Srinivas et al. [2010] where
γT , maxx1:T⊂X I[fX ; y1:T ] = O

(
(log T )d+1

)
and fX , {f(x)}x∈X (see Theorem 5

in Srinivas et al. [2010]). Therefore,

S2
T

≤ R2
T/T

2

≤
T∑
t=1

r2
t /T

≤ 12C2L2 + 24(C2 + C1β
1/2
T )2 log T/T + 24βT/ log(1 + σ−2

n )γT/T

(A.16)

where the second inequality follows from Cauchy-Schwarz inequality and the last
inequality follows from (A.15). If σmin(X ) ≥ ω then, according to Theorem A.1,
C = νd2. To guarantee that 12C2L2 ≤ ε2ucb and to satisfy the premise of Lemma 3.1
(i.e. ν ≤ 1/2) and Theorem A.1 (i.e. ν ≤ 2/d2), we need to set the value of
ν = min(εucb/(2

√
3d2L), 2/d2, 1/2).
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Since ν ≤ 2/d2 and hence C = νd2 ≤ 2

C1

= Cσy

√
2σ2

y + σ2
n

(√
2(1 + C)2σ2

y/σ
2
n + (2 + C)C

)
≤ 2σy

√
2σ2

y + σ2
n

(√
2(1 + 2)2σ2

y/σ
2
n + (2 + 2) · 2

)
= O

(
σy

√
σ2
y + σ2

n(σ2
y/σ

2
n + 1)

)
and

C2

=
√

2(1 + C) · Cσ2
y/σ

2
n · L

≤
√

2(1 + 2) · 2σ2
y/σ

2
n · L

= O(σ2
y/σ

2
n · L)

where C1 and C2 are defined in Lemma A.4 and Lemma A.5, respectively.

Remark A.2. If σmin(X ) < ω, a similar form of regret bound to that of (A.16) can
be proven: According to Theorem A.1,

C = max(νd2, 1− exp
(
−0.5(ν + νω2/σ2

min(X ) + ω2/σ2
min(X ))d2

)
)

instead of C = νd2 and the entire proof of Theorem 3.8 can be directly copied
to reach (A.16). In this case, however, the term 12C2L2 in (A.16) cannot be set
arbitrarily small. That is explained by the fact that when σmin(X ) < ω, Algorithm 2
increases the singular values of dataset X (see line 9) and the pairwise distances
between the original inputs from X are no longer approximately the same as the
distances between their respective transformed images (see Theorem 3.7) resulting in
a looser regret bound.

A.6 Auxiliary results

Lemma A.6. Let a dataset X ⊂ Rd be given. Let a dataset X̃ ⊂ Rd be defined in line
9 of Algorithm 2 (i.e., X̃ = U

√
Σ2 + ω2In×dV

> where X = UΣV > is the singular
value decomposition of X ). Let σmin(X ) > 0 be the smallest singular value of X .
Then for all x, x′ ∈ X and their corresponding x̃, x̃′ ∈ X̃ (when viewing datasets X
and X̃ as matrices)

‖x− x′‖ ≤ ‖x̃− x̃′‖ ≤
√

1 + ω2/σ2
min(X )‖x− x′‖.
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Proof. Denote the rows of U as u(i) so that

U =

u(1)
...

u(n)

 .
For i = 1, . . . , n denote the input in the i-th row of the datset X (X̃ ) viewed as
matrix as x(i) (x̃(i)). From the singular value decomposition, x(i) = u(i)ΣV

> and

x̃(i) = u(i)

√
Σ2 + In×dω2V > Then for i, j = 1, . . . , n

‖x̃(i) − x̃(j)‖2

= ‖(u(i) − u(j))
√

Σ2 + ω2In×dV
>‖2

= (u(i) − u(j))
√

Σ2 + ω2In×dV
>V
√

Σ2 + ω2In×d
>

(u(i) − u(j))
>

= (u(i) − u(j))
√

Σ2 + ω2In×d
√

Σ2 + ω2In×d
>

(u(i) − u(j))
>

=

min(n,d)∑
k=1

(u(i)k − u(j)k)
2(σ2

k + ω2)

≤
min(n,d)∑
k=1

(u(i)k − u(j)k)
2σ2

k(1 + ω2/σ2
min(X ))

= (1 + ω2/σ2
min(X ))(u(i) − u(j))ΣΣ>(u(i) − u(j))

>

= (1 + ω2/σ2
min(X ))(u(i) − u(j))ΣV

>V Σ>(u(i) − u(j))
>

= (1 + ω2/σ2
min(X ))‖(u(i) − u(j))ΣV

>‖2

= (1 + ω2/σ2
min(X ))‖x(i) − x(j)‖2

(A.17)

where the second and the second last equalities follow from ‖v‖2 = vv> for any
row vector v, the third and the third last equalities follow from orthonormality of
matrix V , and the inequality follows from

σ2
k + ω2

= σ2
k(1 + ω2/σ2

k)
≤ σ2

k(1 + ω2/σ2
min(X ))

where the inequality follows from σk ≥ σmin(X ) for every k = 1, . . . ,min(n, d).
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Similarly,

‖x̃(i) − x̃(j)‖2

=

min(n,d)∑
k=1

(u(i)k − u(j)k)
2(σ2

k + ω2)

=

min(n,d)∑
k=1

(u(i)k − u(j)k)
2σ2

k + ω2

min(n,d)∑
k=1

(u(i)k − u(j)k)
2

≥
min(n,d)∑
k=1

(u(i)k − u(j)k)
2σ2

k

= ‖x(i) − x(j)‖2

(A.18)

where the first and the last equalities follow from the fourth and the fifth equalities
of (A.17), respectively. Since (A.17) and (A.18) both hold for all i, j = 1, . . . , n, the
lemma follows.

Lemma A.7. In the notations of Section A.5, for all t = 1, . . . , T holds ‖(Kz1:t−1z1:t−1+
σ2
nI)−1‖2 ≤ 1/σ2

n.

Proof. Since (Kz1:t−1z1:t−1 + σ2
nI)−1 is positive definite, by definition of spectral norm

for all t = 1, . . . , T and z1:t−1

‖(Kz1:t−1z1:t−1 + σ2
nI)−1‖2

= ψmax((Kz1:t−1z1:t−1 + σ2
nI)−1)

=
1

ψmin(Kz1:t−1z1:t−1 + σ2
nI)

=
1

ψmin(Kz1:t−1z1:t−1) + σ2
n

≤ 1/σ2
n

where ψmax(·) and ψmin(·) denote the largest and the smallest eigenvalues of a matrix,
respectively, the second and the third equalities are properties of eigenvalues and the
inequality is due to the fact that matrix Kz1:t−1z1:t−1 is positive semidefinite.

Lemma A.8. In the notations of Section A.5, if for all x, x′ ∈ X and their images
under Algorithm 2 z, z′ ∈ Z holds |kzz′ − kxx′| ≤ C · kxx′, and for all t = 1, . . . , T
matrix Kx1:t−1x1:t−1 is diagonally dominant (Definition 3.9), then

‖Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1‖2 ≤
√

2Cσ2
y/
√
|x1:t−1|.
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Proof. Fix t = 1, . . . , T . For some i = 1, . . . , t− 1:

‖Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1‖2
2

= ψmax
(
(Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1)

>(Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1)
)

= ψmax
(
(Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1)

2
)

≤
∑
j,j 6=i

|[(Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1)
2]ij|+ [(Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1)

2]ii

≤ 2C2σ4
y/
(√
|x1:t−1| − 1 + 1

)2

≤ 2C2σ4
y/|x1:t−1|

where ψmax(·) denotes the largest eigenvalue of a matrix, the first equality is the
definition of spectral norm, the second equality follows from the fact that matrices
Kz1:t−1z1:t−1 and Kx1:t−1x1:t−1 are symmetric, the first inequality is due to Gershgorin

circle theorem, the last inequality follows from
√
|x1:t−1| − 1 + 1 ≥

√
|x1:t−1| and the

second last inequality follows from∑
j,j 6=i

|[(Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1)
2]ij|

=
∑
j,j 6=i

|
∑
p

[Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1 ]ip[Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1 ]pj|

=
∑
j,j 6=i

|
∑
p

(kzizp − kxixp)(kzpzj − kxpxj)|

=
∑
j,j 6=i

|
∑
p,p 6=j,i

(kzizp − kxixp)(kzpzj − kxpxj)|

≤
∑
j,j 6=i

∑
p,p 6=j,i

|kzizp − kxixp | · |kzpzj − kxpxj |

≤ C2
∑
j,j 6=i

∑
p,p 6=j

kxixp · kxpxj

= C2
∑
p,p 6=j,i

kxixp
∑
j,j 6=i,p

kxpxj

≤ C2
∑
p,p 6=j,i

kxixpkxpxp/
(√
|x1:t−1| − 1 + 1

)
= C2σ2

y/
(√
|x1:t−1| − 1 + 1

) ∑
p,p 6=j,i

kxixp

≤ C2σ2
y/
(√
|x1:t−1| − 1 + 1

)
kxixi/

(√
|x1:t−1| − 1 + 1

)
= C2σ4

y/
(√
|x1:t−1| − 1 + 1

)2

where the third, the fifth and the last equalities follow from kzpzp = kxpxp = σ2
y for

every p, the first inequality follows from triangle inequality, the second inequality
follows from the statement of the lemma, the third and the last inequalities follow
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from the diagonal dominance property of Kx1:t−1x1:t−1 (Definition 3.9); and

[(Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1)
2]ii

=
∑
p

[Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1 ]ip[Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1 ]pi

=
∑
p

[Kz1:t−1z1:t−1 −Kx1:t−1x1:t−1 ]
2
ip

=
∑
p

(kzizp − kxixp)2

=
∑
p,p 6=i

(kzizp − kxixp)2

≤ C2
∑
p,p 6=i

k2
xixp

≤ C2
( ∑
p,p 6=i

kxixp
)2

≤ C2k2
xixi

/
(√
|x1:t−1| − 1 + 1

)2

= C2σ4
y/
(√
|x1:t−1| − 1 + 1

)2

where the second equality follows from the fact that Kz1:t−1z1:t−1 and Kx1:t−1x1:t−1 are
symmetric, the fourth and the last equalities follow from kzpzp = kxpxp = σ2

y for every
p, the first inequality follows from the statement of the lemma and the last inequality
follows from the diagonal dominance of Kx1:t−1x1:t−1 (Definition 3.9).

Lemma A.9. In the notations of Section A.5, if for all t = 1, . . . , T matrix Kx1:t−1x1:t−1

is diagonally dominant (Definition 3.9), then for any unobserved original input x ∈ X
at iteration t

‖(Kx1:t−1x1:t−1 + σ2
nI)−1‖2 ≤ 1/(

√
|x1:t−1|‖Kxx1:t−1‖).

.

Proof. By applying Gershgorin circle theorem for Kx1:t−1x1:t−1 :

ψmin(Kx1:t−1x1:t−1)
≥ min

xi∈x1:t−1

(
kxixi −Rx1:t−1(xi)

)
= kxx − max

xi∈x1:t−1

Rx1:t−1(xi)

≥ (
√
|x1:t−1|+ 1) max

xi∈x1:t−1∪{x}
Rx1:t−1∪{x}(xi)− max

xi∈x1:t−1

Rx1:t−1(xi)

where ψmin(·) denotes the smallest eigenvalue of a matrix, Rx1:t−1(xi) ,
∑

xj∈x1:t−1\{xi} kxixj ,

the first equality follows from the fact that kxx = σ2
y = kxixi for all xi and x, and
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the second inequality holds because K(x1:t−1∪{x})(x1:t−1∪{x}) is assumed to be diago-
nally dominant. On the other hand, since x /∈ x1:t−1, Rx1:t−1∪{x}(xi) = Rx1:t−1(xi) +
kxix for all xi ∈ x1:t−1, which immediately implies maxxi∈x1:t−1∪{x}Rx1:t−1∪{x}(xi) ≥
maxxi∈x1:t−1 Rx1:t−1∪{x}(xi) ≥ maxxi∈x1:t−1 Rx1:t−1(xi). Plugging this into above in-
equality,

ψmin(Kx1:t−1x1:t−1)

≥ (
√
|x1:t−1|+ 1) max

xi∈x1:t−1∪{x}
Rx1:t−1∪{x}(xi)− max

xi∈x1:t−1

Rx1:t−1(xi)

≥
√
|x1:t−1| max

xi∈x1:t−1∪{x}
Rx1:t−1∪{x}(xi)

≥
√
|x1:t−1|Rx1:t−1∪{x}(x).

Since ‖Kxx1:t−1‖ =
√∑

xi∈x1:t−1
k2
xix
≤∑xi∈x1:t−1

kxix = Rx1:t−1∪{x}(x), it follows that

ψmin(Kx1:t−1x1:t−1) ≥
√
|x1:t−1|‖Kxx1:t−1‖. Finally,

‖(Kx1:t−1x1:t−1 + σ2
nI)−1‖2

= 1/(ψmin(Kx1:t−1x1:t−1) + σ2
nI)

≤ 1/(ψmin(Kx1:t−1x1:t−1))

≤ 1/
(√
|x1:t−1|‖Kxx1:t−1‖

)
.

Lemma A.10. In the notations of Section A.5, if for all t = 1, . . . , T matrix Kx1:t−1x1:t−1

is diagonally dominant (Definition 3.9), then ‖Kx1:t−1x1:t−1‖2 ≤ 2σ2
y.

Proof. Fix all t = 1, . . . , T . By applying Gershgorin circle theorem to matrixKx1:t−1x1:t−1 ,
for some point xi ∈ x1:t−1:

|ψmax(Kx1:t−1x1:t−1)− kxixi |
≤

∑
xj∈x1:t−1\xi

kxixj

≤ kxixi/
(√
|x1:t−1| − 1 + 1

)
= σ2

y/
(√
|x1:t−1| − 1 + 1

)
where ψmax(·) denotes the largest eigenvalue of a matrix, the second inequality is
due to diagonal dominance property of matrix Kx1:t−1x1:t−1 and the equality is due
to kxixi = σ2

y for every xi. Since Kx1:t−1x1:t−1 is a symmetric, positive-semidefinite
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matrix, it follows that

‖Kx1:t−1x1:t−1‖2

= ψmax(Kx1:t−1x1:t−1)

≤ σ2
y/
(√
|x1:t−1| − 1 + 1

)
+ kxixi

≤ σ2
y

(
1 + 1/(

√
|x1:t−1| − 1 + 1)

)
≤ 2σ2

y.

.

Lemma A.11. In the notations of Section A.5, for all t = 1, . . . , T and any unob-
served input x ∈ X at iteration t

‖Kxx1:t−1‖2 · ψmin((Kx1:t−1x1:t−1 + σ2
nI)−1) ≤ Kxx1:t−1(Kx1:t−1x1:t−1 + σ2

nI)−1Kx1:t−1x

where ψmin(·) denotes the smallest eigenvalue of a matrix.

Proof. Since (Kx1:t−1x1:t−1 + σ2
nI)−1 is a symmetric, positive-definite matrix, there ex-

ists an orthonormal basis comprising the eigenvectors E , [e1 . . . e|x1:t−1|] (e>i ei = 1

and e>i ej = 0 for i 6= j) and their associated positive eigenvalues Ψ−1 , Diag[ψ−1
1 , . . . , ψ−1

|x1:t−1|]

such that (Kx1:t−1x1:t−1+σ2
nI)−1 = EΨ−1E> (i.e., spectral theorem). Denote {pi}|x1:t−1|

i=1

as the set of coefficients when Kx1:t−1x is projected on E. Then

Kxx1:t−1(Kx1:t−1x1:t−1 + σ2
nI)−1Kx1:t−1x

=

( |x1:t−1|∑
i=1

pie
>
i

)
(Kx1:t−1x1:t−1 + σ2

nI)−1

( |x1:t−1|∑
i=1

piei

)

=

( |x1:t−1|∑
i=1

pie
>
i

)( |x1:t−1|∑
i=1

pi(Kx1:t−1x1:t−1 + σ2
nI)−1ei

)

=

( |x1:t−1|∑
i=1

pie
>
i

)( |x1:t−1|∑
i=1

piψ
−1
i ei

)

=

|x1:t−1|∑
i=1

p2
iψ
−1
i

≥ ψmin((Kx1:t−1x1:t−1 + σ2
nI)−1)

|x1:t−1|∑
i=1

p2
i

= ψmin((Kx1:t−1x1:t−1 + σ2
nI)−1) ‖Kxx1:t−1‖2.

153



Appendix B

Appendix for Chapter 4

B.1 Proofs and Derivations

B.1.1 Derivation of (4.3)

The second summand on RHS of (4.2) can be re-written as

I[f(X ); y1:H |d0, π]

=
H∑
t=1

[f(x)x∈X ; yt|dt−1, π]

= 0.5
H−1∑
t=0

log |I + σ−2
n Σπ

t (xt+1)| .

(B.1)

The first equality is due to the chain rule for mutual information [Cover and Thomas,
2006]. Let xt−1 , (xt−1,1, . . . , xt−1,κ,). The last equality follows from

I[f(X ); yt|dt−1, π]
= H[yt|dt−1, π]−H[yt|dt−1, f(x)x∈X , π]
= H[yt|dt−1, π]−H[yt|f(xt−1,1), . . . , f(xt−1,κ), π]
= 0.5κ log(2πe) + 0.5 log |σ2

nI + Σπ
t−1(xt)| − 0.5κ log(2πe)− 0.5 log |σ2

nI|
= 0.5 log(|σ2

nI + Σπ
t−1(xt)| |σ2

nI|−1)
= 0.5 log(|σ2

nI + Σπ
t−1(xt)||σ−2

n I|)
= 0.5 log |I + σ−2

n Σπ
t−1(xt)|

(B.2)

where the first equality is due to the definition of conditional mutual information,
the third equality is due to the definition of Gaussian entropy, that is, H[yt|dt−1, π] ,
0.5κ log(2πe)+0.5 log |σ2

nI+Σπ
t−1(xt)| and H[yt|f(xt−1,1), . . . , f(xt−1,κ), π] , 0.5κ log(2πe)+
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0.5 log |σ2
nI|, the latter of which follows from ε = yt,i − fxt,i ∼ N (0, σ2

n) for stage t =
0, . . . , H−1 and i = 1, . . . , κ, and hence p(yt|f(xt−1,1), . . . , f(xt−1,κ), π) = N (0, σ2

nI).
So, (4.2) can be re-expressed as

V π
0 (d0) = Ey1:H |d0,π[1>y1:H ] + 0.5

H−1∑
t=0

log |I + σ−2
n Σπ

t (xt+1)| . (B.3)

Given an arbitrary positive integer ′ and denoting yτ+1:′ as a vector of output mea-
surements from stage τ + 1 to stage H ′, (B.3) for H = 1, . . . , H ′ are, respectively,
equivalent to

V π
τ (dτ ) = Eyτ+1:H′ |dτ ,π[1>yτ+1:H′ ] + 0.5

H′−1∑
t=0

log |I + σ−2
n Σπ

t (xt+1)| . (B.4)
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for τ = H ′−1, . . . , 0 by simply adding τ to the indices denoting the iteration in (B.3).
From (B.4),

V π
τ (dτ )

= Eyτ+1:H′ |dτ ,π[1>yτ+1:H′ ] + 0.5β
H′−1∑
t=τ

log |I + σ−2
n Σπ

t (xt+1)|

=

∫
1>yτ+1:H′ p(yτ+1:H′ |dτ , π) dyτ+1:H′ + 0.5β

H′−1∑
t=τ

log |I + σ−2
n Σπ

t (xt+1)|

=

∫
(1>yτ+1 + 1>yτ+2:H′) p(yτ+2:H′ |dτ+1, π) dyτ+2:H′ p(yτ+1|dτ , π) dyτ+1

+ 0.5β
H′−1∑
t=τ

log |I + σ−2
n Σπ

t (xt+1)|

=

∫
1>yτ+1

∫
p(yτ+2:H′ |dτ+1, π) dyτ+2:H′ p(yτ+1|dτ , π) dyτ+1

+ 0.5β log |I + σ−2
n Σπ

t (xt+1)|
+

∫
1>yτ+2:H′ p(yτ+2:H′|dτ+1, π) dyτ+2:H′ p(yτ+1|dτ , π) dyτ+1

+ 0.5β
H′−1∑
t=τ+1

log |I + σ−2
n Σπ

t (xt+1)|

=

∫
1>yτ+1 p(yτ+1|dτ , π) dyτ+1 + 0.5β log |I + σ−2

n Σπ
t (xt+1)|

+

∫ ∫
1>yτ+2:H′ p(yτ+2:H′ |dτ+1, π) dyτ+2:H′

+0.5β
H′−1∑
t=τ+1

log |I + σ−2
n Σπ

t (xt+1)| p(yτ+1|dτ , π) dyτ+1

= 1>µπτ (xτ+1) + 0.5β log |I + σ−2
n Σπ

τ (xτ+1)|

+

∫
Eyτ+2:H′ |dτ+1,π[1>yτ+2:H′ ] + 0.5β

H′−1∑
t=τ+1

log |I + σ−2
n Σπ

t (xt+1)| p(yτ+1|dτ , π) dyτ+1

= 1>µπτ (π(dτ )) + 0.5β log |I + σ−2
n Σπ

t (π(dτ ))|+
∫
V π
τ+1(dτ+1) p(yτ+1|dτ , π) dyτ+1

= R(π(dτ ), dτ ) + Eyt+1|π(dτ ),dτ [V
π
τ+1(〈x1:t ⊕ π(dτ ),y1:t ⊕ yt+1〉)]

= Qπ
τ (π(dτ ), dτ )

for stages τ = 0, . . . , H ′ − 1 where the third last equality is due to (B.4) and the last
two equalities follow from the definitions of R and Qπ

τ in (4.4) and (4.3), respectively.
Note that in order to avoid the overloaded notations, we omit the upper index π from
Σπ
t and µπt .
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B.1.2 Lipschitz Continuity of R(xt+1, dt) (4.4)

Lemma B.1. Let

α(x1:t+1) , ‖Kxt+1x1:t(Kx1:tx1:t + σ2
nI)−1‖F

where matrices K are defined in (4.1), ‖·‖F is the Frobenius norm of a matrix and
d′t , 〈x1:t,y

′
1:t〉. Then,

|R(xt+1, dt)−R(xt+1, d
′
t)| ≤

√
κ α(x1:t+1)‖y1:t − y′1:t‖.

—

Proof.
|R(xt+1, dt)−R(xt+1, d

′
t)|

= |1>(µt|dt(xt+1)− µt|d′t(xt+1))|
≤ ‖µt|dt(xt+1)− µt|d′t(xt+1)‖1

= ‖Kxt+1x1:t(Kx1:tx1:t + σ2
nI)−1(y1:t − y′1:t)

>‖1

≤ √κ ‖Kxt+1x1:t(Kx1:tx1:t + σ2
nI)−1(y1:t − y′1:t)

>‖
=
√
κ ‖Kxt+1x1:t(Kx1:tx1:t + σ2

nI)−1(y1:t − y′1:t)
>‖F

≤ √κ ‖Kxt+1x1:t(Kx1:tx1:t + σ2
nI)−1‖F‖y1:t − y′1:t‖F

=
√
κ ‖Kxt+1x1:t(Kx1:tx1:t + σ2

nI)−1‖F‖y1:t − y′1:t‖
=
√
κ α(x1:t+1)‖y1:t − y′1:t‖ .

Conditioning in posterior means µt|dt(xt+1) and µt|d′t(xt+1) reflects the fact that they
are computed using dt and d′t, respectively. The first equality is due to (4.4). The
first inequality is due to triangle inequality. The second equality is due to (4.1). The
second inequality follows from a property of vector norms (see Section 2.2.2 in [Golub
and Van Loan, 1996]). The last inequality is due to the submultiplicativity of the
Frobenius norm (see Section II.2.1 in [Stewart and Sun, 1990]). The last equality
follows from the definition of α(x1:t+1).

B.1.3 Lipschitz Continuity of V ∗t (dt) (4.5)

Definition B.1. Let LH(x1:H) , 0. Define

Lt(x1:t) , max
xt+1∈A(xt)

√
κ α(x1:t+1) + Lt+1(x1:t+1)

√
1 + α(x1:t+1)2

for t = 0, . . . , H − 1 where the function α is previously defined in Lemma B.1.

The following result shows that V ∗t (dt) (4.5) is Lipschitz continuous in the output
measurements y1:t with Lipschitz constant Lt(x1:t):
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Theorem B.1. For t = 0, . . . , H,

|V ∗t (dt)− V ∗t (d′t)| ≤ Lt(x1:t)‖y1:t − y′1:t‖ (B.5)

where d′t is previously defined in Lemma B.1.

Proof. We give a proof by induction on t. When t = H (i.e., base case), V ∗H(dH) =
0 for any dH . So, |V ∗H(dH) − V ∗H(d′H)| = 0 ≤ LH(x1:H)‖y1:H − y′1:H‖. Suppos-
ing (B.5) holds for t + 1 (i.e., induction hypothesis), we will prove that it holds
for t = 0, . . . , H − 1. Let x∗t+1 , π∗(dt) and ∆t+1 , µt|dt(x

∗
t+1) − µt|d′t(x

∗
t+1)|. Us-

ing (4.1), the submultiplicativity of the Frobenius norm (see Section II.2.1 in [Stewart
and Sun, 1990]), and the definition of α(x1:t+1),

‖∆t+1‖ ≤ α(x1:t ⊕ x∗t+1)‖y1:t − y′1:t‖ . (B.6)

Without loss of generality, assume that V ∗t (dt) ≥ V ∗t (d′t). From (4.5),

V ∗t (dt)− V ∗t (d′t)
≤ Q∗t (x

∗
t+1, dt)−Q∗t (x∗t+1, d

′
t)

≤ |Q∗t (x∗t+1, dt)−Q∗t (x∗t+1, d
′
t)|

≤
∣∣R(x∗t+1, dt)−R(x∗t+1, d

′
t)
∣∣+

∣∣∣∣∣
∫
p(yt+1|x∗t+1, dt) V

∗
t+1(〈x1:t ⊕ x∗t+1,y1:t+1〉) dyt+1

−
∫
p(y′t+1|x∗t+1, d

′
t) V

∗
t+1(〈x1:t ⊕ x∗t+1,y

′
1:t+1〉) dy′t+1

∣∣∣∣∣
≤ √κ α(x1:t ⊕ x∗t+1)‖y1:t − y′1:t‖+

∫
p(yt+1|x∗t+1, dt) Lt+1(x1:t ⊕ x∗t+1)‖(y1:t − y′1:t)⊕∆t+1‖ dyt+1

=
√
κ α(x1:t ⊕ x∗t+1)‖y1:t − y′1:t‖+ Lt+1(x1:t ⊕ x∗t+1)‖(y1:t − y′1:t)⊕∆t+1‖

≤ √κ α(x1:t ⊕ x∗t+1)‖y1:t − y′1:t‖+ Lt+1(x1:t ⊕ x∗t+1)
√

1 + α(x1:t ⊕ x∗t+1)2 ‖y1:t − y′1:t‖
≤ Lt(x1:t)‖y1:t − y′1:t‖

(B.7)
where the third inequality follows from (4.5) and triangle inequality, the fourth in-
equality follows from Lemma B.1, change of variable y′t+1 , yt+1 − ∆t+1, and the
induction hypothesis, the second last inequality in (B.7) is due to

‖(y1:t−y′1:t)⊕∆t+1‖ =
√
‖y1:t − y′1:t‖2 + ‖∆t+1‖2 ≤

√
1 + α(x1:t ⊕ x∗t+1)2 ‖y1:t−y′1:t‖

with the inequality following from (B.6), and the last inequality in (B.7) is due to the
definition of Lt (Definition B.1).
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B.1.4 Approximation Quality of Qt(xt+1, dt) (4.6)

There are two sources of error arising in usingQt(xt+1, dt) to approximateQ∗t (xt+1, dt):
(a) Every stage-wise expectation term in (4.5) is approximated via stochastic sam-
pling (4.6) of a finite number N of i.i.d. multivariate Gaussian vectors y1, . . . ,yN

from the GP posterior belief p(yt+1|xt+1, dt) = N (µt(xt+1),Σt(xt+1)) (4.1) and (b)
evaluating Qt(xt+1, dt) does not involve utilizing the values of V ∗t+1 but rather that
of its approximation Vt+1. To facilitate capturing the error due to finite stochastic
sampling described in (a), the following intermediate function is introduced:

Ut(xt+1, dt) , R(xt+1, dt) +
1

N

N∑
`=1

V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉) (B.8)

for t = 0, . . . , H − 1. The following lemma shows that Ut(xt+1, dt) can approximate
Q∗t (xt+1, dt) arbitrarily closely:

Lemma B.2. Suppose that the observations dt′, H ∈ Z+, a budget of κ(H − t′)
input locations for t′ = 0, . . . , H − 1, λ > 0, and N ∈ Z+ are given. For all tuples
〈t,xt+1, dt〉 generated at stage t = t′, . . . , H − 1 by (4.6) to compute Vt′(dt′),

P (|Ut(xt+1, dt)−Q∗t (xt+1, dt)| ≤ λ) ≥ 1− 2 exp

(
−Nλ

2

2K2

)
where K , O(κH

√
H! σn(1 + σ2

y/σ
2
n)H).

Proof. For any tuple 〈t,xt+1, dt〉, define the following auxiliary function:

G(y1, . . . ,yN) ,
1

N

N∑
`=1

V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉)

= Ut(xt+1, dt)−R(xt+1, dt)

(B.9)

which follows from (B.8). Taking an expectation of (B.9) with respect to GP posterior
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belief p(yt+1|xt+1, dt) = N (µt(xt+1),Σt(xt+1)) gives

Ey1,...,yN∼N (µt(xt+1),Σt(xt+1))

[
G(y1, . . . ,yN)

]
= Ey1,...,yN∼N (µt(xt+1),Σt(xt+1))

[
1

N

N∑
`=1

V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉)
]

=
1

N

N∑
`=1

Ey1,...,yN∼N (µt(xt+1),Σt(xt+1))[V
∗
t+1(〈x1:t+1,y1:t ⊕ y`〉)]

=
1

N

N∑
`=1

Ey`∼N (µt(xt+1),Σt(xt+1))[V
∗
t+1(〈x1:t+1,y1:t ⊕ y`〉)]

=
1

N

N∑
`=1

Eyt+1|xt+1,dt [V
∗
t+1(〈x1:t+1,y1:t ⊕ yt+1〉)]

= Eyt+1|xt+1,dt [V
∗
t+1(〈x1:t+1,y1:t ⊕ yt+1〉)]

= Q∗t (xt+1, dt)−R(xt+1, dt)

(B.10)

such that the last equality is due to (4.5). From (B.9) and (B.10),

|Ut(xt+1, dt)−Q∗t (xt+1, dt)| =
∣∣G(y1, . . . ,yN)− Ey1,...,yN∼N (µt(xt+1),Σt(xt+1))

[
G(y1, . . . ,yN)

]∣∣ .
(B.11)

The RHS of (B.11) can usually be bounded using a concentration inequality that
involves independent Gaussian random variables. However, the components of the
multivariate Gaussian vector y` are correlated. To resolve this complication, we
exploit a change of variables trick to make the components independent:

y` = µt(xt+1) + Ψz` (B.12)

for ` = 1, . . . , N where Ψ is a κ × κ lower triangular matrix satisfying the Cholesky
decomposition of the symmetric and positive definite Σt(xt+1) = ΨΨ> and z` is a
standard multivariate Gaussian vector with independent components (see Section
53.2.2 in [Taboga, 2017]).

Define a new auxiliary function G in terms of G by plugging (B.12) into (B.9):

G(z1, . . . , zN) , G(y1, . . . ,yN) . (B.13)

We will first prove that G is Lipschitz continuous in z1 ⊕ . . . ⊕ zN with Lipschitz
constant Lt+1(x1:t+1)

√
Tr(Σt(xt+1))/N , which is a sufficient condition for using the

Tsirelson-Ibragimov-Sudakov inequality [Boucheron et al., 2013] to prove the prob-
abilistic bound in Lemma B.2. To simplify notations, let z , z1 ⊕ . . . ⊕ zN and
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z′ , z′1 ⊕ . . .⊕ z′N . Then,

|G(z1, . . . , zN)−G(z′1, . . . , z′N)|
= |G(y1, . . . ,yN)− G(y′1, . . . ,y′N)|

≤ 1

N

N∑
`=1

∣∣V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉)− V ∗t+1(〈x1:t+1,y1:t ⊕ y′`〉)
∣∣

≤ Lt+1(x1:t+1)

N

N∑
`=1

‖y` − y′`‖

≤ Lt+1(x1:t+1)

N

√
N‖Ψ‖F‖z − z′‖

=
Lt+1(x1:t+1)√

N
‖Ψ‖F‖z − z′‖

= Lt+1(x1:t+1)

√
Tr(Σt(xt+1))

N
‖z − z′‖

(B.14)

where the first equality is due to (B.13), the last equality follows from a property
of Frobenius norm (see Section 10.4.3 in [Petersen and Pedersen, 2012]), the first
inequality is due to (B.9) and triangle inequality, the second inequality is a direct
consequence of Theorem B.1 in Appendix B.1.3, and the third inequality follows
from

N∑
`=1

‖y` − y′`‖

=
N∑
`=1

‖Ψ(z` − z′`)‖

=
N∑
`=1

‖Ψ(z` − z′`)‖F

≤
N∑
`=1

‖Ψ‖F‖z` − z′`‖F

= ‖Ψ‖F
N∑
`=1

‖z` − z′`‖

≤
√
N‖Ψ‖F‖z − z′‖

where the first equality is due to (B.12), the first inequality is due to the submulti-
plicativity of the Frobenius norm (see Section II.2.1 in [Stewart and Sun, 1990]), and
the last inequality is due to Cauchy-Schwarz inequality. Since conditioning does not
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increase GP posterior variance,

Tr(Σt(xt+1)) ≤ Tr(Kxt+1xt+1) = κ(σ2
y + σ2

n) . (B.15)

From (B.15) and Lemma B.9,

Lt+1(x1:t+1)
√

Tr(Σt(xt+1))

= O(κH−t−1/2
√
H!/(t+ 1)! (1 + σ2

y/σ
2
n)H−t−1) O(κ1/2(σ2

y + σ2
n)1/2)

= O(κH−t
√
H!/(t+ 1)! σn(1 + σ2

y/σ
2
n)H−t−1/2) .

(B.16)

It follows from (B.16) that

K , max
〈t,xt+1,dt〉

Lt+1(x1:t+1)
√

Tr(Σt(xt+1)) = O(κH
√
H! σn(1 + σ2

y/σ
2
n)H) . (B.17)

Finally,
P (|Ut(xt+1, dt)−Q∗t (xt+1, dt)| > λ)
= P (|G(y1, . . . ,yN)− Ey1,...,yN [G(y1, . . . ,yN)]| > λ)
= P (|G(z1, . . . , zN)− Ez1,...,zN [G(z1, . . . , zN)]| > λ)

≤ 2 exp

(
− Nλ2

2L2
t+1(x1:t+1)Tr(Σt(xt+1))

)
≤ 2 exp

(
−Nλ

2

2K2

)
where the first equality is due to (B.11), the second equality is due to (B.13)

above and (B.18) below, the first inequality is due to the Tsirelson-Ibragimov-Sudakov
inequality that requires G to be Lipschitz continuous in z1⊕ . . .⊕ zN which is shown
in (B.14) (see Section 5.4 on page 125 in [Boucheron et al., 2013]), and the last
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inequality is due to (B.17).

Ey1,...,yN [G(y1, . . . ,yN)]
= Eyt+1|xt+1,dt [V

∗
t+1(〈x1:t+1,y1:t ⊕ yt+1〉)]

=

∫
Rκ
V ∗t+1(〈x1:t+1,y1:t ⊕ yt+1〉) p(yt+1|xt+1, dt) dyt+1

=

∫
Rκ
V ∗t+1(〈x1:t+1,y1:t ⊕ (µt(xt+1) + Ψzt+1)〉) 1

|Ψ|p(zt+1)

∣∣∣∣∂yt+1

∂zt+1

∣∣∣∣ dzt+1

=

∫
Rκ
V ∗t+1(〈x1:t+1,y1:t ⊕ (µt(xt+1) + Ψzt+1)〉) p(zt+1) dzt+1

= Ezt+1 [V
∗
t+1(〈x1:t+1,y1:t ⊕ (µt(xt+1) + Ψzt+1)〉)]

= Ez1,...,zN

[
1

N

N∑
`=1

V ∗t+1(〈x1:t+1,y1:t ⊕ (µt(xt+1) + Ψz`)〉)
]

= Ez1,...,zN [G(z1, . . . , zN)]

(B.18)

where the first equality is due to (B.10), the third equality follows from (B.12),
p(yt+1|xt+1, dt) = p(zt+1 = Ψ−1(yt+1 − µt(xt+1)))/|Ψ| (see Section 35.1.2 in [Taboga,
2017]), and an integration by substitution for multiple variables, the fourth equality
is due to |∂yt+1/∂zt+1| = |Ψ|, and the last two equalities can be derived in a similar
manner as (B.10) using (B.13).

Lemma B.3. Suppose that the observations dt′, H ∈ Z+, a budget of κ(H − t′)
input locations for t′ = 0, . . . , H − 1, λ > 0, and N ∈ Z+ are given. The probability
of |Ut(xt+1, dt) − Q∗t (xt+1, dt)| ≤ λ for all tuples 〈t,xt+1, dt〉 generated at stage t =
t′, . . . , H − 1 by (4.6) to compute Vt′(dt′) is at least

1− 2 (NA)H exp

(
−Nλ

2

2K2

)
where K is previously defined in Lemma B.2.

Proof. From Lemma B.2,

P (|Ut(xt+1, dt)−Q∗t (xt+1, dt)| > λ) ≤ 2 exp

(
−Nλ

2

2K2

)
for each tuple 〈t,xt+1, dt〉 generated at stage t = t′, . . . , H − 1 by (4.6) to com-
pute Vt′(dt′). Since there will be no more than (NA)H tuples 〈t,xt+1, dt〉 gener-
ated at stage t = t′, . . . , H − 1 by (4.6) to compute Vt′(dt′), the probability of
|Ut(xt+1, dt) − Q∗t (xt+1, dt)| > λ for some generated tuple 〈t,xt+1, dt〉 is at most
2(NA)H exp(−Nλ2/(2K2)) by applying the union bound. Lemma B.3 directly fol-
lows.
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Lemma B.4. Suppose that the observations dt′, H ∈ Z+, a budget of κ(H− t′) input
locations for t′ = 0, . . . , H − 1, λ > 0, and N ∈ Z+ are given. If

|Ut(xt+1, dt)−Q∗t (xt+1, dt)| ≤ λ (B.19)

for all tuples 〈t,xt+1, dt〉 generated at stage t = t′, . . . , H − 1 by (4.6) to compute
Vt′(dt′), then, for all xt′+1 ∈ A(xt′),

|Qt′(xt′+1, dt′)−Q∗t′(xt′+1, dt′)| ≤ λ(H − t′) . (B.20)

Proof. We will give a proof by induction on t that |Qt(xt+1, dt) − Q∗t (xt+1, dt)| ≤
λ(H − t) for all tuples 〈t,xt+1, dt〉 generated at stage t = t′ . . . , H − 1 by (4.6) to
compute Vt′(dt′).

When t = H − 1, Ut(xt+1, dt) = Qt(xt+1, dt) in (B.19), by definition. So, (B.20)
holds for the base case. Supposing (B.20) holds for t+ 1 (i.e. induction hypothesis),
we will prove that it holds for t = t′, . . . , H − 2:

|Qt(xt+1, dt)−Q∗t (xt+1, dt)|
≤ |Qt(xt+1, dt)− Ut(xt+1, dt)|+ |Ut(xt+1, dt)−Q∗t (xt+1, dt)|
≤ |Qt(xt+1, dt)− Ut(xt+1, dt)|+ λ
≤ λ(H − t− 1) + λ
= λ(H − t)

where the first and the second inequalities follow, respectively, from the triangle
inequality and (B.19), and the last inequality is due to

|Qt(xt+1, dt)− Ut(xt+1, dt)|

≤ 1

N

N∑
`=1

|Vt+1(〈x1:t+1,y1:t ⊕ y`〉)− V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉)|

≤ 1

N

N∑
`=1

max
xt+2∈A(xt+1)

|Qt+1(xt+2, 〈x1:t+1,y1:t ⊕ y`〉)−Q∗t+1(xt+2, 〈x1:t+1,y1:t ⊕ y`〉)|

≤ λ(H − t− 1)
(B.21)

where the first inequality is due to triangle inequality and the last inequality follows
from induction hypothesis.

Finally, when t = t′, |Qt′(xt′+1, dt′) − Q∗t′(xt′+1, dt′)| ≤ λ(H − t′) (B.20) for all
xt′+1 ∈ A(xt′) since dt = dt′ .

Proof of Theorem 4.1. It follows immediately from Lemmas B.3 and B.4 that
the probability of |Qt(xt+1, dt) − Q∗t (xt+1, dt)| ≤ λH for all xt+1 ∈ A(xt) is at least
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1− 2(NA)H exp(−Nλ2/(2K2)) where K is previously defined in Lemma B.2.
To guarantee that the probability of |Qt(xt+1, dt) − Q∗t (xt+1, dt)| ≤ λH for all

xt+1 ∈ A(xt) is at least 1− δ, the value of N has to satisfy the following inequality:

1− 2 (NA|)H exp

(
−Nλ

2

2K2

)
≥ 1− δ ,

which is equivalent to

N ≥ 2K2

λ2

(
H logN +H log (A) + log

2

δ

)
. (B.22)

Using the identity logN ≤ νN − log ν − 1 for ν = λ2/(4K2H), the RHS of (B.22)
can be bounded from above by

N

2
+

2K2

λ2

(
H log

(
4K2HA

eλ2

)
+ log

2

δ

)
.

Therefore, to satisfy (B.22), it suffices to determine the value of N such that

N ≥ N

2
+

2K2

λ2

(
H log

(
4K2HA

eλ2

)
+ log

2

δ

)
by setting

N =
4K2

λ2

(
H log

(
4K2HA

eλ2

)
+ log

2

δ

)
where K is previously defined in Lemma B.2. By assuming H, σ2

y , and σ2
n as constants,

N = O
(
κ2H

λ2
log

(
κA

δλ

))
.

B.1.5 Approximation Quality of Qt(xt+1, dt) (4.8)

Proof of Theorem 4.2 Similar to (B.8), the following intermediate function is intro-
duced:

Ut(xt+1, dt) , R(xt+1, dt) + V ∗t+1(〈x1:t+1,y1:t ⊕ µt(xt+1)〉). (B.23)

for t = 0, . . . , H − 1.
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We will first bound |Q∗t (xt+1, dt)−Ut(xt+1, dt)|:

|Q∗t (xt+1, dt)−Ut(xt+1, dt)|
=

∣∣∣∣∫
Rκ

(
V ∗t+1(〈x1:t+1,y1:t ⊕ yt+1〉)− V ∗t+1(〈x1:t+1,y1:t ⊕ µt(xt+1)〉)

)
p(yt+1|xt+1, dt) dyt+1

∣∣∣∣
≤ Lt+1(x1:t+1)

∫
Rκ
‖yt+1 − µt(xt+1)‖ p(yt+1|xt+1, dt) dyt+1

= Lt+1(x1:t+1)

∫
Rκ
‖Ψxt+1‖

1

|Ψ|p(zt+1)

∣∣∣∣∂yt+1

∂zt+1

∣∣∣∣ dxt+1

= Lt+1(x1:t+1)

∫
Rκ
‖Ψxt+1‖ p(zt+1) dxt+1

≤ Lt+1(x1:t+1) ‖Ψ‖F Ezt+1 [‖zt+1‖]
= Lt+1(x1:t+1)

√
Tr(Σxt+1|x1:t) Ezt+1 [‖zt+1‖]

= O(κH−t
√
H!/(t+ 1)! σn(1 + σ2

y/σ
2
n)H−t−1/2) Ezt+1 [‖zt+1‖]

= O(κH−t+1/2
√
H!/(t+ 1)! σn(1 + σ2

y/σ
2
n)H−t−1/2)

(B.24)
where the first equality is due to (4.5) and (B.23), the first inequality is a direct con-
sequence of Theorem B.1 in Appendix B.1.3, the second equality follows from (B.12),
p(yt+1|xt+1, dt) = p(zt+1 = Ψ−1(yt+1 − µt(xt+1)))/|Ψ| (see Section 35.1.2 in [Taboga,
2017]), and an integration by substitution for multiple variables, the third equality
is due to |∂yt+1/∂zt+1| = |Ψ|, the second inequality is due to the submultiplicativity
of the Frobenius norm (see Section II.2.1 in [Stewart and Sun, 1990]), the fourth
equality follows from a property of Frobenius norm (see Section 10.4.3 in [Petersen
and Pedersen, 2012]), the second last equality is due to (B.16), and the last equality
follows from Ezt+1 [‖zt+1‖] ≤

√
κ (see Section 3.1 in [Chandrasekaran et al., 2012]).

We will now give a proof by induction on t that

|Q∗t (xt+1, dt)−Qt(xt+1, dt)| ≤ θt (B.25)

for all xt+1 ∈ A(xt) where

θt , O(κH−t+1/2
√
H!/(t+ 1)! σn(1 + σ2

y/σ
2
n)H−t−1/2) . (B.26)

When t = H − 1, Q∗t (xt+1, dt)− Qt(xt+1, dt) = 0. So, (B.25) holds for the base case.
Supposing (B.25) holds for t + 1 (i.e. induction hypothesis), we will prove that it
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holds for t = 0, . . . , H − 2:

|Q∗t (xt+1, dt)−Qt(xt+1, dt)|
≤ |Q∗t (xt+1, dt)−Ut(xt+1, dt)|+ |Ut(xt+1, dt)−Qt(xt+1, dt)|
≤ O(κH−t+1/2

√
H!/(t+ 1)! σn(1 + σ2

y/σ
2
n)H−t−1/2)

+|V ∗t+1(〈x1:t+1,y1:t ⊕ µt(xt+1)〉)−Vt+1(〈x1:t+1,y1:t ⊕ µt(xt+1)〉)|
≤ O(κH−t+1/2

√
H!/(t+ 1)! σn(1 + σ2

y/σ
2
n)H−t−1/2)

+ max
xt+2∈A(xt+1)

|Q∗t+1(xt+2, 〈x1:t+1,y1:t ⊕ µt(xt+1)〉)−Qt+1(xt+2, 〈x1:t+1,y1:t ⊕ µt(xt+1)〉)|
≤ O(κH−t+1/2

√
H!/(t+ 1)! σn(1 + σ2

y/σ
2
n)H−t−1/2) + θt+1

= O(κH−t+1/2
√
H!/(t+ 1)! σn(1 + σ2

y/σ
2
n)H−t−1/2)

= θt
(B.27)

where the first inequality is due to triangle inequality, the second inequality is due
to (B.24), (4.8), and (B.23), and the last inequality is due to the induction hypothesis.

Finally, by assuming H, σ2
y, and σ2

n as constants, it follows from (B.27) that

θ , maxt θt = O(κH+1/2) and Theorem 4.2 follows.

B.1.6 Proof of Theorem 4.3

The following lemmas are needed to prove our main result here:

Lemma B.5. Suppose that the observations dt, H ∈ Z+, a budget of κ(H − t) input
locations for t = 0, . . . , H − 1, δ ∈ (0, 1), and λ > 0 are given. Then, the probability
of

|Q∗t (π∗(dt), dt)−Q∗t (πε(dt), dt)| ≤ 2λH

is at least 1− δ by setting N according to that in Theorem 4.1.

Proof.
Q∗t (π

∗(dt), dt)−Q∗t (πε(dt), dt)
≤ Q∗t (π

∗(dt), dt)−Qt(πε(dt), dt) + λH
≤ max

xt+1∈A(xt)
|Qt(xt+1, dt)−Q∗t (xt+1, dt)|+ λH

≤ λH + λH
= 2λH

where the first and last inequalities are due to Theorem 4.1 and the second inequality
is further due to implication I.

Lemma B.6. Suppose that the observations dt, H ∈ Z+, a budget of κ(H − t) input
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locations for t = 0, . . . , H − 1, δ ∈ (0, 1), and λ > 0 are given. Then,

Q∗t (π
∗(dt), dt)− Eπε(dt)[Q∗t (πε(dt), dt)] ≤ 2λH + 4δθ

where θ is previously defined in Theorem 4.2.

Proof. By Lemma B.5, the probability of |Q∗t (π∗(dt), dt)−Q∗t (πε(dt), dt)| ≤ 2λH is at
least 1− δ. Otherwise, the probability of |Q∗t (π∗(dt), dt)−Q∗t (πε(dt), dt)| > 2λH is at
most δ. In the latter case,

|Q∗t (π∗(dt), dt)−Q∗t (πε(dt), dt)|
≤ |Q∗t (π∗(dt), dt)−Qε

t(π
ε(dt), dt)|+ |Qε

t(π
ε(dt), dt)−Q∗t (πε(dt), dt)|

≤ max
xt+1∈A(xt)

|Qε
t(xt+1, dt)−Q∗t (xt+1, dt)|+ λH + 2θ

≤ λH + 2θ + λH + 2θ
= 2λH + 4θ

(B.28)

where the first inequality is due to triangle inequality and the last two inequalities are
due to implication II. Recall that πε is a stochastic policy due to its use of stochastic
sampling in Qt (4.6), which implies that πε(dt) is a random variable. Then,

Q∗t (π
∗(dt), dt)− Eπε(dt)[Q∗t (πε(dt), dt)]

= Eπε(dt)[Q∗t (π∗(dt), dt)−Q∗t (πε(dt), dt)]
≤ (1− δ)(2λH) + δ(2λH + 4θ)
= 2λH + 4δθ

where the expectation is with respect to random variable πε(dt) and the inequality
follows from Lemma B.5 and (B.28).

Proof of Theorem 4.3. We will give a proof by induction on t that

V ∗t (dt)− Eπε [V πε

t (dt)] ≤ (2λH + 4δθ)(H − t) . (B.29)

When t = H − 1 (i.e., base case),

V ∗H−1(dH−1)− Eπε [V πε

H−1(dH−1)]
= Q∗H−1(π∗(dH−1), dH−1)− Eπε [Qπε

t (πε(dH−1), dH−1)]
= Q∗H−1(π∗(dH−1), dH−1)− Eπε(dH−1)[R(πε(dH−1), dH−1)]
= Q∗H−1(π∗(dH−1), dH−1)− Eπε(dH−1)[Q

∗
t (π

ε(dH−1), dH−1)]
≤ 2λH + 4δθ

where the first equality is due to (4.3) and (4.5), the second equality is due to (4.3),
the third equality is due to (4.5), and the inequality is due to Lemma B.6. So, (B.29)
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holds for the base case. Supposing (B.29) holds for t+ 1 (i.e., induction hypothesis),
we will prove that it holds for t = 0, . . . , H − 2:

V ∗t (dt)− Eπε [V πε

t (dt)]
= Q∗t (π

∗(dt), dt)− Eπε [Qπε

t (πε(dt), dt)]
= Q∗t (π

∗(dt), dt)− Eπε [Q∗t (πε(dt), dt)] + Eπε [Q∗t (πε(dt), dt)]− Eπε [Qπε

t (πε(dt), dt)]
= Q∗t (π

∗(dt), dt)− Eπε(dt)[Q∗t (πε(dt), dt)] + Eπε [Q∗t (πε(dt), dt)−Qπε

t (πε(dt), dt)]
≤ 2λH + 4δθ + Eπε [Q∗t (πε(dt), dt)−Qπε

t (πε(dt), dt)]
= 2λH + 4δθ + Eπε [Eyt+1|πε(dt),dt [V

∗
t+1(〈x1:t ⊕ πε(dt),y1:t ⊕ yt+1〉)

−V πε

t+1(〈x1:t ⊕ πε(dt),y1:t ⊕ yt+1〉)]]
= 2λH + 4δθ + Eπε(dt)[Eyt+1|πε(dt),dt [V

∗
t+1(〈x1:t ⊕ πε(dt),y1:t ⊕ yt+1〉)

−Eπε [V πε

t+1(〈x1:t ⊕ πε(dt),y1:t ⊕ yt+1〉)]]]
≤ 2λH + 4δθ + Eπε(dt)[Eyt+1|πε(dt),dt [(2λH + 4δθ)(H − t− 1)]]
= (2λH + 4δθ)(H − t)

(B.30)
where the first and fourth equalities are due to (4.3) and (4.5), the first inequality is
due to Lemma B.6, and the last inequality is due to the induction hypothesis.

From (B.30), when t = 0,

V ∗0 (d0)− Eπε [V πε

0 (d0)] ≤ 2H(λH + 2δθ) .

Let ε = 2H(λH+2δθ) by setting λ = ε/(4H2) and δ = ε/(8θH). Consequently, using
Lemma B.5 and θ = O(κH+1/2) previously defined in Theorem 4.2,

N = O
(
κ2H

ε2
log

κA

ε

)
.

B.1.7 Theoretical analysis of anytime ε-Macro-BO

Our result below proves that V
∗
t (dt) and V ∗t (dt), which are previously defined in lines

15-16 and 34-35 in Algorithm 4, are upper and lower heuristic bounds of V ∗t (dt),
respectively:

Theorem B.2. Suppose that the observations dt′, H ∈ Z+, a budget of κ(H − t′)
input locations for t′ = 0, . . . , H − 1, δ ∈ (0, 1), and λ > 0 are given. Then, the
probability of

V ∗t (dt) ≤ V ∗t (dt) ≤ V
∗
t (dt) (B.31)

for all tuples 〈t, dt〉 generated at stage t = t′, . . . , H by Algorithm 4 is at least 1 − δ
by setting N according to Theorem 4.1.

Proof. We will give a proof by induction on t that the probability of (B.31) for all
tuples 〈t, dt〉 generated at stage t = t′, . . . , H by Algorithm 4 is at least 1−δ. The base
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case of t = H is true since V ∗H(dH) = V ∗H(dH) = V
∗
H(dH) = 0. Supposing (B.31) holds

for t+ 1 (i.e. induction hypothesis), we will prove that it holds for t = t′, . . . , H − 1.
Similar to Lemma B.3 and the main proof of Theorem 4.1, the probability of

Ut(xt+1, dt)− λ ≤ Q∗t (xt+1, dt) ≤ Ut(xt+1, dt) + λ. (B.32)

for all tuples 〈t,xt+1, dt〉 generated at stage t = t′, . . . , H − 1 by Algorithm 4 is at
least 1− δ.

So, the probability of

Q∗t (xt+1, dt)
≤ Ut(xt+1, dt) + λ

= R(xt+1, dt) +
1

N

N∑
`=1

V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉) + λ

≤ R(xt+1, dt) +
1

N

N∑
`=1

V
∗
t+1(〈x1:t+1,y1:t ⊕ y`〉) + λ

= Q
∗
t (xt+1, dt)

for all tuples 〈t,xt+1, dt〉 generated at stage t = t′, . . . , H − 1 by Algorithm 4 is at
least 1 − δ where the first inequality follows from (B.32), the first equality is due to
definition of Ut(xt+1, dt) (B.8), the last inequality is due to the induction hypothesis,
and the last equality is due to definition of Q

∗
t (see lines 14 and 33 in Algorithm 4).

It follows that the probability of V ∗t (dt) ≤ V
∗
t (dt) for all tuples 〈t, dt〉 generated at

stage t = t′, . . . , H − 1 by Algorithm 4 is at least 1− δ.
Similarly, the probability of

Q∗t (xt+1, dt)
≥ Ut(xt+1, dt)− λ

= R(xt+1, dt) +
1

N

N∑
`=1

V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉)− λ

≥ R(xt+1, dt) +
1

N

N∑
`=1

V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉)− λ

= Q∗
t
(xt+1, dt)

for all tuples 〈t,xt+1, dt〉 generated at stage t = t′, . . . , H − 1 by Algorithm 4 is at
least 1 − δ where the first inequality is due to (B.32), the first equality is due to
definition Ut(xt+1, dt) (B.8), the last inequality is due to the induction hypothesis,
and the last equality is due to definition of Q∗

t
(see lines 13 and 32 in Algorithm 4).

It follows that the probability of V ∗t (dt) ≥ V ∗t (dt) for all tuples 〈t, dt〉 generated at
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stage t = t′, . . . , H − 1 by Algorithm 4 is at least 1− δ.

Our next result justifies why the function RefineBounds (lines 18-23) in Al-

gorithm 4 can use the tightened heuristic bounds at nodes 〈x1:t+1,y1:t ⊕ y`〉 and
〈x1:t+1,y1:t ⊕ y`

∗〉 to refine the heuristic bounds at their siblings (lines 11 and 30) by
exploiting the Lipschitz continuity of V ∗t+1 (Theorem B.1), as explained previously in
Section 4.3.1:

Corollary 1. Suppose that the observations dt′, H ∈ Z+, a budget of κ(H − t′) input
locations for t′ = 0, . . . , H − 1, δ ∈ (0, 1) and λ > 0 are given. Then, the probability
of

V ∗t (〈x1:t,y1:t−1 ⊕ yj〉)− Lt(x1:t)‖yi − yj‖
≤ V ∗t (〈x1:t,y1:t−1 ⊕ yi〉)
≤ V

∗
t (〈x1:t,y1:t−1 ⊕ yj〉) + Lt(x1:t)‖yi − yj‖

between any pair of tuples 〈t, 〈x1:t,y1:t−1⊕yi〉〉 and 〈t, 〈x1:t,y1:t−1⊕yj〉〉 for i, j =
1, . . . , N generated at stage t = t′+1, . . . , H by Algorithm 4 is at least 1−δ by setting
N according to Theorem 4.1.

Proof.
V ∗t (〈x1:t,y1:t−1 ⊕ yi〉)
≤ V ∗t (〈x1:t,y1:t−1 ⊕ yj〉) + Lt(x1:t)‖yi − yj‖
≤ V

∗
t (〈x1:t,y1:t−1 ⊕ yj〉) + Lt(x1:t)‖yi − yj‖

where the first inequality is a direct consequence of Theorem B.1 in Appendix B.1.3
and the second inequality is due to Theorem B.2.

V ∗t (〈x1:t,y1:t−1 ⊕ yi〉)
≥ V ∗t (〈x1:t,y1:t−1 ⊕ yj〉)− Lt(x1:t)‖yi − yj‖
≥ V ∗t (〈x1:t,y1:t−1 ⊕ yj〉)− Lt(x1:t)‖yi − yj‖.

where the first inequality is a direct consequence of Theorem B.1 in Appendix B.1.3
and the second inequality is due to Theorem B.2.

Similar to Theorem 4.1, our result below derives a probabilistic guarantee on the
approximation quality of Q∗

t
(xt+1, dt):

Theorem B.3. Suppose that the observations dt, H ∈ Z+, a budget of κ(H − t)
input locations for t = 0, . . . , H − 1, δ ∈ (0, 1), and λ > 0 are given and Algorithm 4
terminates at ω , V

∗
0(d0)−V ∗0(d0) (see line 46 in Algorithm 4). Then, the probability

of |Q∗
t
(xt+1, dt)−Q∗t (xt+1, dt)| ≤ 2λ+ω for all xt+1 ∈ A(xt) is at least 1−δ by setting

N according to Theorem 4.1.
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Proof. It follows directly from Theorem B.2 that the probability of

|V ∗0 (d0)− V ∗0(d0)| ≤ ω (B.33)

is at least 1−δ. In general, supposing the planning horizon is reduced to H− t stages
for t = 0, . . . , H − 1, (B.33) is equivalent to

|V ∗t (dt)− V ∗t (dt)| ≤ ω (B.34)

by shifting the indices of V ∗0 (d0) and V ∗0(d0) in (B.33) from 0 to t so that they start
at stage t instead. Then, the probability of

|Q∗
t
(xt+1, dt)−Q∗t (xt+1, dt)|

≤ |Q∗
t
(xt+1, dt)− Ut(xt+1, dt)|+ |Ut(xt+1, dt)−Q∗t (xt+1, dt)|

≤ λ+

∣∣∣∣∣
(

1

N

N∑
`=1

V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉)−
N∑
`=1

V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉)
)

+ λ

∣∣∣∣∣
≤ 2λ+

1

N

N∑
`=1

|V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉)− V ∗t+1(〈x1:t+1,y1:t ⊕ y`〉)|

≤ 2λ+ ω

for all xt+1 ∈ A(xt) is at least 1 − δ where the first and the third inequalities are
due to triangle inequality, the second inequality follows from (B.32), definition of
Ut(xt+1, dt) (B.8), and definition of Q∗

t
(see lines 13 and 32 in Algorithm 4), and the

last inequality is due to (B.34).

We will now formally discuss the implications of the tractable choice of the if
condition in (4.12) for theoretically guaranteeing the performance of our 〈ω, ε〉-Macro-
BO policy πωε similarly to that of our ε-Macro-BO policy πε (4.9):

I. In the likely event (with an arbitrarily high probability of at least 1 − δ)
that |Q∗

t
(xt+1, dt) − Q∗t (xt+1, dt)| ≤ 2λ + ω for all xt+1 ∈ A(xt) (Theorem B.3),

|Q∗
t
(xt+1, dt)−Qt(xt+1, dt)| ≤ |Q∗t (xt+1, dt)−Q∗t (xt+1, dt)|+|Q∗t (xt+1, dt)−Qt(xt+1, dt)| ≤

2λ + ω + θ for all xt+1 ∈ A(xt), by triangle inequality and Theorems 4.2 and B.3.
Consequently, according to (4.12), Qωε

t (xt+1, dt) = Q∗
t
(xt+1, dt) for all xt+1 ∈ A(xt)

and πωε(dt) thus selects the same macro-action as the policy induced by Q∗
t
(xt+1, dt)

(see lines 13 and 32 in Algorithm 4).
II. In the unlikely event (with an arbitrarily small probability of at most δ)

that Q∗
t
(xt+1, dt) (see lines 13 and 32 in Algorithm 4) is unboundedly far from

Q∗t (xt+1, dt) (4.5) (i.e., |Q∗
t
(xt+1, dt)−Q∗t (xt+1, dt)| > 2λ+ ω) for some xt+1 ∈ A(xt),
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πωε(dt) (4.12) guarantees that, for any selected macro-action xt+1 ∈ A(xt),

|Qωε
t (xt+1, dt)−Q∗t (xt+1, dt)|

=

|Q
∗
t
(xt+1, dt)−Q∗t(xt+1, dt)|

if |Q∗
t
(xt+1, dt)−Qt(xt+1, dt)|

≤ 2λ+ ω + θ,

|Qt(xt+1, dt)−Q∗t(xt+1, dt)| otherwise;

≤


|Q∗

t
(xt+1, dt)−Qt(xt+1, dt)|

+|Qt(xt+1, dt)−Q∗t(xt+1, dt)|
if |Q∗

t
(xt+1, dt)−Qt(xt+1, dt)|

≤ 2λ+ ω + θ,

θ otherwise;

≤ 2λ+ ω + 2θ ,

(B.35)

by triangle inequality and Theorem 4.2.
The above implications are central to proving our next result bounding the ex-

pected performance loss of πωε relative to that of Bayes-optimal Macro-BO policy π∗,
that is, policy πωε is 〈ω, ε〉-Bayes-optimal:

Lemma B.7. Suppose that the observations dt, H ∈ Z+, a budget of κ(H − t) input
locations for t = 0, . . . , H − 1, δ ∈ (0, 1), and λ > 0 are given. Then, the probability
of

|Q∗t (π∗(dt), dt)−Q∗t (πωε(dt), dt)| ≤ 2λ+ 2ω

is at least 1− δ by setting N according to that in Theorem 4.1.

Proof.
Q∗t (π

∗(dt), dt)−Q∗t (πωε(dt), dt)
≤ Q∗t (π

∗(dt), dt)−Q∗t (π
ωε(dt), dt) + 2λ+ ω

≤ |Q∗t (π∗(dt), dt)−Q∗t (π
ωε(dt), dt)|+ 2λ+ ω

= |Q∗t (π∗(dt), dt)− max
xt+1∈A(xt)

Q∗
t
(xt+1, dt)|+ 2λ+ ω

= |V ∗t (dt)− V ∗t (dt)|+ 2λ+ ω
≤ ω + 2λ+ ω
= 2λ+ 2ω

where the first inequality is due to Theorem B.3, the first equality is further due to
implication I discussed just after (4.12), the second equality is due to the definitions
of V ∗t (4.5) and V ∗t (see lines 15 and 34 in Algorithm 4), and the last inequality is due
to (B.34).

Lemma B.8. Suppose that the observations dt, H ∈ Z+, a budget of κ(H − t) input
locations for t = 0, . . . , H − 1, δ ∈ (0, 1), and λ > 0 are given. Then,

Q∗t (π
∗(dt), dt)− Eπωε(dt)[Q∗t (πωε(dt), dt)] ≤ 2λ+ 2δλ+ 2ω + 4δθ
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where θ is previously defined in Theorem 4.2.

Proof. By Lemma B.7, the probability of |Q∗t (π∗(dt), dt)−Q∗t (πωε(dt), dt)| ≤ 2λ+2ω is
at least 1−δ. Otherwise, the probability of |Q∗t (π∗(dt), dt)−Q∗t (πωε(dt), dt)| > 2λ+2ω
is at most δ. In the latter case,

|Q∗t (π∗(dt), dt)−Q∗t (πωε(dt), dt)|
≤ |Q∗t (π∗(dt), dt)−Qωε

t (πωε(dt), dt)|+ |Qωε
t (πωε(dt), dt)−Q∗t (πωε(dt), dt)|

≤ max
xt+1∈A(xt)

|Qωε
t (xt+1, dt)−Q∗t (xt+1, dt)|+ 2λ+ ω + 2θ

≤ 2λ+ ω + 2θ + 2λ+ ω + 2θ
= 4λ+ 2ω + 4θ

(B.36)

where the first inequality is due to triangle inequality and the last two inequalities
are due to (B.35) (i.e., implication II). Recall that πωε is a stochastic policy due to its
use of stochastic sampling in Q∗

t
(see lines 13 and 32 in Algorithm 4), which implies

that πωε(dt) is a random variable. Then,

Q∗t (π
∗(dt), dt)− Eπωε(dt)[Q∗t (πωε(dt), dt)]

= Eπωε(dt)[Q∗t (π∗(dt), dt)−Q∗t (πωε(dt), dt)]
≤ (1− δ)(2λ+ 2ω) + δ(4λ+ 2ω + 4θ)
= 2λ+ 2δλ+ 2ω + 4δθ

where the expectation is with respect to random variable πωε(dt) and the inequality
follows from Lemma B.7 and (B.36).

Proof of Theorem 4.4.
We will give a proof by induction on t that

V ∗t (dt)− Eπωε [V πωε

t (dt)] ≤ (2λ+ 2δλ+ 2ω + 4δθ)(H − t) . (B.37)

When t = H − 1 (i.e., base case),

V ∗H−1(dH−1)− Eπωε [V πωε

H−1(dH−1)]
= Q∗H−1(π∗(dH−1), dH−1)− Eπωε [Qπωε

t (πωε(dH−1), dH−1)]
= Q∗H−1(π∗(dH−1), dH−1)− Eπωε(dH−1)[R(πωε(dH−1), dH−1)]
= Q∗H−1(π∗(dH−1), dH−1)− Eπωε(dH−1)[Q

∗
t (π

ωε(dH−1), dH−1)]
≤ 2λ+ 2δλ+ 2ω + 4δθ

where the first equality is due to (4.3) and (4.5), the second equality is due to (4.3),
the third equality is due to (4.5), and the inequality is due to Lemma B.8. So, (B.37)
holds for the base case. Supposing (B.37) holds for t+ 1 (i.e., induction hypothesis),
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we will prove that it holds for t = 0, . . . , H − 2:

V ∗t (dt)− Eπωε [V πωε

t (dt)]
= Q∗t (π

∗(dt), dt)− Eπωε [Qπωε

t (πωε(dt), dt)]
= Q∗t (π

∗(dt), dt)− Eπωε [Q∗t (πωε(dt), dt)] + Eπωε [Q∗t (πωε(dt), dt)]− Eπωε [Qπωε

t (πωε(dt), dt)]
= Q∗t (π

∗(dt), dt)− Eπωε(dt)[Q∗t (πωε(dt), dt)] + Eπωε [Q∗t (πωε(dt), dt)−Qπωε

t (πωε(dt), dt)]
≤ 2λ+ 2δλ+ 2ω + 4δθ + Eπωε [Q∗t (πωε(dt), dt)−Qπωε

t (πωε(dt), dt)]
= 2λ+ 2δλ+ 2ω + 4δθ

+Eπωε [Eyt+1|πωε(dt),dt [V
∗
t+1(〈x1:t ⊕ πωε(dt),y1:t ⊕ yt+1〉)− V πωε

t+1 (〈x1:t ⊕ πωε(dt),y1:t ⊕ yt+1〉)]]
= 2λ+ 2δλ+ 2ω + 4δθ

+Eπωε(dt)[Eyt+1|πωε(dt),dt [V
∗
t+1(〈x1:t ⊕ πωε(dt),y1:t ⊕ yt+1〉)− Eπωε [V πωε

t+1 (〈x1:t ⊕ πωε(dt),y1:t ⊕ yt+1〉)]]]
≤ 2λ+ 2δλ+ 2ω + 4δθ + Eπωε(dt)[Eyt+1|πωε(dt),dt [(2λ+ 2δλ+ 2ω + 4δθ)(H − t− 1)]]
= (2λ+ 2δλ+ 2ω + 4δθ)(H − t)

(B.38)
where the first and fourth equalities are due to (4.3) and (4.5), the first inequality is
due to Lemma B.8, and the last inequality is due to the induction hypothesis.

From (B.38), when t = 0,

V ∗0 (d0)− Eπωε [V πωε

0 (d0)] ≤ 2H(λ+ δλ+ ω + 2δθ) = 2ωH + 2H(λ+ δλ+ 2δθ) .

Let ε = 2H(λ+ δλ+ 2δθ) by setting λ = 1/(4H/ε+ 1/(2θ)) and δ = ε/(8θH). Con-
sequently, using Lemma B.7 and θ = O(κH+1/2) previously defined in Theorem 4.2,

N = O
(
κ2H

ε2
log

κA

ε

)
.

B.1.8 Auxiliary Results

Lemma B.9. Lt(x1:t) = O(κH−t+1/2
√
H!/t!(1 + σ2

y/σ
2
n)H−t) for t = 0, . . . , H − 1.

Proof. Using Definition B.1 followed by Lemma B.10,

Lt(x1:t)

= max
xt+1∈A(xt)

√
κ α(x1:t+1) + Lt+1(x1:t+1)

√
1 + α(x1:t+1)2

= (
√
κ+ Lt+1(x1:t ⊕ x∗t+1)) O(κ

√
t+ 1(1 + σ2

y/σ
2
n))

(B.39)

for t = 0, . . . , H − 1 where x∗t+1 , argmaxxt+1∈A(xt) Lt+1(x1:t ⊕ xt+1).
We will now give a proof by induction on t. When t = H − 1 (i.e., base case),

since LH(x1:H) = 0 (Definition B.1), it follows from (B.39) that LH−1(x1:H−1) =
O(κ3/2

√
H(1+σ2

y/σ
2
n)). Supposing Lemma B.9 holds for t+1 (i.e., induction hypoth-
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esis), we will prove that it holds for 0 ≤ t < H − 1:

Lt(x1:t)

= (
√
κ+O(κH−t−1/2

√
H!/(t+ 1)! (1 + σ2

y/σ
2
n)H−t−1)) O(κ

√
t+ 1(1 + σ2

y/σ
2
n))

= O(κH−t+1/2
√
H!/t! (1 + σ2

y/σ
2
n)H−t)

where the first equality follows from (B.39) and the induction hypothesis.

Lemma B.10. α(x1:t+1) = O(κ
√
t+ 1(1 + σ2

y/σ
2
n)) for t = 0, . . . , H − 1 where the

function α is previously defined in Lemma B.1.

Proof. Let ΞΛΞ> be an eigendecomposition of the symmetric and positive definite
Kx1:tx1:t + σ2

nI where Ξ is a matrix whose columns comprise an orthonormal basis
of eigenvectors of Σx1:tx1:t and Λ is a diagonal matrix with positive eigenvalues of
Kx1:tx1:t + σ2

nI. From the definition of the function α in Lemma B.1,

α(x1:t+1)2

= ‖Kxt+1x1:t(Kx1:tx1:t + σ2
nI)−1‖2

F

= ‖Kxt+1x1:tΞΛ−1Ξ>‖2
F

= Tr(Kxt+1x1:tΞΛ−1Ξ>ΞΛ−1Ξ>Kx1:txt+1)
= Tr(Kxt+1x1:tΞΛ−2Ξ>Kx1:txt+1)
= Tr(Kxt+1x1:tΞ(ξ−2I)Ξ>Kx1:txt+1)− Tr(Kxt+1x1:tΞ(ξ−2I − Λ−2)Ξ>Kx1:txt+1)
≤ Tr(Kxt+1x1:tΞ(ξ−2I)Ξ>Kx1:txt+1)
= ξ−2Tr(Kxt+1x1:tKx1:txt+1)
= ξ−2‖Kxt+1x1:t‖2

F

= O(κ2(t+ 1)(1 + σ2
y/σ

2
n)2)

(B.40)
where ξ is the smallest eigenvalue in Λ, the second equality is due to (Kx1:tx1:t +
σ2
nI)−1 = ΞΛ−1Ξ>, the third and seventh equalities are due to ‖Φ‖2

F= Tr(ΦΦ>)
for any matrix Φ (see Section 10.4.3 in [Petersen and Pedersen, 2012]), the fourth
equality follows from the orthonormality of Ξ, the fifth equality is due to linearity
of trace, the inequality is due to the positive semidefinite (ξ−2I − Λ−2) since ξ−2 is
the largest eigenvalue in Λ−2, and the last equality follows from (a) ‖Kxt+1x1:t‖2

F=
O(κ2(t+ 1)(σ2

y + σ2
n)2) since every prior covariance is not more than σ2

y + σ2
n and the

length of x1:t is O(κ(t+ 1)) and (b) ξ ≥ σ2
n since Kx1:tx1:t is positive semidefinite and

hence ξ − σ2
n is nonnegative.
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B.2 Additional Experimental Results

B.2.1 Simulated plankton density phenomena

See Table B.1 and Table B.2.

Table B.1: Average normalized12 output measurements observed by the AUV and simple
regrets achieved by the tested BO algorithms after 20 observations.

BO Algorithm Avg. normalized output measurements Simple regret
ε-M-BO H = 4 0.6310± 0.0458 1.2500± 0.0541
ε-M-BO H = 3 0.5809± 0.0486 1.3303± 0.0542
ε-M-BO H = 2 0.5446± 0.0464 1.3651± 0.0550
DB-GP-UCB 0.5379± 0.0462 1.4612± 0.0572

Nonmyopic GP-UCB H = 4 0.5719± 0.0467 1.3984± 0.0537
GP-UCB-PE 0.3635± 0.0467 1.4079± 0.0568
GP-BUCB 0.3396± 0.0486 1.3717± 0.0573

q-EI 0.2595± 0.0444 1.5104± 0.0544
BBO-LP 0.3868± 0.0444 1.3666± 0.0547

Table B.2: Average normalized12 output measurements achieved by ε-Macro-BO with
H = 2 and H = 3 after 20 observations.

Value of β H = 2 H = 3
β = 0.0 0.5563± 0.0446 0.5935± 0.0461
β = 0.1 0.6207± 0.0458 0.5842± 0.0438
β = 0.3 0.5357± 0.0459 0.5240± 0.0446
β = 0.6 0.4226± 0.0471 0.5016± 0.0470
β = 1.0 0.3746± 0.0460 0.4052± 0.0489
β = 2.0 0.2843± 0.0478 0.3566± 0.0491
β = 4.0 0.1919± 0.0498 0.2026± 0.0441
β = 10.0 0.0402± 0.0468 0.0569± 0.0453

B.2.2 Real-World Traffic Phenomenon

See Tables B.3, B.4 and B.5.

B.2.3 Real-World Temperature Phenomenon

See Table B.6, Table B.7 and Table B.8.
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Table B.3: Average normalized12 output measurements observed by the AV and simple
regrets achieved by the tested BO algorithms after 20 observations for the real-world
traffic phenomenon (i.e., mobility demand pattern).

BO Algorithm Avg. normalized output measurements Simple regret
Anytime ε-M-GPO H = 4 0.2700± 0.1014 1.5423± 0.1047
Anytime ε-M-GPO H = 3 0.2574± 0.1019 1.5843± 0.0994
Anytime ε-M-GPO H = 2 0.2357± 0.1109 1.7396± 0.1179

DB-GP-UCB 0.2108± 0.1081 1.7050± 0.1212
Nonmyopic GP-UCB H = 4 0.2267± 0.1134 1.7314± 0.1158

GP-UCB-PE 0.0770± 0.0808 1.5203± 0.1247
GP-BUCB 0.0884± 0.0819 1.5177± 0.1262

q-EI 0.0007± 0.0945 1.7945± 0.1515
BBO-LP −0.0077± 0.0957 1.7320± 0.1149

Table B.4: Average normalized12 output measurements achieved by anytime ε-Macro-
GPO with H = 2, 3 and varying exploration weights β after 20 observations for the
real-world traffic phenomenon (i.e., mobility demand pattern).

Value of β H = 2 H = 3
β = 0.0 0.2357± 0.1109 0.2574± 0.1019
β = 0.2 0.2550± 0.1032 0.2069± 0.0987
β = 0.5 0.1364± 0.0967 0.1174± 0.0893
β = 1.0 0.1429± 0.0967 0.0911± 0.0772
β = 2.0 0.1174± 0.0843 0.0330± 0.0755
β = 4.0 0.0957± 0.0841 0.0403± 0.0765
β = 10.0 0.0944± 0.0768 −0.0046± 0.0756

Table B.5: Average normalized output measurements observed by the AV and simple
regrets achieved by anytime ε-Macro-GPO with H = 2, 4 and 20 randomly selected
macro-actions per input region, anytime ε-Macro-GPO with H = 2 and all available
macro-actions (the no. of available macro-actions per input region is enclosed in brackets),
and EI with all available macro-actions of length 1 after 20 observations for the real-world
traffic phenomenon (i.e., mobility demand pattern).

BO Algorithm Avg. normalized output measurements Simple regret
Anytime ε-M-GPO H = 4 (20) 0.2700± 0.1014 1.5423± 0.1047
Anytime ε-M-GPO H = 2 (all) 0.2631± 0.0918 1.6427± 0.0792
Anytime ε-M-GPO H = 2 (20) 0.2357± 0.1109 1.7396± 0.1179

EI (all) 0.1469± 0.1084 1.6094± 0.0946
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Table B.6: Average normalized12 output measurements observed by the mobile robot
and simple regrets achieved by the tested BO algorithms after 20 observations for the
real-world temperature phenomenon over the Intel Berkeley Research Lab.

BO Algorithm Avg. normalized output measurements Simple regret
Anytime ε-M-GPO H = 4 0.6371± 0.0797 0.4069± 0.0723
Anytime ε-M-GPO H = 3 0.6137± 0.0829 0.4285± 0.0678
Anytime ε-M-GPO H = 2 0.5450± 0.0951 0.5613± 0.0834

DB-GP-UCB 0.4874± 0.1017 0.6734± 0.0934
Nonm. GP-UCB H = 4 0.5708± 0.0908 0.5911± 0.0886

GP-UCB-PE 0.1377± 0.0734 0.6700± 0.0758
GP-BUCB 0.2067± 0.0758 0.6670± 0.0762

q-EI 0.3801± 0.1044 0.6868± 0.1116
BBO-LP 0.2549± 0.0833 0.5168± 0.0733

Table B.7: Average normalized12 output measurements achieved by ε-Macro-GPO with
H = 2, 3 and varying exploration weights β after 20 observations for the real-world
temperature phenomenon over the Intel Berkeley Research Lab.

Value of β H = 2 H = 3
β = 0.0 0.5450± 0.0951 0.6137± 0.0829
β = 1.0 0.6160± 0.0820 0.6047± 0.0764
β = 2.0 0.5565± 0.0765 0.5787± 0.0786
β = 3.0 0.3755± 0.0670 0.4468± 0.0645
β = 4.0 0.1859± 0.0608 0.2294± 0.0472

Table B.8: Average normalized output measurements observed by the mobile robot and
simple regrets achieved by anytime ε-Macro-GPO with H = 2, 4 and 20 randomly selected
macro-actions per input region, anytime ε-Macro-GPO with H = 2 and all available
macro-actions (the no. of available macro-actions per input region is enclosed in brackets),
and EI with all available macro-actions of length 1 after 20 observations for the real-world
temperature phenomenon over the Intel Berkeley Research Lab.

BO Algorithm Avg. normalized output measurements Simple regret
Anytime ε-M-GPO H = 4 (20) 0.6371± 0.0797 0.4069± 0.0723
Anytime ε-M-GPO H = 2 (all) 0.6265± 0.0861 0.5119± 0.0807
Anytime ε-M-GPO H = 2 (20) 0.5450± 0.0951 0.5613± 0.0834

EI (all) 0.4565± 0.1051 0.8754± 0.0941
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