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Summary

Many deep learning achievements are attributed to the back-propagation (BP) algorithm,

which exploits gradient information of the deep neural network (DNN) models: BP

efficiently computes the gradient of the loss function with respect to the weights of a DNN

for a batch of examples, and such gradient can be used by stochastic gradient descent

to perform learning / optimization of the DNN model. Despite recent advances in deep

learning like DNN training, there are still important scenarios where we can also use

gradient to tackle optimization difficulty. In a broader aspect of deep learning rather than

DNN training, a significant challenge faced by ML practitioners is thus whether we can

design efficient algorithms to use the model gradient in the training / optimization in

various deep learning scenarios. This thesis identifies four important scenarios and, for

each of them, proposes a novel algorithm to utilize the gradient information for effective

optimization that is both theoretically grounded and practically effective.

Firstly, the training process of a machine learning (ML) model may be subject to

adversarial attacks from an attacker who attempts to undermine the test performance of

the ML model by perturbing the training minibatches, and thus needs to be protected by

a defender. Such a problem setting is referred to as training-time adversarial ML. We

formulate it as a two-player game and propose a principled Recursive Reasoning-based

Training-Time adversarial ML (R2T2) framework to model this game. R2T2 models

the reasoning process between the attacker and the defender and captures their bounded

reasoning capabilities (due to bounded computational resources) through the recursive

reasoning formalism. In particular, we associate a deeper level of recursive reasoning with
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the use of a higher-order gradient to derive the attack (defense) strategy, which naturally

improves its performance while requiring greater computational resources. R2T2 can

empirically achieve state-of-the-art attack and defense performances on benchmark image

datasets.

Secondly, probabilistic modelling with neural network architectures constitute a

well-studied and popular area of deep learning. In contrast to a frequentist approach

which is easy to overfit to the available dataset and risk learning unwanted biasing

in the dataset, Gaussian process (GP) models were introduced as a fully probabilistic

substitute and is one of the dominant approaches in Bayesian learning. A multi-layer deep

Gaussian process (DGP) model is a hierarchical composition of GP models with a greater

expressive power, and is more useful when dealing with complicated dataset. Exact DGP

inference is intractable, and the approximation methods either yields a biased posterior

belief (deterministic approximation by variational inference) or is computationally costly

(stochastic approximation by Monte Carlo sampling). These difficulties have motivated

our recent development of an implicit posterior variational inference (IPVI) framework for

DGPs that can ideally recover an unbiased posterior belief and still preserve time efficiency.

However, as a generator and a discriminator are integrated in each layer of the DGP, the

training becomes unstable and is prone to optimization difficulties. To resolve such issues,

we propose a novel gradient-bridging architecture of the generator and discriminator for

the DGP model, which uses the inducing inputs as the context, thus leads to faster training

and more accurate predictions. Empirical evaluation shows that IPVI with our proposed

architecture outperforms the state-of-the-art methods for DGPs.

Thirdly, many widely adopted Bayesian meta-learning frameworks model the un-

certainty in the predictions with a set of particles or a variational distribution (of the

meta-parameters), which does not allow latent task modeling.1 We present a novel

implicit process-based meta-learning (IPML) algorithm that, in contrast to existing works,

1Latent task modeling requires mapping each task to a finite length latent vector. However, representing
each task by a set of particles or a variational distribution of the meta-parameters is troublesome, since they
have a too large dimension. In the real-world datasets that are usually considered, the dimension of the
meta-parameters can be close to a size of 1 Million.
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explicitly represents each task as a continuous latent vector and models its probabilistic

belief within the highly expressive implicit processes (IP) framework. IP is a stochastic

process with highly flexible implicit priors over functions, and is suitable as a Bayesian

(meta) learning model for complicated datasets (e.g., when the priors are non-Gaussian

unlike in GP). We tackle the meta-training in IPML with a novel expectation-maximization

algorithm based on the stochastic gradient Hamiltonian Monte Carlo sampling method.

Our delicate design of the neural network architecture for meta-training in IPML allows

competitive meta-learning performance to be achieved. Unlike existing works, IPML

offers the benefits of being amenable to the characterization of a principled distance

measure between tasks using the maximum mean discrepancy, active task selection without

needing the assumption of known task contexts, and synthetic task generation by modeling

task-dependent input distributions. Empirical evaluation on benchmark datasets shows

that IPML outperforms existing Bayesian meta-learning algorithms.

Last but not least, in the problem of active task selection which involves selecting

the most informative tasks for meta-learning, we propose a novel active task selection

criterion based on the mutual information between latent task vectors. Unfortunately, such

a criterion scales poorly in the number of candidate tasks when optimized. To resolve

this issue, we exploit the submodularity property of our new criterion for devising the

first active task selection algorithm for meta-learning with a near-optimal performance

guarantee. To further improve our efficiency, we propose an online variant of the Stein

variational gradient descent to perform fast belief updates of the meta-parameters via

maintaining a set of forward (and backward) particles when learning (or unlearning) from

each selected task. We empirically demonstrate the superior performance of our proposed

algorithm on real-world datasets.
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years, machine learning (ML), especially deep learning (DL), has demonstrated an

unprecedented level of performance in a number of applications such as image recognition,

natural language processing, complex board games, among other [LeCun et al., 2015,

Silver et al., 2016]. Many of these achievements are attributed to the back-propagation

(BP) algorithm, which exploits gradient information of the deep neural network (DNN)

models. More specifically, BP efficiently computes the gradients of the loss function with

respect to the weights of a DNN for a batch of examples, and such gradients can be used

by stochastic gradient descent to perform learning/optimization of the DNN model.

DNN training is an example showing that a key component in DL is the usage of

gradients. Despite significant progresses in DL, there are still important scenarios where

we can also use gradients to achieve effective optimization. In a broader aspect of DL

rather than DNN training, a significant challenge faced by ML practitioners is thus whether

we can design efficient algorithms to use the model gradients in the training/optimization

in various DL scenarios.

Firstly, the widespread use of ML models has inevitably raised concerns about the

security and safety of their applications in the real world, which has galvanized the recent
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1.1. BACKGROUND AND MOTIVATION

popularity of adversarial ML. In the case when a (surrogate) model is available to an

attacker, the attacker can compute the gradient of the model with respect to the input

seeking to maximally compromise the predictive performance of the model (by perturbing

the input using such gradient). As a countermeasure, a defender can be invoked to correct

the received input before using them. Naturally, an interesting question arises: How should

the attacker (defender) choose its strategy of using gradients to achieve more effective

attacks (defenses) and thus gain an advantage in adversarial ML?

Secondly, we want to perform learning (inference) of deep Gaussian process (DGP)

using our implicit posterior variational inference (IPVI) model [Yu et al., 2019], where

each layer of the DGP is equipped with a generator and a discriminator. The generator

produces the samples of the inducing output variables, and propagate its prediction layer

by layer based on the learnable inducing inputs. However, a difficulty is that a naive design

of the generator fails to adequately capture the dependency of the inducing output variables

on the corresponding inducing inputs, such that the inducing inputs will not receive useful

gradients during training.

Thirdly, a number of meta-learning algorithms [Finn et al., 2018, Jerfel et al., 2019,

Ravi and Beatson, 2018, Rusu et al., 2019, Yoon et al., 2018] have recently adopted a

probabilistic perspective to characterize the uncertainty in the predictions via a Bayesian

treatment of the meta-parameters. Though they can consequently represent different

(training or testing) tasks with different values of meta-parameters, doing so introduces

difficulties when the downstream applications require finite-length vector representations

of the tasks, since the dimension of the meta-parameters are usually too large. To resolve

this, we turn to perform meta-learning of a set of tasks using the implicit process (IP)

model, which explicitly represents each task as a continuous latent vector. Meta-learning

consists of two loops of calculation: the outer loop performs model update by optimizing

the parameters of the IP model through gradient descent of the meta-learning objective,

which relies on the posterior belief of the latent vector; and the inner loop performs

posterior belief inference (usually referred to as task adaptation) of the latent vector (of

11
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a specific task). However, a difficulty in meta-learning using IP is that exact inner loop

inference is intractable, and variational inference using a Gaussian posterior does not yield

satisfactory performance. Nevertheless, in the case that the IP model is differentiable,

we can compute the gradient of the task data likelihood with respect to the latent vector.

Using such gradient information, we manage to solve the difficulty of inner loop inference

and obtain posterior samples of the latent vector.

Lastly, we want to efficiently evaluate our criterion called mutual information between

latent task vectors (MILT) to perform active task selection for meta-learning while having

a near-optimal guarantee. However, frequent belief updates of the meta-parameters are

required during the evaluation, which largely affects the computational efficiency of the

proposed criterion.

In the scenarios like above, we ask the question: Can we design practical algorithms

to utilize the gradient information for effective optimization in deep learning? We answer

this question affirmatively in this thesis by introducing novel algorithms for the two

aforementioned scenarios. Our proposed algorithm for the first scenario exploits a nested

projected gradient descent-based method to approximate the optimal attack (defense)

strategy. For the second scenario, we designed a novel gradient-bridging architecture

of the generator to largely alleviate the optimization difficulties in our IPVI-DGP. For

the third scenario, we propose an expectation-maximization algorithm based on the

stochastic gradient Hamiltonian Monte Carlo sampling (SGHMC) method to perform

meta-training. In the mean time, a novel IP architecture is designed to enable effective

gradient exploitation. For the last scenario, we proposed a forward-backward method

based on online Stein variational gradient descent (SVGD) to perform fast belief updates

of the meta-parameters, thus improving the efficiency in evaluating our MILT criterion. In

the next section, we summarize our contributions in this thesis.

12
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1.2 Contributions

Here we give a short summary of our contributions in this thesis, including two of our recent

works which involve designing practical algorithms to utilize the gradient information for

effective optimization in deep learning scenarios.

Gradient-based strategical recursive reasoning in training-time adversarial machine

learning. The training process of a machine learning (ML) model may be subjected

to adversarial attacks from an attacker who attempts to undermine the test performance

of the ML model by perturbing the training minibatches, and thus needs to be protected

by a defender. Such a problem setting is referred to as training-time adversarial ML. We

formulate it as a two-player game and propose a principled Recursive Reasoning-based

Training-Time adversarial ML (R2T2) framework to model this game. R2T2 models

the reasoning process between the attacker and the defender and captures their bounded

reasoning capabilities (due to bounded computational resources) through the recursive

reasoning formalism. In particular, we associate a deeper level of recursive reasoning with

the use of a higher-order gradient to derive the attack (defense) strategy, which naturally

improves its performance while requiring greater computational resources. Interestingly,

our R2T2 framework encompasses a variety of existing adversarial ML methods which

correspond to attackers (defenders) with different recursive reasoning capabilities. We

show how an R2T2 attacker (defender) can utilize our proposed nested projected gradient

descent-based method to approximate the optimal attack (defense) strategy at an arbitrary

level of reasoning. R2T2 can empirically achieve state-of-the-art attack and defense

performances on benchmark image datasets.

Implicit posterior variational inference with gradient-bridging design for deep

Gaussian processes. In our proposed implicit posterior variational inference (IPVI)

framework for DGPs which can ideally recover an unbiased posterior belief, the posterior

is modelled with a neural network-based generator. However, during the training of

DGP, the model parameters (including the generator) are optimized based on first-

13



1.2. CONTRIBUTIONS

order optimization, and performs badly without careful design of the architecture. We

identified two possible problems: (i) Overfitting due to overly-parameterized generator;

(ii) Optimization difficulties due to the inefficient gradient back-propagation. Ablation

studies are performed and eventually we identified that the optimization difficulties due

to the inefficient gradient back-propagation is the main obstacle in the realization of our

algorithm. To this end, we proposed a novel gradient-bridging architecture to solve such

optimization difficulties. We also empirically evaluate the performance of our novel IPVI

architecture on several real-world datasets.

Stochastic gradient Hamiltonian Monte Carlo for meta-learning with implicit pro-

cesses. We present a novel implicit process-based meta-learning (IPML) algorithm that,

in contrast to existing works, explicitly represents each task as a continuous latent vector

and models its probabilistic belief within the highly expressive implicit processes (IP)

framework. Unfortunately, meta-training in IPML is computationally challenging due to its

need to perform intractable exact IP inference in task adaptation. To resolve this, we propose

a novel expectation-maximization algorithm based on the stochastic gradient Hamiltonian

Monte Carlo sampling method to perform meta-training. Our delicate design of the

neural network architecture for meta-training in IPML allows competitive meta-learning

performance to be achieved. Unlike existing works, IPML offers the benefits of being

amenable to the characterization of a principled distance measure between tasks using

the maximum mean discrepancy, active task selection without needing the assumption

of known task contexts, and synthetic task generation by modeling task-dependent input

distributions. Empirical evaluation on benchmark datasets shows that IPML outperforms

existing Bayesian meta-learning algorithms. We have also empirically demonstrated on

an e-commerce company’s real-world dataset that IPML outperforms the baselines and

identifies “outlier” tasks which can potentially degrade meta-testing performance.

Online Stein variational gradient descent for near-optimal task selection in meta-

learning. We propose the first active task selection algorithm for meta-learning with

a near-optimal performance guarantee. To evaluate our proposed active task selection

14
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criterion, we design a forward-backward method based on our online variant of SVGD to

largely improve the efficiency of our algorithm. Finally, empirical evaluation on several

benchmark datasets demonstrate the state-of-the-art performance of our algorithm.

1.3 Organization

In the remainder of this thesis, we firstly introduce the related works in Chapter 6. Next, the

following four chapters present each of the four works in detail: Recursive reasoning-based

training-time adversarial machine learning (Chapter 2), Implicit posterior variational

inference for deep Gaussian processes (Chapter 3), Meta-learning with implicit processes

(Chapter 4), and Near-optimal task selection with mutual information for meta-learning

(Chapter 5). Lastly, we conclude the thesis in Chapter 7.

15



Chapter 2

Gradient-based Strategical Recursive

Reasoning in Training-time Adversarial

Machine Learning

2.1 Background

The widespread use of machine learning (ML) models has inevitably raised concerns

about the security and safety of their application in the real world, which has galvanized

the recent popularity of adversarial ML. In particular, the training process of an ML

model may be subject to adversarial attacks whose objective is to fool the ML model into

performing well during training yet inadequately during deployment. Therefore, a defense

mechanism is needed to ensure the reliability of the ML model.

An important motivating scenario is an online learning system in which the model

learning performed by a central server requires training data that are sent in minibatches

from some data source(s). This is an increasingly prevalent setting in modern ML

where large amounts of data are available [Jones, 2014, McMahan et al., 2013]. Due to

memory constraints, the data is usually gathered and stored locally, and then transmitted

to the central server for model update. This system is susceptible to attacks from (a)
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2.1. BACKGROUND

an adversarial data provider who sends out poisonous minibatch data or (b) a malicious

hacker who can access and modify the transmitted data. These attackers usually attempt to

compromise the test-time performance of the trained ML model on clean data samples.

As a countermeasure, the central server can invoke a defender to correct the received data

before using them for model update.

Formally, we refer to this problem setting as training-time adversarial ML which can

be formulated as a two-player game between the training-time attacker and training-time

defender. In such a game, it is usually too complicated to solve for a Nash equilibrium and

hence not realistic for both players to employ Nash equilibrium strategies.1 Nevertheless, an

interesting research question remains to be answered: How should the attacker (defender)

choose its strategy to achieve more effective attacks (defenses) and thus gain an advantage

in the game?

Unfortunately, most works on adversarial ML have (a) focused on test-time at-

tacks/defenses and (b) studied either attacks or defenses solely. Test-time attacks [Goodfellow et al., 2015]

and defenses [Szegedy et al., 2014] are well-studied. However, as we will show in our

experiments, they do not transfer well to training-time attacks and defenses. The work

of [Feng et al., 2019] has proposed learning an auto-encoder-like network to generate

training-time attacks without considering defenses. To the best of our knowledge, a

detailed study of training-time defenses is still lacking.

In training-time adversarial ML, the training of the ML model (referred to as the target

ML model hereafter) is affected by the strategies of both the attacker and defender. So,

for the attacker to gain an advantage in the game, it has to reason about the defender’s

strategy. Similarly, to derive a more effective defense strategy, the defender can adopt

a reasoning process that accounts for the attacker’s potential strategy and belief about

the defender. This gives rise to the recursive reasoning process which is captured by

the level K (LK) model from behavioral game theory for explaining the behavior of

humans [Ho et al., 1998, Nagel, 1995, Stahl and Wilson, 1994, Stahl and Wilson, 1995].

1The work of [Pal and Vidal, 2020] studies Nash Equilibrium strategies under the assumption of a binary
classifier and locally linear decision boundaries.
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In the LK model, every player (person) reasons at a particular level: A level-0 player selects

a null strategy while a level-k ≥ 1 player best-responds to the level-(k − 1) behavior of

the opponent.

A person with a more sophisticated strategic thinking is capable of a deeper level of

reasoning and usually performs better in a game. Similarly, in the game of training-time ad-

versarial ML, a computational agent (attacker/defender) with access to more computational

resources is expected to be able to find a better attack/defense strategy. In behavioral game

theory, a person’s reasoning level is determined by her cognitive capability, otherwise

known as cognitive limit [Camerer et al., 2004, Gill and Prowse, 2016, Jin, 2018]. This

naturally brings up a question: How should we characterize the cognitive limit of a com-

putational agent with bounded computational resources and thus determine its reasoning

level? Particularly in adversarial ML, the gradient has been constantly used to craft the

attack and perform the defense. Thus in this work, we associate the cognitive limit and

hence reasoning level of an attacker/defender with the highest order of gradient that can be

computed by the player. This association turns out to be natural and elegant since having

access to more gradient information is likely to improve its performance and the cost of

computing a gradient grows exponentially in its order.

This chapter presents the first principled Recursive Reasoning-based Training-Time

adversarial ML (R2T2) framework (Chapter 2.3) to model training-time adversarial ML

as a 2-player game. Interestingly, our R2T2 framework encompasses a variety of existing

adversarial ML methods which correspond to attackers (defenders) with different recursive

reasoning capabilities. We show how an R2T2 attacker (defender) can utilize our proposed

nested projected gradient descent-based method to approximate the optimal attack (defense)

strategy at an arbitrary level of reasoning (Chapter 2.3.4). We empirically demonstrate

that R2T2 can achieve state-of-the-art attack and defense performances on benchmark

image datasets (Chapter 2.5) and, for the first time, provide principled guidelines to protect

the training of an ML model against training-time attacks.
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Figure 2.1: The illustration of the interaction between the attacker and the defender.

2.2 Problem Formulation

Utility Functions of the Players. Following the work of [Feng et al., 2019], we assume

that the goal of the training-time attacker is to misguide the model into performing poorly

on the clean data samples during test time, given that the model training converges.

Meanwhile, the training-time defender tries to guide the model into converging properly

in the presence of the attacker to ensure a good test-time performance. We focus on

non-targeted attacks, that is, the attacker’s objective is to cause an incorrect prediction.

This is in contrast to targeted attacks in which the attacker intends to misguide the model

into producing a specific output label. Nevertheless, the extension to targeted attacks is

provided in Chapter 2.5.4 with experimental results.

Attack Strategy. Suppose that the target ML model is to be trained for a total of T

iterations. In each training iteration t = 0, 1, . . . , T − 1, the attacker can intercept the

minibatch data Dt transmitted to the ML model.2 Let DXt denote the inputs of the

minibatch Dt. An attack strategy δt is a function mapping each input xt ∈ DXt to a

perturbation δt(xt) that is added back to xt to yield the perturbed input:

x′t ≜ xt + ϵatk δt(xt) (2.1)

2It is thus implicitly assumed that both players do not have access to the entire training dataset.
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such that ∥δt(xt)∥ ≤ 1 which can be satisfied using a function, denoted by e⃗(·), that

outputs the unit vector δt(xt) of its unnormalized perturbation.3

Defense Strategy. In training iteration t, the defender receives the corrupted minibatch

data containing perturbed inputs x′t’s from the attacker and cannot access its original

inputs xt’s.2 A defense strategy σt is a function mapping each perturbed input x′t to a

transformation σt(x′t) that is added back to x′t to yield the transformed input:

x′′t ≜ x′t + ϵdef σt(x
′
t) (2.2)

s.t. ∥σt(x′t)∥ ≤ 1.3 Finally, x′′t is used by the target ML model on the central server to

perform the model update for the current training iteration t. In (2.1) and (2.2), ϵatk and

ϵdef are pre-defined, fixed scale constants determined by external factors (e.g., transmission

bandwidth). For simplicity, we assume ϵ ≜ ϵatk = ϵdef in our theoretical analysis.

We assume both players know that the target ML model is trained using the widely used

stochastic gradient descent (SGD)4 method which is an iterative 1st-order optimization

scheme. In training iteration t, the model parameters θt are updated via SGD using the

minibatch Dt with step size η:

θt+1 = θt − η ∇θ

∑
xt∈DXt

Lθt(x′′t ) (2.3)

where the loss function Lθ(x) denotes the loss incurred on input x by using the ML

model with parameters θ to predict the ground-truth label y(x) and is assumed to be

smooth (i.e., infinitely differentiable) with respect to θ and x. We focus on white-box

attacks and white-box defenses, that is, in each training iteration t, both players know

the current parameters θt of the target ML model. Nevertheless, the attacker can realize

black-box attacks by training a local surrogate model which follows the common practice

3Let ∥ · ∥ denote the L2 norm which is chosen to simplify the theoretical analysis. Some previous
works [Goodfellow et al., 2015, Szegedy et al., 2014] use the L∞ norm instead: ∥δt(xt)∥∞ ≤ 1 can be
easily adapted from ∥δt(xt)∥ ≤ 1 by replacing e⃗(·) with the sign function.

4In practice, using a momentum-based optimizer can better ensure training convergence (Ap-
pendix A.1.1.1).

20



2.2. PROBLEM FORMULATION

in black-box attacks [Papernot et al., 2016]. On the other hand, since the defender is with

the central server, we assume that it always performs white-box defenses. We provide

experimental results using black-box attacks (Chapter 2.5) and include more details in

Chapter 2.5.5.

The game between the non-targeted attacker and the defender can be formulated as a

zero-sum extensive-form game which consists of a number of repetitions of some base

games, as illustrated in Fig. 2.1. Every base game corresponds to one iteration of the

model training, in which both players modify the minibatch data once. Given that the test

set is not known, the attacker tries to maximize the following utility (empirical risk) which

the defender attempts to minimize and is a sum of base game utilities over T iterations:

∑T−1
t=0 Ut s.t. Ut ≜

∑
z∈DXval

[
Lθt+1(z)− Lθt(z)

] (2.4)

where DXval denotes the inputs of the validation set Dval. To understand (2.4), Ut is the

increment in the validation loss in iteration t while its sum over T iterations is equivalent

to the final validation loss after training is completed. Unfortunately, directly solving this

extensive-form game in (2.4) is infeasible mainly due to the following two reasons: (a)

The strategy spaces are infinite. (b) In iteration t, both players may not have access to the

future minibatches in iterations t+ 1, . . . , T − 1, which makes it difficult to reason about

the future utilities Ut′ for t′ = t + 1, . . . , T − 1. These issues hinder the use of existing

approaches (such as counterfactual regret minimization and backward induction) to solve

this extensive-form game. Therefore, we adopt a more practical solution by disentangling

the game across different iterations. That is, we assume that in every iteration t, both

players greedily optimize the base game utilities Ut.

To simplify notations, we assume each minibatch to be of size one, i.e., DXt = {xt}.

Nevertheless, our analysis can be trivially generalized to each minibatch being of size

more than one, as shown in Appendix A.2.4. Note that in iteration t, θt is known and Ut
depends on x′′t through θt+1 following the model update (2.3). Therefore, we denote it as a

21



2.2. PROBLEM FORMULATION

function of x′′t : Ut(x′′t ). The greedy approach solves the following base game in iteration t,

which is also zero-sum:

Attacker: maxδt(xt):∥δt(xt)∥≤1 Ut(x′′t ) ,

Defender: maxσt(x′t):∥σt(x′t)∥≤1 −Ut(x′′t ) .
(2.5)

To avoid confusion, we emphasize that the training set is where the minibatch is sampled

from and perturbed, the validation set is clean and public, and the test set is clean and

unknown to both players. In our experiments, we evaluate their performance using

the test accuracy. To allow both players to evaluate their utilities, we assume that a

public validation set Dval is available to both players. However, in practice, the attacker

can evaluate its utility even if Dval is unknown, i.e., simply by replacing Dval with

the known Dt which is sampled from the same data distribution [Feng et al., 2019].

Such details and experimental results are in Appendix A.1.2.3. In contrast, the known

validation set Dval is required by the defender since it does not have access to the

clean minibatches. This is in the same spirit as the works on adversarial defense with

data sanitization [Li and Ji, 2019, Meng and Chen, 2017, Samangouei et al., 2018] which

assume that the defender has clean data for training the de-noising models. These defense

methods reform the perturbed inputs towards the distribution of clean inputs using an

auto-encoder [Meng and Chen, 2017], a variational auto-encoder (VAE) [Li and Ji, 2019],

or a generative adversarial network (GAN) [Samangouei et al., 2018]. In contrast, instead

of naively reforming the perturbed inputs using a de-noising model, our defender aims at

directly reducing the validation loss in a principled way. Empirical evaluations show that

our defender can potentially outperform perfect reconstruction (Chapter 2.5.3).

2.2.1 Connections with Adversarial Training

In adversarial training, the attacker is playing against a level-0/null-strategy defender under

our R2T2 framework. In general, most adversarial training methods [Goodfellow et al., 2015,
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Kurakin et al., 2017, Li et al., 2018, Madry et al., 2018, Miyato et al., 2019, Singla and Feizi, 2020,

Tramèr et al., 2018] share the following utility function of the attacker to be maximized:

Attacker: maxδt(xt):∥δt(xt)∥∞≤1

[
Lθt(x′t)− Lθt(xt)

]
whose utility function is different from Ut(x′′t ) (2.5) in our framework. A key difference

with adversarial training is that their utility function neglects the effect of training (i.e.,

no θt+1 involved). This approximation is justified in their setting since test-time attacks,

which they are defending against, occur only on the trained “static model”. Therefore, in

every base game of adversarial training, the attacker simulates such a test-time attack to

the particular model instance in that base game.

2.3 Recursive Reasoning-based Training-Time Adversar-

ial ML (R2T2)

This section introduces the R2T2 framework which makes use of the level K (LK) model

to solve the game shown in (2.5) through recursive reasoning. In this framework, a level-0

player plays a null strategy and a level-k ≥ 1 player chooses its strategy by best-responding

to the level-(k − 1) opponent. We associate the cognitive limit and hence the reasoning

level of the attacker or defender with the highest order of gradient that can be computed by

the player:

Assumption 2.1 (Cognitive limit). A level-k player can calculate and utilize at most

the k-th-order gradients of the target ML model when deriving its strategy (i.e., the

player can only calculate mixed partial ∇a
θ∇b

xLθ(x) where a, b ≤ k), and assumes all

higher-than-k-th-order gradients (a > k or b > k) to be 0.

Under Assumption 2.1, we can formally define the LK model for the R2T2 framework

and illustrate it in Fig. 2.2:
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Level 0 Level 1 Level 2

best-responds

1st-order 
gradient

1st-, 2nd-order  
gradients
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1st-order 
gradient

Figure 2.2: Illustration of how a level-k = 0, 1, 2 attack strategy is computed under the
LK model for the R2T2 framework.

Definition 2.1 (LK). A level-k ≥ 1 player best-responds to the level-(k − 1) opponent by

solving (2.5) using the k′-th-order gradients of the target ML model for all k′ ≤ k.

This notion of cognitive limit preserves the inherent relationship in the LK model

between the required computational resources and performance: As k increases, the

performance of the level-k strategy is likely to improve. However, this requires greater

computational resources to derive the level-k strategy since the cost of computing the

k-th-order gradient grows exponentially in k. As an analogy, second-order optimization

techniques usually have a better convergence guarantee than first-order ones but require

more computations. Such a relationship will be explored in our experiments in Chapter 2.5.3.

Note that although a level-k player best-responds to the level-(k − 1) opponent’s strategy,

the player can perform effectively (a) even if the opponent does not reason at level k − 1

but a lower level or (b) when the opponent does not follow our recursive reasoning

framework and instead adopts some existing attack/defense baselines, as demonstrated in

our experiments (Chapter 2.5). In the subsections to follow, let the level-k attack (2.1) and

defense (2.2) strategies be denoted by δkt (xt) and σkt (x′t), respectively. Similarly, let their

optimal strategies be denoted by δk∗t (xt) and σk∗t (x′t), respectively.

2.3.1 R2T2 Level-0 (Null) Strategies

A level-0 player asserts that the model parameters are not updated (i.e., θt+1 = θt) since

all gradients are 0 due to Assumption 2.1 (i.e., ∇θLθt(x′′t ) = 0). So, both players think
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their utilities are constants. Without loss of generality, we assume that both players play

the null strategies: δ0∗t (xt) ≜ 0 and σ0∗
t (x′t) ≜ 0 which correspond to no attack/defense.

In fact, the level-0 strategies can be arbitrary (e.g., random noise) and do not affect the

functional form of the higher level-k ≥ 1 strategies under our R2T2 framework, as proven

in Appendix A.2.1.

2.3.2 R2T2 Level-1 Strategies

Theorem 2.1 (R2T2 Level-1 strategies). The optimal level-1 attack and defense strategies

are5

δ1
∗

t (xt) = e⃗
(
∇xUt(xt)

)
, σ1∗

t (x
′
t) = −e⃗

(
∇xUt(x′t)

)
(2.6)

where e⃗(·) outputs the unit vector of its input and

∇xUt(x) = −η Bx
θt

[∑
z∈DXval

∇θLθt(z)
]
,

Bx
θt
≜ [∇x∇θLθt(x)]⊤.

(2.7)

Its proof is in Appendix A.2.1. Theorem 2.1 suggests that the optimal level-1 strategies

follow from linearizing the utility functions, as implied by the linearized loss function under

Assumption 2.1. The deep confuse (DC) strategy [Feng et al., 2019] can be interpreted

as a variant of our level-1 attack strategy. Specifically, it trains an auto-encoder to learn

an averaged δ1∗t over t = 0, . . . , T − 1 (or, equivalently, over the trajectory of model

training), which makes their attack strategy independent of t. DC also differs from R2T2 by

assuming access to the entire training set and not a known validation setDval. An advantage

of DC is that their strategy can be computed using the auto-encoder without explicit

gradient calculation. Its downside is that every trial (500 trials in total) of the auto-encoder

training requires a full trajectory of model training which includes T iterations of gradient

calculation and is hence time-consuming.

5Unless otherwise stated, the gradient of a scalar and the vectors are all column vectors.
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Some well-known adversarial training methods can be interpreted as level-1 attack

strategies: (a) fast gradient sign method (FGSM) perturbing inputs with first-order

gradient-based attacks [Goodfellow et al., 2015], and (b) adversarial transformation net-

work learning δ1∗t with first-order information [Baluja and Fischer, 2018].

2.3.3 R2T2 Level-2 Strategies: Special Case of ϵ→ 0

Level-2 players are capable of computing the Hessian Hθt ≜
∑

z∈DXval
∇2
θLθt(z) with

respect to θ.

Theorem 2.2 (R2T2 Level-2 strategies). The optimal level-2 attack and defense strategies

as ϵ approaches 0 are

lim
ϵ→0

δ2
∗
t (xt)=−e⃗

(
Bxt
θt

[ ∑
z∈DXval

∇θLθt(z)−ηHθt∇θLθt(xt)
])
,

lim
ϵ→0

σ2∗
t (x

′
t)= e⃗

(
B
x′t
θt

[ ∑
z∈DXval

∇θLθt(z)−ηHθt∇θLθt(x′t)
])
.

Its proof (Appendix A.2.2) utilizes the idea that since the search space has a bounded

L2 norm and a level-2 player assumes the k-th-order gradients to be 0 for all k ≥ 3

(Assumption 2.1), finding the optimal level-2 strategy of a player can be framed as a

constrained quadratic programming problem and is tractable as ϵ approaches 0.

2.3.3.1 Optimal Contraction (OC) & Connections with Influence Function Attacks

(IF)

A further insight on our level-2 attacker can be drawn when the Hessian Hθt is positive

definite. In this case, optimal attacker’s parameters θ⋆ ≜ argmaxθ
∑

z∈DXval
Lθ(z) exist

such that the attacker achieves maximum validation loss since now
∑

z∈DXval
Lθ(z) is a

convex polynomial of θ (due to cognitive limit, a level-2 player visualizes the loss function

as a second-order polynomial). So, instead of optimizing the base game utility (2.5),

the attacker can choose to directly minimize ∥θt+1 − θ⋆∥ in each iteration t to make
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the parameters of the target ML model move close to θ⋆. In the ideal case where θ⋆ is

finally reached (i.e., ∥θT − θ⋆∥ = 0), the attacker achieves maximum extensive-form game

utility (2.4). In this sense, the attacker is said to perform the optimal contraction (OC)

strategy:

Corollary 2.1 (Optimal contraction attack). Suppose that Hθt is positive definite and

attacker is at level 2. The OC strategy δOC
t (xt) ≜ argminδt(xt):∥δt(xt)∥≤1 ∥θt+1 − θ⋆∥ as ϵ

approaches 0 is

lim
ϵ→0

δOC
t (xt)=−e⃗

(
Bxt
θt

[
H−1
θt

∑
z∈DXval

∇θLθt(z)−η∇θLθt(xt)
])
.

Its proof is in Appendix A.2.2. Interestingly, the IF strategy [Koh and Liang, 2017]

also assumes a positive definite Hessian and adopts a similar attack strategy as OC:

δIF
t (xt) ≜ −e⃗

(
Bxt
θt

[
H−1
θt

∑
z∈DXval

∇θLθt(z)
])
. (2.8)

It has been shown that IF is suitable for data poisoning [Koh and Liang, 2017]. In fact,

IF can also be used directly for training-time attacks. By comparing (2.8) with Corol-

lary 2.1, IF can be viewed as an approximation of OC by ignoring the ηBxt
θt
∇θLθt(xt) =

(η/2)∇x∥∇θLθt(xt)∥2 term. Mathematically, this term tends to reform the input to increase

the norm of model gradients ∥∇θLθt(xt)∥2. This is indeed observed in our experiments

and we discover that the addition of this term can potentially further intervene the training,

thus resulting in slightly better attacks.

However, OC and IF are restrictive in two aspects: (a) They require the existence of

θ⋆ and access to its tractable expression, which is only guaranteed with a level-2 attacker

and a positive definite Hessian. (b) Even with access to a tractable expression of θ⋆, OC

and IF may not reach θ⋆ in the long run because the defender (i.e., if it reasons at level

k ≥ 1) or the model training itself may undo the contraction, thus potentially increasing

∥θt+1 − θ⋆∥ over t even though the attacker tries to minimize it. So, our level-2 attack
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strategy in Theorem 2.2 is more general since it does not require the existence of (or any

knowledge about) θ⋆. An extensive empirical comparison in Chapter 2.5.2 shows that our

level-2 attack strategy is indeed more effective. During implementation, we follow the

work of [Koh and Liang, 2017] and approximate the Hessian via conjugate gradients. A

few adversarial training methods [Li et al., 2018, Miyato et al., 2019] can be classified as

second-order attack strategies (albeit based on a different utility function (Chapter 2.2.1)

and without accounting for defense) and approximate the calculation of the Hessian by

power iterations.

2.3.4 R2T2 Level-k ≥ 2 Strategies

Deriving the optimal level-k ≥ 2 strategies requires finding the optimum of k ≥ 2-th-order

polynomials with constraints, which is generally intractable. Calculating the optimal higher-

level strategy tractably may not be of practical interest since it involves the computation of

higher-order gradients, which is time-consuming for modern deep learning models due to

huge no. of parameters. So, we resort to approximation methods to solve for level-k ≥ 2

strategies. Some previous works can be viewed as heuristics to approximate higher-level test-

time attacks by projected gradient descent (PGD) [Kurakin et al., 2017, Madry et al., 2018]

that do not account for defenses.

In this subsection, we propose different training-time PGDs to approximate the optimal

level-k ≥ 2 attack and defense strategies under our R2T2 framework. We show that the

convergence of our PGDs can be guaranteed under convexity and other mild conditions

and the number of PGD steps required to approximate the optimal level-k ≥ 2 strategy to

a constant accuracy is exponential in k.

Remark 2.1 (Attacker’s nested PGD (NPGD)). The following NPGD approximates the

optimal level-k ≥ 2 attack strategy δk∗t at input xt with δ[i] and starts from PGD step i = 0

with δ[0] = σ[0] = 0:
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δ[i+1] = Proj
(
δ[i] + (Γk/ϵ)∇xUt

(
x′[i] + ϵ σ[i]

))
,

σ[i+1] = Proj
(
σ[i] − (Γk−1/ϵ)∇xUt(x′′[i+1])

) (2.9)

where x′[i] ≜ xt + ϵ δ[i], x′′[i+1] ≜ x′[i+1] + ϵ σ[i], Γk defines the step size to approximate

δk
∗
t , Proj(x) ≜ e⃗(x) ×min(∥x∥, 1) is a projection to ensure ∥δ[i+1]∥, ∥σ[i+1]∥ ≤ 1, and

∇xUt(x) is given in (2.7). For image inputs in our real-world experiments, we also ensure

that the pixel values are within the valid range at all time.

Remark 2.2 (Defender’s PGD). The following PGD approximates the optimal level-k ≥ 2

defense strategy σk∗t at input x′t with σ[i] and starts from PGD step i = 0 with σ[0] = 0:

σ[i+1] = Proj
(
σ[i] − (Γk/ϵ)∇xUt(x′′[i])

)
(2.10)

where x′′[i] ≜ x′t + ϵ σ[i].

By comparing (2.9) and (2.10), it can be observed that the attacker follows a more

complicated PGD because in each iteration t, the attacker adds its perturbations first and

hence does not observe how the defense strategy (which adapts to the attacks) transforms

the perturbed inputs in the same iteration. This then requires the attacker to additionally

know the level-(k−1) defense strategy σ(k−1)∗

t to perform PGD, which cannot be computed

analytically in practice. So, it utilizes our proposed NPGD which approximates σ(k−1)∗

t

with σ[i] by recursively reasoning about the defender’s behavior (i.e., second PGD step

of (2.9)).

Theorem 2.3 (Convergence of defender’s PGD). Suppose that Ut(x) is a convex

function of x. Then, there exists a constant M such that by setting the step size

Γk ≜ 1/[M2k2(1 + 2Mϵ)k−2], the defender’s PGD (2.10) has the following convergence

guarantee in PGD step i:

∣∣Ut(x′t + ϵ σ[i]
)
− Ut

(
x′t + ϵ σk

∗

t (x
′
t)
)∣∣ ≤ 2ϵ2/(Γki) .
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Furthermore, if Ut(x) is µ−strongly convex, then

∥∥σ[i] − σk∗t (x′t)∥∥ ≤ exp(−µΓki) .

Its proof is in Appendix A.2.3 and builds upon that for the convergence guarantee

of PGD [Nesterov, 2018]. If the attacker’s approximation of σ(k−1)∗

t is accurate, then the

attacker’s NPGD enjoys a similar guarantee as the defender’s PGD (Appendix A.2.3). A

key ingredient for deriving Theorem 2.3 is Assumption 2.1 which turns out to constrain

the smoothness of the loss function at a particular reasoning level. Note that the convexity

assumptions are not guaranteed to hold in practice. However, they are only adopted for the

purpose of the theoretical analysis and thus not strictly required in practice for our PGD to

deliver an effective performance.

Setting the step size and number of PGD steps. The convergence guarantee indicates

that a desired accuracy can be achieved with a step size of Γk ≜ 1/[M2k2(1 + 2Mϵ)k−2]

in i = O(k2(1 + 2Mϵ)k) PGD steps where M is a small constant that can be estimated

heuristically (Appendix A.2.3.2). In our experiments, we thus approximate the optimal

level-k attack and defense strategies, respectively, through (2.9) and (2.10) by heuristically

estimating M and setting the number of PGD steps according to Appendix A.2.3.2. When

Γ1 ≜∞, performing 1 step of the attacker’s NPGD and defender’s PGD exactly recovers

the level-1 strategies in Theorem 2.1. Both the attacker’s NPGD and the defender’s PGD

can be computed for all the inputs of the minibatch in parallel using modern deep learning

libraries.

2.3.5 Unifying Existing Adversarial ML Methods under our R2T2

Framework

Table 2.1 shows how our R2T2 framework can unify various existing adversarial ML

methods and classify them as attackers or defenders with different reasoning levels.
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Table 2.1: Unifying existing adversarial ML methods under our R2T2 framework which
classifies them as attackers or defenders with different reasoning levels. Level-k (i.e.,
last row) means that the method is not restricted to a specific reasoning level. The
methods marked with * can be easily adapted to the setting of training-time adversarial
ML considered in our work here, while the methods marked with † explicitly consider
adversarial defense.

Reasoning
Level of
Attacker

Reasoning
Level of
Defender

Adversarial ML Method Perturbation
Constraint Original Paradigm

1 0 DC [Feng et al., 2019]* L∞ Training-time attack
0 FGSM [Goodfellow et al., 2015] L∞ Test-time attack
0 ATN [Baluja and Fischer, 2018] Any Test-time attack
k defense-GAN [Samangouei et al., 2018]*† Any Test-time defense

2 0 IF [Koh and Liang, 2017]* L2 Data poisoning

0
VAT [Miyato et al., 2019],
S-O [Li et al., 2018],
CRT [Singla and Feizi, 2020]

L2 Adversarial training

k 0 FGSM-PGD [Kurakin et al., 2017],
FGSM-PGD [Madry et al., 2018] L∞ Adversarial training

k R2T2 (Ours) L2 Training-time attack/defense

2.4 A Synthetic Experiment
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Figure 2.3: Behaviors of level-1 and level-2 players when the original updated model
parameters θt+1 (i.e., not subject to attack/defense) (a) undershoots and (b) overshoots the
optimal parameters θ∗. (c) shows mean test loss after 30 training iterations.

We first use a synthetic experiment to show that by reasoning at a higher level, a player

is able to find a better strategy by behaving more intelligently. We consider the game

of a linear regression task with the ground truth model y(x) = θ∗⊤x and squared error

loss function Lθt(x) = ∥θ⊤t x − θ∗⊤x∥2. In iteration t, the attacker intends to increase

∥θt+1 − θ∗∥ to prevent the model from learning the optimal parameters θ∗; meanwhile,

the defender attempts to decrease it. In this experiment, the optimal level-1 and level-2
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strategies can be computed tractably.6 The results reveal that when the original updated

model parameters θt+1 (i.e., not subject to attack/defense) undershoots θ∗ (Fig. 2.3a), both

level-1 and level-2 attackers (defenders) behave correctly since both attackers (defenders)

learn to move θt+1 away from (towards) θ∗. However, in the more challenging scenario

where θt+1 overshoots θ∗ (Fig. 2.3b), only the level-2 attacker (defender) is able to increase

(decrease) the distance between θt+1 and θ∗, while the level-1 attacker (defender) fails,

as explained in Appendix A.1.2.1. Interestingly, in this experiment, Nash equilibrium

is attained from level 2 onwards, i.e., every optimal level-k ≥ 2 strategy is the Nash

equilibrium strategy (Appendix A.1.2.1). Fig. 2.3c reveals the benefit of reasoning at a

higher level. Fig. 2.3c also shows that when the opponent’s level is fixed at 0, reasoning

at a higher level (2 instead of 1) still brings benefit, although the gain diminishes (i.e.,

proceeding from level 1 to 2 offers less marginal benefit than from progressing level 0 to

1).

2.5 Real-world Experiments and Discussion

Table 2.2: Mean test accuracy (%) ± 1 standard deviation (i.e., over 5 runs) for attacks
against level-0 and level-1 defenders.

MNIST CIFAR-10 CIFAR-100

Attacker
Defender (Ours) Level-0 Level-1 Level-0 Level-1 Level-0 Level-1

No attack 98.8 ± 0.5 97.2 ± 0.8 74.8 ± 3.5 71.4 ± 2.2 55.4 ± 1.3 56.4 ± 1.9
FGSM-PGD [Madry et al., 2018] 80.5 ± 2.2 91.3 ± 4.5 45.6 ± 1.7 57.4 ± 2.6 40.5 ± 2.9 44.6 ± 3.8
CW [Carlini and Wagner, 2017] 75.4 ± 4.9 92.8 ± 3.2 50.7 ± 2.7 63.4 ± 3.7 38.4 ± 2.5 43.8 ± 3.6

YOPO [Zhang et al., 2019] 87.5 ± 2.3 94.0 ± 3.8 45.2 ± 4.3 57.0 ± 2.5 39.6 ± 2.5 42.9 ± 4.9
DC [Feng et al., 2019] 28.5 ± 6.4 96.1 ± 1.9 24.7 ± 5.6 62.5 ± 5.3 19.6 ± 6.6 43.1 ± 3.9

Level-1 (Ours) 9.5 ± 2.9 94.8 ± 2.8 17.1 ± 3.2 55.3 ± 4.0 7.6 ± 1.5 42.8 ± 5.2
Level-1 black-box (Ours) 11.7±2.2 95.5±1.7 15.8±2.7 60.9±5.9 7.9±1.9 44.2 ± 3.1

We perform real-world experiments on MNIST, CIFAR-10/100, and a sub-sampled

2-class ImageNet dataset (2000 images of size 256 × 256 × 3 each) of owl and jellyfish.

All inputs are images whose pixel values lie within [0, 1]. For MNIST, CIFAR-10, and

6More details, including the tractable expressions of the optimal attack/defense strategies, are provided
in Appendix A.1.2.1.
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ImageNet, we set ϵ to be 3, 2, 4;7 minibatch size to be 500, 400, 100; target ML model

to be convolutional neural networks (CNN) with around 0.1M, 1M, and 1M parameters,

respectively. We split 5000 images from the training data of MNIST and CIFAR, and

250 images from the ImageNet to serve as the validation set for each task. For other

methods under comparison, we normalize their perturbations (transformations) to enforce

the bounded L2 norm constraint. Appendix A.1.1 gives more details on the network

architectures, hyperparameter settings, among others. Besides the real-world experiments,

we have also conducted a synthetic experiment (Appendix 2.4) which has tractable Nash

Equilibrium strategies to demonstrate that by reasoning at a higher level, a player is able to

find a better strategy by behaving more intelligently.

2.5.1 R2T2 Level-1 Strategies

R2T2 Level-1 Attack. We compare the performance of our level-1 attack against that of

other attack methods including test-time attack/adversarial training baselines of FGSM-

PGD [Madry et al., 2018], CW [Carlini and Wagner, 2017], and YOPO [Zhang et al., 2019],

and the training-time attack baseline of DC [Feng et al., 2019]. For FGSM-PGD, we

perform 5 PGD steps in total. For CW, we have followed its original implementation (with

L2 constraint and hinge loss on logits). For YOPO, we have implemented YOPO-5-3.

Baselines (except DC) are not designed for training-time attack and thus do not attack

well even if against a null-strategy defender, as shown in Table 2.2. Our level-1 attack

outperforms the other tested attack methods and decreases the test accuracy considerably in

most cases (Table 2.2 and Fig. 2.4a), except when against our level-1 defender on MNIST.

The results on CIFAR-10 (Table 2.2) shows that our black-box level-1 attacks (Chapter 2.2)

can potentially outperform our white-box attacks, which agrees with recent discoveries on

test-time attacks [Tramèr et al., 2018]. In Fig. 2.4a, note that DC achieves better attack

performance in the early iterations (<50 epochs) because its attacker is pre-trained using

7An image perturbation/transformation scaled by ϵ = 3, 2, 4 for MNIST, CIFAR, and Imagenet has an
equivalent boundedL2 norm as that under the boundedL∞ norm constraint scaled by ε = 0.107, 0.036, 0.009,
respectively.
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(a)

(b) (c)

Figure 2.4: (a) Learning curves for various attacks on MNIST against level-0 defender,
and test accuracy for our level-1 attack on MNIST with varying ϵatk against (b) level-0
and (c) level-1 defenders. Lower accuracy reflects better attack performance. Error bars
indicate standard deviations over 5 runs.
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(a)

(b) (c)

Figure 2.5: (a) Learning curves for various defenses on MNIST against level-1 attacker,
and test accuracy for our level-1 defense on MNIST with varying (b) ϵdef and (c) size of
validation set known to the defender. Higher accuracy reflects better defense performance.
Error bars indicate standard deviations over 5 runs.

the entire training dataset before the game starts. Figs. 2.4b and 2.4c show that ϵatk should

not be too small for the attacker to deliver effective attacks and a level-1 defense will

require ϵatk to be increased for the attacker to achieve similar attack effectiveness.

R2T2 Level-1 Defense. Under level-1 attack, we compare the performance of our level-1

defense with that of the other defense methods such as defense-VAE [Li and Ji, 2019],

defense-GAN [Samangouei et al., 2018], and defense-CVAE where we replace the VAE by

a conditional VAE (CVAE). The generative models of those defense baselines (implemented

with CNN) are trained on the known validation set. The GAN is carefully tuned to avoid

severe mode collapse.

The results are shown in Fig. 2.5a. Our level-1 defense strategy is proven to be effective

and largely outperforms existing methods, and it is also effective when defending against
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Figure 2.6: Test accuracy of (a) binary classifier and (b) CNN classifier for 3 different
level-2 attack methods, and (c) gradient norm

∑
x∈Dt ∥∇θLθt(x)∥2 for CNN classifier. The

shaded regions indicate standard deviations over 10 runs.

the other attack methods (Table 2.2). Fig. 2.5b shows that ϵdef should be in a scale similar

to ϵatk to achieve good defense performance, and further increasing ϵdef may result in slight

overfitting to the validation set. Fig. 2.5c shows that when a much smaller validation set is

used, overfitting to the validation set can also be observed.

2.5.2 Level-2 Attacks: R2T2 Level-2, OC, and IF

We examine three attacks discussed in Chapter 2.3.3: our R2T2 level-2 attack (Theorem 2.2),

its variant called OC, and IF [Koh and Liang, 2017]. We first attack the training of a

binary logistic regression classifier on a subsampled MNIST dataset of digits 1 vs. 7. This

is a proof-of-concept experiment where the Hessian of the model is guaranteed to be

positive definite. We then attack the training of a CNN (10-class) where the Hessian is not

guaranteed to be positive definite.

It can be observed from Fig. 2.6 that IF and OC perform nearly identically for binary

classification but differently for CNN. As analyzed in Chapter 2.3.3, IF ignores the “gradient

increment” term (η/2)∇x∥∇θLθt(x)∥22 and thus results in a smaller gradient norm in the

CNN experiment (Fig. 2.6c), which potentially explains why IF is outperformed by OC.

R2T2 level-2 attack outperforms OC and IF as we expected (Chapter 2.3.3). Though

the performance improvement is already noticeable in binary classification, our R2T2

level-2 attack outperforms OC and IF by an even larger margin in CNN, potentially because
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our R2T2 level-2 attack is not subject to the constraint of a positive definite Hessian, as

explained in Chapter 2.3.3.

2.5.3 R2T2 Level-k Strategies

We investigate further using CIFAR-10 and ImageNet. We approximate the optimal level-k

attack and defense strategies, respectively, through (2.9) and (2.10) by heuristically setting

the number of PGD steps according to Appendix A.2.3.2. From Fig. 2.7a, inspection of a

specific column or row reveals that reasoning at a higher level can still bring benefit even if

against a fixed-level opponent. From Fig. 2.7b, it is more evident that in such a game, the

marginal benefit of reasoning at a higher level quickly diminishes as a player’s reasoning

level goes beyond 1 (e.g., level-1 defender can improve over level 0 by 28% accuracy but

level-4 defender can only improve over level 3 by 1%). Meanwhile, Fig. 2.7b also shows

that the time needed to compute a higher-level strategy increases significantly with the

level, which is in accordance with our theoretical analysis in Chapter 2.3.4. This implies

that in practice, a player can only gain limited marginal benefit by executing significantly

more steps of NPGD/PGD.

From the first row of Fig. 2.7c, we can observe that even if against a null-strategy

attacker, a level-k ≥ 1 defender improves test accuracy over a null-strategy defender, thus

implying that our defense mechanism can potentially outperform perfect reconstruction

(i.e., level-0 attacker vs. level-0 defender). This is indeed true as the defense alone can

make the training process robust and improvement in the test accuracy can be due to

the defender utilizing the clean validation set as an “augmentation” to the training data.

Such a phenomenon is not always obvious on simple datasets like MNIST (Table 2.2)

or CIFAR-10 (Fig. 2.7a), but is also observed in the more complex dataset CIFAR-100

(Table 2.2). The first row of Fig. 2.7d shows that the defense sometimes negates the attack’s

perturbation (in our visualization, green is the negation of purple), while the second row

shows that the defense is sometimes more abstract to interpret. More visualizations are

provided in Appendix A.1.2. The relationship between test accuracy and time needed to
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Figure 2.7: (a) Mean test accuracy (%) on CIFAR-10. (b) Graph of mean accuracy
improvement (over null strategy) vs. time needed to compute the strategies given a
minibatch of CIFAR-10. (c) Mean test accuracy for 2-class ImageNet. (d) From left to
right are visualizations of the original sampled images from ImageNet, perturbations from
level-1 attacks, and transformations from level-1 defenses, respectively (color rescaled for
viewing).

compute the strategies for ImageNet and MNIST, and a table of test accuracy for MNIST

are also provided in Appendix A.1.2, both of which show similar trends to the above.

2.5.4 A Generalization to Targeted Attacks

We also investigate the case when the attacker is targeted. The first scenario is the conversion

attack where the attacker intends to misguide the classifier model into outputting a targeted

label during test time. The attacker’s utility function can be represented as U⋆t and the

base game becomes

Attacker: max
δt(xt):∥δt(xt)∥≤1

U⋆t (x′′t ) ,

Defender: max
σt(x′t):∥σt(x′t)∥≤1

−Ut(x′′t ) .
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where U⋆t ≜
∑

z∈DXval

[
L⋆θt+1

(z)− L⋆θt(z)
]

and L⋆θt(z) is the loss incurred if the prediction

of z is not the targeted label. Note that we assume that the defender is not targeted and just

wants to improve the test performance, hence adopting the same utility function as (2.5).

For the results in Table 2.3, we evaluate the performance of the attack by the conversion

rate, that is, how many test predictions (whose ground-truth is not the targeted label)

are successfully turned into the targeted label. Interestingly, it can be observed that

the conversion attack on MNIST is not very successful but is relatively successful on

CIFAR-10, and the level-1 defender (even when it has a general utility function) can

drastically reduce the success rate of the conversion attack.

Table 2.3: Mean attack conversion rate (%) ± 1 standard deviation (i.e., over 5 runs) for
targeted attacks against level-0 and level-1 defenders. The higher the better.

MNIST CIFAR-10

Attacker
Defender Level-0 Level-1 Level-0 Level-1

Level-1 23.7±9.6 2.8±2.3 78.1±3.0 15.7±9.7

Another targeted attack scenario is the evasion attack where the attacker’s goal is to

guide the model into not outputting a correct targeted label during test time. So now,

L⋆θt(z) is the loss incurred if the prediction of z, whose ground truth is the targeted label,

is correct.

For the results in Table 2.4, we evaluate the performance of the attack by the evasion

rate, that is, how many test predictions (whose ground truth is the targeted label) are

successfully turned into another label. Again, it can be observed that the evasion attack

on CIFAR-10 is much more successful than on MNIST, possibly because it is easier to

train well with MNIST to yield a more robust model against such attacks, and the level-1

defender (even when it has a general utility function) can largely reduce the success rate of

the evasion attack.
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Table 2.4: Mean attack evasion rate (%) ± 1 standard deviation (i.e., over 5 runs) for
targeted attacks against level-0 and level-1 defenders. The higher the better.

MNIST CIFAR-10

Attacker
Defender Level-0 Level-1 Level-0 Level-1

Level-1 37.5±12.0 14.4±10.3 98.1±0.8 20.4±13.4

2.5.5 A Generalization to Black-Box Attack Scenario

We examine a different scenario where the model parameters and the model architecture

are not known to the attacker. Attacks under such scenario are known as black-box attacks.

To realize black-box attacks, we assume the attacker possesses the entire training dataset.8

This is a common assumption so that the attacker can train a local model to reason about

the training process.

Before the game starts, the attacker trains a local model θ⋆t for t = 0, . . . , T ′, and

meanwhile the attacker performs our level-k white-box attacks on the local model during

training. The whole process lasts until the attack performance (i.e., validation loss) on the

local model converges and the final perturbation δk∗T ′ (x) on every input x in the training

dataset is recorded down. During the game, when a minibatch (i.e., selected from the

same dataset that the attacker possesses) is being transmitted to the central server, the

attacker identifies each input xt in the minibatch and adds a corresponding perturbation

δk
∗

T ′ (xt) based on its record; if the training uses a different training dataset from the dataset

that the attacker possesses and xt is not in the record, then the attacker can compute the

perturbation using our white-box attack strategy by setting θt = θ⋆T ′ . We refer to such

attack as transferred attack. On the other hand, since the defender is on the central server,

we assume the defender always knows the true model parameter. Thus the defender always

conducts white-box defenses.

The results are reflected on Table 2.5. And the result on CIFAR-10 shows that the

black-box attacks could potentially outperform the white-box attacks.

8The training dataset that the attacker possesses does not need to be the same as the training data used for
actual model training, but is assumed to be from the same underlying distribution.
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Table 2.5: Mean test accuracy (%) ± standard deviation (5 runs) for attacks against
level-0&1 defenders.

MNIST CIFAR-10

Attacker
Defender Level-0 level-1 Level-0 level-1

Transferred level-1 11.7±2.2 95.5±1.7 15.8±2.7 60.9±5.9

2.6 Conclusion

We proposed a principled Recursive Reasoning-based Training-Time adversarial ML

(R2T2) framework to model the game between the attacker and the defender and captures

their bounded reasoning capabilities (due to bounded computational resources) through the

recursive reasoning formalism. Our R2T2 framework encompasses a variety of existing

adversarial ML methods which correspond to attackers (defenders) with different recursive

reasoning capabilities. We show how an R2T2 attacker (defender) can utilize our proposed

nested projected gradient descent-based method to approximate the optimal attack (defense)

strategy at an arbitrary level of reasoning. R2T2 empirically achieves state-of-the-art

attack and defense performances on benchmark image datasets.

In this chapter, gradient first arises as a natural regularization, such that a deeper

level of recursive reasoning is associated with the use of a higher-order gradient to derive

the attack (defense) strategies. Then the first-order gradient is calculated and utilized to

approximate the optimal strategies in our proposed nested projected gradient descent-based

method. Such approximation can be viewed as an optimization, since conducting more

steps of nested projected gradient descent yields a more optimal (higher level) strategy. In

the following chapter, we shall see that a design of model architecture that allows more

efficient gradient back-propagation can largely alleviates optimization difficulties, which is

a clearer application of utilizing the gradient to achieve effective optimizations.
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Chapter 3

Implicit Posterior Variational Inference

with Gradient-bridging Design for Deep

Gaussian Processes

3.1 Background and Preliminary

Gaussian process (GP) [Rasmussen and Williams, 2006] is a Bayesian non-parametric

model whose expressive power can be significantly boosted by composing them hi-

erarchically into a multi-layer deep GP (DGP) model, as shown in the seminal work

of [Damianou and Lawrence, 2013]. The DGP model usually exploits the notion of in-

ducing variables [Quiñonero-Candela and Rasmussen, 2005] to improve its scalability to

large dataset, which introduces the inducing inputs (learnable parameters) as a representa-

tion/summarization of the dataset, and models the belief of the corresponding inducing

output. Our recently developed implicit posterior variational inference (IPVI) framework

[Yu et al., 2019] is the most advanced inference framework for DGPs that can ideally

recover an unbiased posterior belief and still preserve time efficiency. To do so, IPVI

framework casts the DGP inference problem as a two-player game like in the generative

adversarial networks, in which an unbiased posterior belief can be achieved upon reaching
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3.1. BACKGROUND AND PRELIMINARY

Nash equilibrium.

However, as a generator and a discriminator are integrated in each layer of the DGP, the

training becomes unstable and the performances are unsatisfactory for IPVI. Particularly,

we identified two possible problems: (i) Overfitting due to overly-parameterized generator;

(ii) Optimization difficulties due to the inefficient gradient back-propagation. Ablation

studies are performed, and eventually we identified that the optimization difficulties due to

the inefficient gradient back-propagation is the main obstacle in the realization of our IPVI

framework and algorithm. To this end, we proposed a novel gradient-bridging architecture

to solve such optimization difficulties. We also empirically evaluate the performance of

our novel IPVI architecture on several real-world datasets.

Here we introduce the relevant models (GP, DGP) and the IPVI frameworks as the

preliminary.

Gaussian Process (GP). Let an unknown function f be distributed by a GP with a zero prior

mean and covariance function k. That is, suppose that for some setX of training inputs, a set

y = {yx}x∈X of noisy observed outputs yx ≜ f(x)+ε(x) (i.e., corrupted by an i.i.d. Gaus-

sian noise ε(x)with noise variance ν2) are available. Then, the set fx ≜ {f(x)}x∈X of latent

outputs follow a Gaussian prior belief p(f) ≜ N (f |0,KXX) where KXX denotes a covari-

ance matrix with components k(x,x′) for x,x′ ∈ X. It follows that p(y|f) = N (y|f , ν2I).

The GP predictive/posterior belief of the latent outputs f⋆ ≜ {f(x⋆)}x⋆∈X⋆ for any set

X⋆ of test inputs can be computed in closed form [Rasmussen and Williams, 2006] by

marginalizing out f : p(f⋆|y) =
∫
p(f⋆|f) p(f |y) df but incurs cubic time in the number of

data points, hence scaling poorly to massive datasets. To improve its scalability to linear

time in the number of data points, the sparse GP (SGP) models spanned by the unifying

view of [Quiñonero-Candela and Rasmussen, 2005] exploit a set u ≜ {um ≜ f(zm)}Mm=1

of inducing output variables for some small set Z ≜ {zm}Mm=1 of inducing inputs (i.e.,

M ≪ |X|). Then,

p(y, f ,u) = p(y|f) p(f |u) p(u) (3.1)
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3.1. BACKGROUND AND PRELIMINARY

such that

p(f |u) = N (f |KXZK
−1
ZZu,KXX −KXZK

−1
ZZKZX)

where u is treated as a column vector here, KXZ ≜ K⊤
ZX, KZZ and KZX denote

covariance matrices with components k(zm, zm′) for m,m′ = 1, . . . ,M and k(zm,x) for

m = 1, . . . ,M and x ∈ X, respectively. The SGP predictive belief can also be computed

in closed form by marginalizing out u: p(f⋆|y) =
∫
p(f⋆|u) p(u|y) du.

The work of [Titsias, 2009a] has proposed a principled variational inference (VI)

framework that approximates the joint posterior belief p(f ,u|y) with a variational posterior

q(f ,u) ≜ p(f |u) q(u) by minimizing the Kullback-Leibler (KL) distance between them,

which is equivalent to maximizing a lower bound of the log-marginal likelihood (i.e., also

known as the evidence lower bound (ELBO)):

ELBO ≜ Eq(f)[log p(y|f)]−DKL[q(u)∥p(u)]

where q(f) ≜
∫
p(f |u) q(u) du. A common choice in VI is the Gaussian variational

posterior q(u) ≜ N (u|m,B) of the inducing variables u [Deisenroth and Ng, 2015,

Gal et al., 2014, Hensman et al., 2013, Hoang et al., 2015, Hoang et al., 2016, Titsias, 2009b]

which results in a Gaussian marginal q(f) = N (f |µ,Σ) where

µ ≜ KXZK
−1
ZZm

Σ ≜ KXX −KXZK
−1
ZZ(KZZ −B)K−1

ZZKZX.

Deep Gaussian Process (DGP). A multi-layer DGP model is a hierarchical composition of

GP models. Consider a DGP with a depth of L such that each DGP layer is associated with

a set fℓ−1 of inputs and a set fℓ of outputs for ℓ = 1, . . . , L and f0 ≜ X. Let F ≜ {fℓ}Lℓ=1,

and the inducing inputs and corresponding inducing output variables for DGP layers

ℓ = 1, . . . , L be denoted by the respective sets {Zℓ}Lℓ=1 and U ≜ {uℓ}Lℓ=1. Similar to the
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3.1. BACKGROUND AND PRELIMINARY

joint probability distribution of the SGP model (3.1),

p(y,F,U) = p(y|fL)︸ ︷︷ ︸
data likelihood

 L∏
ℓ=1

p(fℓ|uℓ)

 p(U).

Similarly, the variational posterior is assumed to be q(F,U) ≜
[∏L

ℓ=1 p(fℓ|uℓ)
]
q(U),

thus resulting in the following ELBO for the DGP model:

ELBO ≜
∫
q(fL) log p(y|fL) dfL −DKL[q(U)∥p(U)] (3.2)

where q(fL) ≜
∫ ∏L

ℓ=1 p(fℓ|uℓ, fℓ−1) q(U) df1 . . . dfL−1dU. To compute q(fL), the work

of [Salimbeni and Deisenroth, 2017] has proposed the use of the reparameterization

trick [Kingma and Welling, 2013] and Monte Carlo sampling, which are also adopted in

IPVI.

Implicit Posterior Variational Inference (IPVI) for DGPs. IPVI first generates posterior

samples U ≜ gθG(ϵ) with a black-box generator gθG(ϵ) parameterized by θG and a random

noise ϵ ∼ N (0, I). By representing the variational posterior as qθG(U) ≜
∫
p(U|ϵ)dϵ, the

ELBO in (3.2) can be re-written as

ELBO = Eq(fL)[log p(y|fL)]−DKL[qθG(U)∥p(U)]

= Eq(fL)[log p(y|fL)]− EqθG (U)[T
∗(U)] ,

(3.3)

where the calculation of the KL distance term is given by a separate function T ∗ to be

optimized, as below:

T ∗ = max
T

{
Ep(U)[log(1− σ(T (U))] + EqθG (U)[log σ(T (U))]

}
. (3.4)

T in (3.4) is a neural network discriminator TθD with parameters θD tring to distinguish

between qθG(U) and p(U) by outputting σ(T (U)) as the probability of U being a sample
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3.1. BACKGROUND AND PRELIMINARY

from qθG(U) rather than p(U). Finally, this simplifies to

ELBO = EqθG (U)[L(θ,X,y,U)− T ∗(U)] (3.5)

where L(θ,X,y,U) ≜ Ep(fL|U)[log p(y|fL)] and θ denotes the DGP model hyperparame-

ters. The ELBO can now be calculated given the optimal discriminator T ∗. The ELBO

in (3.5) is optimized with respect to θG and θ via first-order gradient method, which

mimics the better-response dynamics searching for Nash equilibrium in a two-player game

between Player 1 (representing discriminator with strategy {θD}) vs. Player 2 (jointly

representing generator and DGP model with strategy {θG, θ}) that is defined based on the

following payoffs1:

Player 1 : max
{θD}

Ep(U)[log(1− σ(TθD(U))] + EqθG (U)[log σ(TθD(U))] ,

Player 2 : max
{θ,θG}

EqθG (U)[L(θ,X,y,U)− TθD(U)] .
(3.6)

Algorithm 1 illustrates the IPVI algorithm: In each iteration, each player takes its

turn to improve its strategy to achieve a better payoff by performing a stochastic gradient

optimization (3.6).

3.1.1 Classification with Robust-Max Likelihood

We have discussed the learning of regression tasks above. Here we discuss the learning

on probabilistic classification tasks using the robust-max likelihood. Following the work

of [Hernández-Lobato et al., 2011], the likelihood for the prediction of a data pair (x, yx)

in a N -way classification problem given IP output f (where this N -dimensional output is

defined as f ≜ [f1, f2, . . . , fN ]) and a binary variable a (one per data instance to indicate

1If ({θD∗}, {θ∗, θG∗}) is a Nash equilibrium of the pure-strategy game in (3.6), then {θ∗, θG∗} is a
global maximizer of the ELBO in (3.3) such that (a) θ∗ is the maximum likelihood assignment for the DGP
model, and (b) qθG∗(U) is equal to the true posterior belief p(U|y). It reveals that any Nash equilibrium
coincides with a global maximizer of the original ELBO in (3.3). More details see Appendix B.1.
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3.1. BACKGROUND AND PRELIMINARY

Algorithm 1 IPVI
Randomly initialize θ, θD, θG
while not converged do

# Player 2
Sample {U′

1, . . . ,U
′
K} from p(U), and sample {U1, . . . ,UK} from qθG(U)

Compute gradient w.r.t. θD from (3.6):

gθD ≜ ∇θD

 1

K

K∑
k=1

log(1− σ(TθD(U′
k))

+∇θD

 1

K

K∑
k=1

log σ(TθD(Uk))


Update for θD: θD ← θD + αθD gθD ;
# Player 1
Sample mini-batch (Xb,yb) from (X,y), and sample {U1, . . . ,UK} from qθG(U)
Compute gradients w.r.t. θ and θG from (3.6):

gθ ≜ ∇θ

 1

K

K∑
k=1

L(θ,Xb,yb,Uk)

 ; gθG ≜ ∇θG

 1

K

K∑
k=1

L(θ,Xb,yb,Uk)−TθD(Uk)


Updates for θ and θG: θ ← θ + αθ gθ , θG ← θG + αθG gθG ;

end while

whether an argmax prediction is satisfied or not) is

p(yx|x, f , a) =
∏
c ̸=yx

Θ(fyx − fc)1−a (1/N)a

where Θ(·) is the Heaviside step function and the binary variable a is defined to follow a

priori a factorizing multivariate Bernoulli distribution:

p(a|ρ) ≜ Bern(a|ρ) = ρa (1− ρ)1−a

such that ρ is the fraction of training data pairs expected to be outliers. The prior for ρ is

defined as a conjugate beta distribution:

p(ρ) ≜ Beta(ρ|a0, b0) =
ρa0−1 (1− ρ)b0−1

B(a0, b0)

where B(·, ·) is the beta function, and a0 and b0 are free hyperparameters which do not

have a big impact on the final model, provided that b0 > a0 and that they are not too

small [Hernández-Lobato et al., 2011]. By default, we set a0 = 1 and b0 = 9.
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3.2. PROBLEM FORMULATION

3.2 Problem Formulation

As a generator and a discriminator are integrated in each layer of the DGP, the training

becomes unstable and the performances are unsatisfactory. To start with, we will now

discuss how the architecture of the generator in our IPVI framework is usually designed.

Recall from Section 3.1 that U = {uℓ}Lℓ=1 is a collection of inducing variables for DGP

layers ℓ = 1, . . . , L. We consider a layer-wise design of the generator (parameterized by

θG ≜ {ϕℓ}Lℓ=1) and discriminator (parameterized by θD ≜ {ψℓ}Lℓ=1) such that gθG(ϵ) ≜

{gϕℓ(ϵ)}Lℓ=1 with the random noise ϵ serving as a common input to induce dependency

between layers and TθD(U) ≜
∑L

ℓ=1 Tψℓ(uℓ), respectively. For each layer ℓ, a naive design

is to generate posterior samples uℓ ≜ gϕℓ(ϵ) from the random noise ϵ as input. However,

we have identified that such a design suffers from two possible critical issues:

(i) Fig. 3.1a illustrates that to generate posterior samples of M different inducing

variables uℓ1, . . . ,uℓM (uℓ ≜ {uℓm}Mm=1), the naive design of the generator adopts a dense

connection (as such generator is implemented by a densely-connected neural network).

Such naive design introduces a relatively large number of parameters and is thus prone to

overfitting (to the dataset).

(ii) Such a design of the generator fails to adequately capture the dependency of the

inducing output variables uℓ on the corresponding inducing inputs Zℓ, which leads to the

optimization difficulties. Note that the inducing inputs are learnable parameters in DGP

that needs to be jointly optimized. However, its optimization is rarely taken care of in

the literature [Titsias and Lázaro-Gredilla, 2014, Havasi et al., 2018]. To begin with, it is

initialized randomly without careful tuning: in single layer GP, it is usually initialized

by K-Means on the dataset. In the contrary, in DGP, the inducing inputs in the first

layer is initialized by K-Means likewise, while the inducing inputs in the consecutive

layers ℓ = 1, . . . , L are initialized by doing K-Means on the propagated inputs fℓ.2 The

propagated inputs inherits a large degree of randomness and is inaccurate (fully random)

2If the dimensionality is reduced during forward propagation, principle component analysis (PCA) is
conducted before doing K-Means on the propagated inputs fℓ.
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in the beginning of training. As a result, the initialization of the inducing inputs in the

consecutive layers are inaccurate, which indicates the importance of its optimization.

Secondly, the optimization of the inducing inputs are usually not well conducted. If the

generator fails to capture the dependency on the corresponding inducing inputs Zℓ, all

the terms containing the inducing inputs will otherwise be associated with (the inverse

of) the Gram matrix K−1
ZZ as indicated by the definition of DGP. In this case, during

gradient back-propagation, the gradient of the inducing inputs are also associated with

the differentiation of such inversion of the Gram matrix. However, to ensure the well-

conditioning of the inversion, the Gram matrix is usually post-processed, e.g., by adding a

large enough center component (scalar) λI. Such post-processing further undermines the

quality of the resulting gradient on the inducing inputs, hence restricting its capability to

output the posterior samples of U accurately (Chapter 3.4).

3.3 Different Architectures of Generator and Discrimina-

tor for DGPs

3.3.1 The Old Design: Parameter-tying Architecture

To resolve the above issues, a parameter-tying architecture of the generator and discriminator

is first proposed for a DGP model, as shown in Figs. 3.1b and 3.1e. For each layer ℓ,

since uℓ depends on Zℓ, the generator is designed gϕℓ to generate posterior samples

uℓ ≜ gϕℓ(ϵ⊕ Zℓ) from not just ϵ but also Zℓ as inputs. Recall that the same ϵ is fed as an

input to gϕl in each layer ℓ, which can be observed from the left-hand side of Fig. 3.1g. In

addition, compared with the naive design in Fig. 3.1a, the posterior samples of M different

inducing variables uℓ1, . . . ,uℓM are generated based on only a single shared parameter

setting (instead of M ), which reduces the number of parameters drastically (Fig. 3.1b). A

similar design is adopted for the discriminator, as shown in Fig. 3.1e.
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Figure 3.1: (a) Illustration of a naive design of the generator for each layer ℓ. (b) Parameter-
tying architecture of the generator. (c) Gradient-bridging architecture of the generator. (d)
Illustration of a naive design of the discriminator for each layer ℓ. (e) Parameter-tying
architecture of the discriminator. (f) Gradient-bridging architecture of the discriminator.
(g) Overall architecture of the generator and discriminator in our IPVI framework for
DGPs. ‘+’ denotes addition and ‘⊕’ denotes concatenation. See the main text for the
definitions of notations.
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3.3.2 Our Advanced Design: Gradient-bridging Architecture

The proposed parameter-tying architecture solves the potential issue of overfitting by

limiting the number of parameters in the generator. That it, different inducing variables

uℓ1, . . . ,uℓM are generated based on a single shared parameter setting which greatly

reduces the parameterization compared with the densely connected naive design. Limiting

the number of parameters could be a good approach against severe overfitting, however, if

overfitting is not the main issue for the bad performance of the naive design, doing so will

largely reduce the expressiveness of the generator, thus undermines the final model whose

predictions depend on the distribution produced by the generator (Chapter 3.4).

We then proposed another architecture, called the gradient-bridging architecture of the

generator and discriminator for a DGP model, as shown in Figs. 3.1c and 3.1f. The design

of the generator stems from the following motivation: If the overfitting is not a main issue

for the unsatisfactory performance of the naive design, it is then natural for the generator

to adopt M different parametric settings ϕℓ1, . . . , ϕℓM (ϕℓ ≜ {ϕℓm}Mm=1) to maximize

the expressiveness, such that uℓm ≜ gϕℓm(ϵ ⊕ Zℓm), while still adequately captures the

dependency of the inducing output variables uℓ on the corresponding inducing inputs Zℓ.

Doing so also allows faster and more accurate optimization of the inducing inputs, since the

gradient back-propagation now is specific for different inducing inputs Zℓm,m = 1, . . . ,M

and not affected by each other (since there is no parameter-tying)3. Experiments in

Chapter 3.4 provide empirical evidence for this phenomenon. The optimization of the

inducing inputs can also be meaningful even when the post-processed Gram matrix does

not provide accurate gradient information, as empirically studied in Chapter 3.4. We adopt

a similar design for the discriminator, as shown in Fig. 3.1f.

Fig. 3.1g illustrates the design of the overall parameter-tying architecture of the

generator and discriminator.

Generator/Discriminator Details. We have described the architecture design, we will

describe here the neural network represented by gϕℓ of the parameter-tying architecture,

3Note that the inducing inputs are still statistically dependent because the same ϵ is fed as an input
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or gϕℓ1 , . . . , gϕℓM of the gradient-bridging architecture. Since the gradient-bridging

architecture adoptsM different parametric settings ϕℓ1, . . . , ϕℓM , each has the same neural

network architecture as ϕℓ of the parameter-tying architecture, we will discuss gϕℓ (and

corresponding Tψℓ) for simplicity. Firstly, the noise ϵ has the same dimension as the

inputs X of the dataset. We implement gϕℓ using a two-layer neural network with hidden

dimension being equal to the dimension of Zℓ and leaky ReLU activation in the middle.

Similarly, we implement Tψℓ using a two-layer neural network with hidden dimension

being equal to the dimension of Zℓ and leaky ReLU activation in the middle. The network

initialization follows random normal distribution.

Although gradient-bridging architecture has M times larger parameterization as that

of the parameter-tying architecture, it can be implemented in parallel in both forward and

backward propagation, which does not incur much wall-clock time (see Chapter 3.4). We

have observed in our own experiments that our proposed gradient-bridging architecture not

only speeds up the training (converges in fewer iterations), but also improves the predictive

performance of IPVI considerably. We will empirically evaluate our IPVI framework with

this gradient-bridging architecture in Section 3.4.

3.4 Experiments and Discussion

We empirically evaluate and compare the performance of our gradient-bridging based IPVI

framework against that of the state-of-the-art parameter-tying based IPVI, and the naive

designed IPVI. Our implementation is built on GPflow [Matthews et al., 2017] which is

an open-source GP framework based on TensorFlow [Abadi et al., 2016].

3.4.1 Performance Comparison: Real-world Datasets

For our experiments in the regression tasks, the depth L of the DGP models are varied

from 2 to 5 with 128 inducing inputs per layer. The dimension of each hidden DGP layer

is set to be (i) the same as the input dimension for the UCI benchmark regression and
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Airline datasets, and (ii) 98 for the classification tasks.

UCI Benchmark Regression Datasets. Our experiments are first conducted on UCI

benchmark regression datasets. We have performed a random 0.9/0.1 train/test split.

Airline Dataset (Large-Scale Regression). We then evaluate the performance of IPVI

on a real-world large-scale regression dataset, the Airline dataset, with input dimension

D = 8 and a large data size N ≈ 2 million. For Airline dataset, we set the last 100000

examples as test data.

In the above regression tasks, the performance metric is the mean log-likelihood (MLL)

of the test data (or test MLL). Note that larger values of MLL represent better results.

Table 3.1 shows results of the test MLL and standard deviation over 10 runs. It can be

observed that IPVI with gradient-bridging architecture generally outperforms the others.

For large-scale regression tasks, the performance of IPVI with either parameter-tying

architecture or gradient-bridging architecture consistently increases with a greater depth.

Classification on Real-world Datasets. We evaluate the performance of IPVI in

three classification tasks using the real-world MNIST, fashion-MNIST, and CIFAR-10

datasets. Both MNIST and fashion-MNIST datasets are grey-scale images of 28 × 28

pixels. The CIFAR-10 dataset consists of colored images of 32× 32 pixels. We utilize

a 4-layer DGP model with 100 inducing inputs per layer and a robust-max multiclass

likelihood [Hernández-Lobato et al., 2011]; for MNIST dataset, we also consider utilizing

a 4-layer DGP model with 800 inducing inputs per layer to assess if its performance

improves with more inducing inputs. Table 3.2 reports the mean test accuracy over 10 runs,

which shows that our IPVI framework with gradient-bridging architecture for a 4-layer

DGP model performs the best in all three datasets.4

4Note that all the results in Table 3.2 are obtained without using convolutional neural networks (CNN) as
mean functions of GP.
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Table 3.1: Test MLL achieved by our IPVI framework with different architectures for UCI
benchmark regression datasets. Higher test MLL is better.

Dataset Boston Power
DGP Layers 2 3 4 5 2 3 4 5
Naive design -2.37 -2.48 -2.51 -2.57 -2.79 -2.74 -2.73 -2.75

Parameter-tying -2.08 -2.13 -2.09 -2.10 -2.69 -2.67 -2.70 -2.71
Gradient-bridging -2.10 -2.06 -2.05 -2.06 -2.67 -2.65 -2.60 -2.60

Dataset Protein Airline
DGP Layers 2 3 4 5 2 3 4 5
Naive design -2.72 -2.69 -2.70 -2.67 -4.82 -4.83 -4.84 -4.87

Parameter-tying -2.57 -2.56 -2.59 -2.62 -4.77 -4.75 -4.74 -4.73
Gradient-bridging -2.59 -2.55 -2.55 -2.57 -4.75 -4.74 -4.73 -4.72

Table 3.2: Mean test accuracy (%) achieved by our IPVI framework with three different
architectures for a 4-layer DGP on three classification datasets.

Dataset MNIST MNIST (M = 800) fashion-MNIST CIFAR-10
Naive design 97.45 97.56 88.01 52.76

Parameter-tying 97.80 98.23 88.90 53.27
Gradient-bridging 98.12 98.42 89.04 53.50

3.4.2 Ablation Studies

Gradient Back-propagation Property of Different Architectures. As mentioned in

Chapter3.3, the gradient back-propagation in the gradient-bridging architecture is now

specific for different inducing inputs Zℓm,m = 1, . . . ,M and not affected by each other.

Doing so immediately allows faster optimization of the inducing inputs, which can be

verified by evaluating the magnitude of gradient on the inducing inputs. Table 3.3 reflects

the averaged gradient norm 1√
M

∥∥∥∇Zℓ [
1
K

∑K
k=1 L(θ,X,y,Uk)]

∥∥∥
2

during training of DGP.

We can observe that, the gradient-bridging architecture allows a larger gradient back-

propagation in the starting phase (1∼1000 iterations) and the middle phase (1001∼5000

iterations) of the training, which explains its faster convergence in terms of the total

number of iterations (Table 3.4). In the ending phase (5001 iterations onward) of the

training, the inducing inputs in the gradient-bridging architecture already stabilizes as we

observe a relatively smaller gradient magnitude. In comparison, the inducing inputs in the

parameter-tying architecture still undergoes a certain degree of optimization, as reflected
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by the relatively larger gradient magnitude.

Both parameter-tying and gradient-bridging architectures have much larger magnitude

of gradient than the naive design, because the dependency of the inducing outputs on the

inducing inputs are explicitly considered.

Table 3.3: Averaged gradient norm 1√
M

∥∥∥∇Zℓ [
1
K

∑K
k=1 L(θ,X,y,Uk)]

∥∥∥
2

of the inducing
inputs in the last layer of a 4-layer DGP model for Airline dataset.

Naive design Parameter-tying Gradient-bridging

1∼1000 iter. 4.01× 101 2.21× 103 4.89× 103

1001∼5000 iter. 1.44× 102 4.14× 103 7.84× 103

5001∼converge 1.06× 101 5.79× 103 3.66× 103

Sensitivity to the Post-processing of the Gram Matrix. It is mentioned that the Gram

matrix is post-processed by adding a scalar (default value 10−7) in its diagonal elements to

ensure the well-conditioning of its inversion, which potentially introduces the optimization

difficulties for the inducing inputs. We studied the effect of the added scalar in such post-

processing by training a 4-layer DGP on the Boston dataset. As can be seen from Fig. 3.2,

the DGP based on the gradient-bridging architecture is robust to the post-processing of the

Gram matrix, due to the fact that it enables more accurate optimization of the inducing

inputs. Only when the added scalar is large (≈ 1) we start to observe a slight drop in

the performance. In comparison, the parameter-tying architecture is more sensitive to

the post-processing, but much better than the naive design because the parameter-tying

architecture still captures the dependency of the inducing outputs on the corresponding

inducing inputs. The naive design is very sensitive to the post-processing because such

dependency is not considered, and the post-processing will directly affects the accuracy in

the optimization of the inducing inputs.

Overfitting vs. Optimization Difficulties. We have hypothesized two possible reasons

for the bad performance of the naive design architecture in Chapter 3.2. An interesting

question to ask is whether overfitting is a big issue compared with optimization difficulties.
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Figure 3.2: Mean test MLL achieved by our IPVI framework with three different
architectures for a 4-layer DGP on Boston dataset. Different scalars (x-axis) are added to
the diagonal elements of the Gram matrix KZZ to ensure its invertibility. Larger scalar
will lead to worse gradient estimation of the inducing inputs.

To this end, we further investigate the effect of overfitting versus optimization difficulties by

training different DGP models with varying number of parameters in the DGP generators

on the Boston dataset. The results are reflected on Fig. 3.3.

Firstly, we can see that the train MLLs of the parameter-tying architecture (≤ −1.77)

are lower than those of the gradient-bridging or the naive design architecture (> −1.76).

The main reason is because the parameter-tying architecture has much fewer parameters

than the other architectures, thus suffers from a certain degree of optimization difficulties

during training. No obvious overfitting is observed for the parameter-tying architecture.

Its test MLLs (≤ −2.08) are lower than the best test MLL (−2.05) achieved by the

gradient-bridging architecture.

Secondly, the train MLLs of the naive design architecture improves consistently with

the number of parameters while the test MLLs consistently degrades. It reflects that

obvious overfitting has occurred. However, the DGP models with the gradient-bridging

architecture have comparable numbers of parameters with that of the naive design, but

overfitting is not immediately observed (only slight overfitting occurs when the number of
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parameters is larger than 107). The difference implies that the naive design architecture

might be “overfitting” the poorly optimized5 inducing inputs rather than overfitting the

training data, since the same training data are used by the gradient-bridging architecture.

To verify our conjecture, we conducted another set of experiments by fixing the inducing

inputs Z (as non-trainable parameters) for the gradient-bridging architecture. Doing so

force the DGP model to “overfit” the inducing inputs without optimizing them. As can be

seen Fig. 3.3, the results with fixed inducing inputs (represented by the red curves) have

similar trends to the naive design architecture (blue curves), and obvious overfitting is

again observed. This comparison proves our conjecture that the naive design architecture

is prone to the “overfit” the inducing inputs.6

Consider that the commonly referred overfitting (and the overfitting we stated in

Chapter 3.2) is about the dataset, “overfitting” the inducing inputs should be reckon as

part of the optimization difficulties. In this regard, overfitting (the dataset) is not a big

issue; and the optimization difficulties should account for the unsatisfactory performance

of the naive design architecture. This observation further supports the idea in the design

of our gradient-bridging architecture. Thus, in the case that the inducing inputs are

well-optimized, the test performance of the overall model will be good, which is in

consistent with our observation that the gradient-bridging architecture achieves the best

test MLL (−2.05) out of all architectures.

Time Efficiency. Table 3.4 shows that better time efficiency of IPVI with the gradient-

bridging architecture over the parameter-tying architecture for a 4-layer DGP model that

is trained using the Airline dataset. The learning rates are both 0.005 for IPVI. Note

that the gradient-bridging architecture has a larger number of parameters, thus incurs a

larger average training time per iteration (Table 3.4). However, due to a better gradient

back-propagation on the inducing inputs, our IPVI with the gradient-bridging architecture

converges in much fewer iterations, thus converges faster in wall-clock time, despite

5Table. 3.3 and Fig. 3.2 have revealed such a fact.
6The DGP model with gradient-bridging architecture with fixed inducing inputs still achieves higher

MLL despite having the same number of parameters, possibly due to its ability to use the (fixed) inducing
inputs as the contextual information.
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Figure 3.3: Mean train and test MLL achieved by our IPVI framework with three different
architectures for a 4-layer DGP on Boston dataset. The solid lines represent the test MLL
while the dotted lines represent the train MLL. The log scale is calculated with base 10.

having 128 times more parameters in the generator. Due to the parallel sampling in both

architectures, our IPVI framework always enables posterior samples to be generated fast.

Table 3.4: Time incurred by a 4-layer DGP model for Airline dataset. A convergence is
reckoned to be reached if the averaged test MLL over past 500 iteration is within an 0.5%
range of the final averaged test MLL. As an illustration, the parameter-tying architecture
has ≈ 8300 parameters in each layer’s generator, while the gradient-bridging architecture
has ≈ 1million parameters in each layer’s generator.

Parameter-tying Gradient-bridging
Average training time (per iter.) 0.35 Chapter 0.40 Chapter

Average total iterations (until converge) 42500 iter. 20800 iter.
U generation (100 samples) 0.28 Chapter 0.33 Chapter

3.5 Conclusion

Due to the introduction of generators and discriminators into the DGP, the training becomes

unstable and the test performances are unsatisfactory for our proposed IPVI framework.

We identified the optimization difficulties of the inducing inputs as the main reason for the

unsatisfactory test performances. We thus propose a novel gradient-bridging architecture
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of the generator and discriminator in our IPVI framework for DGPs to alleviate the

optimization difficulties and speed up training. Empirical evaluation shows that IPVI

with the gradient-bridging architecture outperforms the state-of-the-art parameter-tying

architecture due to a better gradient back-propagation on the inducing input.

In general, using a generator to output the samples of an implicit posterior is an effective

way to (learn to) express the intractable posterior, given that the generator can be efficiently

optimized with gradient descent. In the next chapter, we adopt the similar idea in our

proposed model called implicit processes for meta-learning (IPML), where the intractable

posterior (samples) of the model output is also implicitly expressed by a generator.
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Chapter 4

Stochastic Gradient Hamiltonian Monte

Carlo for Meta-Learning with Implicit

Processes

4.1 Background

Few-shot learning (also known as meta-learning) is a defining characteristic of human

intelligence. Its goal is to leverage the experiences from previous tasks to form a model

(represented by meta-parameters) that can rapidly adapt to a new task using only a limited

quantity of its training data. A number of meta-learning algorithms [Finn et al., 2018,

Jerfel et al., 2019, Ravi and Beatson, 2018, Rusu et al., 2019, Yoon et al., 2018] have re-

cently adopted a probabilistic perspective to characterize the uncertainty in the predictions

via a Bayesian treatment of the meta-parameters. Though they can consequently represent

different tasks with different values of meta-parameters, it is not clear how or whether

they are naturally amenable to the following: (A) Characterization of a principled similar-

ity/distance measure between tasks (e.g., for identifying outlier tasks that can potentially

hurt training for the new task, procuring the most valuable/similar tasks/datasets to the new

task, detecting task distribution shift, among others); (B) Active task selection, in which a
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meta-learner wants to purchase task data from a decentralized data marketplace such as

Streamr Marketplace (https://streamr.network/marketplace) and want to achieve

best performance given a limited budget of task purchase (see also Appendix C.1.1.3

for another motivating example of a real-world use case); and (C) Synthetic task/dataset

generation, in privacy-aware settings such as public healthcare data platforms like HIT

Foundation [Eberhard and Paul, 2019], the data platforms can generate synthetic data to

perform data anonymization to avoid revealing the sensitive real data. Synthetic task

generation can also be used for augmenting a limited number of previous tasks to improve

generalization performance and address task memorization [Yin et al., 2020].

To tackle the above challenge, this chapter presents a novel implicit process-based

meta-learning (IPML) algorithm (Chapter 4.3) that, in contrast to existing works, explicitly

represents each task as a continuous latent vector and models its probabilistic belief

within the highly expressive IP framework. An IP [Ma et al., 2019] is a stochastic process

such that every finite collection of random variables has an implicitly defined joint prior

distribution. Some typical examples of IP include Gaussian processes, Bayesian neural

networks, neural processes [Garnelo et al., 2018b], among others. An IP is formally

defined in Def. 4.1. The IP framework adopts a generator-like network, and enjoys

the advantage of being end-to-end differentiable. Compared to the Gaussian processes

(GP) that require the inversion of a potentially large Gram matrix during the inference

and training, IP can utilize gradient descent-based algorithm for the meta-training of its

parameters without such matrix inversion, which is computationally favorable. IP is also

a better choice for its expressiveness, unlike GP that constrains the distributions of the

function outputs to be Gaussian. Unfortunately, unlike the GP that adopts a closed-form

during inference, meta-training in IPML is somehow challenging due to its need to

perform intractable exact IP inference in task adaptation. The work of [Ma et al., 2019]

uses the well-studied Gaussian process as the variational family to perform variational

inference in general applications of IP, which sacrifices the flexibility and expressivity

of IP by constraining the distributions of the function outputs to be Gaussian. Such a
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straightforward application of IP to meta-learning has not yielded satisfactory results in

our experiments (see Appendix C.1.3).

To resolve this, we propose a novel expectation-maximization (EM) algorithm to perform

meta-training (Chapter 4.3.1): In the E step, we perform task adaptation using the stochastic

gradient Hamiltonian Monte Carlo sampling (SGHMC) method [Chen et al., 2014] to

draw samples from IP posterior beliefs for all meta-training tasks. SGHMC is a sampling

algorithm widely adopted in the deep learning community that can use the gradient

information to improve the quality and the convergence speed of the sampling process.

It is a natural choice particularly because the gradient on the latent (task) vector is

easy to obtained in our end-to-end differentiable IPML framework. Doing so also

eliminates the need to learn a latent encoder [Garnelo et al., 2018b]. In the M step,

we optimize the meta-learning objective w.r.t. the meta-parameters using these samples

through gradient descent. Our delicate design of the neural network architecture for

meta-training in IPML allows competitive meta-learning performance to be achieved

(Chapter 4.3.2). Our IPML algorithm offers the benefits of being amenable to (A) the

characterization of a principled distance measure between tasks using maximum mean

discrepancy [Gretton et al., 2012], (B) active task selection without needing the assumption

of known task contexts in [Kaddour et al., 2020], and (C) synthetic task generation by

modeling task-dependent input distributions (Chapter 4.3.3).

4.2 Problem Formulation

For simplicity, the inputs (outputs) for all tasks are assumed to belong to the same input (out-

put) space. Consider meta-learning on probabilistic regression tasks (the meta-learning on

probabilistic classification tasks uses the robust-max likelihood [Hernández-Lobato et al., 2011]

as introduced in Chapter 3.1.1): Each task is generated from a task distribution and as-

sociated with a dataset (X ,yX ) where the set X and the vector yX ≜ (yx)
⊤
x∈X denote,
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respectively, the input vectors and the corresponding noisy outputs

yx ≜ f(x) + ϵ(x) (4.1)

which are outputs of an unknown underlying function f corrupted by an i.i.d. Gaussian

noise ϵ(x) ∼ N (0, σ2) with variance σ2. Let f be distributed by an implicit process (IP),

as follows:

Definition 4.1 (Implicit process for meta-learning). Let the collection of random variables

f(·) denote an IP parameterized by meta-parameters θ, that is, every finite collection

{f(x)}x∈X has a joint prior distribution p(fX ≜ (f(x))⊤x∈X ) implicitly defined by the

following generative model:

z ∼ p(z), f(x) ≜ gθ(x, z) (4.2)

for all x ∈ X where z is a latent task vector to be explained below and generator gθ can

be an arbitrary model (e.g., deep neural network) parameterized by meta-parameters θ.

Definition 4.1 defines valid stochastic processes ifz is finite dimensional [Ma et al., 2019].

Though, in reality, a task may follow an unknown distribution, we assume the existence of an

unknown function that maps each task to a latent task vector z satisfying the desired known

distribution p(z), like in [Kaddour et al., 2020].1 Using p(yX |fX ) = N (fX , σ
2I) (4.1)

and the IP prior belief p(fX ) from Def. 4.1, we can derive the marginal likelihood p(yX )

by marginalizing out fX .

Remark 4.1. Two sources of uncertainty exist in p(yX ): Aleatoric uncertainty in p(yX |fX )

reflects the noise (i.e., modeled in (4.1)) inherent in the dataset, while epistemic uncertainty

in the IP prior belief p(fX ) reflects the model uncertainty arising from the latent task prior

belief p(z) in (4.2). Note that our work here considers a point estimate of meta-parameters

1p(z) is often assumed to be a simple distribution like multivariate Gaussian
N (0, I) [Garnelo et al., 2018b].
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θ instead of a Bayesian treatment of θ [Finn et al., 2018, Yoon et al., 2018]. This allows

us to interpret the epistemic uncertainty in p(fX ) via p(z) directly.

Let the sets T and T∗ denote the meta-training and meta-testing tasks, respectively. Fol-

lowing the convention in [Finn et al., 2018, Gordon et al., 2019, Ravi and Beatson, 2018,

Yoon et al., 2018], for each meta-training task t ∈ T , we consider a support-query (or

train-test) split of its dataset (Xt,yXt) into the support set (or training dataset) (X s
t ,yX s

t
)

and query set (or test/evaluation dataset) (X q
t ,yX q

t
) whereXt = X s

t ∪X q
t andX s

t ∩X q
t = ∅.

Specifically, for a N -way K-shot classification problem, the support set has K examples

per class and N classes in total.

Meta-learning can be defined as an optimization problem [Finn et al., 2017, Finn et al., 2018]

and its goal is to learn meta-parameters θ that maximize the following objective defined

over all meta-training tasks:

Jmeta ≜ log
∏
t∈T

p
(
yX q

t
|yX s

t

)
=
∑
t∈T

log

∫
p
(
yX q

t
|fX q

t

)
p
(
fX q

t
|yX s

t

)
dfX q

t
. (4.3)

The optimization of (4.3) with respect to θ is reckon as the outer loop calculation in meta-

learning. In every iteration of outer loop, there is an inner loop calculation involving task

adaptation, i.e., calculation of the p(fX q
t
|yX s

t
). Task adaptation p(fX q

t
|yX s

t
) is performed

via IP inference after observing the support set:

p
(
fX q

t
|yX s

t

)
=

∫
z

p
(
fX q

t
|z
)
p
(
z|yX s

t

)
dz . (4.4)

The objective Jmeta (4.3) is the “test” likelihood on the query set, which reflects the

idea of “learning to learn” by assessing the effectiveness of “learning on the support set”

through the query set. An alternative interpretation views p(fX q
t
|yX s

t
) as an “informative

prior” after observing the support set. The objective Jmeta (4.3) is also known as the

Bayesian held-out likelihood [Gordon et al., 2019]. In a meta-testing task, adaptation is

also performed via IP inference after observing its support set and evaluated on its query
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set. Similar to GP or any stochastic process, the input vectors of the dataset are assumed

to be known/fixed beforehand (thus we neglect all the conditionals on X s
t , X q

t or Xt). We

will relax this assumption by allowing them to be unknown when our IPML algorithm is

exploited for synthetic task generation (Chapter 4.3.3).

4.3 Implicit Process-based Meta-Learning (IPML)

4.3.1 Expectation Maximization (EM) Algorithm for IPML

Recall that task adaptation (inner loop) requires evaluating p(fX q
t
|yX s

t
) (4.4). From

Def. 4.1, if generator gθ (4.2) can be an arbitrary model (e.g., deep neural network), then

p(fX q
t
|yX s

t
) and p(fX q

t
) cannot be evaluated in closed form and have to be approximated.

In our case, the approximation is done by sampling. Inspired by the Monte Carlo EM

algorithm [Wei and Tanner, 1990] which utilizes posterior samples to obtain a maximum

likelihood estimate of some hyperparameters, we propose an EM algorithm for IPML: The

E step uses the stochastic gradient Hamiltonian Monte Carlo (SGHMC) sampling method

to draw samples from p(fX q
t
|yX s

t
) (4.4), while the M step maximizes the meta-learning

objective Jmeta (4.3) w.r.t. meta-parameters θ:

Expectation (E) step. This step corresponds to the inner loop calculation. Note that

since fX q
t
= (gθ(x, z))

⊤
x∈X q

t
(4.2), no uncertainty exists in p(fX q

t
|z) in (4.4). So, p(fX q

t
|yX s

t
)

can be evaluated using the same generator gθ (4.2) and the latent task posterior belief

p(z|yX s
t
), as follows:

Remark 4.2. Drawing samples from p(fX q
t
|yX s

t
) is thus equivalent to first drawing samples

of z from p(z|yX s
t
) and then passing them as inputs to generator gθ to obtain samples

of fX q
t
. Hence, given a task t, adaptation p(fX q

t
|yX s

t
) (4.4) essentially reduces to a task

identification problem by performing IP inference to obtain the latent task posterior belief

p(z|yX s
t
). This is a direct consequence of epistemic uncertainty arising from p(z|yX s

t
) and

p(z) (Remark 4.1).
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In general, p(z|yX s
t
) also cannot be evaluated in closed form. Instead of using

variational inference (VI) and approximating p(z|yX s
t
) with a potentially restrictive

variational distribution [Garnelo et al., 2018b, Kaddour et al., 2020, Ma et al., 2019], we

draw samples from p(z|yX s
t
) using SGHMC [Chen et al., 2014]. SGHMC introduces an

auxiliary random vector r and samples from a joint distribution p(z, r|yX s
t
) following the

Hamiltonian dynamics [Brooks et al., 2011, Neal, 1993]: p(z, r|yX s
t
) ∝ exp(−U(z) −

0.5r⊤M−1r) where the negative log-probability U(z) ≜ − log p(z|yX s
t
) resembles the

potential energy and r resembles the momentum. SGHMC updates z and r, as follows:

∆z = αM−1r, ∆r = −α∇zU(z)− αCM−1r+N (0, 2α(C−B))

where α, C, M, and B are the step size, friction term, mass matrix, and Fisher information

matrix, respectively. Note that ∇zU(z) = −∇z log p(z|yX s
t
) = −∇z log p(z,yX s

t
) =

−∇z[log p(yX s
t
|fX s

t
= (gθ(x, z))

⊤
x∈X s

t
) + log p(z)] can be evaluated tractably. The last

term is a normally distributed noise term that can reduce the effect of inaccurate gradient

estimation due to the random minibatch sampling. The sampler hyperparameters α, C, M,

and B are set according to the auto-tuning method of [Springenberg et al., 2016] which has

been verified to work well in our experiments; more details are given in Appendix C.1.1.1.

Maximization (M) step. This step corresponds to the outer loop calculation.

We optimize Jmeta (4.3) w.r.t. θ using samples of z. The original objective Jmeta =∑
t∈T log(Ep(z|yXst

)[p(yX q
t
|fX q

t
= (gθ(x, z))

⊤
x∈X q

t
)]) is not amenable to stochastic optimiza-

tion with data minibatches, which is usually not an issue in a few-shot learning setting.

When a huge number of data points and samples of z are considered, we can resort to

optimizing the lower bound Js-meta of Jmeta by applying the Jensen’s inequality:

Jmeta ≥ Js-meta ≜
∑

t∈T Ep(fXqt |yXst
)

[
log p(yX q

t
|fX q

t
)
]
=
∑

t∈T Ep(z|yXst
)

[
log p(yX q

t
|fX q

t
)
]
.
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4.3.2 Architecture Design for Meta-Training

Our generator gθ is implemented using a deep neural network (DNN) parameterized by

meta-parameters θ. Under this setup, we have empirically observed that the design of the

coupling of z with the DNN gθ(x, ·) is crucial to achieving competitive performance of our

IPML algorithm. A naive design by concatenating z with x (or higher-level abstractions

of x) as a contextual input during forward passes has not worked well as the resulting

gradients w.r.t. zmay not have provided enough guidance for SGHMC to learn a sufficiently

useful representation of z in meta-training.

To this end, inspired by the attention mechanism [Vaswani et al., 2017] and dropout

method [Srivastava et al., 2014], we introduce a design of the coupling by applying z as a

mask to the last DNN layer’s parameters: The last DNN layer’s parameters are first masked

by z (i.e., point-wise product with z), as illustrated in Figs. 4.1a and 4.1b. Different tasks

can now be distinguished by different masks, hence resembling different attentions on

the last DNN layer’s connections during forward propagation. We adopt soft masks (i.e.,

continuous values) instead of hard masks (i.e., either 0 or 1). The latent task prior belief

p(z) is thus assumed to be a multivariate Gaussian N (1, I).

In our design, z serves as a “feature selector” (masking out the undesired signals) rather

than a contextual input in which z is naively concatenated with x as the input to the model

g. This is because in the beginning of the training, our estimation of p(z) is inaccurate, and

using it as a contextual information will lead to some degree of optimization difficulties.

Instead, using z as a feature selector will allow our estimation of p(z) to be optimized

rapidly, and thus quickly improves our estimation of the meta-parameters. Such a mask

design of the coupling is empirically demonstrated to be effective in our experiments

(Appendix C.1.3.3).
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Figure 4.1: (a) Graphical model corresponding to IPML. (The usage of support and query
sets are distinguished in the objective Jmeta (4.3).) (b) DNN implementation of generator
gθ where θ ≜ (θa, θb) and θa can be convolutions to obtain high-level representations of
the input vector, while θb is the last DNN layer’s parameters which are masked by z during
the forward passes. (c) Graphical model corresponding to input generation by X-Net. (d)
CVAE implementation of X-Net (i.e., decoder neural network with parameters ϕ).

4.3.3 Architecture Design for Synthetic Task Generation

Recall the assumption of known/fixed input vectors in Xt in the last paragraph of

Chapter 4.2,2 which we will have to relax here. Synthetic task generation can be

performed by the following procedure if x is task-independent (e.g., p(x, z) = p(x)p(z)):

After meta-training is completed (Chapter 4.2), draw a sample of latent task vector

z ∼ p(z), draw samples of x ∼ p(x) to form Xt, and then generate noisy outputs

yXt = (gθ(x, z) + ϵ(x))⊤x∈Xt to obtain the dataset (Xt,yXt) for task t.

When x is task-dependent (e.g., for image classifications of different objects, p(x, z) ̸=

p(x)p(z)), not modeling p(x|z) limits the ability to generate t-dependent Xt. To resolve

this, our IPML algorithm includes an X-generative network (X-Net): x ≜ hϕ(z,ω) that

learns to generate an input vector x given samples of the latent task vector z and random

vector ω ∼ p(ω) = N (0, I) where ω models the diversity of the input distribution given

a fixed task represented by the sample of z. There are several options to implement X-Net:

Note that during the training of X-Net, both Xt and the samples of z ∼ p(z|yX s
t
) for all

meta-training task t ∈ T are available. So, generative models such as the conditional

variational autoencoder (CVAE) [Sohn et al., 2015] or conditional generative adversarial

networks [Mirza and Osindero, 2014] are suitable for X-Net as they can utilize z as the

contextual information. Our work here uses (the decoder of) CVAE to implement X-Net.

2This assumption is reasonable for meta-training since only p(yX ) (and not p(x)) needs to be modeled.
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Figs. 4.1c and 4.1d illustrate such a design. We have empirically observed that a simple

concatenation with z suffices here as our delicate architecture design for meta-training

(Chapter 4.3.2) can yield a useful representation of z for training X-Net well. Further details

and a method to ensure balanced data generation are given in Appendix C.1.4. The training

objective for synthetic task generation is the empirical lower bound [Sohn et al., 2015] of

VI on p(ω|x, z):

JX ≜
∑

t∈T Ez∼p(z|yXst
)

[
|Xt|−1

∑
x∈Xt

(
Eqψ(ω|x,z)[log pϕ(x|z,ω)]−DKL[qψ(ω|x, z)∥p(ω)]

) ]
where ϕ and ψ are, respectively, the parameters of X-Net (decoder neural network) and the

encoder neural network, and DKL denotes the KL distance. In the training of X-Net, we

sample one z per update. We also sample one ω per update to train with reparameterization

tricks. Algorithms 2 and 3 describe meta-training (with training of X-Net) and synthetic

task generation, respectively. In the case that synthetic task generation is not needed, we

can skip the training of X-Net (* in Algorithm 2).

Algorithm 2 IPML: Meta-Training
while not converged do

Sample task t from T

E step : Sample {z1, . . . , zn} with SGHMC (Chapter 4.3.1)

M step : Sample z from {z1, . . . , zn}

M step : θ ← θ + η∇θJmeta

*Update X-Net (Chapter 4.3.3) with z and Xt :

ϕ← ϕ+ η∇ϕJX , ψ ← ψ + η∇ψJX

end while

return θ, ϕ, ψ
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Algorithm 3 Synthetic Task Generation
Sample z ∼ p(z)

Initialize synthetic task t and Xt = ∅

for i = 1, . . . , final size of Xt do

Sample ω ∼ N (0, I)

Compute x = hϕ(z,ω)

Compute yx = gθ(x, z) + ϵ(x)

(Xt,yXt)← (Xt ∪ {x},yXt∪{x})

end for

return (Xt,yXt) for task t

4.4 Experiments and Discussion

Benchmark datasets: sinusoid regression and few-shot image classification. We first

empirically evaluate the performance of our IPML algorithm against that of several Bayesian

meta-learning baselines like the neural process (NP) [Garnelo et al., 2018b], Bayesian

model-agnostic meta-learning (BMAML) [Yoon et al., 2018], PLATIPUS [Finn et al., 2018],

and amortized Bayesian meta-learning (ABML) [Ravi and Beatson, 2018] on benchmark

meta-learning datasets. For few-shot image classification, we also empirically com-

pare IPML with a strong baseline: prototypical network (PN) [Snell et al., 2017]. We

run experiments on three datasets: sinusoid, Omniglot [Lake et al., 2011], and mini-

ImageNet [Ravi and Larochelle, 2017]. Sinusoid is a regression task of sine waves with

uniformly sampled amplitude in [0.1, 5.0], phase in [0, π], and input x in [−5, 5]. The

generator of IPML and the baseline regressors are neural networks with 2 hidden layers of

size 40 with ReLU nonlinearities. The Omniglot dataset consists of 20 instances of 1623

characters from 50 different alphabets. The mini-ImageNet dataset involves 64 training

classes, 12 validation classes, and 24 test classes. For Omniglot and mini-ImageNet,

our implementation and baselines all use the same data pre-processing, same train-test
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split, and same data augmentation as that in [Finn et al., 2017]. The generator of IPML

and the baseline classifiers are convolutional neural networks with 4 modules of 3 × 3

convolutions and 64 filters, followed by batch normalization, ReLU nonlinearities, and

strided convolutions (Omniglot) or 2× 2 max-pooling (mini-ImageNet). More details of

the experimental settings can be found in Appendix C.1.1.2.

For sinusoid regression (Table 4.1), IPML outperforms MAML and BMAML by a fair

margin. For Omniglot (Table 4.2), IPML is competitive with MAML and PN. For mini-

ImageNet (Table 4.3), IPML outperforms MAML and all tested Bayesian meta-learning

algorithms,3 while being competitive with PN. PN achieves a higher classification accuracy

for 1-shot 20-way Omniglot and 5-shot 5-way mini-ImageNet because PN utilizes more

information from the extra classes during training [Snell et al., 2017]. Specifically, though

meta-testing involves N -way classification for all tested algorithms, the training of PN

requires more thanN classes, that is, 60-way classification which is also the setting adopted

in [Snell et al., 2017]. As a result, since PN utilizes more information from the extra

classes during training, it is reasonable to expect that PN achieves a higher classification

accuracy at times.4 Overall, IPML is effective for benchmark datasets.

For both sinusoid regression (Table 4.1) and Omniglot (Table 4.2), NP performs

unsatisfactorily as compared to IPML, likely because (a) it performs amortized variational

inference of z through a heavily parameterized encoder which may introduce optimization

difficulties and overfitting during meta-training, and (b) the encoder of NP takes in

the simple concatenation of (x, yx) and thus does not explicitly capture the x → yx

relationship in the support set. An ablation study of the limitations of NP can be found in

Appendix C.1.7.

Active task selection. We can evaluate the effectiveness of the uncertainty measure

arising from latent task posterior belief p(z|yX s
t
) by performing active task selection. Unlike

3Some of the results are taken from [Finn et al., 2018, Nguyen et al., 2020a, Yoon et al., 2018]. The
5-shot 5-way results for PLATIPUS and ABML are missing because there are no publicly available
implementations.

4Although it seems that PN utilizing extra classes during training might be an unfair comparison, it can
still be viewed as a performance ”upper-bound” when tested on the same N -way K-shot setting.
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Table 4.1: Mean square error (MSE) on few-shot sinusoid regression.

Sinusoid 5-shot Sinusoid 10-shot
NP 0.460 0.264

MAML 0.712 0.287
BMAML 0.409 0.200

IPML(Ours) 0.373 0.123

Table 4.2: Few-shot classification accuracy (%) on held-out Omniglot characters.
Omniglot

1-shot 5-way
Omniglot

1-shot 20-way
NP 95.9 55.3

MAML 98.7 92.5
PN 98.8 96.0

IPML(Ours) 98.8 94.0

Table 4.3: Few-shot classification accuracy (%) on mini-Imagenet test set.

mini-ImageNet
1-shot 5-way

mini-ImageNet
5-shot 5-way

MAML 48.6 65.9
PN 49.4 68.2

PLATIPUS 50.1 -
BMAML 49.1 64.2
ABML 45.0 -

IPML(Ours) 50.5 67.6

(a) (b)

Figure 4.2: Results of active task selection on (a) 5-shot sinusoid and (b) 1-shot 5-way
mini-ImageNet.
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previous works [Yoon et al., 2018, Finn et al., 2018] that can only perform active learning

by querying data points, IPML can perform active learning by querying tasks and does not

need the assumption of known task contexts in [Kaddour et al., 2020]. In every iteration, a

set of tasks are proposed with only the support set (X s
t ,yX s

t
) given; in image classification,

it is usually one-shot. IPML will select among them the task with the maximum variance

in p(z|yX s
t
) (with samples from the E step/SGHMC): argmaxt Var(z|yX s

t
), and request

for its query set to perform meta-training. This corresponds to a variance-based active task

selection criterion. We test on both sinusoid regression and mini-ImageNet classification.

Fig. 4.2 shows that the performance of IPML with active task selection improves over

that of both MAML or IPML without active task selection, that is, it reaches a given

MSE/accuracy with less training tasks. This shows that the uncertainty measure arising

from p(z|yX s
t
) can be exploited to benefit meta-training.

Measuring distance between tasks using latent task representation. A most

interesting question yet to be answered is the following: Does IPML learn a useful

latent task representation? IPML learns to model the task through z. If IPML learns

the correct representation, then it can reflect patterns of task distribution in the latent

space. While a solid criterion for assessing the correctness of learned latent task

representation is hard to define, we can resort to an oracle (e.g., human expert with prior

knowledge in designing the tasks). Our visualization of the latent task representation

and quantitative evaluation of distance measure between tasks using maximum mean

discrepancy (MMD) [Gretton et al., 2012] provide ways to assess the correctness of the

learned task representation. We denote the set of samples from p(z|yX s
t
) as Zt. The MMD

between tasks t1 and t2 can be calculated using

MMD[H, t1, t2] ≜ supκ∈H

(
|Zt1|−1

∑
z∈Zt1

κ(z)− |Zt2|−1
∑

z∈Zt2
κ(z)

)
whereH is a unit ball in the reproducing kernel Hilbert space with a radial basis function

kernel. It is worth mentioning that, the reason we don’t use a Euclidean measure on the
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0 π/2 π 3π/2 normal brightness -0.5
brightness +0.5

hue1 (red) hue2 (green)
hue3 (blue)

normal 3 X zoom-in
10 X zoom-in

normal contrast=1/10
contrast=100

(A) (B) (C) (D) (E)

Figure 4.3: Visualization of latent task embeddings from settings A to E.

mean values of two sets of samples is because the latent task posterior belief is usually not

single-modal, as can be observed from Fig. 4.3. Thus a point estimation of the latent task

vector could be inaccurate.

We conduct experiments with the following 5-way 1-shot settings. Setting A: For

subsampled Omniglot, we applied one rotation out of 4 possibilities (0, π/2, π, 3π/2)

uniformly across all the input images for each sampled task.5 Setting B: For subsampled

mini-ImageNet, a random artistic filter (normal, brighten, or darken) is applied for each

sampled task. Setting C: For subsampled mini-ImageNet, a random artistic filter (3

different types of hue) is applied for each sampled task. Setting D: For subsampled

mini-ImageNet, a random zooming (no zooming, zooming 3 times, or zooming 10 times)

is applied for each sampled task. Setting E: On subsampled mini-ImageNet, a random

artistic filter (normal, low contrast, or high contrast) is applied for each sampled task.

Setting A has 4 types of tasks while settings B to E result in 3 types of tasks.

For each setting mentioned above, we first train our models in IPML to converge,

and then sample tasks from their latent task posterior beliefs (i.e., one sample of z

per task). Finally, we visualize their latent task embeddings in the 2D space using

TSNE [van der Maaten and Hinton, 2008]. Furthermore, for setting A, we evaluate the

distance measure between tasks using the well-known MMD metric with radial basis

function kernels on the z samples. It can be observed from Fig. 4.3 and Table 4.4 that

IPML successfully distinguishes 4 types of rotations for Omniglot. Both Fig. 4.3 and

Table 4.4 contemporaneously show that flipping upside down (i.e., either right half of the

5In the previous experiment, the Omniglot dataset is augmented with rotations, but is random across the
classes in a single task.
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Table 4.4: Values of MMD metric between 4 types of tasks for Omniglot (setting A).
Larger value means larger dissimilarity.

Rotations 0 π/2 π 3π/2
0 0 1.166 0.594 1.134
π/2 1.166 0 0.913 0.596
π 0.594 0.913 0 0.917

3π/2 1.134 0.596 0.917 0

Table 4.5: Results of meta-testing for training with real and generated tasks.
Train on Accuracy (%)

real 73.83
generated 78.33

real + generated 88.16

Task
type 3:

Task
type 2:

Task
type 1:

(a) (b) (c)

Figure 4.4: (a) TSNE visualization of (samples of) 3 types of binary classification
tasks; images of black/white background are black/white samples (yx = 1/yx = 0). (b)
Visualization of latent embedding of real tasks in (normalized) z space [−2, 2]2. (c)
Sampled generated task data by walking through the (normalized) z space [−2, 2]2; note
that the inversion of color is only for visualization to distinguish black and white samples.
In training, NO images are inverted.

embedding 0 ⇄ π or left half of the embedding π/2 ⇄ 3π/2) are closer tasks compared

with rotation of π/2, thus revealing that our visualization and evaluation of distance

measure between tasks are in accordance. From Fig. 4.3B to Fig. 4.3D, IPML successfully

distinguishes different types of transformations on the tasks while revealing interesting

facts: for example, tasks of high brightness are more isolated from that of low or normal

brightness. Fig. 4.3E shows that tasks of low contrast are more distinct from that of

normal or high contrast. The values of MMD metric for settings B to E and comparison

of the visualizations of other models are provided in Appendix C.1.5. On the overall,

both the visualization and evaluation of distance measure between tasks reveal that IPML

successfully learns useful latent task representations and even provides interesting insights.
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Synthetic task generation for Omniglot. We assess the usefulness of latent task

representation z by performing synthetic task generation. The training tasks we consider

are three types of sub-sampled binary classifications: classification of characters A vs. B,

B vs. C, and C vs. A, as in Fig. 4.4a. During meta-learning, we train a X-Net concurrently

to learn to generate task-related input images (Chapter 4.3.3). The CVAE implementation

of X-Net contains a decoder neural network with 3 hidden layers of size [128, 128, 256]

and ReLU nonlinearity, and a symmetric design of the encoder. After meta-training is

completed, we continue to train the X-Net to converge. In this experiment, the dimension

of z is set as 2, which further allows walking through such a latent space/embedding to

visualize how the generated tasks map to their latent representations. Fig. 4.4b shows

the latent embedding of real tasks. Fig. 4.4c shows the sampled synthetic tasks by

walking through the latent space. It can be observed that X-Net successfully captures the

task-dependent input distributions and can generate high-quality data of task type 1, 2, and

3 when sampled from their corresponding latent clusters (see samples of task type 1, 2,

and 3 in the colored bounding boxes in Fig. 4.4c).

We further evaluate the quality of generated tasks by training on it. We hold out half

of the images for each character during meta-training to construct the meta-testing tasks.

The results are presented in Table 4.5. When training on both real and generated tasks, we

first train on the generated tasks to converge and then train on the real tasks for another 30

iterations. It can be observed that compared to only using real tasks, a higher accuracy

is achieved with training merely using generated tasks. When training on both real and

generated tasks, a huge boost in accuracy is observed. We conjecture that due to their

diversity, generated tasks (i.e., sometimes containing more ambiguous tasks) alleviate

overfitting and provide a promising direction on meta-task augmentation.

Real-world risk detection. We perform experiments on a real-world risk detection

dataset provided by an anonymous e-commerce company. The task is to classify whether

an item in the online shop has risks (e.g., fraud, pornography, contraband). Such risks

appear in different forms and in different categories (of items). It is hard to detect risks
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3 Personal nursing and Cosmetics

9 Antique collection

19 Domestic and Daily-use

21 Cellular

23 Costume and accessories

36 Network equipment

39 Watches and glasses

44 In-game currencies

46 Gaming accounts

47 Gaming items

(a) (b)

Figure 4.5: (a) TSNE visualization of latent task embedding of 10 meta-testing categories
and (b) their analysis (see main text). Legend shows IDs and names of categories.

Table 4.6: Averaged meta-testing performance on 10 meta-testing categories.
Accuracy (%) F1

IPML 84.5 70.5
Multi-task 84.1 60.5

Table 4.7: Averaged meta-testing performance on 5 desired categories (IDs 19, 21, 23, 36,
44).

Accuracy (%) F1
Setting A 87.4 75.8
Setting B 86.4 74.4

in different categories by training models separately for each category because some

categories have only very limited amounts of black samples (i.e.,< 50). The similarities of

the detected risks in different categories, if discovered, can help improve the performance.

Meta-learning is thus a suitable algorithm for its ability to perform (a) detection of risks

across different categories of items and (b) adaptation to new categories. The input x of

the dataset is the text (title and descriptions) embedding obtained from self-supervised

learning, while its label is a binary variable indicating whether it contains risks (i.e.,

yx = 1 for black samples and yx = 0 for white samples). The data are separated by

categories of items to yield 47 categories in total. Initially, we hold out 10 categories for

meta-testing (their category names and IDs are given in Fig. 4.5), while the rest are used

for meta-training.

Table 4.6 shows results comparing the performance of IPML vs. a multi-task learning

baseline. Multi-task learning based on hard parameter sharing [Caruana, 1997] is the
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company’s best performing baseline in this problem before the usage of meta-learning.

This baseline comparison is to justify the use of meta-learning in this real-world setting.

When testing on an unseen category, multi-task learning performs adaptation by randomly

initializing its untied parameters for retraining on the few-shot support data. It can be

observed that IPML outperforms multi-task learning, which indicates its stronger ability

to generalize to unseen categories. Fig. 4.5 visualizes the latent task embedding of the

10 meta-testing categories for analysis. IPML learns useful latent task representations:

For example, from Fig. 4.5a, gaming-related categories with IDs 46 and 47 are mapped

closely in the latent task space/embedding.

The individual meta-testing performance on the 10 meta-testing categories, which are

given in Appendix C.1.2, can be further examined: For the five categories with IDs 19, 21,

23, 36, and 44 covered by the shaded light green zone in Fig. 4.5b, IPML outperforms

multi-task learning by a large margin. They are mapped to the center of the latent task

space (Fig. 4.5b), which may imply that IPML’s adaptations to them can largely build

on previous experiences of the meta-training categories and IPML’s exploitation of such

similarities allows their performance to improve over multi-task learning. For the three

categories with IDs 3, 9, and 39 covered by the shaded light orange zone, IPML does

not have a performance advantage over multi-task learning. For the two categories with

IDs 46 and 47 covered by the shaded light pink zone, both IPML and multi-task learning

perform unsatisfactorily. As a matter of fact, for IPML, the categories with unsatisfactory

performance (i.e., either covered by the shaded light orange or pink zone) are all mapped

to be some distance away from the center, which indicates that they are likely considered

by IPML as “outlier”/dissimilar tasks.

We further compare meta-learning on (A) the same setting as before by holding out

the 10 meta-testing categories vs. (B) training on all categories in setting A as well as

the dissimilar ones with IDs 3, 9, 39, 46, and 47. Table 4.7 shows results on the desired

categories with IDs 19, 21, 23, 36, and 44. It can be observed that when a meta-learning

model is trained to perform well (during meta-testing) on the desired categories/tasks,

78



4.5. CONCLUSION

training alongside with dissimilar ones can compromise its performance. More details

of the experimental settings and data preparation, experimental results, and analysis are

given in Appendix C.1.2. We have also empirically compared the time efficiency of IPML

against that of several meta-learning baselines and reported the results in Appendix C.1.6.

4.5 Conclusion

We describe a novel IPML algorithm that, in contrast to existing works, explicitly represents

each task as a continuous latent vector and models its probabilistic belief within the highly

expressive IP framework. We show that IPML can be trained with an EM algorithm,

where the E step uses the gradient-based sampling method SGHMC (stochastic gradient

Hamiltonian Monte Carlo) to draw posterior samples, and the M step maximizes the meta-

learning objective through gradient descent. IPML offers the benefits of being amenable

to (a) the characterization of a principled distance measure between tasks using MMD, (b)

active task selection, and (c) synthetic task generation of complicated image classifications

via modeling of task-dependent input distributions using our X-Net. Empirical evaluation

shows that IPML outperforms existing Bayesian meta-learning algorithms. We have

also empirically demonstrated the application of IPML on an anonymous e-commerce

company’s real-world dataset.

In this chapter, we have successfully illustrated IPML’s ability to perform active task

selection, though the criterion we used is a naive one (maximum variance), and does not

come with any theoretical guarantee. In the next chapter, we dig deeply into the problem

of active task selection for meta-learning, and proposed a novel criterion based on the

mutual information between latent task vectors (MILT) to quantify the informativeness

of any subset of task. We also come up with a greedy algorithm that has a near-optimal

guarantee on the MILT criterion of the selected tasks.
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Chapter 5

Online Stein Variational Gradient

Descent for Near-Optimal Task Selection

in Meta-Learning

5.1 Background

Meta-learning exploits the experience from previous tasks to form a model (represented

by meta-parameters) that can rapidly adapt to a new task with its few-shot data. Though

meta-training requires only a few data points from each task, these tasks have to be

representative of the distribution of meta-test tasks [Luna and Leonetti, 2020] in order

to attain strong generalization performance for any meta-test task. To achieve this, one

can naively consider acquiring (the data associated with) a massive number of tasks like

that in various benchmark datasets, which in practice is prohibitively costly in time and

money (e.g., due to manual labeling or data anonymization effort). Given a limited budget

of k tasks to be acquired, one can simply select them randomly, but this often leads to

a sub-optimal meta-test performance [Liu et al., 2020]. This motivates the problem of

active task selection which involves selecting a subset of k most informative tasks from a

finite yet large collection of candidate tasks for meta-training. These informative tasks are
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expected to be most representative of the distribution of meta-test tasks among any other k

tasks and hence allow meta-training to generalize best to any meta-test task.1

To address the active task selection problem, we start by choosing a probabilistic

meta-learning framework for grounding our active task selection criterion based on infor-

mation theory. From the existing works on probabilistic meta-learning [Chen et al., 2021,

Finn et al., 2018, Rusu et al., 2019, Yoon et al., 2018], we choose our implicit process-

based meta-learning (IPML) framework [Chen et al., 2021] (Chapter 4) that explicitly

represents each task as a continuous latent vector and models its probabilistic belief within

the highly expressive implicit process (IP) framework [Ma et al., 2019]. Representing

each task as a latent task vector has a distinct advantage in that the dimension of the

representation does not increase with the number of data points in a task, hence allowing

active task selection criteria based on mutual information or entropy to be computed

efficiently (Chapter 5.3.2). We then propose a novel active task selection criterion based on

the mutual information between latent task vectors (MILT) to quantify the informativeness

of any subset of tasks. Unfortunately, the MILT criterion scales poorly in the number

of candidate tasks when optimized. To resolve this issue, we exploit the submodularity

property of the MILT criterion for devising the first active task selection algorithm for

meta-learning with a near-optimal performance guarantee (Chapter 5.3).

Our active task selection algorithm requires frequent belief updates of the meta-

parameters, which can be computationally expensive. To further improve our efficiency,

we design a forward-backward method based on our online variant of the Stein variational

gradient descent (SVGD) [Liu and Wang, 2016] to perform fast belief updates such that

a set of forward (and backward) particles is maintained and updated by learning (or

unlearning) from each selected task (Chapter 5.4).

1Note that the motivation of active task selection is not to meta-learn faster in terms of wall-clock time.

81



5.2. PROBLEM FORMULATION

5.2 Problem Formulation

Among the existing probabilistic meta-learning frameworks [Chen et al., 2021, Finn et al., 2018,

Yoon et al., 2018], we adopt ours [Chen et al., 2021] (Chapter 4) which explicit represents

each task as a continuous latent vector and models its probabilistic belief. Following

Chapter 4, the inputs (outputs) for all candidate tasks are assumed to belong to the

same input (output) space. Consider meta-learning on probabilistic regression tasks

(the meta-learning on probabilistic classification tasks uses the robust-max likelihood

[Hernández-Lobato et al., 2011] as introduced in Chapter 3.1.1): Each candidate task is

assumed to be generated from a task distribution and associated with a dataset (X,Y = y)

where X is a set of known/fixed input vectors. From now on, for terms conditioned on the

known/fixed inputs, we omit the inputs to ease notations. Y ≜ (yx)
⊤
x∈X denotes a vector

of the corresponding noisy outputs (random variables): yx ≜ f(x) + ϵ(x), which are

outputs of an unknown function f corrupted by an i.i.d. Gaussian noise ϵ(x) ∼ N (0, σ2)

with variance σ2, and the vector y denotes a realization of Y . Let f be distributed by an

implicit process (IP) [Ma et al., 2019], as follows:

Definition 5.1 (extended definition of the Implicit process (IP) for a Bayesian treatment

of the meta-parameters). Let the collection of random variables f(·) denote an IP defined

by meta-parameters (random variables) Θ: Every finite collection {f(x)}x∈X has a joint

prior belief p(f ≜ (f(x))⊤x∈X) implicitly defined as:

Z ∼ P (Z = z) = p(z), f(x) ≜ gΘ(x,Z) (5.1)

for all x ∈ X where every latent task vector Z = z (representing a task) is drawn from

the prior belief p(z) ≜ N (0, I), and generator gΘ can be an arbitrary model (in our work

here, a deep neural network (DNN)) parameterized by meta-parameters Θ.

Note that the above definition is extended from Def. 4.1 such that it adopts a Bayesian

treatment of the meta-parameters instead of a point estimate (which not only empirically
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improves performance (Chapter 5.5), but also allows us to reasoning about the uncertainty

in the meta-parameters). Let the meta-parameters (random variables) Θ follow a prior

belief P (Θ = θ) = p(θ). The goal of meta-learning is to infer the posterior belief

P (Θ|Y = y) of meta-parameters Θ. Using p(y|f) = N (f , σ2I) and the IP prior belief

p(f) from Def. 5.1, the marginal likelihood P (Y = y) can be derived by marginalizing out

f . Following Chapter 4.3, the coupling of Z with the IP model is by masking the last DNN

layer’s parameters (i.e., point-wise product) with Z during forward propagation (Fig. 5.1c).

Notations. Let T denote a finite collection of candidate tasks. For each candidate

task t ∈ T , we consider a split of its dataset (Xt,Yt = yt) into a small sample dataset2

(Xs
t ,Yst = yst ) known a priori and a large remaining dataset (Xr

t ,Yrt = yrt ) to be ac-

quired/observed only after this task is selected by an active task selection algorithm. So,

Xt = Xs
t ∪ Xr

t and Xs
t ∩ Xr

t = ∅. Such a split is similar to the support-query split

of a meta-training task [Finn et al., 2018, Gordon et al., 2019, Ravi and Beatson, 2018,

Yoon et al., 2018], albeit serving a different aim of active task selection here. For a subset

A ⊆ T of tasks, let YrA ≜ (Yrt )t∈A and yrA ≜ (yrt )t∈A denote a realization of YrA. Similarly,

let ZA ≜ (Zt)t∈A concatenate the latent task vectors representing the tasks in A. Let A∪ t

denote the union of A and {t}.

Problem Definition. Given a finite collection T of candidate tasks with small, a

priori known sample datasets (Xs
t ,y

s
t ) for all t ∈ T (Chapter 5.2), the problem of active

task selection is about selecting a subset A ⊆ T of most informative tasks subject to a

budget of |A| = k tasks. After selecting A, the datasets (Xr
t ,y

r
t ) for all tasks t ∈ A are

acquired/observed for meta-training. From now on, for terms conditioned on the a priori

known sample datasets, we omit them to ease notations.

Note that in this work, we assume the candidate tasks are fixed prior to our selection.

So, we are not allowed to generate our own tasks by selecting classes for meta-learning

of classification tasks, like in [Liu et al., 2020]. Also, we do not assume the availability of

any contextual information (e.g., hyperparameters generating task data) on the tasks, like

2For N -way K-shot classification problems, the sample dataset has K data points per class and N
classes.
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Figure 5.1: Graphical model of implicit process for (a) meta-learning and (b) task selection.
We omit the random variable f(·) to simplify illustration since f(·) → Y is simply the
addition of i.i.d. Gaussian noises. (c) DNN generator gθ where θ ≜ (θa, θb) and θa can be
convolutions to obtain high-level representations of the input vector, while θb is the last
DNN layer’s parameters.

in [Kaddour et al., 2020]. Our only assumption is the availability of known sample datasets

for each task, which is realistic and easy to achieve in practice. An example of our problem

setting is when a meta-learner wants to purchase data from decentralized data market-

places. These decentralized data marketplaces enable a secure data exchange between the

participants. Powered by blockchain, they can maintain the anonymity of their participants

which is why they are often used for the trading of personal data. They usually offer a

period of free subscription such that the sample datasets can be easily acquired. In reality,

such a decentralized data marketplace can be found in established data sharing platforms

like Streamr Marketplace (https://streamr.network/marketplace) which offers

data like real-time finance market data, and HIT Foundation [Eberhard and Paul, 2019]

which offers healthcare data like radiology image data.

Meta-Learning Algorithms used after Active Task Selection. Given the se-

lected A, in principle, we are free to use any meta-learning algorithms to obtain a

final model, including probabilistic methods [Finn et al., 2018, Yoon et al., 2018] or non-

probabilistic [Finn et al., 2017] methods. We ground our active task selection criterion

on IP. Probabilistic meta-learning of IP can be defined as the inference of meta-parameters

Θ and Chapter 4.3 has used an expectation maximization (EM) algorithm to perform meta-

training such that the E step carries out the IP inference of Z while the M step optimizes Θ.

Since our focus is on active task selection instead of deriving a meta-learning algorithm,

a detailed discussion of the meta-learning algorithms can be referred to Appendix D.2,
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where we have extended the EM algorithm we introduced in Chapter 4.3 so that it can

deal with a Bayesian treatment of meta-parameters. Fig. 5.1 shows the graphical models

of the IP for task selection as well as meta-learning.

5.3 Mutual Information between Latent Task vectors

5.3.1 MILT Criterion

To quantify the informativeness of a subset A of tasks, our proposed active task selection

criterion measures its reduction in uncertainty/entropy of the latent task vectorsZT\A repre-

senting the other candidate tasks in T \A or, equivalently, its information gain I(ZA;ZT\A)

on them. We use the prior entropy H(ZT\A) and posterior entropy H(ZT\A|ZA) to rep-

resent the uncertainty of ZT\A before and after conditioning on ZA. Then,

I(ZA;ZT\A) ≜ H(ZT\A)−H(ZT\A|ZA) , (5.2)

which we call the mutual information between latent task vectors (MILT) criterion. For

simplicity, we define the set function MILT(A) ≜ I(ZA;ZT\A). The k most informative

candidate tasks thus correspond to the subset A⋆ ⊆ T with the largest information gain

MILT(A⋆) on ZT\A⋆:

A⋆ ≜ argmaxA⊆T,|A|=k MILT(A) . (5.3)

Unfortunately, the MILT criterion (5.2) scales poorly in the number |T | of candidate tasks

when optimized in (5.3). In fact, solving (5.3) has been shown to be NP-hard even when

ZT follows a tractable multivariate Gaussian distribution [Ko et al., 1995]. Inspired by the

work of [Krause et al., 2008], we will now present a polynomial-time greedy algorithm

that can exploit the submodularity of MILT to guarantee a (1− 1/e)-factor approximation

of that achieved by A⋆:
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Algorithm 1 (Near-optimal active task selection (informal)). Start with an empty set

A0 = ∅ of tasks. In each round i = 1, . . . , k, greedily select the next task:

t⋆i ≜ argmaxt MILT(Ai−1 ∪ t)−MILT(Ai−1) (5.4)

and update the set Ai = Ai−1 ∪ t⋆i = {t⋆1, . . . , t⋆i } of selected tasks.

Theorem 5.1 (Near-optimal guarantee). Algorithm 1 is guaranteed to select a set A of

k tasks s.t.

MILT(A) ≥ (1− 1/e)(OPT− C0) (5.5)

where OPT ≜ MILT(A⋆) and the constant C0 ≜ H(Θ) is the prior entropy of meta-

parameters Θ.

Its proof is in Appendix D.3.1. Note that for a monotonic submodular set function,

a greedy algorithm can be designed to guarantee a (1− 1/e)-factor approximation of OPT

[Krause and Golovin, 2014]. Though the MILT(·) function is submodular, it is not strictly

monotonic. Nevertheless, we can show that MILT(·) is approximately monotonic up to a

constant error of C0, which suffices for the proof of Theorem 5.1. This approximate mono-

tonicity holds due toZt,Zt′ ,∀t ̸= t′ being mutually independent given meta-parameters Θ.

5.3.2 Advantages of MILT over other Active Task Selection Criteria

For our active task selection problem, other criteria can be considered. For example, A

can be selected to maximize the mutual information between remaining datasets of tasks

(MIRD) criterion I(YrA;YrT\A) ≜ H(YrT\A)−H(YrT\A|YrA). In fact, we can also prove a

similar near-optimal performance guarantee for MIRD, as shown in Appendix D.3.2. How-

ever, any criterion involving probabilities conditioned on YrA tends to be computationally

challenging to evaluate: Suppose that each task has a potentially large remaining dataset

of size R. Since the dimension of YrA is proportional to R|A|, it becomes computationally

challenging to compute an accurate Monte Carlo estimation of MIRD. So, it is not
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Table 5.1: Comparison of different active task selection criteria. The last column indicates
the dimension of the sample space of the Monte Carlo sampling step when evaluating the
active task selection criterion.

Criterion Expression Submodular Approx. monotonic Near-optimal Sample space
MILT H(ZT\A)−H(ZT\A|ZA) ✓ ✓ ✓ O(k)
MIRD H(YrT\A)−H(YrT\A|YrA) ✓ ✓ ✓ O(Rk)
ELT H(ZA) ✓ ✗ ✗ O(k)

Variance Var(Zt|ZAi−1
) for i = 1, . . . , k ✗ ✗ ✗ O(k)

computationally feasible to evaluate the MIRD criterion when R is large. In contrast,

MILT does not suffer from this curse of dimensionality since the dimension of a latent

task vector Z in (5.1) does not increase with R. Such an advantage of latent task modeling

motivates us to use the IP framework (Def. 5.1).

As another example, A can be selected to maximize the entropy of latent task vectors

(ELT) criterion H(ZA). However, directly maximizing ELT is NP-hard even when ZT
follows a tractable multivariate Gaussian distribution [Ko et al., 1995]. So, we usually

resort to greedily selecting argmaxtH(Zt|ZAi−1
) for i = 1, . . . , k, which has a compa-

rable computational cost as Algo. 1. It is well-known that although the entropy criterion is

submodular, it may not be monotonic [Krause and Golovin, 2014]. Hence, such a greedy

algorithm based on ELT does not enjoy the near-optimal performance guarantee and often

performs sub-optimally [Krause et al., 2008].

We have proposed to greedily select the next task with the maximum variance of Zt in

Chapter 4: t⋆i = argmaxt Var(p
(
zt|θ,yst

)
) for i = 1, . . . , k. However, doing so neglects

the dependence ofZt onZAi−1
; it can be observed from the Fig. 5.1b that they are dependent

when Yst and YsAi−1
are both observed. To correctly account for such a dependence, the

following variance criterion should be considered instead: t⋆i = argmaxt Var(Zt|ZAi−1
)

for i = 1, . . . , k, which has a similar computational cost as the greedy algorithm based on

ELT, but does not have any performance guarantee. A comparison of the above-discussed

active criteria are summarized in Table 5.1.
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5.4 Efficient Evaluation of the Greedy MILT Criterion

Let A ≜ T \ A. From (5.4),

MILT(Ai−1 ∪ t)−MILT(Ai−1)

= H(Zt|ZAi−1
)−H(Zt|ZAi−1∪t) .

(5.6)

In (5.6), the posterior entropy H(Zt|ZA) = −EzA∼p(zA)

[∫
zt
p(zt|zA) log p(zt|zA)dzt

]
can be approximated by Monte Carlo sampling from p(zA) such that for each sample of

zA, we compute

p(zt|zA) =
∫
θ

p(θ|zA,ysA)︸ ︷︷ ︸
particles (Chapter 5.4.1)

p(zt|θ,yst )︸ ︷︷ ︸
Gaussian (Chapter 5.4.2)

dθ . (5.7)

From (5.7), the selection of A affects that of the next task t through the common

meta-parameters Θ in the IP model, as shown in Fig. 5.1.

5.4.1 Variational Inference (VI) with Particle Representation of Θ

In this subsection, we will describe the procedure to obtain the approximation of p(θ|zA,ysA).

We use a particle representation of Θ and a stochastic VI method for particles called the

Stein variational gradient descent (SVGD) [Liu and Wang, 2016] to compute the posterior

belief of Θ. Applied in a previous Bayesian meta-learning framework [Yoon et al., 2018],

SVGD combines the strengths of MCMC and variational inference and enjoys a similar

time efficiency as stochastic gradient descent. SVGD represents the belief of Θ with a

set {θm}Mm=1 of M particles.

Though p(θ|zA,ysA) in (5.7) cannot be evaluated in closed form, it can be computed via

SVGD: Its gradient∇θ log p(θ|zA,ysA) = ∇θ log[p(y
s
A|θ, zA)p(θ)] is available given our

neural network implementation of IP: p(ysA|θ, zA) =
∏

t∈A p(y
s
t |f st = (gθ(x, zt))

⊤
x∈Xs

t
)

where gθ is a neural network parameterized by θ (Def. 5.1). We perform SVGD on the

88



5.4. EFFICIENT EVALUATION OF THE GREEDY MILT CRITERION

observed tuples {zA, Xs
A,y

s
A} by first initializing each particle as a sample from p(θ)3

and then, in each SVGD iteration, updating each particle θm as

θm ← θm +
η

M

∑
θ∈{θm}Mm=1

[
k(θ, θm)

×∇θ log p(θ|zA,ysA) +∇θk(θ, θ
m)
] (5.8)

where η is the step size and k(·, ·) is a radial basis function kernel representing a repulsive

force between particles to prevent them from collapsing. We denote the abstraction of

the entire VI process (containing multiple SVGD iterations till convergence) to obtain

p(θ|zA,ysA) as p(θ|zA,ysA)← SVGDΘ(p(θ), {zA,ysA}) where the first input is the initial-

ization of the particles and the second input is the observed tuples. By setting M = 1,

we will recover the gradient descent method to compute the point estimate of Θ.

5.4.2 VI with Gaussian Approximation of Z

To model p(zt|θ,yst ) in (5.7), we use VI with a Gaussian approximation of the posterior

belief which makes use of the gradient onZ: For each particle θm, we perform VI to obtain

the mean and variance parameterization4 of a Gaussian distribution q(zt|θm) by maximiz-

ing the evidence lower bound ELBOZ ≜ Eq(zt|θm)[log p(y
s
t |zt, θm)]−KL(q(zt|θm)∥p(zt))

where KL stands for Kullback–Leibler divergence. As a result, p(zt|zA) will be a mixture

of Gaussians (since p(θ|zA,ysA) is a set of M particles), which allows us to arrive at an

easy approximation of the posterior entropy and hence (5.6). We denote the whole VI

process as: p(zt|zA)← VIZ(p(θ|zA,ysA)).

5.4.3 Forward-Backward Method for Efficiently Evaluating (5.6)

In this subsection, we will describe a forward-backward method based on online SVGD

to perform fast belief updates of the meta-parameters, thus improving the efficiency

3Note that this is not strictly needed for SVGD to converge.
4The mean and variance are optimized using gradient descent via the reparametrization trick.

89



5.4. EFFICIENT EVALUATION OF THE GREEDY MILT CRITERION

Algorithm 4 Near-Optimal Active Task Selection based on MILT
1: Set A = ∅;
2: Initialize forward particles: p(θ|zA,ysA) = p(θ);
3: Initialize backward particles:
4: p

(
θ|zA,ysA

)
= p
(
θ|zT ,ysT

)
← SVGDΘ

(
p(θ) , {zT ,ysT}

)
;

5: while |A| < k do
6: Sample zA ∼ p(zA), zA ∼ p(zA);
7: for t ∈ T \ A do
8: Compute with forward particles: p(zt|zA)← VIZ(p(θ|zA,ysA));
9: With backward particles:

10: p(zt|zA∪t)← VIZ

(
SVGD−1

Θ

(
p
(
θ|zA,ysA

)
, {zt,yst}

))
;

11: Estimate H(Zt|ZA)−H(Zt|ZA∪t);
12: end for
13: Select t⋆ = argmaxtH(Zt|ZA)−H(Zt|ZA∪t);
14: Update forward particles:
15: p

(
θ|zA∪t⋆ ,ysA∪t⋆

)
← SVGDΘ

(
p
(
θ|zA,ysA

)
, {zt⋆ ,yst⋆}

)
;

16: Update backward particles:

17: p
(
θ|zA∪t⋆ ,ysA∪t⋆

)
← SVGD−1

Θ

(
p
(
θ|zA,ysA

)
, {zt⋆ ,yst⋆}

)
;

18: Update A = A ∪ t⋆;
19: end while
20: return A
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in evaluating (5.6). When we proceed from round (i − 1) to i, we update the set

Ai = Ai−1∪ t⋆i of selected tasks. Then, p(θ|zAi ,ysAi) can be correspondingly updated from

p(θ|zAi−1
,ysAi−1

) by learning from the (sample dataset of) newly added task t⋆i in an online

manner:5 p(θ|zAi ,ysAi) ← SVGDΘ(p(θ|zAi−1
,ysAi−1

), {zt⋆i ,yst⋆i }). To this end, we only

maintain a single set of particles and update it in place. We refer to the particles in this set as

forward particles. Note that a significant advantage here is that in practice, by learning only

from the newly added task, we need much fewer SVGD iterations (around 5) to converge to

p(θ|zAi ,ysAi) compared with naively learning p(θ|zAi ,ysAi) from scratch (i.e., from p(θ)).

The same trick applies when we compute H(Zt|ZAi−1∪t) in (5.6). Firstly, we obtain

p(θ|zAi ,ysAi) which can be updated from p(θ|zAi−1
,ys

Ai−1
) by unlearning from the task

t⋆i . As shown in [Nguyen et al., 2020b], unlearning in the variational Bayes setting can

be cast exactly as a minimization of an evidence upper bound (EUBO)6, which is also

applicable to SVGD, as stated below:

Proposition 5.1 (Online SVGD for unlearning). Suppose that p(θ) is an uninformative

prior (e.g.,∇θ log p(θ) = 0). With {θm}Mm=1 initially sampled from p(θ|zA,ysA), the SVGD

operation for obtaining p(θ|zA\t,ysA\t) (i.e., unlearning from a task t ∈ A) is

θm ← θm +
η

M

∑
θ∈{θm}Mm=1

[
− k(θ, θm)

×∇θ log p(θ|zt,yst ) +∇θk(θ, θ
m)
]
.

(5.9)

We denote such an unlearning process (containing multiple SVGD iterations till conver-

gence) as p(θ|zA\t,ysA\t)← SVGD−1
Θ (p(θ|zA,ysA), {zt,yst}).

Note that SVGD for unlearning (5.9) differs from that for learning (5.8): The sign of

the likelihood gradient is reversed due to unlearning, while the sign of the kernel gradient

is not as it corresponds to a repulsive force term which remains the same in both Stein

operators of learning and unlearning. The proof of Proposition 5.1 (Appendix D.3.4)

5A relevant proposition that formally describes this online SVGD is provided in Appendix D.3.3.
6See Appendix D.3.4 for more details.
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Figure 5.2: Computational graph of evaluating (5.6) with the forward-backward method
in Chapter 5.4.3. The blue segments are computed using forward particles while the red
segments are computed using backward particles.

is obtained by deriving the Stein operator [Liu and Wang, 2016] for the minimization of

EUBO (i.e., unlearning). We make use of the unlearning variant of online SVGD by

maintaining another set of backward particles, which is initialized as p(θ|zT ,ysT ). We

then update it in place in every round of task selection through unlearning from task

t⋆i . Note that unlearning from a single task needs much fewer SVGD iterations (around

5) to converge to p(θ|zAi ,ysAi) compared with learning it from scratch (i.e., from p(θ)).

Unlearning can also be applied to obtain p(θ|zAi∪t,ysAi∪t) (i.e., forH(Zt|ZAi−1∪t) in (5.6))

such that p(θ|zAi∪t,ysAi∪t) is obtained by unlearning p(θ|zAi ,ysAi) from task t.

Time complexity. Fig. 5.2 shows a computational graph of evaluating (5.6). Algo. 4

describes a detailed variant of our near-optimal active task selection algorithm that utilizes

the forward-backward method. We show in Appendix D.1 that its computational cost

scales linearly in |T |. A detailed variant of the algorithm that uses the naive method

(without the forward-backward method) is included in Appendix D.1 where we show that

its computational cost scales quadratically in |T |.
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5.5 Experiments and Discussion

In this section, we will empirically compare the performance of three active task selection

criteria listed in Table 5.1: (a) greedy algorithm based on MILT (5.4), (b) greedy algorithm

based on ELT (Chapter 5.3.2), (c) greedy algorithm based on an improved variance

criterion (Chapter 5.3.2) over the method in Chapter 4.4, and also random task selection

using three benchmark datasets. Note that the comparison does not include MIRD due to its

potentially high computational cost (Chapter 5.3.2). We have also included a comparison

with [Luna and Leonetti, 2020] in Appendix D.4.3.7 We have also adapted the greedy

class-pair based sampling (GCP) proposed in [Liu et al., 2020], and the probabilistic active

meta-learning algorithm (PAML) proposed in [Kaddour et al., 2020] which have different

problem settings, and compared with them in Appendix D.4.2.

Sinusoid regression. In this setting, the data of each regression task is sampled

from a sinusoid wave where the amplitude and phase vary between tasks. Following

the experimental setting of [Finn et al., 2017], the amplitude varies within [0.1, 5], the

phase varies within [0, π], and the input x is sampled uniformly from [−5, 5]. We perform

experiments in both the 5-shot setting (i.e., |Xs
t | = |Xr

t | = 5) and the 10-shot setting (i.e.,

|Xs
t | = |Xr

t | = 10). We randomly sample 1000 tasks as T .

Omniglot classification. Omniglot [Lake et al., 2011] is a benchmark few-shot image

classification dataset consisting of 20 instances of 1623 characters from 50 different alpha-

bets. Our experiment adopts the same task generation process as that in [Finn et al., 2017]

(i.e., downsampling to 28 × 28 and applying random rotations). To further accelerate

computation, we select tasks in a batch manner: Each task consists of 32 sub-tasks

such that each sub-task is a 1-shot 5-way (i.e., |Xs
t | = |Xr

t | = 5) or 1-shot 20-way (i.e.,

|Xs
t | = |Xr

t | = 20) classification.8 We randomly generate 2000 tasks as T .

MiniImageNet classification. The MiniImageNet [Ravi and Larochelle, 2017] dataset

involves 64 training classes, 12 validation classes, and 24 test classes of 84× 84 RGB im-

7We use regression benchmark datasets as surrogate examples of real-time data like finance market data,
and classification benchmark datasets as surrogate examples of healthcare radiology image data.

8The active task selection criterion is a sum of the criterion over all sub-tasks.
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ages. Our experiment adopts the same task generation process as that in [Finn et al., 2017]

(i.e., applying random rotations). Similarly, we select tasks in a batch manner: Each task

consists of 32 sub-tasks such that each sub-task is a 1-shot 5-way (i.e., |Xs
t | = |Xr

t | = 5)

classification.8 We randomly generate 2000 tasks as T .

The IP model (Chapter 5.2) is a fully-connected neural network with 2 hidden layers

of size 40 with ReLU nonlinearities for Sinusoid, and a convolutional neural network

with 4 modules of 3 × 3 convolutions and 64 filters, followed by batch normalization,

ReLU nonlinearities, and strided convolutions for Omniglot or 2 × 2 max-pooling for

MiniImageNet. We use M = 5 particles, and set the step size η as 0.05 for sinusoid and

MiniImageNet and 0.5 for Omniglot.

(a) (b) (c) (d)

(a) (b) (c) (d)
Figure 5.3: Meta-test mean squared error (MSE) and standard error over 5 runs vs. no.
k of selected tasks on (a) 5-shot Sinusoid and (b) 10-shot Sinusoid. (c) Comparison of
meta-test MSE between forward-backward method and naive method on 5-shot Sinusoid.
All means meta-test MSE of the IP model trained on T (i.e., all 1000 candidate tasks). (d)
plots the greedy criterion value MILT(Ai−1 ∪ t⋆i )−MILT(Ai−1) (5.4) corresponding to
selected task t⋆i vs. round i of selection.
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(a) (b) (c)

(a) (b) (c)

(a) (b) (c)
Figure 5.4: Meta-test accuracy (%) and standard error over 5 runs vs. no. k of selected
tasks on (a) 1-shot 5-way Omniglot, (b) 1-shot 20-way Omniglot, and (c) 1-shot 5-way
MiniImageNet. All means meta-test accuracy of the IP model trained on T (i.e., all 2000
candidate tasks).
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5.5.1 Discussion of Baseline Comparisons

It can be observed from Figs. 5.3 and 5.4 that MILT outperforms all other baselines, which

demonstrates the effectiveness of our proposed algorithm (Algo. 4). Random task selection

performs the worst among all baselines, which is expected. ELT slightly outperforms the

Variance baseline in nearly all cases, likely due to the entropy being able to better capture the

uncertainty in p(zt|zA) (5.7) which follows a mixture of Gaussians instead of a Gaussian.

Fig. 5.3 shows results of Sinusoid regression. Fig. 5.3b shows that actively selecting

k = 40 tasks with MILT can already achieve a lower MSE of 0.241 than randomly selecting

k = 100 tasks (MSE of 0.266). For both 5-shot (Fig. 5.3a) and 10-shot (Fig. 5.3b) settings,

MILT achieves comparable performance to the IP model trained with all 1000 candidate

tasks in T when actively selecting only 10% from T (i.e., k = 100 tasks).

Fig. 5.4 shows results of Omniglot and MiniImageNet classifications. For both Omniglot

and MiniImageNet, we have generated 2000 candidate tasks in T . Meta-training with all

these candidate tasks achieves a meta-test accuracy of 93.6% for 1-shot 5-way Omniglot,

89.6% for 1-shot 20-way Omniglot, and 42.8% for 1-shot 5-way MiniImageNet (Fig. 5.4).

Previous works [Chen et al., 2021, Finn et al., 2017, Finn et al., 2018, Yoon et al., 2018]

have generated 200000 tasks (batches) for meta-training and hence achieve higher meta-test

accuracy on these cases. Nevertheless, our ablation study in Appendix E.3 shows that

when selecting (∼250) tasks, MILT does not need such a massive number (≈ 200000) of

candidate tasks to achieve competitive meta-test performance.

Fig. 5.4a shows that actively selecting only 120 tasks with MILT can achieve a meta-test

accuracy of 91.9% for 1-shot 5-way Omniglot, which is within one standard error from

that achieved by the IP model trained on all 2000 candidate tasks. Fig. 5.4b&c also show

that for 1-shot 20-way Omniglot and 1-shot 5-way MiniImageNet, similar observations

hold when selecting only 250 tasks with MILT. All these observations further demonstrate

the effectiveness of our proposed algorithm (Algo. 4).

96



5.5. EXPERIMENTS AND DISCUSSION

5.5.2 Ablation Study

Effect of using particles. Table 5.2 shows results of meta-test performance of MILT

with varying number M of particles (Chapter 5.4.1) from 1 (point estimate) to 5. It

can be observed that increasing M consistently yields better performance for both 5-

shot and 10-shot Sinusoid regression, thus indicating that our Bayesian treatment of the

meta-parameters can improve the meta-test performance.

Forward-backward method based on online SVGD. Here, we compare the performance

of the forward-backward method (Algo. 4) with the naive method (Chapter 5.4.3). Table 5.3

presents a comparison of their runtime, which meets our theoretical analysis. Fig. 5.3c

presents a comparison of their meta-test performance: It may be surprising to observe

that the forward-backward method clearly outperforms the naive method. In theory,

we should expect them to perform similarly since the forward-backward method only

seems to improve the efficiency. However, in practice, the forward-backward method

performs better because it does not introduce extra randomness which may potentially

violate the submodularity property of MILT. To see this, Fig. 5.3d plots the greedy

criterion value MILT(Ai−1 ∪ t⋆i ) −MILT(Ai−1) (5.4) corresponding to selected task t⋆i

vs. round i of active task selection. Since MILT is theoretically submodular, we expect

to see a monotonically decreasing curve in Fig. 5.3d. However, we only observe such a

monotonicity with the forward-backward method. This is because the evaluation of (5.4)

involves approximation: It approximates the belief of the meta-parameters through SVGD.

However, the naive method performs SVGD by initializing the particles randomly, which

introduces randomness such that its approximation of the belief can be inconsistent between

successive rounds. In contrast, the forward-backward method always performs belief

updates with only one task and thus maintains a consistent belief because the belief

updates are highly correlated between successive rounds. Such a “consistency” retains the

submodularity of (our approximation of) MILT, which allows our algorithm (Algo. 4) to

perform satisfactorily, as implied by its near-optimal performance guarantee.
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Table 5.2: Meta-test mean squared error (MSE) over 5 runs with varying no.M of particles
on 5-shot Sinusoid regression. MILT is used to select k = 100 tasks from |T | = 1000
candidate tasks.

M = 1 M = 3 M = 5
5-shot 0.490 0.454 0.430
10-shot 0.144 0.137 0.129

Table 5.3: Mean runtime (seconds) on 5-shot Sinusoid regression. MILT is used to select
from |T | = 1000 candidate tasks.

forward-backward naive
k = 20 24.5 153
k = 40 38.9 293
k = 60 54.6 425

5.5.2.1 Performance Sensitivity to Number of Sub-tasks in a Task

In Chapter 5.5, we have mentioned that for Omniglot and MiniImageNet classifications,

we have selected tasks in a batch manner: Each task consists of 32 sub-tasks such that

each sub-task is a 1-shot 5-way or 1-shot 20-way classification. We refer to the number

of sub-tasks in a task as the batch size. For this batch setting, the active task selection

criterion is the sum of the criterion over all sub-tasks (see footnote 8). Note that such a

summation is exact if we know a priori that all the sub-tasks in task t correspond to the

same latent task vector Zt. Nevertheless, we will investigate here whether the meta-test

performance is sensitive to varying batch sizes.

For Sinusoid regression, we fix the total number of (5-shot or 10-shot) sub-tasks to be

selected as 100 (e.g., when the batch size is 10, k = 10) and the total number of sub-tasks

in the candidate tasks to be 1000.9 For 1-shot 20-way Omniglot classification, we fix the

total number of sub-tasks to be selected as 4000 and the total number of sub-tasks in the

candidate tasks to be 64000.

Tables 5.4 and 5.5 show results of Sinusoid regression and Omniglot classification,

respectively. It can be observed that the meta-test performance of MILT is similar across

(and hence not so sensitive to) varying batch sizes which are small compared to the total

number of sub-tasks to be selected.
9Doing so fixes the number of 5-shot or 10-shot sub-tasks that are available for selection.
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Table 5.4: Meta-test mean squared error (MSE) and standard deviation over 5 runs on
Sinusoid regression.

Batch size: 1 5 10
5-shot 0.39± 0.16 0.46± 0.14 0.43± 0.10
10-shot 0.12± 0.03 0.12± 0.03 0.13± 0.03

Table 5.5: Meta-test accuracy (%) and standard deviation over 5 runs on Omniglot
classification.

Batch size: 16 32 64
1-shot 20-way 89.1± 2.9 88.6± 3.0 88.8± 3.4

Table 5.6: Meta-test mean squared error (MSE) and standard deviation over 5 runs on
Sinusoid regression.

No. of candidate tasks: 100 500 1000 2000
5-shot Sinusoid, k = 100 0.77± 0.19 0.48± 0.09 0.43± 0.10 0.40± 0.07
10-shot Sinusoid, k = 100 0.27± 0.10 0.19± 0.03 0.13± 0.03 0.11± 0.03

Table 5.7: Meta-test accuracy (%) and standard deviation over 5 runs.
No. of candidate tasks: 1000 2000 4000

1-shot 5-way Omniglot, k = 120 91.0± 3.3 91.9± 3.0 91.8± 3.0
1-shot 20-way Omniglot, k = 250 87.5± 2.6 88.6± 3.0 88.6± 2.6

5.5.2.2 Performance Sensitivity to Number of Candidate Tasks

In Chapter 5.5, we have mentioned that we have generated a limited number of candidate

tasks (i.e., 1000 for Sinusoid regression and 2000 for Omniglot classification). We

have argued in Chapter 5.5 that we did not generate a massive number (≈ 200000) of

candidate tasks since (a) it will require much more computation (linear in |T | as shown in

Appendix D.1) to perform task selection and (b) only a limited number (≤ 250) of tasks

will be selected. We will investigate here whether the meta-test performance is sensitive to

varying numbers of candidate tasks.

Tables 5.6 and 5.7 show results of Sinusoid regression and Omniglot classification,

respectively. It can be observed that increasing the number of candidate tasks tends

to improve the meta-test performance. However, when the number of candidate tasks

becomes relatively large (respectively, 1000 and 2000 for Sinusoid and Omniglot), the

improvement in meta-test performance by further increasing the number of candidate

tasks is marginal. This empirically supports our argument that our active task selection

99



5.5. EXPERIMENTS AND DISCUSSION

algorithm may not need such a massive number of candidate tasks, like in previous

works [Chen et al., 2021, Finn et al., 2017, Finn et al., 2018, Yoon et al., 2018], in order

to achieve reasonably competitive meta-test performance.

5.5.3 A Generalization to Adaptive Task Selection

This work considers the case of non-adaptive task selection s.t. k tasks are selected greedily

(one per iteration/round) and their remaining datasets are acquired/observed only after all

the k tasks are selected. For the case of adaptive task selection s.t. the remaining dataset

(Xr
t ,y

r
t ) is acquired immediately after each task t is selected, an immediate improvement

we can make to our algorithm is to additionally use this remaining dataset to update the

forward particles to obtain a more accurate posterior belief of Θ in line 12 of Algorithm

1. As a result, the meta-test performance can be improved, as shown in Table 5.8. Note,

however, that no performance guarantee is available for the adaptive case. Supposing the

meta-learner’s data need is time-critical (e.g., budget is available for a limited time) and

each acquired remaining dataset can only be released after some time due to regulations,

non-adaptive task selection may be preferred.

Table 5.8: Meta-test MSE or accuracy (%) over 5 runs comparing adaptive vs. non-adaptive
task selection.

non-adaptive adaptive
5-shot Sinusoid (k = 100) 0.430 0.417
10-shot Sinusoid (k = 100) 0.129 0.124

1-shot 5-way Omniglot (k = 120) 91.9 93.2
1-shot 20-way Omniglot (k = 250) 88.6 89.2

1-shot 5-way MiniImageNet (k = 100) 39.5 41.1

5.5.4 A Generalization to Larger Remaining Sets

We have also performed experiments on using a larger remaining dataset to evaluate the

meta-test performance with varying ratios of remaining vs. sample dataset sizes from 1 to

20 given a fixed number R of data points in the remaining datasets of all selected tasks.
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Table 5.9 shows that the meta-test performance degrades gracefully with an increasing ratio

due to a reduced diversity of selected tasks. This reveals that in the setting of meta-learning,

the meta-training task diversity plays an important role on the final meta-test performance.

Table 5.9: Meta-test MSE over 5 runs with varying ratios of remaining vs. sample dataset
sizes given a fixed number R of data points in the remaining datasets of all selected tasks.

Ratio 1 5 8 10 20
5-shot Sinusoid (R = 1000) 0.294 0.315 0.349 0.375 0.398
10-shot Sinusoid (R = 2000) 0.068 0.070 0.070 0.108 0.129

5.6 Conclusion

This chapter describes a novel active task selection algorithm based on MILT for meta-

learning with a near-optimal performance guarantee. A forward-backward method based

on our proposed online SVGD (for learning/unlearning) is also designed to improve our

efficiency. Empirical evaluations have demonstrated the state-of-the-art performance of

our algorithm.
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Chapter 6

Related Works

In this chapter, we give a review of related works for each of the four works included in

this thesis, to elucidate the position of our contributions within the literature.

6.1 Recursive Reasoning-Based Training-Time Adversar-

ial Machine Learning

Our recursive reasoning-based training-time adversarial machine learning (R2T2) frame-

work introduces the concept of reasoning levels of the attacker and the defender, as

illustrated in Fig. 6.1, where a level-k player best-responds to a level-(k − 1) opponent.

During our introduction of the related works below, we show that our R2T2 frame-

Level 0 Level 1 Level 2

best-respond

Attacker Attacker Defender Attacker Defender

best-respond

best-respond

Figure 6.1: Illustration of how a level-k = 0, 1, 2 attack strategy is computed under the
recursive reasoning model. A defense strategy of a different level is computed vice versa.
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6.1. RECURSIVE REASONING-BASED TRAINING-TIME ADVERSARIAL
MACHINE LEARNING

work encompasses a variety of existing adversarial ML methods which correspond to

attackers/defenders with different reasoning levels.

Most works on adversarial machine learning (ML) have focused on the test-time at-

tacks [Carlini and Wagner, 2017, Goodfellow et al., 2015, Madry et al., 2018, Zhang et al., 2019]

where the attacker tries to fool an already trained ML model into an incorrect prediction

by perturbing the test input. Several works aim at defending against such test-time

attacks through data sanitization by correcting the perturbed test input [Li and Ji, 2019,

Meng and Chen, 2017, Samangouei et al., 2018]. Note that all these works have studied

either attacks or defenses solely. Their straightforward application to training-time at-

tacks/defenses do not yield satisfactory performances, as demonstrated in our experiments

(Chapter 2.5).

Another line of work called adversarial training [Szegedy et al., 2014] has attempted

to perform test-time defense by including a training-time attacker during the training of

the ML model. As a result, these attacks during training can act as a “vaccine” to ensure

that the resulting model is robust against similar test-time attacks [Goodfellow et al., 2015,

Kurakin et al., 2017, Madry et al., 2018, Singla and Feizi, 2020, Szegedy et al., 2014, Tramèr et al., 2018].

In adversarial training, the attacker is playing against a level-0 defender under our Recursive

Reasoning-based Training-Time adversarial ML (R2T2) framework (Chapter 2.2.1).

Some other works have studied the training of an ML model under dataset poisoning,

that is, by modifying the training set before the training starts and only allowing a few data

points to be changed [Kearns and Li, 1993, Muñoz-González et al., 2017]. In comparison,

we assume that the attacker can access and modify the minibatch data during model

training. The dataset poisoning method of [Koh and Liang, 2017] makes use of influence

function and can be considered a variant of our level-2 attack strategy (Chapter 2.3.3). A

number of works have been proposed to defend against a dataset poisoning attack based on

outlier removal [Barreno et al., 2010, Jagielski et al., 2018, Steinhardt et al., 2017], but

they do not fit into our setting where an attack can corrupt all inputs of a minibatch.

A body of works called backdoor attacks [Bagdasaryan et al., 2020, Gu et al., 2019]
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6.2. IMPLICIT POSTERIOR VARIATIONAL INFERENCE FOR DEEP
GAUSSIAN PROCESSES

have tried injecting a backdoor into a model during training to produce wrong predictions

if a specific trigger is added to an input at test time. Such attacks, which require the test set

to be chosen/manipulated to be backdoored tasks, do not fit into our setting that does not

allow modifying the test set. Backdoor defenses like backdoor removal [Wang et al., 2019]

are ineffective in our setting where an attack does not inject any backdoor.

The work of [Dai et al., 2020] has proposed to use recursive reasoning in multi-agent

Bayesian optimization but did not associate the level of recursive reasoning with any

specific information (e.g., order of gradient in our case). This work has illustrated its

application to test-time attacks, while we focus on training-time adversarial ML here.

Most relevant to our work here is that of [Feng et al., 2019] learning an auto-encoder-

like network to generate training-time attacks, which essentially amounts to learning a

variant of our level-1 attack strategy (Chapter 2.3.2).

Lastly, we show in Chapter 2.3.5 how our R2T2 framework encompasses a variety of

existing adversarial ML methods which correspond to attackers/defenders with different

reasoning levels.

6.2 Implicit Posterior Variational Inference for Deep

Gaussian Processes

The Gaussian process (GP) [Rasmussen and Williams, 2006] can be composed hierarchi-

cally into a deep GP (DGP) model, which is proposed by [Damianou and Lawrence, 2013].

The DGP model usually exploits the notion of inducing variables [Quiñonero-Candela and Rasmussen, 2005]

to improve its scalability to large datasets. The deterministic and stochastic approxima-

tion methods are two recent development for the inference of DGP. The former have

imposed varying structural assumptions across the DGP hidden layers and assumed

a Gaussian posterior belief of the inducing variables [Bui et al., 2016, Dai et al., 2016,

Damianou and Lawrence, 2013, Hensman and Lawrence, 2014, Salimbeni and Deisenroth, 2017].

Particularly, to compute the posterior, the work of [Salimbeni and Deisenroth, 2017] has
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6.3. META-LEARNING WITH IMPLICIT PROCESSES

proposed the use of the reparameterization trick [Kingma and Welling, 2013] and Monte

Carlo sampling. The stochastic approximation methods like the work of [Havasi et al., 2018]

has demonstrated that with at least one DGP hidden layer, the posterior belief of the

inducing variables is usually non-Gaussian, hence potentially compromising the perfor-

mance of the deterministic approximation methods due to their biased posterior belief. To

resolve this, the stochastic approximation method of [Havasi et al., 2018] utilizes stochastic

gradient Hamiltonian Monte Carlo (SGHMC) sampling to draw unbiased samples from

the posterior belief in a computationally costly manner.

Regarding the advanced architecture design of the generators and the discriminators,

there have been few literature trying to integrate them with DGP. Most relevant to our

work is that of [Mirza and Osindero, 2014] coming up with the idea of using the known

image label as the additional contextual input (for both generators and discriminators) in

image generation. As a comparison, we are using the learnable inducing inputs as the

contextual input to generate (or discriminate) the inducing output, which not only captures

the intermediate dependency but also allows efficient joint optimization with DGP.

6.3 Meta-Learning with Implicit Processes

A number of meta-learning algorithms [Finn et al., 2018, Ravi and Beatson, 2018, Yoon et al., 2018]

have proposed a Bayesian extension of the model-agnostic meta-learning (MAML)

framework [Finn et al., 2017]. Their difference with our proposed implicit process-

based meta-learning (IPML) is that they model the uncertainty in the predictions

with a set of particles [Yoon et al., 2018] or a variational distribution [Finn et al., 2018,

Ravi and Beatson, 2018], which does not allow latent task modeling, as explained be-

fore. The work of [Rusu et al., 2019] introduces a generative model that decodes latent

vectors into the meta-parameters, but does not scale well in the dimension of meta-

parameters. In comparison, IPML explicitly represents each task as a latent continu-

ous vector and models its probabilistic belief and is hence scalable in the dimension
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6.3. META-LEARNING WITH IMPLICIT PROCESSES

of meta-parameters. Moreover, MAML-based algorithms usually require evaluating

computationally-intensive second-order derivatives of the meta-parameters during meta-

training because they approximate the Bayesian inference through an inner loop of gradient

descent. Although this issue can be addressed by methods such as first-order approxima-

tions (e.g., first-order MAML [Finn et al., 2017], Reptile [Nichol et al., 2018]) or implicit

MAML [Rajeswaran et al., 2019] using implicit gradient, these works are not Bayesian.

In contrast, our IPML algorithm naturally utilizes Bayes’ rule to perform sampling during

Bayesian inference and does not need second-order derivatives.

The work of [Kaddour et al., 2020] uses latent information to perform active task selec-

tion, but assumes known task-descriptor (task context) which is usually unknown. The work

of [Garnelo et al., 2018b], which is the generalization of a previous work [Garnelo et al., 2018a],

introduces the first use of stochastic processes (i.e., neural processes) in meta-learning

and learns a heavily parameterized encoder to encode a dataset into its latent representa-

tion, which might introduce optimization difficulties and overfitting and can only output

Gaussian posterior beliefs. The work of [Harrison et al., 2018] is a special case of our

framework that considers only Bayesian linear regression. Under some assumptions, they

perform tractable updates to obtain Gaussian posterior beliefs. In comparison, our IPML

algorithm is the first to consider stochastic gradient Hamiltonian Monte Carlo (SGHMC)

in task adaptation/inference of meta-learning, which can capture a non-Gaussian posterior

belief to achieve a better performance (Appendix C.1.3). Our IPML algorithm is also the

first to explicitly model task-dependent input distributions, which is lacking in the literature.

Such a modeling enables synthetic task generation of complex image classification tasks

for the first time.
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6.4. NEAR-OPTIMAL TASK SELECTION WITH MUTUAL INFORMATION FOR
META-LEARNING

6.4 Near-Optimal Task Selection with Mutual Informa-

tion for Meta-Learning

Several works have aimed at combining active learning with meta-learning. The work

of [Pang et al., 2018] has used meta-learning to learn the best active learning criterion

for querying different datasets, which differs from our aim of using active learning to

select tasks for meta-learning. The algorithms of [Finn et al., 2018, Yoon et al., 2018]

have actively selected data points in each task but are not capable of selecting tasks

directly. The greedy class-pair based sampling proposed in [Liu et al., 2020] and the

probabilistic active meta-learning algorithm proposed in [Kaddour et al., 2020] have

different problem settings. In comparison, our problem setting is more general. The

work of [Luna and Leonetti, 2020] has proposed an information-theoretic task selection

algorithm for meta-reinforcement learning, which assumes the availability of a validation

set that can accurately represent the entire task distribution. Such a strong assumption

contradicts the motivation of our active task selection problem.
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Chapter 7

Conclusion, Limitations and Potential

Future Work

This thesis has presented four pieces of works which have designed practical algorithms or

network architectures to utilize the gradient information for effective optimization in deep

learning scenarios. Each of the new algorithms or network architectures presented here

has been shown to perform effectively in real-world experiments.

The training process of a machine learning (ML) model may be subject to adversarial

attacks from an attacker who attempts to undermine the test performance of the ML model

by perturbing the training minibatches, and thus needs to be protected by a defender. In

Chapter 2, we describes the R2T2 framework which allows us to derive competitive level-k

attack and defense strategies using gradient for the game of training-time adversarial ML.

We empirically demonstrate that such strategies can achieve state-of-the-art performances

on various benchmark image datasets. A limitation of this work is that we have only

considered a myopic utility function. For our future work, we will investigate non-myopic

approaches to solve this extensive-form game by considering a few steps lookahead.

Another limitation is that the cost of computing a level-k strategy with our NPGD could be

potentially high when k is large. Previous works have utilized neural networks to learn the

attack and defense strategies. We plan to exploit similar ideas to learn all level-k strategies
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with a recurrent neural network (RNN) to amortize the cost of computing the strategies

such that a higher-level strategy is computed with more forward passes through the RNN.

Chapter 3 describes novel architecture designs for our proposed IPVI framework

for DGPs. In our proposed IPVI framework, we cast the DGP inference problem as

a two-player game and search for an unbiased posterior belief. However, due to the

introduction of generators and discriminators into the DGP, the training becomes unstable

and the test performances are unsatisfactory. We identified the optimization difficulties of

the inducing inputs as the main reason for the unsatisfactory test performances. We thus

propose a novel gradient-bridging architecture of the generator and discriminator in our

IPVI framework for DGPs to alleviate the optimization difficulties and speed up training.

Empirical evaluation on real-world datasets shows that IPVI with the gradient-bridging

architecture outperforms the state-of-the-art parameter-tying architecture. A potential

future improvement in the DGP inference is to tune the number of inducing points in an

automatic way during model training, which address one limitation of this work that the

number of inducing points is fixed (manually defined) before training.

The goal of few-shot learning (also known as meta-learning) is to leverage the

experiences from previous tasks to form a model (represented by meta-parameters) that can

rapidly adapt to a new task using only a limited quantity of its training data. However, it is

not clear how or whether the recent meta-learning algorithms are naturally amenable to

the characterization of a principled similarity/distance measure between tasks and various

consequent applications. In Chapter 4, we describes a novel IPML algorithm that, in

contrast to existing works, explicitly represents each task as a continuous latent vector

and models its probabilistic belief within the highly expressive IP framework. Unlike

existing works, IPML offers the benefits of being amenable to (a) the characterization of a

principled distance measure between tasks using MMD, (b) active task selection without

needing the assumption of known task contexts in [Kaddour et al., 2020], and (c) synthetic

task generation of complicated image classifications via modeling of task-dependent input

distributions using our X-Net. Empirical evaluation on benchmark datasets shows that
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IPML outperforms existing Bayesian meta-learning algorithms. We have also empirically

demonstrated on an anonymous e-commerce company’s real-world dataset that IPML

outperforms the multi-task learning baseline and identifies “outlier”/dissimilar tasks which

can degrade meta-testing performance (Appendix C.1.2).

Finally, Chapter 5 describes a novel active task selection algorithm based on MILT

for meta-learning with a near-optimal performance guarantee. A forward-backward

method based on our proposed online SVGD is also designed to improve our efficiency.

Empirical evaluation on several benchmark datasets have demonstrated the state-of-the-art

performance of our algorithm. Chapter 5 successfully addresses the limitations of previous

Chapter 4 by including a fully Bayesian treatment of the meta-parameters and proposing

an improved active task selection algorithm with near-optimal performance guarantee. For

future work, two potential improvements that can be investigated are: (i) the performance

guarantee for the adaptive task selection such that the remaining dataset is acquired

immediately after task t is selected instead of waiting for the budget of k tasks to be

expended; (ii) the generalization to the case when different tasks (data) come with different

costs, and we are given a budget of total cost instead of number of total tasks we can select.

Through the chapters, we have shown that gradient can play a series of different yet

important roles in the modern machine learning problem. In Chapter 2, gradient first

serves as a regularization which constraints the sophistication of the strategy associated

with a player. Then the first-order gradient serves as a tool to efficiently and accurately

approximate the optimal strategies in our proposed framework. In Chapter 3, allowing more

efficient gradient back-propagation is the main idea on the design of the proposed model

architecture. And in Chapter 3, 4, and 5, all the frameworks adopts implicitly represented

distributions which can be efficiently optimized through gradient-based methods (gradient

back-propagation of the model (meta) parameters, SGHMC of the posterior samples, and

SVGD for the particles representing posterior distribution). Without using gradient, the

problems would have been formulated differently and require other techniques, which may

also bring extra difficulties. For example, without accessing the gradient information, the
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strategy search in Chapter 2 becomes a zero-order black-box optimization problem. But

the well-studied methods for such setting, like Bayesian optimization, could not scale to

the high-dimensional input in the image datasets we considered. Without optimization of

the gradient back-propagation architecture, the resulting model suffers from optimization

difficulties as shown in Chapter 3. And in Chapter 4, without using gradient-based

sampling method (SGHMC), the cost of running vanilla Markov Chain Monte Carlo

sampling algorithms (e.g., Metropolis–Hastings algorithm) in such a high dimensional

space of the latent vector could be formidable.

As we introduced in Chapter 1, many of the machine learning achievements are

attributed to the back-propagation (BP) algorithm, which exploits gradient information

of the deep neural network (DNN) models. For a long time, we see that the utilization

of the gradient information are mainly considered by frequentists. However, this thesis

investigates the exploitation of gradient information beyond the use of BP in conventional

deep neural networks, and extends naturally to a series of Bayesian models/settings

(including DGP, IP, and inference of intractable posteriors in various models). It is thus

revealed that those area of studies prone to the Bayesian world can also benefits largely

from exploitation of gradient information, which should not be considered sorely as a

frequentist approach anymore. This thesis is not the end of the road in utilizing the gradient

information, but shows possibilities to benefit from it in various aspects of machine

learning.
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Appendix A

Appendix for Chapter 2

A.1 Appendix: Supplementary Information and More

Experimental Results

A.1.1 Additional Information for Experiments

A.1.1.1 Stabilizing Training with Momentum

As discovered by [Feng et al., 2019], a naive implementation of training-time attacks may

keep the model training from convergence: In two consecutive iterations, the perturbations

added by the attacker can be significantly different, which may cause dramatic differences

in the modified data distributions, thus rendering the model training difficult. This is

undesirable since the attacker’s goal is to fool the target ML model into performing badly

during test time while ensuring its convergence during training.

In order to tackle this instability during training (i.e., sometimes also observed in our

experiments), we adopt a momentum-based variant of the attack strategy that keeps track

of the attacker’s own modification history of an input xt as δHt−1(xt). The history starts

from δH0 = 0 and is updated when the attacker performs attacks; if an input is not in DXt ,

then the history of this input will not be updated in iteration t. Then, the momentum-based
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variant of the optimal level-k attack strategy is

δk
∗
t (xt) = Proj

(
β δHt−1(xt) + (1− β) δk∗t (xt)

)

where β ∈ [0, 1] is set to 0.95 in our experiments. We have observed in our experiments

that with this momentum-based attack strategy, model training is significantly stabilized and

thus always converges. Meanwhile, the defender does not follow such a momentum-based

strategy.1 Moreover, we have also observed that replacing SGD with more advanced

momentum-based optimization techniques (e.g., Adam [Kingma and Ba, 2014]) also

improves the stability of training. The experiments are thus conducted with Adam

optimizers.

A.1.1.2 Network Architectures and Training Settings

For MNIST, the target model is a convolutional neural network (CNN) with two convo-

lutional layers (of 16 and 64 channels) and a fully-connected layer (of 64 hidden units).

For CIFAR-10, the target model is a CNN with three convolutional layers (of 128, 128,

and 512 channels) along with an average pooling layer (3× 3) and a fully-connected layer

(of 256 hidden units). For ImageNet, the target model is a CNN with four convolutional

layers (of 64, 64, 64, and 512 channels and corresponding strides of 4, 3, 2, 1) along with

an average pooling layer (7× 7) and a fully-connected layer (of 128 hidden units).

For defense-GAN, defense-VAE, and defense-CVAE, the decoders/generative models

are CNNs of 2 layers (of 32 and 16 channels). The encoders are CNNs of 2 layers (of 16

and 32 channels). The dimensions of the latent variables in these models are set to be 20.

We have implemented a defence-CVAE baseline because this improved baseline will not

only use the information of clean inputs, but also use the information of the labels of the

inputs, which is also given in the known public validation set Dval. The implementation

of DC uses an auto-encoder architecture which is the same as the auto-decoder of the
1The defender cannot follow such a momentum-based strategy because the attacks are adaptive in t. So,

the defender cannot identify the same data inputs.
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defense-VAE.

In Chapter 2.5.2, the subsampled MNIST dataset of digits 1 vs. 7 contains 40 training

examples and 400 validation examples. The binary logistic regression classifier contains

only a single linear layer. The CNN has two convolutional layers (of 16 and 16 channels)

and a fully-connected layer (with 32 hidden units). We use such a small CNN because the

calculation of Hessian is time-consuming if the target ML model has a large number of

parameters.

The learning rate is 0.0008 for the Adam optimizer. The batch size is 500 for MNIST,

400 for CIFAR-10, and 100 for 2-class ImageNet. The test performances are recorded after

120 epochs for MNIST, 240 epochs for CIFAR-10, and 40 epochs for ImageNet.

A.1.2 More Experimental Results

A.1.2.1 More Analysis of Synthetic Experiment

From Theorem 2.1, the optimal R2T2 level-1 attack and defense strategies can be computed

tractably as follows:

δ1
∗
t (xt) = e⃗

(
−8η(θ∗ − θt)2∥z∥2xt

)
= e⃗ (−xt) ,

σ1∗
t (x′t) = e⃗

(
8η(θ∗ − θt)2∥z∥2x′t

)
= e⃗

(
x′t
)
.

From Theorem 2.2, the optimal R2T2 level-2 attack and defense strategies can be computed

tractably as ϵ approaches 0:

lim
ϵ→0

δ2
∗

t (xt) = e⃗
(
−8η(θ∗ − θt)2∥z∥2(1− 2η∥xt∥2)xt

)
= e⃗

(
−(1− 2η∥xt∥2)xt

)
,

lim
ϵ→0

σ2∗

t (x′t) = e⃗
(
8η(θ∗ − θt)2∥z∥2(1− 2η∥x′t∥2)x′t

)
= e⃗

(
(1− 2η∥x′t∥2)x′t

)
.

Note that a perturbation along xt will increase the model update step while a perturbation

along −xt will decrease the model update step since ∥θt+1 − θt∥ ∝ ∥x′′t ∥2. The difference

from the level-1 players is that a level-2 player is aware of the case that a very large

learning rate will cause the training to wiggle around the optimal parameter value. To see
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this, observe that an additional term appears in the level-2 strategies: (1− 2η∥x′t∥2). If

1 < 2η∥x′t∥2, then this term will reverse the direction of the perturbation. This condition

corresponds exactly to the situation where the SGD step will “overshoot” the optimal

parameters θ∗ (Fig. 2.3b). So, the level-2 strategy differs from the level-1 strategy in that

the level-2 defense strategy will correctly reduce such overshooting while the level-2 attack

strategy will correctly encourage it.

A.1.2.1.1 Nash Equilibrium. Since

Ut(x′′t ) =
∣∣∣[θt + 2η(θ∗ − θt)∥x′′t ∥2

]
z − θ∗z

∣∣∣2
is a polynomial of ∥x′′t ∥,

lim
ϵ→0

δ2
∗

t (xt) = e⃗
(
−8η(θ∗ − θt)2∥z∥2(1− 2η∥xt∥2)xt

)
,

lim
ϵ→0

σ2∗

t (x′t) = e⃗
(
8η(θ∗ − θt)2∥z∥2(1− 2η∥x′t∥2)x′t

)
.

Also, as ϵ approaches 0, x′t = xt. Then, from the above, we know that limϵ→0 σ
2∗
t (x

′
t) =

e⃗((1−2η∥x′t∥2)x′t) = e⃗((1−2η∥xt∥2)xt) is independent of the attack strategy; the special

case of xt = 0 is omitted from discussion since it leads to the same outcome. Therefore, as

ϵ approaches 0, the optimal strategies of both players are independent of their opponents’

strategies. Thus, the above optimal strategies form a Nash equilibrium. Note that the

Nash equilibrium strategies are equal to the optimal level-2 strategies, which indicates that

Nash equilibrium is attained in the case of a level-2 attacker against a level-2 defender;

nevertheless, only level-k ≥ 3 players are able to recognize such a Nash equilibrium when

they find that their level-(k − 1) opponents are also playing Nash equilibrium strategies.

Such a Nash equilibrium implies that all level-k (k ≥ 2) strategies equal to the level-2

strategies.

With regards to the experimental settings, we set η = 0.2 and ϵ = 0.1, and sample

minibatch input xt (of minibatch size 1) uniformly from the interval (0, 2]. We set θ∗ = 20
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and θ0 = −10. We consider a single fixed point z = 50 as (the input of) the validation set.

A.1.2.2 Visualization of Training-Time Adversarial Examples

Fig. A.1 shows the visualization. The way we visualize a perturbation (possibly with

negative value in it) is to normalize it to [0, 1] by the scale of difference between its

minimum and maximum pixel values.

On MNIST, it can be observed that the defender tends to perform defenses by removing

attacker’s perturbations (e.g., first two rows of Fig. A.1a) or mending the attacker’s

removals (e.g., digit ‘3’ in the last row of Fig. A.1a). On CIFAR-10, the attacks and

defenses, although still effective, are harder to interpret as they are abstract and result

in visually indistinguishable adversarial examples/perturbed inputs x′t and transformed

inputs x′′t (Fig. A.1b). On 2-class ImageNet, although the attacks and defenses result in

indistinguishable adversarial examples/perturbed inputs x′t and transformed inputs x′′t , it

can be observed that the defender tends to perform defenses by offsetting the adversarial

attacks as the color contrasts between the attacker’s perturbations and the defender’s

transformations in the first three rows of Fig. A.1c (respectively, purple vs. green, skyblue

vs. red, blue vs. orange) correspond to negations of pixel values.

A.1.2.3 Evaluation of Transferability: No Known Validation Set for the Attacker

We additionally examine a scenario when there is no known public validation set for the

attacker. Note that the attacker can observe the clean minibatches and the attack strategy

can be computed in a similar way by setting Dval = Dt for the attacker.

The results in Table A.1 reveal a slight degradation in performance, possibly due to

less training examples in a minibatch than in the validation set, hence yielding suboptimal

attacks with large variances. However, the performance is not significantly different from

that in the case of known validation set (Table 2.2), which means that the attacker may not

need a known validation set to perform effective attacks.
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(a)

(b)

(c)

Figure A.1: From left to right are, respectively, visualizations of the original sampled
images xt, perturbations δ1∗t (xt) from level-1 attacks, adversarial examples/perturbed
inputs x′t, transformations σ1∗

t (x′t) from level-1 defenses, and finally the transformed inputs
x′′t for model training on (a) MNIST, (b) CIFAR-10, and (c) ImageNet (color rescaled for
viewing).
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Table A.1: Mean test accuracy (%) ± 1 standard deviation (i.e., over 5 runs) for attacks
(without a known validation set) against level-0 and level-1 defenders (with a known
validation set).

MNIST CIFAR-10

Attacker
Defender Level-0 Level-1 Level-0 Level-1

Level-1 14.0±4.6 96.0±1.2 18.9±1.7 50.1±7.2
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Figure A.2: (a) Mean test accuracy (%) on MNIST. (b) Graph of mean accuracy improve-
ment (over null strategy) vs. time needed to compute the strategies given a minibatch of
MNIST.

A.1.2.4 Level-k Strategies on MNIST

Fig. A.2a shows that when both players reason at level k ≥ 1, the test accuracy is quite

stable and does not change much with the players’ reasoning levels. When both players

reason beyond level k ≥ 1, the change in the resulting test accuracy with respect to the

players’ reasoning levels is small. The marginal benefit of reasoning at a higher level

vs. time needed to compute the higher-level strategy in Fig. A.2b is similar to that in

Fig. 2.7b on CIFAR-10.

A.1.2.5 Level-k Strategies on 2-Class ImageNet

Fig. A.3a (i.e., same as Fig. 2.7c) shows that level-k ≥ 1 defenses are quite effective.

Interestingly, as analyzed in Chapter 2.5.3, even when defending against a level-0 attacker

(i.e., no attack), higher-level defenses still improves test accuracy noticeably.
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Figure A.3: (a) Mean test accuracy on 2-class ImageNet (i.e., same as Fig. 2.7c in
Chapter 2.5.3). (b) Graph of mean accuracy improvement (over null strategy) vs. time
needed to compute strategies given a minibatch of 2-class ImageNet.

A.2 Appendix: Proofs

A.2.1 Proof of Theorem 2.1

At level-1 the attacker best-responds to level-0 defender, with only first-order gradient

information (Assumption 2.1). While assuming higher-order gradients∇k
θ

∑
z∈DXval

Lθt(z)

are all zero for k ≥ 1, the attacker’s evaluation of the goal following a Taylor-series

expansion is Ut = (θt+1 − θt)⊤∇θ

∑
z∈DXval

Lθt(z).

Note that for level-1 attacker, Lθt(x) is a linear function of x (Assumption 2.1) and

thus∇θLθt(x) is also a linear function of x. The attacker then adopts strategy

δ1
∗

t (xt) = argmax
δt(xt):∥δ(xt)∥≤1

−[η∇θLθt(xt + ϵ δt(xt) + ϵ σ0∗

t (x
′
t))]

⊤
∑
z∈DXval

[∇θLθt(z)]

= argmax
δt(xt):∥δt(xt)∥≤1

−[η∇θLθt(xt + ϵ δt(xt))]
⊤[
∑
z∈DXval

∇θLθt(z)]

= −e⃗

η∇x[∇θLθt(xt)]⊤[
∑
z∈DXval

∇θLθt(z)]

 .

(A.1)

where e⃗(·) means taking the unit vector. A similar reasoning on the defender gives the

optimal defense strategy on the theorem. End of the proof.

Note that a level-0 strategy does not affect the functional form of level-1 strategy even

if it is not null (e.g., σ0∗
t (x

′
t) ̸= 0): Assumption 2.1 has constrained that ∇θLθt(xt) is a
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linear function of xt, thus for the attacker

∇x∇θLθt(xt + ϵ σ0∗

t (x
′
t)) = ∇x∇θLθt(xt).

And vice versa for the defender. Consequently, level-0 strategy does not affect the functional

form of level-k strategy for all k ≥ 1.

A.2.2 Proof of Theorem 2.2

We first consider the attack strategy. Given Assumption 2.1, the second-order derivatives

are available. We simplify the notation by denoting the optimal level-1 defense strategy

σ1∗
t as σ, and denoting the optimal level-2 attack strategy δ2∗t as δ. δ(xt) will result in the

change of the stochastic gradient descent direction which can be expressed as a second

order polynomial of the strategy δ(xt),

δθ = −η∇θ[Lθt(xt + ϵ δ(xt) + ϵ σ(x′t))− Lθt(xt + ϵ σ(xt))]

= −η∇θ[ϵ δ(xt)
⊤∇xLθt(xt)] +O(ϵ2) u1,

(A.2)

where u1 denotes a unit vector indicating the direction of residual term that we are not

interested in. Suppose that we denote the domain of δθ as Θ (δθ ∈ Θ). As ϵ→ 0, δθ is

bounded and vary within a line segment Θ0 where the domain Θ0 is defined as

Θ0 ≜ {c ηϵ∇θ∥∇xLθt(xt)∥2, where c ∈ [−1, 1]}.

Denote ∆θ = −η∇θLθt(xt + ϵ σ(xt)). The optimal gradient descent direction for the

attacker can then be obtained by solving a constraint quadratic optimization problem since
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Lθt+!
(z) can be expanded as a quadratic polynomial of θt+1 (Assumption 2.1):

max
δ(xt):∥δ(xt)∥2≤1

Ut =max
δθ∈Θ
Ut

=max
δθ∈Θ

∑
z∈DXval

[Lθt+∆θ+δθ(z)− Lθt(z)]

=max
δθ∈Θ

∑
z∈DXval

[
δθ⊤∇θLθt(z) +

1

2
(δθ +∆θ)⊤Hθt|z(δθ +∆θ)

]
,

(A.3)

where Hθt|z ≜ ∇2
θLθt(z), and Hθt ≜

∑
z∈DXval

Hθt|z. Given that Θ0 is a linear constraint,

we can transform the constrained quadratic optimization problem on δθ (A.3) into a

constrained linear optimization problem on δθ as Θ approaches Θ0 (ϵ approaches zero)

since

lim
Θ→Θ0

argmax
δθ∈Θ

∑
z∈DXval

[δθ⊤∇θLθt(z) +
1

2
(δθ +∆θ)⊤Hθt|z(δθ +∆θ)]

= lim
Θ→Θ0

argmax
δθ∈Θ

δθ⊤
{[

(
∑
z∈DXval

Hθt|z)∆θ +
∑
z∈DXval

[∇θLθt(z)]
]
+O(∥δθ∥2)

}

= lim
Θ→Θ0

argmax
δθ∈Θ

δθ⊤
[
(
∑
z∈DXval

Hθt|z)∆θ +
∑
z∈DXval

[∇θLθt(z)]
]

= lim
Θ→Θ0

argmax
δθ∈Θ

δθ⊤G(xt + ϵ σ(xt), θt)

(A.4)

where we define the function

G(x, θt) ≜− η(
∑
z∈DXval

Hθt|z)∇θLθt(x) +
∑
z∈DXval

[∇θLθt(z)] (A.5)

for simplicity of notations. Note that δθ is a second-order polynomial on δ(xt) (A.2),

the optimization problem (A.4) can now be turned into a quadratic constrained quadratic

programming on δ(xt). Now the attacker can solve for its optimal strategy following (A.2)
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and (A.4),

lim
ϵ→0

δ2
∗

t (xt)

= lim
ϵ→0

argmax
δ(xt):∥δ(xt)∥≤1

(
− ηϵ δ(xt)⊤[∇x∇θLθt(xt)]⊤ +O(ϵ2) u⊤

1

)
G(xt + ϵ σ(xt), θt)

= lim
ϵ→0

argmin
δ(xt):∥δ(xt)∥≤1

δ(xt)
⊤[∇x∇θLθt(xt)]⊤G(xt + ϵ σ(xt), θt)

= argmin
δ(xt):∥δ(xt)∥≤1

δ(xt)
⊤[∇x∇θLθt(xt)]⊤G(xt, θt)

=− e⃗([∇x∇θLθt(xt)]⊤G(xt, θt)).

(A.6)

A similar reasoning on the defender side gives the optimal defense strategy on the theorem.

End of the proof.

A.2.2.1 Proof of Corollary 2.1

Following the above proof step (A.3),
∑

z∈DXval
Lθt+∆θ+δθ(z) can be expanded as a second-

order polynomial of θ and is convex under the assumption of positive definite Hθt .

Note that OC attack solves

lim
ϵ→0

min
δ(xt),∥δ(xt)∥2≤1

∥θt+1 − θ⋆∥

= lim
ϵ→0

min
δθ∈Θ

∥θt+1 − θ⋆∥

= lim
Θ→Θ0

min
δθ∈Θ

∥θt+1 − θ⋆∥

= min
δθ∈Θ0

∥θt+1 − θ⋆∥

= max
δθ∈Θ0

δθ⊤[θt+1 − θ⋆]

= max
δθ∈Θ0

δθ⊤
[
H−1
θt
∇θ[

∑
z∈DXval

Lθt+∆θ(z)]

]

= max
δθ∈Θ0

δθ⊤
[
H−1
θt
G(xt + ϵ σ(xt), θt)

]
,

(A.7)
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So, the final solution is

lim
ϵ→0

argmin
δ(xt):∥δ(xt)∥2≤1

∥θt+1 − θ⋆∥

= lim
ϵ→0

argmax
δ(xt):∥δ(xt)∥2≤1

(
− ηϵ δ(xt)⊤[∇x∇θLθt(xt)]⊤ +O(ϵ2) u⊤

1

)
H−1
θt
G(xt + ϵ σ(xt), θt)

=− e⃗([∇x∇θLθt(xt)]⊤H−1
θt
G(xt, θt))

(A.8)

End of the proof.

A.2.3 Proof of Theorem 2.3

Note that for the problem of interest, input x varies within a closed domain bounded by

the original input space and the perturbation constraint. Without loss of generality, we

assume each dimension of x varies within [0, 1] (which is satisfied if we are dealing with

normalized image input, otherwise, we normalize the bounded input space to [0, 1] and the

analysis below will only differ by a normalizing constant).

Suppose the dimension of x is N . We denote the h-th order derivatives as Hh
xt ≜

∇h
xUt(xt), which is a h-th orderN dimensional real supersymmetric tensor [Qi et al., 2018]

for h ≥ 2.

Lemma A.1. There exists a constant M such that under any level-k reasoning, the largest

Z-eigenvalue2 ofHh
x (h ≤ k) is not more than Mh k!

(k−h)! for x in a closed domain [0, 1]N .

Proof of Lemma A.1: First note that the Z-eigenvalue always exists [Qi et al., 2018].

Under any finite level of reasoning, the Taylor expansion of Ut(x) on x0 = 0 can be

expressed as finite polynomial on x{1}, . . . , x{N} where the bracket denotes the dimensions

of x.

Ut(x) =
∑

v1,...,vN

Cv1,...,vNx
v1
{1} . . . x

vN
{N}.

2Refer to [Qi et al., 2018] for detailed definition of Z-eigenvalue.
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We then denote C1 ≜
∑

v1,...,vN
|Cv1,...,vN |. Under level-k reasoning, the loss function

is a k-th order polynomial of x (Assumption 2.1). As a result, the Taylor expansion of

Ut(x) on x = 0 is cut off in order k (a k-th order polynomial), and the above summation

over v1, . . . , vN is constrained by v1 + . . . + vN ≤ k. Note that the maximum absolute

value of x{1}, . . . , x{N} is < 1 in such closed domain, thus the scale of every element in

the supersymmetric tensor Hh
x is bounded by C1

k!
(k−h)! . The supersymmetric tensor Hh

x

containsNh elements, the Frobenius norm ofHh
x is thus bounded: ∥Hh

x∥F ≤ C1
k!

(k−h)!N
h/2.

Since the largest absolute value of Z-eigenvalues ofHh
x is bounded by the Frobenius norm

∥Hh
x∥F (Theorem 9 in [Qi, 2006]), choose M = C1N

1
2 we can arrive at the result. End

of the proof.

Lemma A.2. Under level-k reasoning, function Ut(x) is L-smooth with respect to x in the

closed domain bounded by the perturbation constraint X ′′
t = {x : ∥x− x′t∥2 ≤ ϵ} where

L =M2k2(1 + 2Mϵ)k−2 for some M .

Proof of Lemma A.2: Note that the following optimization problem

max
∆,∥∆∥2≤1

A⊙∆h, where A⊙ xh ≜
N∑

i1,...,ih=1

ai1,...,ihx{i1} · · ·x{ih}, (A.9)

where A is a h-th order N dimensional real supersymmetric tensor, has solution equals to

the largest Z-eigenvalue of A [Qi et al., 2018]. Since ∀{x1, x1 +∆} ∈ X ′′
t we have (note

that this implies ∥∆∥ < ε ≜ 2ϵ):

max
{x1,x1+∆}∈X′′

t

2

∥∆∥2
[
Ut(x1 +∆)− Ut(x1)− (∇xUt(x1))⊤∆

]
≤ 2

∥∆∥2 max
{x1,x1+∆}∈X′′

t

k∑
h=2

1

h!
Hh
x1
⊙∆h

≤
k∑

h=2

2 εh−2k!

(k − h)!h!M
h

≤M2k2(1 + 2Mϵ)k−2,

(A.10)

where the first inequality follows from Taylor expansion under level-k reasoning, the
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second inequality follows from Lemma A.1, the third inequality holds since ε ≤ 2ϵ in

the closed domain. The above inequality indicates that Ut(x) is L-smooth in the closed

domain bounded by the perturbation constraint (X ′′
t ) where L = M2k2(1 + 2Mϵ)k−2,

according to the definition of L-smooth. End of the proof.

Lemma A.3. For a convex function U that is L-smooth, the iterates given by the projected

gradient descent with step size Γ = 1/L starting from x0 satisfy for every step i

|U(x[i])− U(x∗)| ≤ (2L/i)∥x0 − x∗∥2. (A.11)

If U is further µ-strongly convex, we have

∥x[i] − x∗∥2 ≤ (1− µ/L)i∥x0 − x∗∥2. (A.12)

Proof of Lemma A.3: The lemma is a direct result in [Nesterov, 2018]. The proof is

given in [Nesterov, 2018]. End of the proof.

Proof of the main theorem. Given Lemma A.2 and Lemma A.3, we know that

|Ut(x′ + ϵ σ[i])− Ut(x′t + ϵ σk
∗
(x′))| ≤ (2Lϵ2/i)∥σ[0] − σk

∗

t (x
′
t)∥2 ≤ 2ϵ2/(Γki). (A.13)

If Ut(x) is µ−strongly convex, then

∥σ[i] − σk
∗

t (x
′
t)∥2 ≤

1

ϵ2
(1− µ/L)jϵ2∥σ[0] − σk

∗

t (x
′
t)∥2 ≤ (1− Γkµ)

j ≤ exp(−µΓkj).

(A.14)

End of the proof.

A.2.3.1 Attacker PGD: The Naive Version

For the attacker, we define an auxiliary function U⋆t (x) ≜ Ut
(
x+ ϵ σ

(k−1)∗

t (x)
)
.
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Corollary A.1. (Convergence of naive attacker PGD) Assume that −U⋆t (x) is a convex

function of x and suppose the 1-st to k-th gradients of σ(k−1)∗

t (x) with respect to x

is finite. Then there exists a constant M , such that by setting the step size Γk ≜

1/[M2k2(1 + 2Mϵ)k−2], to approximate level-k strategy for input xt, the PGD of δ[i]

starting from PGD step i = 0 with δ[0] = 0:

δ[i+1] = Proj
(
δ[i] + (Γk/ϵ)∇xU⋆t (x′[i])

) (A.15)

where x′[i] ≜ xt + ϵ δ[i], has following convergence guarantee in any PGD step i:

∣∣U⋆t (xt + ϵ δ[i]
)
− U⋆t

(
xt + ϵ δk

∗

t (xt)
)∣∣ ≤ 2ϵ2/(Γki). (A.16)

If −U⋆t (x) is further µ−strongly convex, we have

∥∥δ[i] − δk∗t (xt)
∥∥ ≤ exp(−µΓki). (A.17)

Its proof is similar to the proof of Theorem 2.3. End of the proof.

Convergence of attacker’s NPGD: The naive attacker PGD (A.15) cannot be computed

in practice because we cannot compute σ(k−1)∗

t tractably. However, if σ[i] in the attacker

NPGD (2.9) approximates σ(k−1)∗

t (x′[i]) perfectly without error in every PGD step i, the

NPGD is then identical to the naive attacker PGD, thus δ[i] of the NPGD enjoy the

convergence guarantee on Corollary A.1 above.

A.2.3.2 Estimate M and Γk

To estimateM from training, note that from the above proof of Theorem 2.3 we can see that

N
1
2 |Ut([1, . . . , 1])| = N

1
2 |∑v1,...,vN

Cv1,...,vN | ≤ C1N
1
2 = M provides a lower bound of

M . Although in theory this lower bound could be loose, we found that estimating M with

this lower bound works well in practice, such that we can always observe improvements
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when reasoning into a higher-level. To calculate this lower bound, we train the ML model

on a white image ([1, . . . , 1]) for 1 iteration and calculate the change of validation loss.

As a result, the estimation of M is roughly 0.203, 0.351, 1.04 for MNIST, CIFAR-10 and

2-class ImageNet respectively.

The step size Γk can thus be calculated correspondingly. Note that in practice it is

always the case that (Γk/ϵ)|∇xUt
(
x)| > 1, thus we can safely set the step size to positive

infinity and the resulting attacker NPGD/ defender PGD still performs well. To estimate a

reasonable number of total PGD steps, we first ensure that approximating level-k strategies

at least needs to perform k steps of PGD. We then set the total number of steps i as 2Γk,

0.5Γk and 0.01Γk for MNIST, CIFAR-10 and 2-class ImageNet respectively, with the

estimation of M above.

A.2.4 Generalize To More Than One Example in Dt

We extend the notation of Ut such that D′′
t ≜ {[x′′jt, y(xjt)] : j = 1, . . .} is the minibatch

after the perturbations of the attacker and the defender, D′′X
t ≜ {[x′′jt] : j = 1, . . .} is

the collection of the inputs of D′′
t , and Ut(D′′X

t ) represents the utility function if current

training in conducted on the (perturbed) minibatch D′′
t ; and Ut(x′′t ) still represents the

utility function if current training in conducted on the (perturbed) single data input x′′t . As

a result, the base game can be written as:

Attacker: max
δt(xt),∥δt(xt)∥≤1

Ut(D
′′X
t ),

Defender: max
σt(x′t),∥σt(x′t)∥≤1

−Ut(D
′′X
t ).

(A.18)
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Suppose now the minibatch data Dt can contain more than one training examples, such

that DXt = {[xjt] : j = 1, 2, . . .}. We have

∂Ut(D′′X
t )

∂xj
=− η[ ∂

∂xj
∇θ

∑
x′′lt∈D

′′X
t

Lθt(x′′lt)]⊤
∑
z∈DXval

[∇θLθt(z)]

=− η[ ∂
∂xj
∇θLθt(x′′jt)]⊤

∑
z∈DXval

[∇θLθt(z)]

=∇xUt(x′′jt),

(A.19)

where the last line follows from (2.7).

A.2.4.1 Level-1 strategies

Due to (A.19), follow the proof in A.2.1 we can show that the level-1 strategies still

follow (2.6) and remain unchanged.

A.2.4.2 Level-2 strategies

Because of (A.19), it is not hard to follow the proof in A.2.2 and show that the level-2

strategies in the limit of small ϵ should be changed to below.

Corollary A.2. (Level-2 strategies) Given a training minibatch DXt = {[xjt] : j =

0, 1, . . .}, the optimal level-2 attack and defense strategies in the limit of small ϵ are

lim
ϵ→0

δ2
∗

t (xt) = −e⃗
(
[∇x∇θLθt(xt)]⊤

[ ∑
z∈DXval

∇θLθt(z)− ηHθt∇θ

∑
xjt∈DXt

Lθt(xjt)
])
,

lim
ϵ→0

σ2∗

t (x
′
t) = e⃗

(
[∇x∇θLθt(x′t)]⊤

[ ∑
z∈DXval

∇θLθt(z)− ηHθt∇θ

∑
x′jt∈D′X

t

Lθt(x′jt)
])
.

(A.20)

A.2.4.3 Level-k strategies

Because of (A.19), both defender PGD (2.10) and attacker NPGD (2.9) remain unchanged.
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Appendix for Chapter 3

B.1 Proof of Nash Equilibrium Coincides with the Global

Maximizer of the ELBO

If ({θD∗}, {θ∗, θG∗}) is a Nash equilibrium, then under the assumption that TθD∗ is

expressive enough, we know that Player 1 is playing its optimal strategy θD∗ such that

TθD∗(U) = log qθG∗(U)− log p(U) . (B.1)

Substituting (B.1) into (3.5) reveals that Player 2’s strategy {θ∗, θG∗}maximizes its payoff

which is a function of {θ, θG}:

F(θ, θG) ≜ EqθG (U)[L(θ,X,y,U) + log p(U)− log qθG∗(U)]

= EqθG (U)[L(θ,X,y,U) + log p(U)− log qθG(U) + log qθG(U)− log qθG∗(U)]

= EL(θ, θG) + KL[qθG(U)∥qθG∗(U)]

(B.2)

where EL(θ, θG) is the ELBO in (3.3).

Now, suppose that {θ∗, θG∗} does not maximize the ELBO. Then, there exists some
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{θ′, θG′} such that EL(θ′, θG′) > EL(θ∗, θG∗). By substituting {θ′, θG′} into (B.2),

F(θ′, θG′) = EL(θ′, θG′) + KL[qθG′(U)∥qθG∗(U)] > F(θ∗, θG∗) ,

which contradicts the fact that {θ∗, θG∗} maximizes (B.2). Hence, {θ∗, θG∗} maximizes

the ELBO, which is equal to the log-marginal likelihood log pθ∗(y) with θ∗ being the

maximum likelihood assignment and qθG∗(U) being equal to the true posterior belief

p(U|y).

B.1.1 Discussion on the Existence of Nash Equilibrium

Statement: Suppose that the parametric representations of TθD and gθG are expressive

enough to represent any function and the DGP model hyperparameters are fixed to be

θ◦. Then, the two-player pure-strategy game in (3.6) for the case of fixed θ◦ has a Nash

equilibrium. Furthermore, if ({θD∗}, {θ◦, θG∗}) is a Nash equilibrium, then {θG∗} is a

global maximizer of the ELBO for the case of fixed θ◦ such that qθG∗(U) is equal to the

true posterior belief pθ◦(U|y).

Proof. Since we assume the parametric representation of gθG to be expressive enough to

represent any function, we can find some {θG◦} such that qθG◦(U) is equal to the true

posterior belief pθ◦(U|y). We now know that {θG◦} maximizes the ELBO in (3.3) for the

case of fixed DGP model hyperparameters θ◦, which we denote by EL(θ◦, θG◦).

Since we assume the parametric representation of TθD to be expressive enough

to represent any function, we can further obtain some {θD◦} such that TθD◦(U) =

log qθG◦(U) − log p(U). As a result, {θD◦} maximizes the payoff to player 1. Hence,

player 1 cannot improve its strategy to achieve a better payoff.

Given that player 1 plays strategy {θD◦} for the case of fixed θ◦, the payoff to player 2
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playing strategy {θ◦, θG} is

F(θ◦, θG) ≜ EqθG (U)[L(θ◦,X,y,U) + log p(U)− log qθG◦(U)]

= EqθG (U)[L(θ◦,X,y,U) + log p(U)− log qθG(U) + log qθG(U)− log qθG◦(U)]

= EL(θ◦, θG) + KL[qθG(U)∥qθG◦(U)]

= log pθ◦(y)−KL[qθG(U)∥pθ◦(U|y)] + KL[qθG(U)∥qθG◦(U)]

= log pθ◦(y) .

So, player 2 receives a constant payoff (i.e., independent of {θG, θ◦}) and cannot improve

its strategy to achieve a better payoff. Since every player cannot improve strategy to achieve

a better payoff, ({θD◦}, {θ◦, θG◦}) is a Nash Equilibrium.

The rest of the proof is similar to that above.

B.1.2 Regression and Classification Details

In this subsection, we provide additional details for our experiments in the supervised

learning tasks.

Learning Rates. We adopt the default settings of the learning rates of the tested

methods from their publicly available implementations. The learning rates and maximum

iteration for IPVI are tuned through grid search and cross validation with a default setting

of αθD = 0.05, αθG = 0.001, αθ = 0.025 and cut-off at a maximum of 20000 iterations.

The learning rates for classification is simply set to be 0.02 for all parameters.

Hidden Dimensions. The dimension of inducing variables for all implementations are

set to be (i) the same as input dimension for the UCI benchmark regression and Airline

datasets, (ii) 16 for the YearMSD dataset, and (iii) 98 for the classification tasks.

Mini-Batch Sizes. The mini-batch sizes for all implementations are set to be (i) 10000

for the UCI benchmark regression tasks, (ii) 20000 for the large-scale regression tasks,

and (iii) 256 for the classification tasks.

Mean Function of DGP. The ‘skip-layer’ connections are implemented in both
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SGHMC [Havasi et al., 2018] and DSVI [Salimbeni and Deisenroth, 2017] for DGPs and

in our IPVI framework as well. The work of [Duvenaud et al., 2014] has analyzed that

using a zero mean function in the DGP prior causes some difficulty as each GP mapping is

highly non-injective. To mitigate this issue, the work of [Salimbeni and Deisenroth, 2017]

has proposed to include a linear mean function m(X) = WX for all hidden layers. The

’skip-layer’ connection W is set to be an identity matrix if the input dimension equals to

the output dimension. Otherwise, W is computed from the top H eigenvectors of the data

under SVD. We follow the same setting as this ’skip-layer’ mean function. Note that this

’skip-layer’ mean function contains no trainable parameters.

Likelihood. For the classification tasks, we use the robust-max multiclass likelihood

[Hernández-Lobato et al., 2011] (see Chapter 3.1.1). Tricks like data augmentation are not

applied, which means that the accuracy can still be improved further with those additional

tricks.
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Appendix for Chapter 4

C.1 Appendix: Additional Details, Experimental Settings,

Results, and Analysis

C.1.1 Details of Experimental Settings

C.1.1.1 Sampler Hyperparameters

In practice, running the SGHMC sampling process has two phases: The first is the burn-in

phase used to determine the suitable sampler hyperparameters, while the second is the

sampling phase which is run using the fixed sampler hyperparameters. In the burn-in phase,

the hyperparameters of the sampler are selected using a heuristic auto-tuning approach

following that of [Springenberg et al., 2016] with initial value of ϵ = 0.03, C = 0.05, and

M = I.

Since consecutive samples are highly correlated, we do not choose consecutive samples

to perform the M step to prevent the risk of overfitting to those samples. Instead, we

randomly select one sample of z per task from the sampling phase to carry out optimization

in the M step. In the sampling phase, we acquire a total of 40 samples for sinusoid

regression, and 5 samples for Omniglot and mini-Imagenet classification.
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C.1.1.2 Meta-training Settings

For sinusoid regression, we train for a total of 15000 iterations with an Adam optimizer of

meta-learning rate (i.e., learning rate of the outer gradient step) 0.001 and meta-batch size

25. For Omniglot and mini-Imagenet classification, we train for a total of 60000 iterations

with an Adam optimizer of meta-learning rate 0.001, and meta-batch size is 16 and 4 for

Omniglot and mini-Imagenet, respectively. Gradient clipping of ±10 is applied in both

the SGHMC step and the outer gradient step.

Although IPML does not require any inner gradient step, we have found that adding

such inner optimization further improves performance. Thus, in our implementation, we

perform inner gradient optimization of the whole model’s parameter after E step, and the

M step will differentiate through those inner gradient steps (only in a first-order manner).

Note that this does not violate our analysis in Chapter 4.3.1. Our analysis on the E step

is accurate given the current best estimation of the meta-parameter θ. However, after

knowing the support set, we are able to optimize our current estimation of θ. The inner

gradient optimization corresponds to such a step of refining our estimation of θ and can be

interpreted as an inner M step nested in the outer E step. We perform 5 inner gradient

steps by default.

C.1.1.3 Active Task Selection Settings

For sinusoid, we consider 25 meta-tasks per iteration and IPML will choose 1 of them

according to our proposed active task selection criterion (i.e., variance in samples of z).

For mini-Imagenet, we consider 16 meta-tasks per iteration and IPML will choose 1 of

them. IPML will store these selected tasks in a buffer and train on them with meta-batch

size of 5 and 4 for sinusoid and mini-Imagenet, respectively. Without active task selection,

the model will just train on all tasks received.

Motivating active task selection with a real-world use case. In our real-world risk

detection experiment (Chapter 4.4), a considerable fraction of black and white labels (i.e.,

risk or no risk) are labeled manually due to the rapidly evolving nature of risks or fast
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emergence of new variants of risks. However, for the anonymous e-commerce company,

the labeling budget is limited (e.g., a human can only label a fixed amount of items per

day). This will require us to select the best sequence of tasks to be labeled to best improve

the model. Such problem is crucial and is essentially an active task selection problem that

can be tackled using our proposed IPML.

C.1.2 Experiments on an Anonymous E-Commerce Company’s Risk

Detection Dataset

In an anonymous company’s online e-shop, the items advertised by the sellers may contain

risks (e.g., fraud, pornography, contraband). Such risks appear in different forms and

in different categories (of items). It is hard to detect risks in different categories by

training models separately for each category because some categories have only very

limited amounts of black samples (i.e., < 50). The similarities of the detected risks in

different categories, if discovered, can help improve the performance and the model can

quickly adapt to detect risks on new categories of items with only few-shot data given.

Meta-learning is thus a suitable algorithm for its ability to perform (a) detectionof risks

across different categories of items and (b) adaptation to new categories.

Data preparation and training settings. We first perform self-supervised learning

on the texts of an item using all the raw data available (including items with risk labels or

without risk labels). The texts we use are concatenations of an item’s title and descriptions.

This allows us to obtain an embedding for each item, which has a dimension of 32768. The

embedding will serve as the input x while its label is a binary variable indicating whether

it contains risks (yx = 1 for black samples and yx = 0 for white samples). The data

containing all items are separated by categories of items yielding 47 categories in total.

Initially, 10 held-out categories are used for meta-testing (see Table C.1) while the rest are

used for meta-training. Some of the categories have nearly 200000 items while some only

have less than 100 items. The fractions of black samples are typically small (average of
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14% across 47 categories). We train with a meta-batch size of 10 (each subsampled from

a category) and a batch size of 32 (16 support items and 16 query items). During training,

we ensure that a task in a minibatch should contain > 2 black samples; otherwise, we skip

that task.

Table C.1: Ten held-out categories for meta-testing.

Category ID Category Name
3 Personal nursing and Cosmetics
9 Antique collection
19 Domestic and Daily-use
21 Cellular
23 Costume and accessories
36 Network equipment
39 Watches and glasses
44 In-game currencies
46 Gaming accounts
47 Gaming items

We use a 2-layer neural network with the first layer having 1024 hidden neurons, and

the second layer outputs a binary classification. A leaky ReLU activation of slope 0.1

is used in the hidden layer. We choose a multi-task learning baseline for performance

comparison, which explicitly ties the parameters on the first layer of neural networks,

and extends a separate second layer for binary classification (i.e., one for each category).

When testing on an unseen category, multi-task learning performs adaptation by randomly

initializing its second layer’s parameters for the new category (while tying the first layer’s

parameters) and optimizing them on the few-shot support data. For both methods, we

train with a learning rate of 0.01 for a total of 8000 iterations. At 8000 iterations, we have

observed that the mean meta-training accuracy of IPML on 37 categories is stabilized

at around 96.33%. In meta-testing for a particular category, we sampled 200 items (150

white samples and 50 black samples) and split them into a support set of size 100 and

a query set of size 100 in every cross-validation trial. The results are averaged over 2

cross-validation trials.

More discussion on the latent task representation. As can be seen from Tables C.2
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Table C.2: Meta-testing performance on 10 held-out meta-testing categories for IPML.

Category ID Accuracy (%) F1 Recall Precision
3 85.3 76.1 88.8 66.6
9 83.0 73.8 88.8 63.1
19 90.2 81.4 88.0 75.8
21 94.5 81.7 86.0 77.8
23 89.0 81.3 88.9 75.0
36 79.4 63.1 66.6 60.0
39 93.6 85.7 100.0 75.0
44 84.0 71.4 80.0 64.5
46 72.1 43.9 40.7 47.8
47 74.0 45.8 40.8 52.3

Average 84.5 70.5 76.8 65.8

and C.3, IPML outperforms multi-task learning, which indicates its stronger ability to

generalize to unseen categories. Fig. 4.5 visualizes the latent task embedding of the

10 meta-testing categories for analysis. IPML learns useful latent task representations:

For example, from Fig. 4.5a, gaming-related categories with IDs 46 and 47 are mapped

closely in the latent task space/embedding, which coincides with the fact that they both

represent risks on categories involving gaming. Another category with ID 44, which

is also gaming-related, is mapped closest to them among the rest of 8 categories. IDs

21, 23, and 36 are also mapped closely in the latent space, but a clear interpretation

cannot be obtained as they represent quite different categories (i.e., cellular, costume and

accessories, and network equipment). Although the white samples of these 3 categories

may be considerably dissimilar, we have found that their black samples bear a striking

similarity after digging into their raw text (title and descriptions): There is a huge fraction

of overlap between their black samples because certain types of malicious sellers (e.g., on

fraud and forging of certificates and diplomas) are more likely to advertise their duplicated

risk items (black samples) on these three categories, while they are less likely to advertise

on other categories such as gaming (e.g., IDs 46 and 47). This shows that our latent

task representation and embedding can aid our understanding and instruct us to identify

categories that are influenced more by a certain type of malicious sellers.

More results on learning with or without the “outlier”/dissimilar tasks. From
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Table C.3: Meta-testing performance on 10 held-out meta-testing categories for multi-task
learning baseline.

Category ID Accuracy (%) F1 Recall Precision
3 90.2 79.1 70.3 90.4
9 87.0 75.4 74.4 76.9
19 82.2 57.1 48.1 70.5
21 87.3 69.7 60.3 83.3
23 78.7 55.9 51.8 60.8
36 80.0 52.3 40.7 73.3
39 93.6 83.3 83.3 83.3
44 79.0 53.3 48.2 60.0
46 78.1 38.8 25.9 77.7
47 77.5 41.0 29.6 66.6

Average 84.1 60.5 54.1 73.9

our analysis in Chapter 4.4, we conjecture that when a meta-learning model is trained to

perform well (during meta-testing) on the desired categories/tasks with IDs 19, 21, 23, 36,

and 44 which are shown to be similar to previous meta-training tasks, training alongside

with dissimilar ones (i.e., with IDs 3, 9, 39, 46, and 47) can compromise its performance.

To verify our conjecture, we compare meta-learning on (A) the same setting as before

by holding out the 10 meta-testing categories vs. (B) training on all categories in setting

A as well as the dissimilar ones with IDs 3, 9, 39, 46, and 47. Table C.4 shows detailed

results on the individual meta-testing performance on the 10 meta-testing categories. The

experimental results agree with our conjecture: By looking at the F1 score, meta-training

that additionally includes dissimilar tasks/categories results in degradation of performance

in 4 of the 5 desired categories. Thus, to achieve competitive meta-testing performance,

one should consider not to include dissimilar tasks during meta-training.

C.1.3 Ablation Study of the Effectiveness of IPML Components

This subsection empirically evaluates the effectiveness of each component of the IPML

algorithm.
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Table C.4: Meta-testing performance on desired categories with IDs 19, 21, 23, 36, and 44
trained without (setting A) or with (setting B) dissimilar tasks.

Category ID Accuracy (%) F1 Recall Precision
Setting A B A B A B A B

19 90.2 89.0 81.4 79.9 88.0 88.0 75.8 73.3
21 94.5 90.4 81.7 80.7 86.0 84.0 77.8 77.7
23 89.0 90.1 81.3 83.2 88.9 92.5 75.0 75.7
36 79.4 76.5 63.1 58.6 66.6 62.9 60.0 54.8
44 84.0 85.0 71.4 69.3 80.0 68.0 64.5 70.8

Average 87.4 86.4 75.8 74.4 81.9 79.8 70.6 70.5

Table C.5: Comparison between IPML-VI vs. IPML on benchmark meta-learning datasets.

Sinusoid
10-shot
(MSE)

Omniglot
1-shot 5-way
(Accuracy %)

Omniglot
1-shot 20-way
(Accuracy %)

mini-Imagenet
1-shot 5-way
(Accuracy %)

mini-Imagenet
5-shot 5-way
(Accuracy %)

IPML-VI 0.160 98.7 94.3 50.2 66.6
IPML 0.123 98.8 94.0 50.5 67.6

C.1.3.1 SGHMC vs. VI and Amortized VI

To obtain the posterior samples from p(z|yX s
t
), we use SGHMC. Other methods exist to

obtain posterior samples from p(z|yX s
t
). The first method is variational inference (VI) that

directly constructs a variational distribution for p(z|yX s
t
). The resulting approach, which

we call IPML with VI (IPML-VI), replaces SGHMC with VI in our IPML algorithm while

keeping its other components unchanged. Unfortunately, such a variational approximation

usually yields a biased latent task posterior belief while SGHMC can ideally recover

(samples from) the true latent task posterior belief p(z|yX s
t
). It can be observed from our

visualization of the latent task embeddings in Figs. A.1 and 4.4b that the distribution of a

cluster of tasks is highly non-Gaussian. We thus conjecture that even for a single task, its

distribution is not likely to be Gaussian. So, IPML-VI is limited in its ability to recover

the true latent task posterior belief p(z|yX s
t
). This is empirically supported by the results

in Table C.5 showing that our IPML algorithm with SGHMC outperforms IPML-VI in 4

of the 5 test cases.

The other method that can obtain posterior samples from p(z|yX s
t
) is amortized VI

which is used by the neural process (NP) [Garnelo et al., 2018b]: It learns an encoder that
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can take in the support set and output the variational distribution for p(z|yX s
t
). As analyzed

in Chapter 4.4, NP utilizing amortized VI performs unsatisfactorily as compared to IPML

for both sinusoid regression (Table 4.1) and Omniglot (Table 4.2), likely because (a) it

employs a heavily parameterized encoder which may introduce optimization difficulties

and overfitting during meta-training, and (b) the encoder of NP takes in the simple

concatenation of (x, yx) and thus does not explicitly capture the x→ yx relationship in

the support set. An ablation study of the limitations of NP is presented in Appendix C.1.7.

C.1.3.2 EM Algorithm vs. Variational Gaussian Process Framework

Table C.6: Few-shot classification accuracy (%) on held-out Omniglot characters.

Omniglot 1-shot 5-way Omniglot 5-shot 5-way
VGPML 62.7 80.4
IPML 98.8 99.5

Using SGHMC, our EM algorithm can directly maximize the original meta-learning

objective Jmeta (D.1). In contrast, the VI framework directly models p(fX q
t
|yX s

t
) and

maximizes the variational/evidence lower bound (ELBO) ofJmeta (D.1). Such a framework

typically assumes f to be distributed by a Gaussian process (GP) [Ma et al., 2019] instead

of an IP (Def. 5.1) and we call the resulting framework variational GP-based meta-

learning (VGPML). Its flexibility is then largely constrained by the GP and its chosen

kernel. Table C.6 shows that VGPML using the widely used radial basis function kernel

performs unsatisfactorily as compared to IPML on few-shot classification, hence reflecting

the effectiveness of our proposed EM algorithm for IPML over VGPML.

C.1.3.3 Coupling of Latent Task Vector z with DNN Generator gθ

Table C.7: Mean square error (MSE) on few-shot sinusoid regression.

Sinusoid 5-shot Sinusoid 10-shot
Concatenation 0.817 0.525

Soft mask 0.373 0.123
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As mentioned in Chapter 4.3.2, the design of the coupling of z with the DNN gθ(x, ·)

is crucial to achieving competitive performance of our IPML algorithm. Table C.7 shows

results comparing (a) the naive design of concatenating z with x as a contextual input

during forward passes vs. (b) our delicate design of applying z as a continuous-valued

(soft) mask to the last DNN layer’s parameters (Chapter 4.3.2), the latter of which is used

by our IPML algorithm to produce the experimental results in Chapter 4.4. It can be

observed from Table C.7 that our delicate design using z as a soft mask outperforms the

naive design concatenating z with x by a considerable margin.

C.1.4 Doubly-Contextual X-Net

In Chapter 4.3.3, we have introduced X-Net that can generate both synthetic regression or

classification tasks. For the more specific case of balanced N -way classification tasks,

we have prior knowledge that yx is uniformly distributed over [1, . . . , N ] in a sampled

task. Thus, when performing synthetic task generation, our X-Net can be additionally

conditioned on yx uniformly sampled from [1, . . . , N ] when generating x. We refer to

such a design as doubly-contextual X-generative network (DC X-Net) since it now takes

in both z and yx as contexts. Note that with DC X-Net, we no longer need the IP to

generate labels as the labels are sampled in the first place. Although there is now no

explicit forward pass in IP during synthetic task generation, this does not make the DC

X-Net an independent model of IP. On the contrary, since z (i.e., samples obtained from

IP) is taken in as a context during training, the learning of DC X-Net can be interpreted as

a knowledge distillation process of the IP.

Now, let the DC X-Net: x ≜ hϕ(yx, z,ω) learn to generate an input vector x given a

sample of the latent task vector z, label yx (i.e., converted into one-hot encoding), and a

sample of the random vector ω ∼ p(ω) = N (0, I) where ω models the diversity of the

input distribution given a fixed class yx in a fixed task represented by the sample of z. As

before, we use (the decoder of) CVAE to implement DC X-Net. The training objective for

synthetic task generation is then the empirical lower bound [Sohn et al., 2015] of VI on
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p(ω|x, y, z):

JX ≜
∑
t∈T

Ez∼p(z|yXst
)

|Xt|−1
∑
x∈Xt

(Eqψ(ω|x,yx,z)[log pϕ(x|yx, z,ω)]−DKL[qψ(ω|x, yx, z)∥p(ω)])


where ϕ is the parameter of the DC X-Net (decoder neural network), ψ is the parameter

of the encoder neural network, and DKL denotes the KL distance. In the training of DC

X-Net, we sample one z per update. We also sample one ω per update to train with

reparameterization tricks.

C.1.5 Evaluation of Distance Measure between Tasks for Settings B

to E in Chapter 4.4

For setting A, the subsampled Omniglot contains 15 characters, each of which has around

20 images. For settings B to E, the subsampled mini-Imagenet contains 50 classes. For

each setting, we evaluate the distance measure between different types of tasks using

maximum mean discrepancy (MMD) metric with radial basis function kernels on the z

samples, and show the results in Table C.8. By comparing with Fig. A.1, the distances

evaluated using the MMD metric are in accordance with our visualization of the latent

task embeddings.

To illustrate that the latent task representation produced by IPML captures the semantic

difference between tasks instead of the input-level modification, we consider the latent

input representation learned by an ordinary classifier which has the same architecture as gθ.

To compute the latent input embedding of a task, we average the last layer’s outputs over

all data in this task. Fig. C.1 shows a TSNE visualization of latent input embeddings from

settings A to E based on the ordinary classifier. A comparison of Fig. C.1 vs. Fig. A.1

shows that except for setting C (i.e., different types of hue), the ordinary classifier cannot

produce a latent input representation that captures the semantic difference between tasks.

In contrast, IPML is capable of producing a latent task representation that captures such
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Table C.8: Values of MMD metric between different types of tasks for mini-Imagenet
(settings B to E). Larger value means larger dissimilarity.

Setting B brightness −0.5 normal brightness +0.5
brightness −0.5 0 0.69 2.02

normal 0.69 0 1.26
brightness +0.5 2.02 1.26 0

Setting C hue1 (red) hue2 (green) hue3 (blue)
hue1 (red) 0 0.70 1.97

hue2 (green) 0.70 0 1.69
hue3 (blue) 1.97 1.69 0

Setting D original 3×zoom-in 10×zoom-in
original 0 0.58 2.06

3×zoom-in 0.58 0 1.48
10×zoom-in 2.06 1.48 0

Setting E contrast=1/10 normal contrast=10
contrast=1/10 0 0.73 0.95

normal 0.73 0 0.15
contrast=10 0.95 0.15 0

semantic difference between tasks. Worth mentioning, the latent task representation

produced by NP encoder is similar to that of Fig. C.1 and failed to adequately capture

the semantic difference between tasks. The reason is that the NP encoder has no explicit

modeling of x→ yx relationship (which is further explained in Appendix C.1.7), and thus

may mainly capture the semantic difference in the inputs.

0 π/2 π 3π/2 normal brightness -0.5
brightness +0.5

hue1 (red) hue2 (green)
hue3 (blue)

normal 3 X zoom-in
10 X zoom-in

normal contrast=1/10
contrast=100

(A) (B) (C) (D) (E)

Figure C.1: TSNE visualization of latent input embeddings from settings A to E based on
an ordinary classifier.
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C.1.6 Empirical Evaluation of Time Efficiency of IPML on the Anony-

mous E-Commerce Company’s Risk Detection Dataset

This subsection empirically compares the time efficiency of different tested meta-learning

algorithms on the aforementioned anonymous e-commerce company’s risk detection

dataset which contains around 1 million entries. The training setting is the same as that in

Appendix C.1.2 with a meta-batch size of 10. One training epoch spans approximately 950

iterations. Table C.9 reports the results during meta-training: Model forward corresponds

to the E step/SGHMC of IPML or the inner optimization loop of MAML-based algorithms,

while model backward corresponds to the M step of IPML or the outer optimization loop

of MAML-based algorithms. Our implementation of IPML obtains a total of 30 SGHMC

samples per iteration for each task and MAML-based algorithms have 20 gradient steps in

the inner optimization loop. The convergence is checked by inspecting the difference in

the validation losses every 500 iterations.

The results in Table C.9 show that the time efficiency of IPML is comparable to that of

the first-order MAML baseline since (a) the forward passes are not that slow compared

with the inner optimization loops of first-order MAML, and (b) the cost of backward

passes of IPML is similar to that of first-order MAML. The time efficiency of BMAML

baseline [Yoon et al., 2018] is lower than that of both IPML and vanilla MAML because

BMAML maintains a set of particles (i.e., 5 particles in this setting), each representing

a distinct network parameter. Unless efficient parallel optimization of those particles

are implemented, BMAML or other particle-based Bayesian variant of MAML (e.g.,

[Jerfel et al., 2019]) can be a few times slower than vanilla MAML. In comparison, IPML

does not maintain a set of particles of network weights and is thus more time-efficient.

Table C.10 reports results during meta-testing (i.e., adaptation to a new task): Model

adaptation corresponds to the E step/SGHMC of IPML or the inner optimization loop of

MAML-based algorithms. Similar to the case during meta-training, IPML is comparable

to first-order MAML in time efficiency during model adaptation, and BMAML has the
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worst time efficiency due to the use of particles. When performing prediction of new

inputs, the time efficiency of all tested meta-learning algorithms are nearly the same.

Both IPML and BMAML can estimate uncertainty by using more samples/particles in

their predictions. For IPML, we have observed that using only 1 SGHMC sample in its

prediction can already give satisfactory results.

The neural process (NP) uses amortized VI which introduces an additional encoder.

Thus, it is faster in model forward but slower in model backward.

Table C.9: Time efficiency of tested meta-learning algorithms during meta-training on the
anonymous e-commerce company’s risk detection dataset.

Total Iterations
until Convergence Model Forward Model Backward

NP 8000 0.74s/iteration 0.14s/iteration
MAML (first-order) 8000 0.99s/iteration 0.024s/iteration

BMAML (5 particles) 7000 3.7s/iteration 0.045s/iteration
IPML 8000 1.24s/iteration 0.026s/iteration

Table C.10: Time efficiency of tested meta-learning algorithms during meta-testing (i.e.,
adaptation to a new task) on the anonymous e-commerce company’s risk detection dataset.

Support Set Size Model Adaptation Model Prediction
(100 entries)

NP 0.098s 0.009s/sample
MAML (first-order) 100 0.112s 0.009s

BMAML (5 particles) 0.308s 0.009s/particle
IPML 0.132s 0.009s/SGHMC sample

C.1.7 Ablation Study of the Limitations of Neural Process

In Chapter 4.4, we have empirically compared the performance of IPML with the neural

process (NP) [Garnelo et al., 2018b]. For the implementation of NP, the default encoder is

a 5-layer feedforward neural network (i.e., with 100 hidden neurons) whose output is z. The

aggregator is the mean function, as proposed in the original work of [Garnelo et al., 2018b].

The decoder has the same architecture as our IPML by adopting the same coupling of

z with the DNN gθ (i.e., by applying z as a mask to the last DNN layer’s parameters).
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When performing classification tasks, we use the aforementioned robust-max likelihood

(Appendix 3.1.1).

We have observed that for both sinusoid regression (Table 4.1) and Omniglot (Table 4.2),

NP performs unsatisfactorily as compared to IPML, likely due to the causes mentioned

below.

Optimization difficulties and overfitting. NP performs amortized variational inference

of z through a heavily parameterized encoder which may introduce optimization difficulties

and overfitting during meta-training. This is supported by the empirical evidence in

Table C.11: With an increasing depth of the encoder from the default of 2 layers, its

performance improves and then deteriorates.

Table C.11: Mean square error (MSE) on few-shot sinusoid regression.

Encoder depth Sinusoid 5-shot Sinusoid 10-shot
2 layers 0.780 0.417
3 layers 0.521 0.328
5 layers 0.460 0.264
7 layers 0.477 0.289

No explicit modeling of x→ yx relationship in the support set. Our IPML algorithm

performs SGHMC to obtain posterior samples of z from p(z|yX s
t
). SGHMC relies on

our IP framework (Def. 5.1) which explicitly defines the x→ yx relationship. Thus, the

x→ yx relationship in the support set is well captured by IPML with SGHMC. On the

other hand, the encoder of NP takes in the simple concatenation of (x, yx) and thus does

not explicitly capture the x→ yx relationship in the support set, which we think is crucial

to accurately recovering the true latent task posterior belief p(z|yX s
t
).
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Appendix for Chapter 5

D.1 Computational Cost of Forward-Backward Method

and Naive Method

We will analyze here the computational cost of both the forward-backward method

and the naive method to understand the improvement by adopting the former. Algo. 4

describes the forward-backward method, while Algo. 5 presents the naive method. The

difference lies mainly in lines 7 and 8 of Algo. 4 where the forward-backward method

uses online SVGD to perform fast belief updates for the selected task. On the other hand,

the naive method computes such a belief of the meta-parameters from scratch using A

(and T \ (A ∪ t)) in lines 5 and 6 of Algo. 5.

Though the computational cost of VI (containing multiple SVGD iterations till

convergence) on n tasks (specifically, the n sample datasets) is not necessarily n times the

computational cost of VI on 1 task, we have observed in practice that VI on a minibatch of

tasks converges within (slightly more but) nearly the same number of iterations as VI on

one task; both require around 5 SVGD iterations. So, we have considered the following

assumption:

Assumption D.1 (informal). Suppose that the GPU can afford to process a minibatch

of n ≤ B tasks in parallel. VI (using SVGD to compute posterior belief of the meta-
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Algorithm 5 Near-Optimal Active Task Selection based on MILT (Naive Method without
Forward-Backward Method)

1: Set A = ∅;
2: while |A| < k do
3: Sample zA ∼ p(zA), zA ∼ p(zA);
4: for t ∈ T \ A do
5: Compute p

(
θ|zA,ysA

)
← SVGDΘ

(
p(θ) , {zA,ysA}

)
;

6: Compute p
(
θ|zA∪t,ysA∪t

)
← SVGDΘ

(
p(θ) , {zA∪t,ysA∪t}

)
;

7: Compute with p
(
θ|zA,ysA

)
: p(zt|zA)← VIZ(p(θ|zA,ysA));

8: Compute with p
(
θ|zA∪t,ysA∪t

)
: p(zt|zA∪t)← VIZ

(
p
(
θ|zA∪t,ysA∪t

))
;

9: Estimate H(Zt|ZA)−H(Zt|ZA∪t);
10: end for
11: Select t⋆ = argmaxtH(Zt|ZA)−H(Zt|ZA∪t);
12: Update A = A ∪ t⋆;
13: end while
14: return A

parameters) on a minibatch of n ≤ B tasks converges in the same number of iterations as

VI on 1 task.

Note that line 3 of Algo. 4 and lines 5 and 6 of Algo. 5 can enjoy computational

benefits from such parallel processing of each minibatch of tasks. Since (a) the overall

computational cost is dominated by the number of SVGD iterations in the algorithms

and (b) the computational cost of one iteration of online SVGD (for both learning or

unlearning) is the same as that of one SVGD iteration per task, the following results ensue:

Remark D.1. The computational cost measured by the number of floating point operations

is O(k|T |) for the forward-backward method and O(k|T |2) for the naive method.

Remark D.2. The computational cost measured by the runtime is O(k|T |) for the

forward-backward method and O(k|T |2/B) for the naive method.

The above results arise from iterating through all candidate tasks in T in each of the k

rounds of Algo. 4 or Algo. 5. For every candidate task, the naive method requires O(|T |)

floating point operations in SVGD, while the forward-backward method requires only

O(1) floating point operations in online SVGD.
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As can be concluded from the above remarks, the forward-backward method improves

time efficiency by |T | times over the naive method because its online SVGD performs fast

belief updates for only 1 selected task instead of using A (and T \ (A ∪ t)). The parallel

processing of each minibatch of tasks can accelerate the naive method by B times, but

the naive method is still much slower than the forward-backward method since usually,

B ≪ |T |.

D.2 EM Algorithm for Meta-Learning and Modified Vari-

ant

D.2.1 Probabilistic Meta-Learning with IP

Meta-learning on a setA of tasks, which adopt a split of their corresponding datasets accord-

ing to Chapter 5.2, can be defined as the inference of meta-parameters Θ with the following

joint likelihood to be maximized [Chen et al., 2014, Finn et al., 2017, Finn et al., 2018]:

p(yrA, θ|ysA) = p(θ)
∏
t∈A

p(yrt |θ,yst ) = p(θ)
∏
t∈A

∫
frt

p(yrt |f rt ) p(f rt |θ,yst ) df rt . (D.1)

Task adaptation p(f rt |θ,yst ) is performed via IP inference [Chen et al., 2021] given the

sample dataset (Xs
t ,y

s
t ):

p(f rt |θ,yst ) =
∫
z

p(f rt |z, θ) p(z|θ,yst ) dz . (D.2)

Fig. 5.1 shows a graphical model of the IP for meta-learning. Note that in meta-learning,

we have to model the belief of Yrt and use both the sample and remaining datasets to

perform meta-training. On the other hand, we have to model the belief of Yst to perform

task selection (Chapter 5.4).

[Chen et al., 2021] have used an expectation maximization (EM) algorithm to perform

meta-training such that the E step carries out the IP inference of Z (and f(·)) in (D.2)
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and the M step maximizes the joint likelihood (D.1) w.r.t. a point estimate of Θ. Note

that with our additional Bayesian treatment of Θ, meta-training returns a posterior belief

p(θ|ysA,yrA) of the meta-parameters instead of a point estimate, which is empirically shown

to improve performance (Chapter 5.5). While [Chen et al., 2021] are mainly interested in

deriving such an EM algorithm for meta-training, the motivation of our work here is to

derive an efficient active task selection algorithm for meta-learning with a near-optimal

performance guarantee. Nevertheless, we have modified their EM algorithm to work in

our case with the Bayesian treatment of Θ.

D.2.2 Our modification

We will provide details of the EM algorithm proposed by [Chen et al., 2021] and describe

our modifications here.

Expectation (E) step. The aim of the E step is to obtain (samples of) p(f rt |θ,yst ). Note

that (samples of) p(f rt |θ,yst ) can be obtained using the generator gΘ (5.1) and the latent

task posterior belief p(z|θ,yst ), as follows: First draw samples of z from p(z|θ,yst ), and

then passing them and Xr
t as inputs to generator gΘ to obtain samples from p(f rt |θ,yst ).

Hence, for a task t, performing its adaptation p(f rt |θ,yst ) (D.2) reduces to obtaining the

latent task posterior belief p(z|θ,yst ).

In general, p(z|θ,yst ) cannot be evaluated in closed form. Instead of using variational

inference (VI), the work of [Chen et al., 2021] has drawn samples from p(z|θ,yst ) using

stochastic gradient Hamiltonian Monte Carlo (SGHMC), which introduces an auxiliary

random vector r and samples from the joint distribution p(z, r|θ,yst ) following the Hamil-

tonian dynamics [Brooks et al., 2011, Neal, 1993] and making use of the tractable gradient

on Z: −∇z log p(z|θ,yst ) = −∇z log p(z,y
s
t |θ) = −∇z[log p(y

s
t |f st = (gθ(x, z))

⊤
x∈Xs

t
) +

log p(z)].

Our modification of E step: We represent the belief of Θ as a set {θm}Mm=1 of M

particles, which we denote as q(θ) without loss of generality. To accelerate computation,
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we use VI in Chapter 5.4.2 to compute p(z|θm,yst ):

p(z|θm,yst )← VIZ(θm) .

We then pass the samples of p(z|yst , θm) to the generator gθm (i.e., corresponding to the

particle θm) to obtain samples of p(f rt |θm,yst ).

Maximization (M) step. The aim of the M step is to optimize (D.1) w.r.t. a point

estimate of θ using the samples from the E step. In particular, (D.1) is optimized through

gradient descent w.r.t. θ using samples of z from the E step.

Our modification of M step: Instead of using gradient descent, we use SVGD

(Chapter 5.4.1) on the datasets (XA,yA) of the subset A of tasks to compute p(θ|yA) such

that in every SVGD iteration, each particle θm is updated as follows (i.e., similar to that in

Chapter 5.4.1):

θm ← θm +
η

M

∑
θ∈{θm}Mm=1

[
k(θ, θm)

×∇θ log p(y
r
A|θ,ysA) +∇θk(θ, θ

m)
]

where η is the step size, and k(·, ·) is a radial basis function kernel representing a repulsive

force between particles to prevent them from collapsing. We denote the entire VI process

(containing multiple SVGD iterations till convergence) to obtain p(θ|yA) as

p(θ|yA)← SVGDΘ(p(θ),yA) .

D.3 Proofs and other Theoretical Results

D.3.1 Proof of Theorem 5.1

Firstly, note that the MILT(·) function (5.2) is submodular:

Lemma D.1. The set function A 7→ MILT(A) is submodular.
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Its proof can be found in [Krause and Golovin, 2014]. We can also formally prove that

the MILT(·) function (5.2) is approximately monotonic up to a constant error of C0:

Lemma D.2. ∀B ⊆ T \ A MILT(A ∪ B) ≥ MILT(A)− C0 where C0 ≜ H(Θ).

Proof.

MILT(A ∪ B)−MILT(A)

= H(ZB|ZA)−H(ZB|ZT\(A∪B))

≥ H(ZB|ZA,Θ)−H(ZB|ZT\(A∪B))

≥ H(ZB|ZA,Θ)−H(ZB,Θ|ZT\(A∪B))

= H(ZB|Θ)−H(ZB,Θ|ZT\(A∪B))

≥ H(ZB|Θ)− (H(ZB|Θ,ZT\(A∪B)) +H(Θ|ZT\(A∪B)))

= −H(Θ|ZT\(A∪B))

≥ −H(Θ)

where the first equality is by definition of MILT(·) function (5.2), the first and last

inequalities are due to the “conditioning reduces entropy” property, the second and third

inequalities are due to chain rule for entropy, and the second and last equalities follow

from Zt,Zt′ ,∀t ̸= t′ being mutually independent given meta-parameters Θ.

Proof of Theorem 5.1. Let t⋆1, . . . , t⋆k be the k tasks selected by Algo. 4. So,

Ai = {t⋆1, . . . , t⋆i }. Recall from (5.3) that A⋆ ≜ argmaxA⊆T,|A|=k MILT(A). From

Lemma D.2,

MILT(A⋆ ∪ Ai) ≥ MILT(A⋆)− C0 (D.3)

for all rounds i = 1, . . . , k. Let ∆i ≜ MILT(Ai)−MILT(Ai−1). From Lemma D.1, we

know that for any A and t /∈ (A ∪ Ai),

MILT((A ∪ Ai) ∪ t)−MILT(A ∪ Ai)

≤ MILT(Ai ∪ t)−MILT(Ai) ≤ ∆i+1 .
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It follows that for any A s.t. |A| = k,

MILT(A ∪ Ai)−MILT(Ai) ≤ k∆i+1 .

Consequently,

MILT(A⋆ ∪ Ai) ≤ MILT(Ai) + k∆i+1 =
i∑

j=1

∆j + k∆i+1 . (D.4)

From (D.3) and (D.4),

MILT(A⋆)− C0 ≤
i∑

j=1

∆j + k∆i+1 (D.5)

for round i = 0, . . . , k − 1. We refer to (D.5) as the i-th inequality. Now, by multiplying

both sides of the i-th inequality by a factor of (1/k)(1− (1/k))k−i−1 and then summing

both sides over all rounds i = 0, . . . , k − 1,

(
MILT(A⋆)− C0

) k−1∑
i=0

1

k

(
1− 1

k

)k−i−1

≤
k∑
i=1

∆i = MILT(Ak) .

(D.6)

To understand why the coefficient of ∆i in (D.6) reduces to 1 for i = 1, . . . , k, the ∆i

term in the j-th inequality (D.5) for j = i, . . . , k − 1 has a coefficient of (1/k)(1 −

(1/k))k−j−1, while the k∆i term in the (i − 1)-th inequality (D.5) has a coefficient of

(1/k)(1− (1/k))k−(i−1)−1. Then,

coefficient of ∆i in (D.6)

= 1×
k−1∑
j=i

1

k

(
1− 1

k

)k−j−1

+ k × 1

k

(
1− 1

k

)k−(i−1)−1

= 1 .
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From (D.6),

MILT(Ak) ≥
(
MILT(A⋆)− C0

)(
1−

(
1− 1

k

)k)
≥ (MILT(A⋆)− C0)(1− 1/e) .

D.3.2 Near-Optimal Performance Guarantee for MIRD

We will now describe a greedy algorithm similar to Algo. 1:

Algorithm 2. Start with an empty setA0 = ∅ of tasks. In each round i = 1, . . . , k, greedily

select the next task:

t⋆i ≜ argmaxt MIRD(Ai−1 ∪ t)−MIRD(Ai−1) (D.7)

and update the set Ai = Ai−1 ∪ t⋆i = {t⋆1, . . . , t⋆i } of selected tasks.

Theorem D.1 (Near-optimal performance guarantee). Algorithm 2 is guaranteed to select

a set A of k tasks s.t.

MIRD(A) ≥ (1− 1/e)(OPT− C0)

where OPT ≜ maxA⊆T,|A|=k MIRD(A) and the constant C0 = H(Θ) is the entropy of

meta-parameters Θ.

Lemma D.3. ∀B ⊂ T \ A MIRD(A ∪ B) ≥ MIRD(A)− C0 where C0 ≜ H(Θ).
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Proof.

MIRD(A ∪ B)−MIRD(A)

= H(YrB|YrA)−H(YrB|YrT\(A∪B))

≥ H(YrB|YrA,Θ)−H(YrB|YrT\(A∪B))

≥ H(YrB|YrA,Θ)−H(YrB,Θ|YrT\(A∪B))

= H(YrB|Θ)−H(YrB,Θ|YrT\(A∪B))

≥ H(YrB|Θ)− (H(YrB|Θ,YrT\(A∪B)) +H(Θ|YrT\(A∪B)))

= −H(Θ|YrT\(A∪B))

≥ −H(Θ)

where the first equality is by definition of MILT(·) function (5.2), the first and last

inequalities are due to the “conditioning reduces entropy” property, the second and third

inequalities are due to chain rule for entropy, and the second and last equalities follow

from Yrt ,Yrt′ ,∀t ̸= t′ being mutually independent given meta-parameters Θ.

Proof of Theorem D.1. Similar to MILT, MIRD is submodular since it is also a

mutual information criterion. Lemma D.3 reveals that MIRD is approximately monotonic.

Therefore, we can adopt the same proof as that for MILT (Appendix D.3.1) to derive the

near-optimal performance guarantee for MIRD.

D.3.3 Online SVGD for Learning: Theoretical Result

Proposition D.1 (Online SVGD for learning). Suppose that p(θ) is an uninformative

prior (e.g., ∇θ log p(θ) = 0). With {θm}Mm=1 initially sampled from p
(
θ|zA,ysA

)
, the

SVGD operation for obtaining p
(
θ|zA∪t,ysA∪t

)
(i.e., learning from a task t /∈ A) is

θm ← θm +
η

M

∑
θ∈{θm}Mm=1

[
k(θ, θm)

×∇θ log p(θ|zt,yst ) +∇θk(θ, θ
m)
]
.

(D.8)
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We denote such a learning process (containing multiple SVGD iterations till convergence)

as

p(θ|zA∪t,ysA∪t)← SVGDΘ(p(θ|zA,ysA), {zt,yst}) .

Proof. With {θm}Mm=1 initially sampled from an arbitrary distribution q(θ), the SVGD

operation for learning p
(
θ|zA∪t,ysA∪t

)
is

θm ← θm +
η

M

∑
θ∈{θm}Mm=1

[
k(θ, θm)

×∇θ log p(θ|zA∪t,ysA∪t) +∇θk(θ, θ
m)
]

= θm +
η

M

∑
θ∈{θm}Mm=1

[
k(θ, θm)

×∇θ(log p(θ|zt,yst ) + log p(θ|zA,ysA)− log p(θ))

+∇θk(θ, θ
m)
]
.

Note that SVGD is a discretization of the underlying continuous functional gradient in the re-

producing kernel Hilbert space (RKHS) of k(·, ·). The corresponding continuous functional

gradient, which is proven to be the expectation of the Stein’s operator [Liu and Wang, 2016],

of the above SVGD is

Eq(θ)[k(θ, ·)×∇θ

(
log p(θ|zt,yst )

+ log p(θ|zA,ysA)− log p(θ)
)
+∇θk(θ, ·)] .

Since we have assumed an uninformative prior p(θ),∇θ log p(θ) = 0 in the above SVGD.

Also, using Stein’s identity [Liu and Wang, 2016],Ep(θ|zA,ysA)[k(θ, ·)∇θ log p(θ|zA,ysA)] =

0. Since q(θ) = p(θ|zA,ysA), the above functional gradient reduces to

Eq(θ)[k(θ, ·)∇θ log p(θ|zt,yst ) +∇θk(θ, ·)]

which results in the SVGD in (D.8).
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D.3.4 Proof of Proposition 5.1

Unlearning from a task t ∈ A can be cast as a problem of minimizing the evidence upper

bound (EUBO):

EUBO ≜ Eq(θ)[log p(yst |zt, θ)] + KL(q(θ)∥p(θ|zA,ysA))

which yields the exact solution to the original problem of maximizing the evidence lower

bound (ELBO), which involves learning from the set A \ t of tasks [Nguyen et al., 2020b].

The above problem can also be cast as one of maximizing the negative EUBO (NEUBO):

w.r.t. q(θ):

NEUBO ≜ Eq(θ)[− log p(yst |zt, θ)]− KL(q(θ)∥p(θ|zA,ysA)) . (D.9)

Note that SVGD is a discretization of the underlying continuous functional gradient in the re-

producing kernel Hilbert space (RKHS) of k(·, ·). The corresponding continuous functional

gradient, which is proven to be the expectation of the Stein’s operator [Liu and Wang, 2016],

of −KL(q(θ)∥p(θ|ysA, zA)) is

Eq(θ)[k(θ, ·)∇θ

(
log p(θ|zA,ysA)

)
+∇θk(θ, ·)] .

Using Stein’s identity [Liu and Wang, 2016], Ep(θ|zA,ysA)[k(θ, ·)∇θ log p(θ|zA,ysA)] = 0.

Since q(θ) = p(θ|zA,ysA), the above functional gradient reduces to Eq(θ)[∇θk(θ, ·)].

On the other hand, the functional gradient ofEq(θ)[− log p(yst |zt, θ)] [Liu and Wang, 2016]

is
−Eq(θ)[k(θ, ·)∇θ(log p(θ|zt,yst )− log p(θ))]

= −Eq(θ)[k(θ, ·)∇θ log p(θ|zt,yst )]

such that the equality follows from our assumption of an uninformative prior p(θ), that is,

∇θ log p(θ) = 0. By summing the above two functional gradients, we obtain the functional
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gradient of (D.9):

Eq(θ)[−k(θ, ·)∇θ log p(θ|zt,yst ) +∇θk(θ, ·)]

which results in the SVGD in (5.9).

D.4 More Experimental Results

D.4.1 Some Implementation Details

For Sinusoid regression, we execute 1 SVGD iteration to perform the adaptation of a task

in meta-training and execute 10 SVGD iterations to perform the adaptation of a task in

meta-test. The training is performed for a total of 15000 iterations with an Adam optimizer.

For Omniglot and MiniImagenet classification, we execute 5 SVGD iterations to perform

the adaptation of a task in meta-training and execute 10 SVGD iterations to perform the

adaptation of a task in meta-test. The training is performed for a total of 60000 iterations

with an Adam optimizer. For other meta-training settings, we adopt the same as that

in [Chen et al., 2021] (Chapter 4).

D.4.2 Comparison with Two Recent Baselines: the Probabilistic

Active Meta-learning algorithm and the Greedy Class-Pair

Based Sampling

The following describes our implementation details of the two baselines which we compared

with. Note that both works have different problem setting as ours. Thus we have to adapt

their implementation to perform fair empirical comparison baseds on the experimental

settings discussed in Chapter 5.5.
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D.4.2.1 The probabilistic active meta-learning algorithm (PAML)

To describe our adapted implementation of PAML from [Kaddour et al., 2020], contextual

information is omitted to ensure a fair comparison since all other baselines in our

experiments do not need to assume the availability of such contextual information. To

achieve this, we have removed the regularization term associated with the contextual

information (i.e., the summation term in Equation (10) of [Kaddour et al., 2020]). Then,

the meta-training objective becomes a typical meta-learning objective (i.e., Equation (5)

of [Kaddour et al., 2020]) which is similar to (is the variational lower bound of) ours that

explicitly represents the distributions via variational parameters. In our implementation of

PAML, we have adopted the same Gaussian variational distribution of the latent vector in

[Kaddour et al., 2020] and used the same model architectures as the ones in our baselines.

Results and discussion. The results on Sinusoid are presented on Figure D.1 and the

results on Omniglot and MiniImageNet are presented on Figure D.2. The results show

that our proposed MILT outperforms PAML. From our experiments, we have observed

that PAML is more inclined to select "boundary" tasks: For example, in 10-shot Sinusoid

where the amplitude amp is sampled from [0.1, 5.0], PAML has a proportion of 28.9% and

13.3% of its selected tasks from amp > 4.0 and amp < 1.0, respectively. In contrast, our

proposed MILT has a proportion of 17.5% and 7.5% of its selected tasks from amp > 4.0

and amp < 1.0, respectively. So, the PAML criterion tends to rank "boundary" tasks more

highly due to their greater surprisals [R1]. However, selecting too large a proportion of

such "boundary" tasks may not yield as much information on the unobserved tasks, which

explains why PAML is outperformed by our proposed MILT.

D.4.2.2 The greedy class-pair based sampling (GCP)

The GCP proposed in [Liu et al., 2020] is an active task selection method for meta-

classification tasks. GCP does not directly sample tasks. Instead, it samples classes

and then generates the tasks by randomly picking images of the selected classes, which

is fundamentally different from our setting. So, to establish a meaningful empirical
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Figure D.1: Meta-test mean squared error (MSE) and standard error over 5 runs vs. no. k
of selected tasks on (left) 5-shot Sinusoid and (right) 10-shot Sinusoid.

comparison with GCP, we have to adapt it such that it fits into the general problem setting

where the candidate tasks are given/fixed prior to task selection.

In the original GCP setting involving a N -way classification problem, a N -clique of

classes is sampled in each round such that the selection probability is formulated based on

its potential which is the product of pairwise potentials between two classes.

In our adapted implementation of GCP, we use GCP to compute the potential of each

candidate task where each task corresponds to a N -way classification problem. Then, we

sample tasks (i.e., one task per round of task selection without replacement) according to

the probability computed from the potential. By doing so, instead of allowing GCP to

generate tasks, we use the GCP criterion to sample from the given candidate tasks. We

adopt the default hyperparameters value (i.e., aggressiveness of 1 and discounting factor

of 0.5) in the original GCP paper.

Results and discussion. The results on Omniglot and MiniImageNet are presented

on Figure D.2. The results show that our proposed MILT outperforms GCP. We think
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the reason is that GCP is designed to achieve the best generalization performance on new

classes during test time. However, MILT is designed to achieve the best generalization

performance on new tasks (but not necessarily new classes) during test time. MILT better

fits our general problem setting and thus achieves a better performance than GCP.

D.4.3 Comparison with Information-Theoretic Task Selection

While it is complicated to generalize the existing active task selection algorithms to

cater to our more general problem setting (i.e., without making strong assumptions

of the availability of contextual information or a validation set, we have found a way

to adapt the problem setting of the information-theoretic task selection (ITTS) algo-

rithm [Luna and Leonetti, 2020] to do so. A core assumption of ITTS is the availability of

a validation set that can accurately represent the entire (meta-test) task distribution. Such

a strong assumption contradicts the motivation of our active task selection problem, as

discussed in Chapter 5.1. However, we can first construct such a validation set by randomly

selecting k′ < k candidate tasks as the validation set which we now denote as V .1 Then,

we actively select the rest of the (k − k′) tasks according to the ITTS criterion. In our

experiments, we set k′ = k/2.

Note that ITTS is conventionally designed for meta-reinforcement learning, but can

be adapted to cater to supervised meta-learning in our problem setting. The two key

components of ITTS are (a) the quantification of the difference between two tasks measured

by KL divergence, and (b) the quantification of the relevance of a task t to a task t′ measured

by the difference in entropy. We adapt their meta-reinforcement learning framework into

our (probabilistic) supervised meta-learning framework, as follows:

(a) In the work of [Luna and Leonetti, 2020], the difference between two tasks t and

t′ is measured as the averaged KL divergence between their respective policies over the

states of the validation tasks in V . For supervised meta-learning, it is natural to consider

1To align with our problem setting where the remaining datasets for all tasks in A are acquired/observed
for meta-training only after A is selected by an active task selection algorithm (Sections 5.3 and 5.2), only
the a priori known sample datasets for all tasks in V are given during active task selection.
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Figure D.2: Meta-test accuracy and standard error over 5 runs vs. no. k of selected tasks
on (top) 1-shot 5-way Omniglot, (middle) 1-shot 20-way Omniglot, and (bottom) 1-shot
5-way MiniImageNet.
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(a) (b)

Figure D.3: Meta-test mean squared error (MSE) and standard error over 5 runs vs. no. k
of selected tasks on (a) 5-shot Sinusoid and (b) 10-shot Sinusoid.

the averaged KL divergence between their latent task beliefs over the latent task vectors

representing the tasks in V :

δ(t, t′) = EzV ∼p(zV )[KL(p(Zt = z|zV )∥p(Zt′ = z|zV ))] .

(b) The work of [Luna and Leonetti, 2020] has defined the relevance of task t to task t′

as the expected difference in the entropy of the policies before and after learning (over the

states of t′) w.r.t. the on-policy distribution before learning. For supervised meta-learning,

such a relevance translates to

ρ(t, t′) = H(Zt′ |Zt)−H(Zt) .

Apart from these two components, the rest of the ITTS algorithm follows the original

implementation.

Fig. D.3 shows results of Sinusoid regression comparing the meta-test performance

of MILT vs. ITTS. It can be observed that MILT outperforms ITTS for both 5-shot and

10-shot Sinusoid regression. Note that ITTS does not outperform random selection when k

is not sufficiently large. This may be due to its validation set (whose size k′ < k) not being

highly representative of the distribution of meta-test tasks. As a result, the calculation of

the difference (see (a) above) using such a validation set can be misleading. When k is

sufficiently large, the validation set becomes representative enough for ITTS to perform
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better than random selection.
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