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Abstract

Over the past decade, various famous deep neural network (DNN) archi-

tectures (He et al., 2016; Huang et al., 2017b; Simonyan and Zisserman,

2015; Krizhevsky et al., 2012) have been devised and have achieved

superhuman performance for a wide range of tasks. Designing these

neural networks, however, typically incurs substantial efforts from do-

main experts by trials and errors. Such human efforts gradually become

unaffordable with an increasing demand for customizing DNNs for dif-

ferent tasks. To this end, neural architecture search (NAS) has been widely

applied to automate the design of neural networks in recent years. In the

literature, a number of NAS algorithms have been proposed, aiming to

further improve the search efficiency and effectiveness of NAS, i.e., to

reduce the search cost and improve the generalization performance of

the selected architectures, respectively. Despite these advances, there are

still certain essential aspects in NAS that have not been well investigated

in the literature, which however may help us to understand and even

further improve popular NAS algorithms.

Firstly, only a few efforts have been devoted to understanding the

neural architectures selected by popular NAS algorithms in the literature.

In the first work of this thesis (see Chapter 4), we take the first step of

understanding popular NAS algorithms by answering the following ques-

tions: What types of architectures are selected by popular NAS algorithms
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and why they are selected? In particular, we reveal that existing NAS algo-

rithms (e.g., DARTS, ENAS) tend to favor architectures with wide and

shallow cell structures. These favorable architectures consistently achieve

fast convergence and are consequently selected by NAS algorithms. Our

empirical and theoretical studies further confirm that their fast conver-

gence derives from their smooth loss landscape and accurate gradient

information. Nonetheless, these architectures may not necessarily lead to

better generalization performance than other candidate architectures in

the same search space, and therefore further improvement is possible by

revising existing NAS algorithms.

Secondly, standard NAS algorithms typically aim to select only a sin-

gle neural architecture from the search spaces and thus have overlooked

the capability of other candidate architectures in helping improve the per-

formance of their final selected architecture. To this end, we present two

novel sampling algorithms under our Neural Ensemble Search via Bayesian

Sampling (NESBS) framework that can effectively and efficiently select

a well-performing ensemble of neural architectures from NAS search

space (see Chapter 5). Compared with state-of-the-art NAS algorithms

and other well-known ensemble search baselines, our NESBS algorithms

are shown to be able to achieve improved performance in both classifica-

tion and adversarial defense tasks on various benchmark datasets while

incurring a comparable search cost to these NAS algorithms.

Thirdly, the search efficiency of popular NAS algorithms in the lit-

erature is severely limited by the need for model training during the

search process. To overcome this limitation, in Chapter 6, we propose a

novel NAS algorithm called NAS at Initialization (NASI) that exploits the

capability of Neural Tangent Kernel (NTK) in being able to characterize the

converged performance of candidate architectures at initialization, hence
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allowing model training to be completely avoided to boost the search

efficiency. Besides the improved search efficiency, NASI also achieves

competitive search effectiveness on various datasets like CIFAR-10/100

and ImageNet. Further, NASI can guarantee the benefits of being label-

and data-agnostic under mild conditions, i.e., the provable transferability

of architectures selected by our NASI over different datasets.

Finally, though recent NAS algorithms using training-free metrics are

able to select well-performing architectures in practice, the reason why

training-free NAS using these metrics performs well and the answer to the

question of how training-free NAS can be further boosted still have not been

fully understood. To this end, we provide a unified theoretical analysis

for gradient-based training-free NAS in this paper to understand why

training-free metrics work well in practice (see Chapter 7). By exploiting

these theoretical understandings, we then develop a novel NAS frame-

work called Hybrid Neural Architecture Search (HNAS) that consistently

improves training-free NAS in a principled way. Remarkably, HNAS can

enjoy the advantages of both training-free (i.e., the superior search effi-

ciency) and training-based NAS (i.e., the remarkable search effectiveness),

which we have demonstrated through extensive experiments.
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Chapter 1

Introduction

1.1 Motivations

In recent years, we have witnessed the remarkable achievement that deep

learning (DL) has made in a number of applications, such as in computer

vision (CV) and natural language processing (NLP). Despite such com-

pelling performance achieved by DL techniques, the design of neural

networks is known to be a significant challenge repeatedly faced by DL

practitioners while applying DL to various practical tasks due to the huge

performance gap among different neural architectures like ResNet (He

et al., 2016) vs. VGG (Simonyan and Zisserman, 2015). In the litera-

ture, various neural architectures (He et al., 2016; Huang et al., 2017b;

Krizhevsky et al., 2012; Simonyan and Zisserman, 2015) have been de-

vised by human experts over the past decades and achieved superhuman

performance for a wide range of tasks. However, numerous human tri-

als and errors need to be devoted to the design of neural architectures,

which makes it prohibitively costly. As a consequence, the increasing

demand for developing neural architectures for different tasks becomes

unaffordable nowadays for those human experts. This therefore calls for
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automated design of neural architectures, which has recently become an

important topic in automated machine learning (AutoML) (Hutter et al.,

2019).

To this end, neural architecture search (NAS) has been introduced to au-

tomate the design of neural architectures for different tasks by (Zoph and

Le, 2017). As summarized in (Elsken et al., 2019a), NAS conventionally

consists of a search space, a search algorithm, and a performance evalua-

tion. Specifically, the search algorithm aims to select the best-performing

neural architecture from the search space based on its evaluated perfor-

mance via performance evaluation. Since (Zoph and Le, 2017), various

search algorithms (Liu et al., 2018; Luo et al., 2018a; Real et al., 2019b;

Zoph et al., 2018) have been proposed to select neural architectures with

an improved generalization performance or search efficiency. Despite

the advantages of achieving state-of-the-art (SOTA) performance with

slightly improved search efficiency by these algorithms, they remain

computationally costly due to the expensive model training of various

candidate architectures during the search process, which hence becomes

impractical for DL practitioners who are in shortage of computing re-

sources. To overcome such a limitation, one-shot NAS has been widely

adopted in recently proposed NAS algorithms (Dong and Yang, 2019b;

Liu et al., 2019; Pham et al., 2018; Xie et al., 2019b). In particular, only

the model training of one single supernet (namely, the one-shot archi-

tecture) is required and the performance of candidate architectures in

the search space is estimated with the model parameters shared by this

one-shot architecture. Consequently, the search efficiency of NAS has

been improved significantly, thus leading to practical NAS for most DL

practitioners.

Despite recent progress, there are still some important aspects of NAS

2
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that need to be investigated, which can potentially help to understand or

further improve current SOTA NAS algorithms. Specifically, we identify

the following important aspects of NAS:

(a) There are only limited efforts being devoted to understanding the

neural architectures selected by popular NAS algorithms in the

literature. However, the investigation of the selected architectures

by popular NAS algorithms could be significant for the whole NAS

area because it may help us to understand what types of architectures

are selected by popular NAS algorithms and why they are selected. By

understanding these two questions, the limitations of existing NAS

algorithms may be unveiled, which even may motivate or suggest

possible remedies in the future. Moreover, the answers to these

questions may also help the domain experts to better design the

search space for NAS, i.e., to design the search space that covers

high-potential architectures as well as its variants.

(b) Existing NAS algorithms usually select only a single architecture

achieving the best performance in the search spaces and hence have

ignored other candidate architectures in the search space that can

help further improve the performance of their final selected archi-

tecture via neural network ensemble. As known, neural network

ensembles are widely shown to be capable of achieving an improved

performance compared with a single neural network on various

tasks (Gal and Ghahramani, 2016; Cortes et al., 2017; Lakshmi-

narayanan et al., 2017) in the literature. This naturally leads to an

interesting question for the NAS area: How can we select the best-

performing ensemble of architectures from the NAS search space? In the

literature, only limited efforts (Zaidi et al., 2020) have been devoted
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to the research topic of neural ensemble search. However, Zaidi

et al. (2020) requires independent model training for all of their

sampled architectures from the search space to conduct their neural

ensemble search among these architectures. As a result, they have

failed to explore the whole search space and thus have achieved

poor ensemble performances in practice while still incurring unaf-

fordable search costs for their independent model training during

the search process.

(c) The search efficiency of popular NAS algorithms in the literature is

severely limited by the need for model training during the search

process, i.e., the model training of candidate architectures or the

one-shot architecture. This naturally leads to the question whether

NAS is realizable at initialization such that model training can be com-

pletely avoided during the search process. To the best of our knowledge,

only a few efforts to date have been devoted to developing NAS

algorithms without model training empirically (Mellor et al., 2020a;

Park et al., 2020; Abdelfattah et al., 2021; Chen et al., 2021). Unfor-

tunately, these works typically fail to provide theoretical support

for their training-free methods or the transferability of their final

selected architectures. Moreover, certain works even fail to achieve

state-of-the-art results in large-scale experiments, which is typically

required by the NAS area in order to examine the validity of the

proposed NAS algorithms in practice.

(d) Though empirical results show that recent NAS using various training-

free metrics is capable of finding well-performing architectures, the

reason why NAS using these training-free metrics performs well in

practice still has not been fully understood from a unified theoreti-
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cal perspective. To the best of our knowledge, only limited efforts

to date have been devoted to studying certain special training-free

NAS forms theoretically, e.g., (Shu et al., 2021). Though the training-

free NAS form in (Shu et al., 2021) can be derived from the training

performance of candidate architectures, there remains a theoretical

gap between training and generalization (i.e., validation/test) per-

formance in their derivation. Moreover, a unified theoretical study

for NAS based on training-free metrics may even inspire further

unified improvement on training-free NAS and allow training-free

NAS to be a practical alternative to training-based NAS.

1.2 Contributions

In this section, we give a brief summary of our contributions to under-

standing and improving current NAS algorithms following the aforemen-

tioned aspects in this thesis.

Understanding architectures learnt by cell-based neural architecture

search. As nearly no effort has been devoted to understanding what

types of architectures are selected by popular NAS algorithms and why they

are selected, our work in Chapter 4 aims to empirically and theoretically

answer these two questions. Specifically, by investigating the connection

topologies of architectures selected by popular NAS algorithms (e.g.,

DARTS, ENAS), we figure out that these training-based NAS algorithms

tend to select architectures with wide and shallow connection topologies.

Interestingly, we also find that these wide and shallow connection topolo-

gies are usually able to achieve fast convergence (i.e., better generalization

performance under the same training budget) and consequently will be

selected by standard training-based NAS algorithms. After that, we then
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provide both empirical and theoretical studies to further show that such

a fast convergence actually derives from the smooth loss landscape and

accurate gradient information of wide and shallow connection topologies.

Finally, we show that these wide and shallow connection topologies may

not achieve better generalization performance than other architectures in

the search space, which therefore implies that further improvement on

existing NAS algorithms is still possible and remains to be solved in the

near future.

Neural Ensemble Search via Bayesian Sampling. According to (Zhou,

2012), both competitive single-model performances and diverse model

predictions are essential for ensemble models to achieve compelling per-

formance in practice. Inspired by this, our work in Chapter 5 introduces

two novel sampling algorithms, i.e., Monte Carlo sampling (MC Sampling)

and Stein Variational Gradient Descent with regularized diversity (SVGD-

RD), under our Neural Ensemble Search via Bayesian Sampling (NESBS)

framework, which are capable of sampling neural network ensembles

with both competitive single-model performances and diverse model

predictions and consequently can select well-performing ensembles of

architectures effectively and efficiently from the NAS search space. Ex-

tensive empirical results show that our algorithms can achieve improved

search effectiveness and efficiency than other state-of-the-art NAS, ensem-

ble, and ensemble search baselines in both classification and adversarial

defense tasks on various benchmark datasets while only incurring a

comparable search cost to the standard NAS baselines.

NASI: Label- and Data-agnostic Neural Architecture Search at Initial-

ization. Standard training-based NAS algorithms usually require the

model training of candidate architectures or one-shot architecture in
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their search process. Our work in Chapter 6 therefore presents a novel

NAS algorithm called NAS at Initialization (NASI) to completely avoid the

model training during the search process by employing the theory of Neu-

ral Tangent Kernel (NTK) to approximately characterize the performance

of candidate architectures with only initialized parameters. Besides the

improved search efficiency by conducting NAS at initialization, NASI is

even proven to be label- and data-agnostic under mild conditions. This

therefore guarantees the transferability of the architectures selected by

our NASI over different datasets, i.e., the architectures selected by our

NASI on one dataset may also perform well on other datasets with a high

probability. Our extensive empirical results have shown that NASI is

capable of achieving superior search efficiency (i.e., search cost), com-

petitive search effectiveness (i.e., the performance of the final selected

architectures) as well as compelling transferability on various benchmark

datasets and search spaces. Finally, to summarize, our NASI significantly

advances the line of training-free NAS in (a) providing theoretically

grounded performance estimation by NTK (compared with (Abdelfattah

et al., 2021; Chen et al., 2021; Mellor et al., 2020a)), (b) guaranteeing the

transferability of its selected architectures with its provable label- and

data-agnostic search under mild conditions (compared with (Abdelfattah

et al., 2021; Chen et al., 2021; Mellor et al., 2020a; Park et al., 2020)))

and (c) achieving SOTA performance in a large search space over vari-

ous benchmark datasets (compared with (Abdelfattah et al., 2021) and

(Mellor et al., 2020a; Park et al., 2020)).

Unifying and Boosting Gradient-Based Training-Free Neural Archi-

tecture Search. Even though empirical results show that NAS using

various training-free metrics is capable of finding well-performing ar-
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chitectures, the reason why NAS using these training-free metrics performs

well in practice still has not been fully understood. To this end, our work

in Chapter 7 provides unified theoretical analyses and improvement for

gradient-based training-free NAS. Specifically, our unified analysis based

on the provable connections among gradient-based training-free metrics

firstly shows that these training-free metrics are theoretically related to

the generalization performance of DNNs. Consequently, the performance

of commonly applied training-free NAS forms based on these metrics can

be theoretically guaranteed, which helps to understand the compelling

empirical results achieved by them in practice. Besides the generaliza-

tion guarantees, our analysis further indicates that the transferability in

training-free NAS is also guaranteed. More interestingly, we even find

that training-free NAS has the same preference of architecture topology

as those training-based NAS algorithms in order to achieve their good

final performance. Based on these theoretical analyses, we then develop

a novel NAS framework named Hybrid Neural Architecture Search (HNAS)

that enjoys the advantages of both training-based (i.e., the remarkable

search effectiveness) and training-free NAS (i.e., the superior search effi-

ciency), allowing training-free NAS to be further improved. Empirical

results indicate that our theoretical analyses, as well as the effectiveness

and efficiency of our HNAS can be well-supported in practice.

Overview of the contributions. Fig. 1.1 gives an overview of the con-

tributions in this thesis. Specifically, our first work in Chapter 4 (i.e.,

Understanding NAS in Fig. 1.1) provides the missing interpretations for

training-based NAS algorithms (aforementioned aspect (a) in NAS). Then,

our second work in Chapter 5 (i.e., NESBS in Fig. 1.1) further improves

the search effectiveness, e.g., the precision and performance, of training-

8
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Figure 1.1: An overview of the contributions in this thesis.

based NAS (aforementioned aspect (b) in NAS). To significantly improve

the search efficiency (e.g., the speed and economy,) of training-based NAS,

our third work in Chapter 6 (i.e., NASI in Fig. 1.1) turns to NAS using

training-free metrics for performance estimation (aforementioned aspect

(c) in NAS). Finally, our last work in Chapter 7 (i.e., HNAS in Fig. 1.1) pro-

vides unified theoretical study for gradient-based training-free NAS and

also unified improvement on its search effectiveness, e.g., the precision

and performance, by integrating training-based NAS with training-free

NAS (aforementioned aspect (d) in NAS).

1.3 Organization

In the remaining of this thesis, we firstly introduce the necessary back-

ground and notations detailed in Chapter 2. Chapter 3 then provides

9
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an overview of the related works for the four works included in this

thesis. Next, the following four chapters (i.e., Chapter 4,5,6,7) present

each of our four works in detail. Finally, we complete this thesis with a

conclusion and a future outlook in Chapter 8.
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Chapter 2

Background and Notations

In this chapter, we introduce the necessary background and notations that

will be useful throughout this thesis. Specifically, we will introduce neural

architecture search (NAS) in Section 2.1 as a general background of this

thesis. Then, the convergence of stochastic gradient descent (SGD) will be

provided in Section 2.2, which serves as a theoretical foundation for our

first work in Chapter 4. Next, we will introduce Stein Variational Gradient

Descent (SVGD), which helps us to sample good ensemble candidates

for our work in Chapter 5. Finally, we will detail Neural Tangent Kernel

(NTK) in Section 2.4 that is exploited in our third and last work (see

Chapter 6 and Chapter 7). As for the notations, we use lower-case bold-

faced symbols to denote column vectors (e.g., x), and upper-case bold-

faced symbols to represent matrices (e.g., X). Scalars are denoted by

normal lower-case symbols, i.e., without bold highlight (e.g., x).

2.1 Neural Architecture Search

Similar to automated hyper-parameter optimization (HPO) that selects

hyper-parameters with the best generalization performance, NAS intends

to automatically find neural architectures achieving the best general-

11
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⋯
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Figure 2.1: A typical flow of Neural Architecture Search.

ization performance. As summarized in (Elsken et al., 2019a), NAS

conventionally consists of a search space, a search algorithm, and a per-

formance evaluation. Specifically, the search space of NAS includes all

possible candidate architectures that may achieve the best generalization

on the target tasks, which usually is manually designed by human ex-

perts. The search algorithm then selects the best-performing candidate

architecture from this search space based on its evaluated performance

via the performance evaluation component in NAS. Figure 2.1 provides a

typical flow of NAS.

Given a loss function L and model parameters θA (or θ(A)) of can-

didate architecture A, we denote the training and validation loss of this

architecture as Ltrain(θA;A) and Lval(θA;A), respectively. NAS can then

be formally formulated as a bi-level optimization problem (Liu et al.,

2019) below using the validation loss to estimate the true generalization

performance of candidate architectures:

minALval(θ∗A;A)

s.t. θ∗A ≜ argminθA
Ltrain(θA;A) .

(2.1)

Notably, model training of each candidate architecture is required to

12
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𝑿𝑾𝑽𝑼 𝑿𝑾𝑽 𝑿𝑽𝑼 𝑾𝑽
⋯ ⋯

(a) Supernet (b) Candidates

Figure 2.2: The relation between supernet and candidate architectures
in one-shot NAS. We denote the first-level, second-level, and third-level
nodes as the input, intermediate feature maps, and output for this simple
supernet, respectively. Each type of intermediate feature maps is gen-
erated by its corresponding operation denoted by the parameters (e.g.,
X) of this operation. Note that candidate architectures (subgraphs of
supernet) inherit not only the structure but also the model parameters
from the supernet in one-shot NAS, as illustrated here.

evaluate their validation performance in (2.1).

One-shot Neural Architecture Search. As model training of each can-

didate architectures in the search space is prohibitively costly, one-shot

NAS has been widely adopted in the literature (Brock et al., 2018; Liu

et al., 2019; Pham et al., 2018) to accelerate the search process of NAS.

Particularly, the search space of one-shot NAS is represented as a su-

pernet, and only the model training of this supernet is required. The

model parameters of this supernet are then shared among candidate

architectures (i.e., the subgraphs of this supernet) to estimate the gen-

eralization performance of these candidate architectures in the search

space. Interestingly, such estimation is shown to be highly related to the

true generalization of candidate architectures in the search space (Bender

et al., 2018) and can indeed help to select well-performing architectures

with an accelerated search process as validated in (Liu et al., 2019; Pham

et al., 2018) empirically. Figure 2.2 illustrates the relation between super-

net and candidate architectures in one-shot NAS. Note that throughout

this thesis, we may also use one-shot architecture to denote this supernet.

13
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Benchmarks. In recent years, there is a surging interest in developing

benchmarks with tabular data to evaluate different NAS algorithms. For

example, Ying et al. (2019) are the first to propose a NAS benchmark

(i.e., NAS-Bench-101) consisting of the test performances of 423,000

unique architectures on CIFAR-10 (Krizhevsky et al., 2009). These ar-

chitectures are all independently trained from scratch on the CIFAR-10

training dataset for the same number of training epochs and then are

evaluated on the CIFAR-10 test dataset. After that, following the same

method in (Ying et al., 2019), Dong and Yang (2020) have constructed a

NAS benchmark (i.e., NAS-Bench-201) of 15,625 candidate architectures

on various datasets, i.e., CIFAR-10/100 (Krizhevsky et al., 2009) and

ImageNet-16-120 (Chrabaszcz et al., 2017), while Zela et al. (2020b) has

developed a NAS benchmark (i.e., NAS-Bench-1Shot1) especially for the

NAS algorithms using shared parameters from the supernet. These NAS

benchmarks significantly reduce the computational cost of evaluating

the architectures selected by different NAS algorithms since the perfor-

mances of these architectures can be simply queried from the benchmarks.

Unfortunately, due to the unaffordable computational cost of training all

candidate architectures in a large-scale search space (e.g., with ∼ 1020

unique architectures) as well as a large-scale dataset (e.g., ImageNet

(Deng et al., 2009)), these benchmarks typically can only evaluate the

performances of NAS algorithms using small-scale search spaces and

datasets. So, in the literature, experiments on the large-scale search space

(i.e., the DARTS search space (Liu et al., 2019)) and the large-scale dataset

(i.e., ImageNet) are usually necessary to further evaluate the practical

performance of NAS algorithms. As a result, in this thesis, we mainly fol-

low the convention in the NAS literature to evaluate our NAS algorithms

on the aforementioned benchmarks.

14
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2.2 Stochastic Gradient Descent

Nowadays, SGD has become a standard optimization algorithm for the

model training of DNNs. Here, we give a brief introduction to SGD.

Specifically, given the target function needing to be optimized be in the

form of expectation, i.e.,

F(w) = Ex∼p(x)[f (w,x)] , (2.2)

to obtain the optimal w∗ = argminF(w), SGD intends to randomly sample

one single data xk ∼ p(x) at each iteration to estimate the gradient ∇wF(w)

by using ∇wf (w,xk) and then apply gradient descent onto w with learning

rate ηk (detailed in Algorithm 2.1), i.e.,

w← w − ηk∇wf (w,xk) . (2.3)

Theorem 2.1 provides a guaranteed convergence of SGD. It shows

that such convergence rate mainly depends on the Lipschitz constant

L, gradient variance bound σ2, and the choice of learning rate {η}Nk=1.

Interestingly, both L and σ2 are highly related to the neural architectures

as justified in Chapter 4. Note that in practice, we usually adopt a mini-

batch variant of SGD to enjoy the benefits of parallelization, i.e., we

randomly sample a mini-batch of data (i.e., {x(i)
k }

b
i=1) instead of one single

data (i.e., xk) to estimate the gradient of F(w) at each iteration. In the

scenario of machine learning and deep learning, f , w and x usually denote

the composition of model and objective function, model parameters,

and data, respectively. Besides, the distribution p(x) usually becomes

a categorical uniform distribution given a finite number of data in the

target dataset.
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Algorithm 2.1 Stochastic Gradient Descent (SGD)

1: Input: Initialized w0, distribution p(x), learning rate {ηk}Nk=1
2: for step k = 0, . . . ,N − 1 do
3: Sample xk ∼ p(x)
4: Update w via wk+1 = wk − ηk∇wf (wk ,xk)

Theorem 2.1. (Ghadimi and Lan, 2013) Let F be a L-smooth non-convex

function, and let F∗ be its minimal. Given repeated, independent accesses

to stochastic gradients with variance bound σ2 for F(w), SGD with initial

w0, total iterations N > 0 and learning rate ηk < 1/L achieves the following

convergence by randomly choosing wk as the final output wR with probability

ηk/H where H =
∑N

k=1ηk:

E[
∥∥∥∇F (wR)

∥∥∥2
] ≤ 2(F (w0)−F∗)

H
+
Lσ2

H

N∑
k=1

η2
k

2.3 Stein Variational Gradient Descent

Stein Variational Gradient Descent (SVGD) (Liu and Wang, 2016) is a

variational inference algorithm that approximates a target distribution

p(x) with a simpler density q∗(x) in a predefined set Q, which is selected

by minimizing the Kullback-Leibler (KL) divergence between these two

densities:

q∗ = argmin
q∈Q

{KL(q||p) ≜ Eq

[
log

(
q(x)/p(x)

)]
} . (2.4)

Specifically, SVGD represents q∗(x) with a set of particles {xi}ni=1, which

are firstly randomly initialized and then iteratively updated with updates

φ∗(xi) and a step size ϵ:

xi ← xi + ϵφ∗(xi), ∀i ∈ {1, · · · ,n} . (2.5)
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Let q[ϵφ] denote the distribution of updated particles x′ = x+ ϵφ(x). Let

F denote the unit ball of a vector-valued reproducing kernel Hilbert

space (RKHS) H ≜ H0 × · · ·H0 where H0 is an RKHS formed by scalar-

valued functions associated with a positive definite kernel k(x,x′). The

work of (Liu and Wang, 2016) has shown that (2.5) can be viewed as

functional gradient descent in the RKHS H and the optimal φ∗ in (2.5)

can be obtained by solving the following problem

φ∗ = argmax
φ∈F

{
− d
dϵ

KL(q[ϵφ]||p)
∣∣∣∣
ϵ=0

}
, (2.6)

which yields a closed-form solution:

φ∗(·) = Ex∼q[k(x, ·)∇x logp(x) +∇xk(x, ·)] . (2.7)

In practice, Liu and Wang (2016) have approximated the expectation in

this close-form solution with the empirical mean of particles: φ∗(xi) ≈

φ̂∗(xi), where φ̂∗(xi) is defined as

φ̂∗(xi) ≜
1
n

n∑
j=1

k(xj ,xi)∇xj logp(xj) +∇xjk(xj ,xi) . (2.8)

As revealed in (Liu and Wang, 2016), the two terms in the aforementioned

closed-form solution take different effects: The first term with ∇x logp(x)

favors particles with higher probability density, while the second term

pushes the particles away from each other to encourage diversity.

2.4 Neural Tangent Kernel

Let a dataset (X ,Y ) denote a pair comprising a set X of m n0-dimensional

vectors of input features and a vector Y ∈ Rmn×1 concatenating the m
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n-dimensional vectors of corresponding output values, respectively. Let a

DNN be parameterized by θt ∈ Rp at time t and output a vector f (X ;θt) ∈

Rmn×1 (abbreviated to ft) of the predicted values of Y . Jacot et al. (2018)

have revealed that the training dynamics of DNNs with gradient descent

can be characterized by an NTK. Formally, define the NTK Θt(X ,X ) ∈

Rmn×mn (abbreviated to Θt) as

Θt(X ,X ) ≜ ∇θtf (X ;θt) ∇θtf (X ;θt)
⊤ . (2.9)

Given a loss function Lt at time t and a learning rate η, the training

dynamics of the DNN can then be characterized as

∇tft = −η Θt(X ,X ) ∇ftLt, ∇tLt = −η ∇ftL
⊤
t Θt(X ,X ) ∇ftLt . (2.10)

Interestingly, as proven in (Jacot et al., 2018), the NTK stays asymptoti-

cally constant during the course of training as the width of DNNs goes to

infinity. NTK at initialization (i.e., Θ0) can thus characterize the training

dynamics and also the performance of infinite-width DNNs.

Lee et al. (2019a) have further revealed that, for DNNs with over-

parameterization, the aforementioned training dynamics can be governed

by their first-order Taylor expansion (or linearization) at initialization. In

particular, define

f lin(x;θt) ≜ f (x;θ0) +∇θ0
f (x;θ0)⊤(θt −θ0) (2.11)

for all x ∈ X . Then, f (x;θt) and f lin(x;θt) share similar training dynamics

over time, as described formally in Appendix C.1.2. Besides, following

the definition of NTK in (2.9), this linearization f lin achieves a constant

NTK over time.
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Given the mean squared error (MSE) loss defined asLt ≜m−1
∥∥∥Y − f (X ;θt)

∥∥∥2
2

and the constant NTK Θt = Θ0, the loss dynamics in (2.10) above can be

analyzed in a closed form while applying gradient descent with learning

rate η (Arora et al., 2019b):

Lt = m−1∑mn
i=1(1− ηλi)2t(u⊤i Y )2 , (2.12)

where Θ0 =
∑mn

i=1λi(Θ0)uiu
⊤
i , and λi(Θ0) and ui denote the i-th largest

eigenvalue and the corresponding eigenvector of Θ0, respectively.
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Chapter 3

Related Works

In this chapter, we provide a review of related works in NAS to elucidate

the position of our contributions within the literature.

3.1 Evolution of Training-based NAS

NAS has received increasing attention in recent years due to its out-

standing performance and the demand for Automated Machine Learning

(AutoML). There are three major components in NAS as summarized

by (Elsken et al., 2019b), namely search space, search policy (or strat-

egy, algorithm), and performance evaluation (or estimation). To define

the search space, the prior knowledge extracted from expert-designed

architectures is typically exploited. As for the search policy, different

algorithms are proposed to improve the effectiveness (Cai et al., 2019a;

Real et al., 2019a; Tan et al., 2019a; Zoph et al., 2018) of NAS, which we

introduce in the following paragraphs in detail.

NASNet. Zoph and Le (2017) and Zoph et al. (2018) are the first batch

to introduce neural architecture search to automate the design of neural

networks. Specifically, they have proposed to use reinforcement (RL)
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algorithms to select best-performing architectures, in which a recurrent

neural network (RNN) is applied as the controller to iteratively sam-

ple high-potential architectures, and then the accuracies of these fully

trained architectures are employed to update the RNN in order to get a

better controller. While Zoph and Le (2017) propose to search a whole

neural architecture from scratch, Zoph et al. (2018) only searches for two

different cells (i.e., normal and reduce cells) where a complete neural

architecture is stacked by a number of these two types of cells. Thanks to

the decomposition of neural architectures as cells, Zoph et al. (2018) have

successfully scaled their final selected architectures (namely NASNet) to

other benchmarks tasks. Though empirical results show that NASNet is

able to achieve SOTA performances, its prohibitive search cost derived

from the model training of each sampled architecture is unaffordable for

many NAS practitioners.

AmoebaNet. After NASNet, Real et al. (2019a) have proposed to em-

ploy an evolutionary algorithm to conduct NAS using the same search

space as NASNet. Specifically, Real et al. (2019a) have developed an

aging evolution algorithm based on standard tournament selection evolu-

tionary algorithm by novelly introducing age to each candidate and then

preferring young candidates. Such a NAS algorithm is usually referred to

AmoebaNet algorithm. Empirical experiments show that the AmoebaNet

algorithm can usually enjoy a faster search process than RL-based NAS-

Net and also NAS algorithm using random search, i.e., requiring a smaller

search cost to achieve the same performance. Meanwhile, AmoebaNet

usually will achieve competitive performance compared with NASNet in

practice. Similar to NASNet, each sampled candidate architecture during

the search process of the AmoebaNet algorithm is also required to be
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trained from scratch independently.

ProxylessNAS. Instead of searching on a proxy task and then trans-

ferring the selected architectures from this proxy task to the target task,

Cai et al. (2019a) have proposed to directly search for the target tasks

as well as the target hardware platforms using the ProxylessNAS algo-

rithm. Particularly, following that of (Liu et al., 2019), Cai et al. (2019a)

have represented the search space as a directed acyclic graph (DAG) and

use binarized architecture parameters to indicate each candidate archi-

tecture in the search space. Then, Cai et al. (2019a) have employed a

REINFORCE-based approach to optimize these binarized architecture

parameters on the validation dataset of the target task in order to se-

lect the best-performing architecture from the search space. Empirical

results show that ProxylessNAS has achieved considerably improved

performance on various datasets compared with NASNet and Amoe-

baNet. Moreover, since ProxylessNAS only needs to train the supernet

during their search process, it will also incur a significantly reduced cost

than NASNet and AmoebaNet. However, the cost of direct search on

large-scale datasets in ProxylessNAS is still unsatisfactory in practice.

In practice, scaling the aforementioned NAS algorithms to large

datasets is notoriously hard. Recently, attention has thus been shifted to

improving the search efficiency of NAS without sacrificing the generaliza-

tion performance of its selected architectures. In particular, a supernet

(or one-shot architecture) is firstly introduced by Pham et al. (2018) to

share model parameters among candidate architectures, thereby reducing

the cost of model training substantially. Recent works (Chen et al., 2019;

Dong and Yang, 2019b; Liu et al., 2019; Xie et al., 2019b; Chen and Hsieh,

2020; Chu et al., 2020) along this line have further formulated NAS as
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a continuous and differentiable optimization problem to yield efficient

gradient-based solutions. We introduce certain typical one-shot NAS

algorithms in detail in the following paragraphs.

ENAS. Considering the expensive search cost of the aforementioned

NAS algorithms, Pham et al. (2018) has framed the search space of NAS

into a supernet (or a computational graph) and then shared model param-

eters among candidate architectures (i.e., the sub-graph of this supernet)

in such a search space. In particular, Pham et al. (2018) has developed a

search process consisting of two interleaving phases: In the first phase,

candidate architectures are sampled from the search space by a similar

RNN controller as (Zoph et al., 2018), and then their shared model pa-

rameters with supernet are trained on the training dataset for only a few

steps. In the second phase, the aforementioned RNN controller is updated

using the policy gradient derived from the validation performance of

those sampled architectures. By developing such a weight-sharing mech-

anism, only the model training of this supernet is required to search for

best-performing architectures, which therefore will be more efficient com-

pared with the costly model training of multiple architectures in NASNet

and AmoebaNet. Empirical results have also validated the improved

search efficiency over NASNet and AmoebaNet achieved by (Pham et al.,

2018).

DARTS. Most of the aforementioned NAS algorithms typically use rein-

forcement algorithms or evolutionary algorithms to search architectures

in a discrete and non-differentiable search space. In practice, gradient-

based optimization algorithms typically can achieve a faster convergence

than reinforcement algorithms or evolutionary algorithms. As a result,

to achieve a further improved search efficiency for NAS, Liu et al. (2019)
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have developed the DARTS algorithm to search architectures in a differ-

entiable search space using gradients. Particularly, (Liu et al., 2019) have

novelly relaxed the discrete search space as a continuous one by using a

weighted combination (parameterized by architecture parameters) for all

possible operations and then proposed to use a bi-level gradient-based

optimization algorithm to update both the model parameters and the

architecture parameters. Note that operations are used to make up a

complete architecture. Besides, due to such a relaxation, the search space

is also framed as a supernet and the model parameters of candidate ar-

chitectures are also shared with each other. Extensive experiments have

shown that DARTS is capable of scaling down the search cost of NAS-

Net and AmoebaNet to several orders of magnitude while still enjoying

competitive test performances.

SNAS & GDAS. Though DARTS has achieved impressive results in

practice, there usually exists a large gap between the performance of

candidate architectures during the search process and after the search

process because of the discrepancy between continuous (during the search

process) and binary (after the search process) architecture parameters.

In light of this, Xie et al. (2019b) and Dong and Yang (2019b) have

introduced probability distribution to binary architecture parameters

using Gumbel softmax (Maddison et al., 2017; Jang et al., 2017) compared

with the continuous ones in (Liu et al., 2019). That is, architecture

parameters will remain discrete during their search process. As a result,

the gap between the performance of candidate architectures during the

search process and after the search process will disappear, which has also

been validated by their empirical results.
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SDARTS. Moreover, DARTS also has the problem of achieving unstable

search results in practice. To this end, Chen and Hsieh (2020) have vi-

sualized the validation loss landscape and observed that the precipitous

landscape is the main reason for why there exists a performance drop

when selecting the final architecture in DARTS. Motivated by this, Chen

and Hsieh (2020) have developed SDARTS algorithm to overcome the

instability and the lack of generalizability of DARTS by smoothing the

loss landscape with random or adversarial noise. Their Analysis has

shown that these two smoothing methods can theoretically reduce the

spectral norm of Hessian (which serves as a quantitative way to measure

the smoothness of loss landscape) and, therefore can lead to a benign

loss landscape. Extensive empirical results have also shown the superi-

ority of SDARTS over DARTS by achieving stable and improved search

performances while incurring comparable search costs.

3.2 Evaluating Training-based NAS

In the literature, no effort has been devoted to understanding the best ar-

chitectures selected by various popular NAS approaches before our work

in Chapter 4. Instead, recent works attempt to evaluate NAS algorithms

by comparing them with random search. Specifically, the generalization

performance of architectures selected with existing NAS algorithms is

compared with the architectures selected with random search in (Li and

Talwalkar, 2019a) and (Sciuto et al., 2019). Interestingly, random search

is shown to be able to find architectures with comparable or even better

generalization performance. Particularly, the ineffectiveness of certain

NAS algorithms, i.e., (Pham et al., 2018), could be the consequence of

the weight sharing mechanism during the search process as revealed in
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(Sciuto et al., 2019). While these evaluations help understand the general

disadvantages of NAS algorithms, what kind of architectures the NAS

algorithms are selecting and why they select these specific architectures

are still not well understood, which is exactly what we will answer in

Chapter 4.

3.3 Neural Network Ensembles

In practice, neural network ensembles have been widely applied to im-

prove the performance of a single neural network in different applications

(Dietterich, 2000). Over the years, a number of methods have been pro-

posed to construct such neural network ensembles, which we introduce

in the following paragraphs in detail.

Monte Carlo Dropout. As Dropout (Srivastava et al., 2014) has been

widely applied to avoid model over-fitting, Gal and Ghahramani (2016)

have novelly reformulated it as a Bayesian Approximation to interpret

its compelling performance. Based on such an interpretation, Gal and

Ghahramani (2016) have proposed to use Monte Carlo Dropout to obtain

neural network ensembles (for model uncertainty) by randomly dropping

out neurons in neural networks at test time. Empirical results have shown

that Monte Carlo Dropout can indeed provide reliable model uncertainty

for neural networks.

Deep Ensemble. After Monte Carlo Dropout, deep ensembles (DeepEns)

(Lakshminarayanan et al., 2017) then propose to adopt neural networks

trained with different random initializations to construct neural network

ensembles. Compared with Monte Carlo Dropout, DeepEns has been

shown to be able to achieve improved predictive performances and un-

26



3.3. NEURAL NETWORK ENSEMBLES

certainty on various tasks. However, DeepEns is more computationally

expensive than Monte Carlo Dropout because DeepEns needs to train

a neural network from scratch for multiple times while Monte Carlo

Dropout only needs to train a neural network once.

Snapshot Ensemble. Considering that DeepEns is too computationally

expensive, Huang et al. (2017a) have proposed a novel neural network

ensemble that only requires one-time model training, namely snapshot

ensemble. Specifically, Huang et al. (2017a) have employed a cyclic learn-

ing rate schedule to train a single neural network and then applied the

checkpoints obtained during the model training of this neural network

to construct neural network ensembles (Huang et al., 2017a). As a result,

snapshot ensemble has successfully avoided the multiple model training

required by DeepEns and thus is more computationally efficient than

DeepEns. Empirical results also show that snapshot ensemble is capable

of achieving compelling performance in practice.

Neural Ensemble Search. Though the aforementioned ensemble meth-

ods are already able to achieve competitive performance in practice, each

candidate in these ensembles is usually randomly selected and therefore

can usually be far away from the optimal candidates to realize the best-

performing ensemble. Moreover, the aforementioned ensemble methods

mainly rely on a single neural network to construct ensembles. So, the

diversity of the candidates in these ensembles is usually highly restricted,

which is known to be harmful to the final ensemble performance ac-

cording to (Zhou, 2012). To this end, more recently, Zaidi et al. (2020)

have introduced neural ensemble search (NES) into the NAS area to build

well-performing neural network ensembles by selecting diverse archi-

tectures from the NAS search space, which has achieved competitive or
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even improved performance compared with the aforementioned ensem-

ble methods. This therefore implies the superiority of neural ensemble

search over other ensemble methods. Unfortunately, the algorithm pre-

sented in (Zaidi et al., 2020) is shown to be prohibitively costly due to the

requirement of training multiple neural networks from scratch. More-

over, the performance of the algorithm in (Zaidi et al., 2020) is severely

restricted by another requirement of sampling only a pool of architec-

tures from the search space for the ensemble search. So, our work in

Chapter 5 intends to tackle these two problems.

3.4 Training-free NAS

Though one-shot NAS algorithms have achieved considerable improve-

ment in search efficiency, the model training of the one-shot architecture

(or supernet) is still required. More recently, a number of algorithms

have been proposed to estimate the performance of candidate architec-

tures without model training and therefore can avoid the model training

of neural networks completely during the search process of NAS. We

introduce them in detail in the following paragraphs.

NASWOT. Mellor et al. (2020a) are the first to explore the training-

free in the literature. Specifically, for the intermediate feature maps of

each layer after the ReLU activation function that are induced by an

input, they use a binary indicator to examine whether these intermediate

feature maps are positive values or not. After that, they heuristically

employ the correlation among the indicator variables induced by different

data points using only neural networks at initialization to estimate the

performance of candidate architectures in the search space. Finally, they

propose to select the architecture that is capable of achieving the best
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correlation in the search space as their final selected architecture, namely

NASWOT algorithm. Empirical results show that such a method can

indeed help to find architectures achieving competitive performances

with only a fraction of the search cost in training-based NAS algorithms

on NAS-Bench-101/201. Unfortunately, Mellor et al. (2020a) fail to

provide theoretical justification for their training-free NAS algorithm.

Meanwhile, they also fail to provide the performance of NASWOT in

large-scale search space (i.e., the DARTS search space) and dataset (i.e.,

ImageNet).

NNGP-NAS. Recently, de G. Matthews et al. (2018) have shown that

neural networks that are initialized using Gaussian distributions corre-

spond to a special Gaussian process, namely Neural Network Gaussian

Process (NNGP). Inspired by this, Park et al. (2020) have proposed to

employ the posterior of this NNGP (obtained by Bayesian inference on

the training dataset of the target task) to estimate the performance of

each candidate architecture on the test dataset of the target task. Though

Park et al. (2020) have conducted plenty of empirical studies to validate

the feasibility of such a training-free NAS method, they did not provide

the performances of the final selected architectures by their NNGP-NAS.

As a result, it is hard to evaluate the effectiveness of their NNGP-NAS.

Meanwhile, to obtain the estimated test performance of each candidate

architecture in the search space, a Ntrain ×Ntrain kernel matrix needs to

be inverted, which is yet computationally costly. Moreover, though em-

pirical results show that NNGP-NAS can be used to approximate the true

performances of candidate architectures, there is no theoretical result

to show how accurate such an approximation can be as well as how to

further improve the quality of such an approximation.
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Zero-Cost Proxies. Inspired by the aforementioned works, Abdelfat-

tah et al. (2021) have proposed to use a number of zero-cost proxies to

estimate the test performances of architectures. Specifically, they have

introduced gradient norm, SNIP (Lee et al., 2019b), GraSP (Wang et al.,

2020a), fisher (Turner et al., 2020) and Synflow (Tanaka et al., 2020) to

conduct training-free NAS, most of which are originally developed for

training-free network pruning. They firstly investigated the quality of

these zero-cost proxies to estimate the true performances of candidate

architectures by computing the correlation between these zero-cost prox-

ies and the true performances of the architectures in the search space.

Empirical results show that most of them can usually provide useful

information about the true performances of architectures. As a result,

they further proposed to use the architectures selected by these zero-

cost proxies as good initialization (i.e., warm-up) for training-based NAS

algorithms, which have shown to be more efficient than standard NAS al-

gorithms. Unfortunately, they can only achieve very limited improvement

over standard training-based NAS algorithms in practice. Meanwhile,

these zero-cost proxies themselves usually fail to select architectures that

can achieve competitive performance as those selected by training-based

NAS algorithms. Therefore, how to further improve the quality of these

zero-cost proxies remains a mystery.

TE-NAS. Recently, Jacot et al. (2018) have developed a theory of Neural

Tangent Kernel (NTK), aiming to characterize the training dynamics of

neural networks theoretically. Meanwhile, in the literature, the number

of linear regions for neural networks has been applied to measure the

expressivity of neural networks (Raghu et al., 2017). Inspired by these two

types of studies on neural networks, Chen et al. (2021) have intuitively
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proposed to use not only the condition number of the NTK matrix but

also the number of linear regions to select architectures with a good trade-

off between its trainability and expressivity, which is named TE-NAS

algorithm. Surprisingly, TE-NAS can achieve competitive performance

even compared with training-based NAS algorithms while the search

cost has been considerably reduced on various benchmarks, e.g., NAS-

Bench-201 and the DARTS search space on ImageNet. Unfortunately,

TE-NAS is mainly based on intuitive inspirations and thus fails to provide

theoretical guarantees to its compelling performance. Moreover, the

trade-off in TE-NAS is usually manually decided, which therefore lacks

theoretical insights on how to find the optimal trade-off for different NAS

tasks.

KNAS. Similarly, following the theory of NTK, Xu et al. (2021) have

applied the mean of the elements in a so-called Gram matrix of the gra-

dients with respect to the model parameters to help them estimate the

true performance of architectures quickly. Then, Xu et al. (2021) have

proposed to firstly maintain a pool of top-k architectures that can achieve

the highest scores based on such a performance approximation and then

select the architecture achieving the best validation performance after

a small number of model training from this pool. Such a method is

named KNAS by them. Though KNAS can achieve improved search

efficiency compared with training-based NAS algorithms, such an im-

provement is considerably smaller than other training-free NAS baselines,

e.g., NASWOT and TE-NAS. Moreover, KNAS fails to achieve competitive

performance even compared with TE-NAS and the empirical results on

large-scale benchmarks have not been provided to further validate the

effectiveness of KNAS.
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Above all, considering the shortcomings of the aforementioned training-

free NAS algorithms, we propose a novel training-free NAS algorithm

named NASI in Chapter 6 to provide theoretical guarantees for its perfor-

mance as well as transferability and to achieve SOTA performance on the

widely applied benchmarks in the NAS area. After that, we then present a

unified analysis for those gradient-based training-free metrics to theoreti-

cally guarantee the performance and transferability of the training-free

NAS algorithms using these metrics in Chapter 7. Meanwhile, based on

our unified analysis, we further develop a novel NAS algorithm named

HNAS to further improve the performance of training-free NAS while

maintaining its search efficiency Chapter 7.
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Chapter 4

Understanding Architectures

Learnt by Cell-based Neural

Architecture Search

This chapter is based on the following work published at ICLR 2020:

Shu, Y., Wang, W., & Cai, S. (2020). Understanding architectures learnt

by cell-based neural architecture search. In Proc. ICLR-20.

4.1 Introduction

Various neural network architectures (He et al., 2016; Huang et al., 2017b;

Krizhevsky et al., 2012; Simonyan and Zisserman, 2015) have been de-

vised over the past decades, achieving superhuman performance for a

wide range of tasks. Designing these neural networks typically takes

substantial efforts from domain experts by trial and error. Recently, there

is a growing interest in neural architecture search (NAS), which automati-

cally searches for high-performance architectures for the given task. The

searched NAS architectures (Akimoto et al., 2019; Cai et al., 2019a; Liu
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et al., 2019; Luo et al., 2018b; Nayman et al., 2019; Pham et al., 2018;

Real et al., 2019a; Xie et al., 2019b; Zoph et al., 2018) have outperformed

best expert-designed architectures on many computer vision and natural

language processing tasks.

Mainstream NAS algorithms typically search for the connection topol-

ogy and transforming operation accompanying each connection from a

predefined search space. In the literature, tremendous efforts have been

exerted to develop efficient and effective NAS algorithms (Akimoto et al.,

2019; Liu et al., 2019; Luo et al., 2018b; Nayman et al., 2019; Xie et al.,

2019b). However, less attention has been paid to these searched architec-

tures for further insight. To our best knowledge, there is no related work

in the literature examining whether these NAS architectures share any

pattern, and how the pattern may impact the architecture search if there

exists the pattern. These questions are fundamental to understand and

improve existing NAS algorithms. In this work, we endeavour to address

these questions by examining the popular NAS architectures1.

The recent work (Xie et al., 2019a) shows that the architectures with

random connection topologies can achieve competitive performance on

various tasks compared with expert-designed architectures. Inspired by

this result, we examine the connection topologies of the architectures

generated by popular NAS algorithms. In particular, we find a connection

pattern of the popular NAS architectures. These architectures tend to

favor wide and shallow cells, where the majority of intermediate nodes

are directly connected to the input nodes.

To appreciate this particular connection pattern, we first visualize

the training process of the popular NAS architectures and their ran-

1The popular NAS architectures refer to the best architectures generated by state-
of-the-art (SOTA) NAS algorithms throughout the work. Notably, we research on the
cell-based NAS algorithms and architectures.
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domly connected variants. Fast and stable convergence is observed for

the architectures with wide and shallow cells. We further empirically

and theoretically show that the architectures with wider and shallower

cells consistently enjoy a smoother loss landscape and smaller gradient

variance than their random variants, which helps explain their better

convergence and consequently the selection of these NAS architectures

during the architecture search.

We finally evaluate the generalization performance of the popular

NAS architectures and their randomly connected variants. We find that

the architectures with wide and shallow cells may not generalize better

than other candidate architectures despite their faster convergence. We

therefore believe that rethinking NAS from the perspective of the true

generalization performance rather than the convergence of candidate

architectures should potentially help generate better architectures.

4.2 The Connection Pattern of Popular NAS Cells

Mainstream NAS algorithms (Liu et al., 2019; Luo et al., 2018b; Pham

et al., 2018; Real et al., 2019a; Xie et al., 2019b; Zoph et al., 2018) typically

search for the cell structure, including the connection topology and the

corresponding operation (transformation) coupling each connection. The

generated cell is then replicated to construct the entire neural network.

We therefore mainly investigate these cell-based NAS architectures. In

this section, we first introduce the commonly adopted cell representation,

which is useful to understand the connection and computation in a cell

space. We then sketch the connection topologies of popular cell-based

NAS architectures to investigate their connection patterns. By compari-

son, we show that there is a common connection pattern among the cells
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Figure 4.1: Cell topologies of popular NAS architectures. Each sub-
figure has three sets of nodes from left to right, i.e., the input nodes,
intermediate nodes, and output node. The arrows (i.e., operations of the
cell) represent the direction of information flow. The caption of each
sub-figure reports the name of the architecture, width and depth of a
cell following our definition. The width of a cell is computed with the
assumption that all intermediate nodes share the same width c.
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Figure 4.2: Topologies of DARTS (Liu et al., 2019) cell (leftmost) and its
variants with random connections. The cell depth is increasing and width
decreasing from left to right. In particular, the original DARTS cell Cdarts

is widest and shallowest among these cells.

learned by different NAS algorithms; particularly, these cells tend to be

wide and shallow.

4.2.1 Cell Representation

Following DARTS (Liu et al., 2019), we represent the cell topology as a

directed acyclic graph (DAG) consisting of N nodes, including M input

nodes, one output node and (N−M−1) intermediate nodes. Each node

forms a latent representation of the input instance. The input nodes

consist of the outputs from M preceding cells. And the output node

aggregates (e.g., concatenate) the representations from all intermediate
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nodes. Each intermediate node is connected to M proceeding nodes in the

same cell. Each connection transforms the representation from one node

via an operation from a predefined operation set, e.g., 3×3 convolution,

3×3 max pooling, etc. The target of NAS algorithm is to search for the

best M source nodes for each intermediate node and the best operation

for each of the connections between nodes. In the literature, the searched

cell is then replicated by L times to build the entire neural network

architecture2.

We abuse the notation C to denote a cell and also the architecture

built with the specific cell in the following sections. Besides, we shall

use CA to denote the best architecture (or cell) searched with the NAS

algorithm A (e.g., DARTS (Liu et al., 2019), ENAS (Pham et al., 2018)).

Details on how to build the architecture with given cells are provided in

Appendix A.1.3.

4.2.2 The Common Connection Pattern

Recently, it has been shown that neural networks constructed by cells

with random connection patterns can achieve compelling performance

on multiple tasks in (Xie et al., 2019a). Taking this a step further, we

wonder whether cells generated from popular NAS algorithms share any

connection patterns, which may explain why these cells are chosen during

the architecture search. To investigate the connection patterns, we sketch

the topologies of the popular NAS cells with detailed operations omitted.

Figure 4.1 illustrates topologies of 5 popular NAS cells3. To examine

the connection pattern formally, we introduce the concept of ‘depth’

2We omit reduction cell here for brevity, which is used for dimension reduction in
NAS.

3We only visualize normal cells since the number of normal cells is significantly
larger than the reduction cells in popular NAS architectures.
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and ‘width’ for a cell. The depth of a cell is defined as the number of

connections along the longest path from input nodes to the output node.

The width of a cell is defined as the total width of the intermediate nodes

that are connected to the input nodes. In particular, if some intermediate

nodes are only partially connected to input nodes (i.e., have connections

to other intermediate nodes), their width is reduced by the percentage

of the number of connections to intermediate nodes over all connections.

The width of a node is the number of channels for convolution operations;

and the width is the dimension of the features for linear operations.

Supposing that the width of each intermediate node is c, as shown in

Figure 4.1, the width and depth of the DARTS (Liu et al., 2019) cell are

3.5c and 3 respectively, and the width and depth of the AmoebaNet (Real

et al., 2019a) cell are 4c and 4 correspondingly.

Following the above definitions, the smallest depth and largest width

for a cell with N = 7 and M = 2 are 2 and 4c respectively. Similarly, for

a cell with N = 8 and M = 2, the smallest depth and largest width are 2

and 5c respectively. In Figure 4.1, we can observe that cells from popular

NAS architectures tend to be the widest and shallowest ones (with width

close to 4c/5c and depth close to 2) among all candidate cells in the same

search space. Regarding this as the common connection pattern, we have

the following observation:

Observation 1 (The Common Connection Pattern). NAS architectures

generated by popular NAS algorithms tend to have the widest and shallowest

cells among all candidate cells in the same search space.
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4.3 The Impacts of Cell Width and Depth on

Optimization

Given that popular NAS cells share the common connection pattern, we

then explore the impact of this common connection pattern from the

optimization perspective to answer the question: why the wide and shal-

low cells are selected during the architecture search? We sample and train

variants of popular NAS architectures with random connections. Com-

paring randomly connected variants with the popular NAS architectures,

we find that architectures with wider and shallower cells indeed con-

verge faster so that they are selected by NAS algorithms (Section 4.3.1).

To understand why the wider and shallower cell contributes to faster

convergence, we further investigate the loss landscape and gradient vari-

ance of popular NAS architectures and their variants via both empirical

experiments (Section 4.3.2) and theoretical analysis (Section 4.3.3).

4.3.1 Convergence

Popular NAS algorithms typically evaluate the performance of a can-

didate architecture prematurely before the convergence of its model

parameters during the search process. For instance, DARTS (Liu et al.,

2019), SNAS (Xie et al., 2019b) and ENAS (Pham et al., 2018) optimize

hyper-parameters of architectures and model parameters concurrently.

The amortized training time of each candidate architecture is insufficient

and therefore far from the requirement for the full convergence. Likewise,

AmoebaNet (Real et al., 2019a) evaluates the performance of candidate

architectures with the training of only a few epochs. In other words,

these candidate architectures are not evaluated based on their generaliza-

tion performance at convergence. As a result, architectures with faster
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Figure 4.3: Test loss and test accuracy (%) curves of DARTS and its ran-
domly connected variants on CIFAR-10 and CIFAR-100 during training.
The default learning rate is 0.025.

convergence rates are more likely to be selected by existing NAS algo-

rithms because they can obtain better evaluation performance given the

same training budget. We therefore hypothesize that the popular NAS

architectures may converge faster than other candidate architectures,

which largely contributes to the selection of these architectures during

the search.

To support the hypothesis above, we compare the convergence of

original NAS architectures and their variants with random connections

via empirical studies. We first sample variants of popular NAS cells

following the sampling method in Appendix A.1.2. Then, we train both

original NAS architectures and their random variants on CIFAR-10 and

CIFAR-100 following the training details in Appendix A.1.3. During

training, we evaluate the testing loss and accuracy of these architectures.

Since the convergence is dependent on optimization settings, we also

evaluate the convergence performance under different learning rates.

Take DARTS (Liu et al., 2019) for example, Figure 4.2 shows the

connection topology of the original DARTS cell and its random variants.

Figure 4.3 reports the test loss and accuracy curves of these architectures

during training. As illustrated in Figure 4.3, the original cell Cdarts,

known as the widest and shallowest cell, has the fastest and most stable

convergence compared with its variants. Further, as the width of a cell
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increases and the depth decreases (i.e., from C4 to C1), the convergence

becomes faster. The results of other popular NAS architectures and their

randomly connected variants are reported in Sec. 4.5.2.

Figure 4.4 further validates the difference of convergence under dif-

ferent learning rates. The original cell Cdarts enjoys the fastest and the

most stable convergence among these cells under various learning rates.

The difference in terms of convergence rate and stability is more obvi-

ous between Cdarts and its variants with a larger learning rate as shown

in Figure 4.4. Interestingly, Cdarts
3 completely fails to converge on both

CIFAR-10 and CIFAR-100 with a larger learning rate of 0.25. While there

is a minor difference among these cells with a lower learning rate of

0.0025, we still find that there is a decreasing performance of conver-

gence (i.e., convergence rate and stability) from Cdarts, Cdarts
1 to Cdarts

3 .

Overall, the observations are consistent with the results in Figure 4.3.

We have also compared the convergence of popular NAS architec-

tures and their random variants of different operations. Similarly, we

sample and train the random variants of operations for popular NAS ar-

chitectures following the details in Appendix A.1.2 and Appendix A.1.3.

Figure 4.5 illustrates the convergence of these architectures. Surprisingly,

with the same connection topologies as the popular NAS cells but differ-

ent operations, all random variants achieve nearly the same convergence

as these popular NAS architectures. Consistent results can be found in

Figure 4.13 of Sec. 4.5.2. We therefore believe that the types of operations

have limited impacts on the convergence of NAS architectures and the

connection topologies affect the convergence more significantly.

With these observations, we conclude that the popular NAS architec-

tures with wider and shallower cells indeed converge faster and more

stably, which explains why these popular NAS cells are selected during
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nected variants on CIFAR-10 and CIFAR-100 during training under differ-
ent learning rates (0.0025 and 0.25). We only evaluate Cdarts, Cdarts
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Figure 4.5: Test accuracy (%) curves of DARTS, ENAS, AmoebaNet, NAS-
Net and their random variants of operations on CIFAR-10 during training.
The parameter size is attached in Table 4.3 of Sec. 4.5.2.

the architecture search. The next question is then why the wider and

shallower cell leads to a faster and more stable convergence?

4.3.2 Empirical Study of Factors Affecting Convergence

Since the wide and shallow cell is related to fast convergence, we further

conduct the theoretical convergence analysis to investigate the cause of

fast convergence. In this section, we first introduce the convergence anal-

ysis (i.e., Theorem 4.2) of non-convex optimization with the randomized

stochastic gradient method (Ghadimi and Lan, 2013). Based on the anal-

ysis, we introduce the possible factors related to the common connection

pattern that may affect the convergence. We then examine these factors

empirically in the following subsections.

Theorem 4.2. (Ghadimi and Lan, 2013) Let F be a L-smooth non-convex
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function, and let F∗ be its minimal. Given repeated, independent accesses

to stochastic gradients with variance bound σ2 for F(w), SGD with initial

w0, total iterations N > 0 and learning rate ηk < 1/L achieves the following

convergence by randomly choosing wk as the final output wR with probability

ηk/H where H =
∑N

k=1ηk:

E[
∥∥∥∇F (wR)

∥∥∥2
] ≤ 2(F (w0)−F∗)

H
+
Lσ2

H

N∑
k=1

η2
k

In this work, F and w denote the composition of model and objective

(loss) function, and model parameters respectively. Based on the above

theorem, Lipschitz smoothness L and gradient variance σ2 significantly

affect the convergence, including the rate and the stability of convergence.

Particularly, given a specific number of iterations N , a smaller Lipschitz

constant L or smaller gradient variance σ2 would lead to a smaller con-

vergence error and less damped oscillations, which indicates a faster and

more stable convergence. Since the Lipschitz constant L and gradient

variance σ2 are highly related to the model we used (i.e., neural architec-

ture in deep learning), different NAS architectures result in different L and

σ2. In the following subsections, we therefore conduct empirical analysis

for the impacts of the cell with and depth on the Lipschitz smoothness

and gradient variance.

4.3.2.1 Loss Landscape

The constant L of Lipschitz smoothness is closely correlated with the

Hessian matrix of the objective function as shown by (Nesterov, 2004),

which requires substantial computation and can only represent the global

smoothness. The loss contour, which has been widely adopted to visu-

alize the loss landscape of neural networks by (Goodfellow and Vinyals,
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2015; Li et al., 2018), is instead computationally efficient and is able to

report the local smoothness of the objective function. To explore the

loss landscape of different architectures, we adopt the method in (Li

et al., 2018) to plot the loss contour s(α,β) = Ei∼P [fi(w∗ + αw1 + βw2)].

The notation fi(·) denotes the loss evaluated at ith instance in the dataset

and P denotes the distribution of dataset. The notation w∗ , w1 and w2

denote the (local) optimal and two direction vectors randomly sampled

from Gaussian distribution respectively. And α, β, which are the x and

y axis of the plots, denote the step sizes to perturb w∗. The loss contour

plotted here is therefore a two-dimensional approximation of the truly

high-dimensional loss contour. However, as shown in (Li et al., 2018), the

approximation is valid and effective to characterize the property of the

true loss contour.

To study the impact of the cell width and depth on Lipschitz smooth-

ness, we compare the loss landscape between popular NAS architectures

and their randomly connected variants trained in Section 4.3.1 on CIFAR-

10 and CIFAR-100. Due to the space limitation, we only plot the loss land-

scape of DARTS (Liu et al., 2019) and its randomly connected variants

in Figure 4.6. We observe that the connection topology has a significant

influence on the smoothness of the loss landscape. With the widest and

shallowest cell, Cdarts has a fairly benign and smooth landscape along

with the widest near-convex region around the optimal. With a deeper

and narrower cell, Cdarts
1 and Cdarts

2 have a more agitated loss landscape

compared with Cdarts. Further, Cdarts
3 , with the smallest width and largest

depth among these cells, has the most complicated loss landscape and

the narrowest and steepest near-convex region around the optimum. The

largest eigenvalue of the Hessian matrix, which indicates the maximum

curvature of the objective function, is positively correlated with Lips-
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Figure 4.6: Loss contours of DARTS and its variants with random con-
nections on the test dataset of CIFAR-10. The lighter color of the contour
lines indicates a larger loss. Notably, the loss of the blank area, around
the corners of each plot, is extremely large. Besides, the area with denser
contour lines indicates a steeper loss surface.
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Figure 4.7: Heat maps of the gradient variance from DARTS and its
randomly connected variants around the optimal on the test dataset of
CIFAR-10. The lighter color indicates a larger gradient variance. Notably,
the gradient variance of the yellow area, around the corners of each plot,
is extremely large. Obviously, the region with relatively small gradient
variance becomes smaller from left to right.

chitz constant as shown by (Nesterov, 2004). A smoother loss landscape

therefore corresponds to a smaller Lipschitz constant L. Cdarts is likely to

achieve the smallest Lipschitz constant among these cells.

Consistent results can be found in Sec. 4.5.3 for the loss landscape of

other popular NAS cells and their variants. Based on these results, we

conclude that increasing the width and decreasing the depth of a cell

widens the near-convex region around the optimal and smooths the loss

landscape. The constant L of Lipschitz smoothness therefore becomes

smaller locally and globally. Following Theorem 4.2, architectures with

wider and shallower cells shall converge faster and more stably.
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Figure 4.8: 3D surfaces of the gradient variance from DARTS and its
randomly connected variants around the optimal on the test dataset of
CIFAR-100. The height of the surface indicates the value of gradient
variance. Notably, the height of the gradient variance surface is gradually
increasing from left to right. Especially, Cdarts has the smoothest and
lowest surface of gradient variance among these architectures.

4.3.2.2 Gradient Variance

The gradient variance indicates the noise level of gradient by randomly

selecting training instances in stochastic gradient descent (SGD) method.

Large gradient variance indicates large noise in the gradient, which

typically results in unstable updating of model parameters. Follow-

ing (Ghadimi and Lan, 2013), gradient variance is defined as Var[∇fi(w)].

Similar to the visualization of loss landscape in Section 4.3.2.1, we visual-

ize the gradient variance by g(α,β) = Var[∇fi(w∗ +αw1 + βw2)]. All other

notations follow Section 4.3.2.1.

To study the impact of the width and depth of a cell on the gradient

variance, we compare the gradient variance between popular NAS archi-

tectures and their randomly connected variants trained in Section 4.3.1

on CIFAR-10 and CIFAR-100. We visualize the gradient variance of

DARTS (Liu et al., 2019) and its randomly connected variants in Fig-

ure 4.7 and Figure 4.8. For better visualization, we plot the figures using

the standard deviation (i.e.,
√
g(α,β)) to avoid extremely large values

in the visualization of DARTS. Obviously, as the cell width decreases

and the cell depth increases (i.e., from Cdarts to Cdarts
4 ), the region with

relatively small gradient variance becomes smaller as shown in Figure 4.7.

Consistently, the gradient variance generally shows an increasing trend
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from Cdarts to Cdarts
4 in Figure 4.8. Consequently, the gradient becomes

noisier in the neighborhood of the optimal, which typically makes the

optimization harder and unstable.

Similar results from other popular NAS architectures and their ran-

dom variants are provided in Sec. 4.5.4. Based on these results, we

conclude that the increase in width and the decrease in depth of a cell

result in a smaller gradient variance, which makes the optimization pro-

cess less noisy and more efficient. The convergence of wide and shallow

cells therefore shall be fast and stable following Theorem 4.2.

4.3.3 Theoretical Analysis of Factors Affecting Conver-

gence

Our empirical study so far suggests that larger cell width and smaller

cell depth smooth the loss landscape and decrease the gradient variance.

Consequently, popular NAS architectures with wide and shallow cells

converge fast. In this section, we investigate the impacts of the cell

width and depth on Lipschitz smoothness and gradient variance from a

theoretical perspective.
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Figure 4.9: Two architectures to compare in the theoretical analysis: (a)
architecture with widest cell; (b) architecture with narrowest cell. The
notation l and l̂ denote the values of objective function f and f̂ evaluated
at input x respectively.

47



4.3. THE IMPACTS OF CELL WIDTH AND DEPTH ON OPTIMIZATION

4.3.3.1 Setup

We analyze the impact of the cell width and depth by comparing architec-

tures with the widest cell and the narrowest cell as shown in Figure 4.9.

To simplify the analysis, the cells we investigate contain only one input

node x and one output node. The input node may be training instances or

output node from any proceeding cell. All operations in the cell are linear

operations without any non-linearity. Suppose there are n intermediate

nodes in a cell, the ith intermediate node and its associated weight matrix

are denoted as y(i) and W (i)(i = 1, · · · ,n) respectively. The output node

z denotes the concatenation of all intermediate nodes. Both cells have

the same arbitrary objective function f following the output node, which

shall consist of the arbitrary number of activation functions and cells.

For clarity, we refer to the objective function, intermediate nodes and

output node of the architecture with the narrowest cell as f̂ , ŷ(i) and

ẑ respectively. As shown in Figure 4.9, the intermediate node y(i) and

ŷ(i) can be computed by y(i) = W (i)x and ŷ(i) =
∏i

k=1W
(k)x respectively.

Particularly, we set
∏i

k=1W
(k) = W (i)W (i−1) · · ·W (1). And all the related

proofs of following theorems can be found in Appendix A.2.

4.3.3.2 Theoretical Results

Due to the complexity of the standard Lipschitz smoothness, we instead

investigate the block-wise Lipschitz smoothness (Beck and Tetruashvili,

2013) of the two cases shown in Figure 4.9. In Theorem 4.3, we show

that the block-wise Lipschitz constant of the narrowest cell is scaled by

the largest eigenvalues of the model parameters (i.e., W (i)(i = 1, · · · ,n)).

Notably, the Lipschitz constant of the narrowest cell can be significantly

larger than the one of the widest cell while most of the largest eigenvalues

are larger than 1, which slows down the convergence substantially. The
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empirical study in Section 4.3.2.1 has validated the results.

Theorem 4.3 (The impact of cell width and depth on block-wise Lips-

chitz smoothness ). Let λ(i) be the largest eigenvalue of W (i). Given the

widest cell with objective function f and the narrowest cell with objective

function f̂ , by assuming the block-wise Lipschitz smoothness of the widest cell

as

∥∥∥∥∥∥ ∂f

∂W
(i)
1

− ∂f

∂W
(i)
2

∥∥∥∥∥∥ ≤ L(i)
∥∥∥∥W (i)

1 −W
(i)
2

∥∥∥∥ for any W
(i)
1 and W

(i)
2 , the block-wise

Lipschitz smoothness of the narrowest cell then can be represented as

∥∥∥∥∥∥∥∥ ∂f̂

∂W
(i)
1

−
∂f̂

∂W
(i)
2

∥∥∥∥∥∥∥∥ ≤ (
i−1∏
j=1

λ(j))L(i)
∥∥∥∥W (i)

1 −W
(i)
2

∥∥∥∥
We then compare the gradient variance of the two cases shown in

Figure 4.9. Interestingly, gradient variance suggests a similar but more

significant difference between the two cases compared with their differ-

ence in Lipschitz smoothness. As shown in Theorem 4.4, the gradient

variance of the narrowest cell is not only scaled by the square of the

largest eigenvalue of the weight matrix but also is scaled by the number

of intermediate nodes (i.e., n). Moreover, the upper bound of its gradient

variance has numbers of additional terms, leading to a significantly larger

gradient variance. The empirical study in Section 4.3.2.2 has confirmed

the results.

Theorem 4.4 (The impact of cell width and depth on gradient variance ).

Let λ(i) be the largest eigenvalue of W (i). Given the widest cell with objective

function f and the narrowest cell with objective function f̂ , by assuming the

gradient variance of the widest cell as E
∥∥∥∥ ∂f
∂W (i) −E

∂f
∂W (i)

∥∥∥∥2
≤ (σ (i))2 for any

W (i), the gradient variance of the narrowest cell is then bounded by

E

∥∥∥∥∥∥∥ ∂f̂

∂W (i)
−E

∂f̂

∂W (i)

∥∥∥∥∥∥∥
2

≤ n
n∑
k=i

(
σ (k)

λ(i)

k∏
j=1

λ(j))2
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4.4 Generalization beyond the Common Con-

nections

Our empirical and theoretical results so far have demonstrated that the

common connection pattern helps to smooth the loss landscape and make

the gradient more accurate. Popular NAS architectures with wider and

shallower cells therefore converge faster, which explains why popular

NAS architectures are selected by the NAS algorithms. Nonetheless, we

have ignored the generalization performance obtained by popular NAS

architectures and their random variants. We therefore wonder whether

popular NAS architectures with wide and shallow cells generalize better.

In Figure 4.10, we visualize the test accuracy of popular NAS archi-

tectures and their randomly connected variants trained in Section 4.3.1.

Notably, the popular NAS architectures can achieve competitive accuracy

compared with most of the random variants. However, there are some

random variants, which achieve higher accuracy than the popular archi-

tectures. Interestingly, there seems to be an optimal choice of depth and

width for a cell to achieve higher test accuracy (i.e., C7 for DARTS and

C4 for ENAS). Popular NAS architectures with wide and shallow cells

therefore are not guaranteed to generalize better, although they typically

converge faster than other random variants.

We also adapt the connections of popular NAS architectures to obtain

their widest and shallowest variants. The adaptation is possible due to

the fact that the cells (including normal and reduction cell) of popular

NAS architectures are generally not widest and narrowest as shown in

Figure 4.1. While there are various widest and shallowest cells following

our definition of cell width and depth, we apply the connection pattern

of SNAS cell shown in Figure 4.1(e) to obtain the widest and shallowest
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Figure 4.10: Comparison of the test accuracy at the convergence between
popular NAS architectures and their randomly connected variants on
CIFAR-10. Each popular NAS architecture (index 0 on the x-axis) is
followed by 13 randomly connected variants (from index 1 to index 13
on the x-axis), corresponding to C1 to C13 respectively. The width and
depth of these random variants are shown in Table 4.2 in Sec. 4.5.2. The
dashed lines report the accuracy of the popular NAS architectures.

Table 4.1: Comparison of the test error at the convergence between the
original and the adapted NAS architectures on CIFAR-10/100 and Tiny-
ImageNet-200. The entire networks are constructed and trained following
the experimental settings reported in Appendix A.1.3, which may slightly
deviate from the original ones. The test errors (or the parameter sizes)
of original and adapted architectures are reported on the left and right
hand-side of slash respectively.

Architecture
CIFAR-10 CIFAR-100 Tiny-ImageNet-200

Error(%) Params(M) Error(%) Params(M) Error(%) Params(M)
NASNet (Zoph et al., 2018) 2.65/2.80 4.29/4.32 17.06/16.86 4.42/4.45 31.88/32.05 4.57/4.60
AmoebaNet (Real et al., 2019a) 2.76/2.91 3.60/3.60 17.55/17.28 3.71/3.71 32.22/33.16 3.83/3.83
ENAS (Pham et al., 2018) 2.64/2.76 4.32/4.32 16.67/16.04 4.45/4.45 30.68/31.36 4.60/4.60
DARTS (Liu et al., 2019) 2.67/2.73 3.83/3.90 16.41/16.15 3.95/4.03 30.58/31.33 4.08/4.16
SNAS (Xie et al., 2019b) 2.88/2.69 3.14/3.19 17.78/17.20 3.26/3.31 32.40/32.61 3.39/3.45

cells. The adapted topologies are shown in Figure 4.26 of Sec. 4.5.5.

Table 4.1 illustrates the comparison of the test accuracy between our

adapted NAS architectures and the original ones. As shown in Table 4.1,

the adapted architectures achieve smaller test error on CIFAR-100. Never-

theless, most of the adapted architectures, obtain larger test error than the

original NAS architectures on both CIFAR-10 and Tiny-ImageNet-2004.

The results again suggest that the widest and shallowest cells may not

help architectures generalize better, while these architectures typically

achieve compelling generalization performance.

The results above have revealed that the architectures with wide and

shallow cells may not generalize better despite their fast convergence.

4https://tiny-imagenet.herokuapp.com/
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To improve current NAS algorithms, we therefore need to rethink the

evaluation of the performance of candidate architectures during archi-

tecture search since the current NAS algorithms are not based on the

generalization performance at convergence as mentioned in Section 4.3.1.

Nonetheless, architectures with the wide and shallow cells usually guar-

antee a stable and fast convergence along with competitive generalization

performance, which should be good prior knowledge for designing archi-

tectures and NAS algorithms.

4.5 More Results

4.5.1 NAS architectures and Their Variants

We compare the width and depth of popular NAS architectures and their

variants of random connections in Table 4.2. The random variants are

sampled following the method in Appendix A.1.2. We further show the

connection topologies of popular NAS and their partial random variants

of connections in Figure 4.11 and Figure 4.12.

Table 4.2: Comparison of the width and depth of popular NAS cells and
their randomly variants of connections. The name of the popular NAS
cell is followed by its width and depth, which is separated by a comma.
The width of a cell is conventionally computed by assuming that each
intermediate node shares the same width c. Notably, the width and depth
of random variants are in ascending and descending order respectively
from C1 to C13. Moreover, the popular NAS architectures achieve the
largest width and nearly the smallest depth among all the variants.

Base Cell C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
DARTS (3.5c,3) 2c,4 2c,4 2c,4 2.5c,4 2.5c,4 2.5c,3 2.5c,3 2.5c,3 3c,3 3c,3 3c,3 3.5c,3 3.5c,3

ENAS (5c,2) 1.5c,6 1.5c,5 2c,6 2c,6 2.5c,5 2.5c,5 3c,4 3c,3 3.5c,5 3.5c,4 3.5c,4 3.5c,3 3.5c,3
AmoebaNet (4c,4) 1.5c,6 1.5c,5 1.5c,5 1.5c,3 2c,6 2c,6 2c,4 2.5c,5 2.5c,3 2.5c,3 3c,3 3.5c,4 3.5c,3

NASNet (5c,2) 1.5c,6 1.5c,5 2c,6 2c,6 2.5c,5 2.5c,5 3c,4 3c,3 3.5c,5 3.5c,4 3.5c,4 3.5c,3 3.5c,3

52



4.5. MORE RESULTS

	𝑥#

	𝑥$

	𝑥%

	𝑥&

	𝑥'

	𝑥(

	𝑥)

	𝑥*

(a) 3.5c, 4

	𝑥#

	𝑥$

	𝑥%

	𝑥&

	𝑥'

	𝑥(

	𝑥)

	𝑥*

(b) 3.5c, 3

	𝑥#

	𝑥$

	𝑥%

	𝑥&

	𝑥'

	𝑥(

	𝑥)

	𝑥*

(c) 3c, 4

	𝑥#

	𝑥$

	𝑥%

	𝑥&

	𝑥'

	𝑥(

	𝑥)

	𝑥*

(d) 2.5c, 5

	𝑥#

	𝑥$

	𝑥%

	𝑥&

	𝑥'

	𝑥(

	𝑥)

	𝑥*

(e) 2c, 6

Figure 4.11: Connection topology of AmoebaNet cell (Real et al., 2019a)
and its part of randomly connected variants. Each sub-figure reports
the width and depth of a cell separated by a comma. The leftmost one
is the original connection from AmoebaNet normal cell and others are
the ones randomly sampled. The width of a cell is also computed by
assuming that each intermediate node shares the same width c. Notably,
the original AmoebaNet cell has the largest width and almost the smallest
depth among these cells.
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Figure 4.13: More test accuracy (%) curves of DARTS, ENAS, AmoebaNet,
NASNet and their random variants of operations on CIFAR-10 during
training.
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Figure 4.12: Connection topology of SNAS cell under mild constraint (Xie
et al., 2019b) and its part of randomly connected variants. The width and
depth of a cell are reported in the title of each plot. The leftmost one is
the original connection from SNAS normal cell and others are the ones
randomly sampled. The width of a cell is conventionally computed by
assuming that each intermediate node shares the same width c. Notably,
the original SNAS cell has the largest width and the smallest depth among
these cells.
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Table 4.3: Comparison of the parameter size (MB) of popular NAS cells
and their randomly variants of operations. C0 denotes the original NAS
cell and C1 to C10 denote the random variants. Notably, there is a gap of
∼ 30% between the parameter size of the smallest architecture and one
of the largest architecture.

Base cell C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
DARTS 3.35 3.37 2.84 2.70 2.98 3.19 2.43 3.49 2.88 3.31 2.81
ENAS 3.86 3.45 3.19 2.98 2.70 3.67 3.03 3.85 3.26 3.81 3.29

AmoebaNet 3.15 2.86 2.62 2.41 2.10 3.10 2.46 3.28 2.69 3.42 2.75
NASNet 3.83 3.45 3.19 2.98 2.70 3.67 3.03 3.85 3.26 3.81 3.29

4.5.2 Convergence

In this section, we plot more test loss curves on CIFAR-10 (Krizhevsky

et al., 2009) for original popular NAS architectures and their (12) ran-

domly connected variants, as shown in Figure 4.14, Figure 4.15 and

Figure 4.17. The depth and width of these 12 randomly connected vari-

ants can be found in Table 4.2. Notably, the width and depth of random

variants (from C1 to C12) are in ascending and descending order respec-

tively. Moreover, the popular NAS architectures achieve the largest width

and nearly the smallest depth among all the variants. As shown in the

following figures, the popular NAS cells, with larger width and smaller

depth, typically achieve faster and more stable convergence than the ran-

dom variants. Furthermore, with the increasing width and the decreasing

depth, the convergence of random variants approaches to the original

NAS architecture.
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Figure 4.14: Test loss curves of DARTS and its variants on CIFAR-10
during training.
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Figure 4.15: Test loss curves of AmoebaNet and its variants on CIFAR-10
during training.
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Figure 4.16: Test loss curves of ENAS and its variants on CIFAR-10 suring
training.
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Figure 4.17: Test loss curves of NASNet and its variants on CIFAR-10
suring training.

4.5.3 Loss Landscape

In this section, we visualize loss landscapes for popular NAS architectures

and their randomly connected variants. The depth and width of a cell

are highly correlated. For example, the depth and width cannot reach

their maximum simultaneously. With the increasing width, the average

depth of cells grouped by the same width is decreasing as shown in

Table 4.2. We therefore only group the results (including the ones from

original NAS architectures) with various width levels of a cell for a better

comparison. Notably, the architectures with wider and shallower cells

have a smoother and benigner loss landscape, as shown in Figure 4.18,

55



4.5. MORE RESULTS

Figure 4.19, Figure 4.20 and Figure 4.21, which further supports the

results in Section 4.3.2.1.
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Figure 4.18: Loss contours of DARTS and its variants with random con-
nections on the test dataset of CIFAR-10.
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Figure 4.19: Loss contours of AmoebaNet and its randomly connected
variants on the test dataset of CIFAR-10.
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Figure 4.20: Loss contours of ENAS and its randomly connected variants
on the test dataset of CIFAR-10.

56



4.5. MORE RESULTS

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.600

1.100
1.600

2.100
2.600

3.100
3.6004.100

4.
60

0

5.
10

0

5.100

5.100

5.600

5.600

5.600

6.100

6.100

6.
60

0
6.600

7.100

7.100

7.100

7.
60

0
7.600

7.600

8.100

8.100

8.100

8.600

8.600

8.600

9.100

9.100

9.100

9.600

9.600

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.600

1.100

1.600

2.1
00

2.
60

0

3.100

3.600
4.100

4.
60

0

5.1
005.600

6.100

6.6
00

6.6
00

7.100
7.600

8.100

8.600

8.600

9.100

9.100

9.600

9.600

(a) 1.5c

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.6001.100

1.600

2.100

2.600

3.100
3.600

4.100

4.
10

0

4.600

4.
60

0

4.600

5.100

5.100

5.100
5.600

5.600

5.600
6.100

6.100

6.6
00

7.100

7.600

8.100

8.100

8.600

8.600

9.100

9.1
00

9.100

9.600

9.
60

0

9.600

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.600

1.100
1.600

2.1
00

2.600

3.100
3.600

4.100
4.600

5.100

5.600

6.100

6.600

7.1
00

7.600

7.600

8.100

8.100

8.600

8.600

9.100

9.100

9.600

9.600

(b) 2c

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.6001.100

1.6002.100 2.600

3.1
00

3.
60

0

4.100

4.1
00

4.600

4.600

4.600

5.100

5.100

5.600

6.1
00

6.600

6.6
00

7.1
00

7.1
00

7.100

7.1007.6
00

7.6
00

7.600

7.600

8.100 8.1
00

8.100

8.100

8.600

8.6
00

8.600

9.
10

0

9.100

9.1
00

9.100
9.100

9.600
9.6

00

9.600

9.600
9.600

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.6001.100

1.600 2.100

2.6
00

3.
10

0

3.600

3.600

4.100

4.600

5.100

5.100

5.
60

0

5.600

6.100 6.100

6.600

6.600

6.600

7.100

7.1007.1
00

7.100

7.
60

0

7.600

7.600

8.100

8.100

8.600

8.600

9.100

9.100

9.600

9.600

9.600

(c) 2.5c

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.600

1.100
1.600 2.100

2.6
00

3.100

3.600

4.1
00

4.100

4.100

4.600

4.600

4.600

5.100

5.1
00

5.100

5.100

5.600

5.6
00

5.600

5.600

6.100

6.100

6.600

6.600
6.600

7.1
00

7.100

7.100

7.600

7.600

7.
60

0

8.100

8.100

8.100

8.100

8.600

8.600

8.600

8.600

9.100

9.100 9.100

9.600

9.600
9.600

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.600

1.100

1.6
00

2.
10

0

2.600

3.100
3.6004.1004.600

4.600
4.600

5.100

5.100

5.100

5.600

5.600

5.6
00

6.100

6.100

6.100

6.600

6.600

6.600

7.100

7.100

7.100

7.600

7.600

7.600

8.100 8.100

8.100

8.100

8.600 8.600

8.600

8.600

9.100 9.100

9.100

9.100

9.600 9.600

9.600

9.600

(d) 3c

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.600

1.100 1.600

2.
10

02.600

3.100

3.
60

0

4.100 4.600

4.600

5.100

5.100

5.100

5.600
5.600

5.600

5.600
6.100

6.100

6.100

6.600

6.600

6.600

7.100

7.100

7.100

7.100

7.600

7.600

7.600 7.600

7.600

8.100

8.100

8.100 8.100

8.100

8.600

8.600

8.600 8.600

8.600

9.100

9.100 9.100

9.100

9.600

9.600

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.600

1.100
1.600 2.100

2.
60

0

3.100

3.600

4.100

4.100

4.100

4.600

4.6
00

5.1
00

5.600

6.100

6.100

6.6
00

6.600

7.100

7.100

7.100

7.100

7.600

7.600

7.600

8.
10

0

8.100

8.100

8.
60

0

8.600

8.600

9.
10

0

9.100
9.100

9.600 9.
60

0

9.600
9.600

(e) 3.5c

Figure 4.21: Loss contours of NASNet and its randomly connected vari-
ants on the test dataset of CIFAR-10.

4.5.4 Gradient Variance

In this section, we visualize the gradient variance (i.e., g(α,β) as defined

in Section 4.3.2.2) for the popular NAS architectures as well as their

variants with random connection, such as AmoebaNet in Figure 4.22,

DARTS in Figure 4.23, ENAS in Figure 4.24 and NASNet in Figure 4.24.

The z-axis has been scaled by 10−5 for a better visualization. Similarly, we

group the results based on the width of cells. Notably, architectures with

wider and shallower cells achieve relatively smaller gradient variance,

which further confirms the results in Section 4.3.2.2.
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Figure 4.22: 3D surfaces of the gradient variance from AmoebaNet and
its randomly connected variants on the test dataset of CIFAR-10.
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(d) 3.5c

Figure 4.23: 3D surfaces of the gradient variance from DARTS and its
randomly connected variants on the test dataset of CIFAR-10.
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Figure 4.24: 3D surfaces of the gradient variance from ENAS and its
randomly connected variants on the test dataset of CIFAR-10.

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

0
2
4
6
8
10
12
14
16

2.5

5.0

7.5

10.0

12.5

15.0

17.5

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

0
2
4
6
8
10
12
14
16

5

10

15

20

25

(a) 1.5c

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

0
2
4
6
8
10
12
14
16

2.5

5.0

7.5

10.0

12.5

15.0

17.5

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

0
2
4
6
8
10
12
14
16

2.5

5.0

7.5

10.0

12.5

15.0

(b) 2c

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

0
2
4
6
8
10
12
14
16

2.5

5.0

7.5

10.0

12.5

15.0

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

0
2
4
6
8
10
12
14
16

5

10

15

20

(c) 2.5c

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

0
2
4
6
8
10
12
14
16

5

10

15

20

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

0
2
4
6
8
10
12
14
16

2

4

6

8

10

12

14

(d) 3c

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

0
2
4
6
8
10
12
14
16

2.5

5.0

7.5

10.0

12.5

15.0

17.5

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

0
2
4
6
8
10
12
14
16

2

4

6

8

10

12

14

(e) 3.5c

Figure 4.25: 3D surfaces of the gradient variance from NASNet and its
randomly connected variants on the test dataset of CIFAR-10.
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4.6. CONCLUSION AND DISCUSSION

4.5.5 Adapted Topologies

In this section, we visualize the adapted architectures (in Figure 4.26) we

investigate on in Section 4.4. Notably, The adapted connection topologies

are not only applied in the normal cell but also the reduction cell. The

adapted architectures are compared with popular NAS architectures to

examine the impacts of the common connection pattern on generalization.
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Figure 4.26: Adapted topologies of cells from popular NAS architectures.
The title of each sub-figure includes the name of the architecture, width
and depth of the cell following our definition. Notably, these cells achieve
the largest width and smallest depth in their original search space.

4.6 Conclusion and Discussion

Recent works have been focusing on the design and evaluation of NAS

algorithms. We instead endeavour to examine the architectures selected

by the various popular NAS algorithms. Our study is the first to explore

the common structural patterns selected by existing algorithms, why

these architectures are selected, and why these algorithms may be flawed.

In particular, we reveal that popular NAS algorithms tend to favor archi-

tectures with wide and shallow cells, which typically converge fast and

consequently are likely be selected during the search process. However,

these architectures may not generalize better than other candidates of

narrow and deep cells.
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4.6. CONCLUSION AND DISCUSSION

To further improve the performance of the selected NAS architectures,

one promising direction for the current NAS research is to evaluate the

generalization performance of candidate architectures more accurately

and effectively. While popular NAS architectures appreciate fast and

stable convergence along with competitive generalization performance,

we believe that the wide and shallow cells are still useful prior knowledge

for the design of the search space. We hope this work can attract more

attention to the interpretation and understanding of existing popular

NAS algorithms.
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Chapter 5

Neural Ensemble Search via

Bayesian Sampling

This chapter is based on the following work published at UAI 2022:

Shu, Y., Chen, Y., Dai, Z. & Low, B.K.H. (2022). Neural Ensemble Search

via Bayesian Sampling. In Proc. UAI-22.

5.1 Introduction

Recent years have witnessed a surging interest in designing well-performing

architectures for different tasks. These architectures are typically man-

ually designed by human experts, which requires numerous trials and

errors during this manual design process and therefore is prohibitively

costly. Consequently, the increasing demand for developing well-performing

architectures in different tasks makes this manual design infeasible. To

avoid such human efforts, Zoph and Le (2017) have introduced neural

architecture search (NAS) to help automate the design of architectures.

Since then, a number of NAS algorithms (Pham et al., 2018; Liu et al.,

2019; Chen et al., 2019) have been developed to improve the search ef-
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ficiency (i.e., search cost) or the search effectiveness (i.e., generalization

performance of their final selected architectures) in NAS.

However, conventional NAS algorithms aim to select only one single

architecture from their search spaces and have thus overlooked the capa-

bility of other candidate architectures from the same search spaces in

helping improve the performance achieved by their final selected single

architecture. That is, neural network ensembles are widely known to be

capable of achieving an improved performance compared with a single

neural network in practice (Cortes et al., 2017; Gal and Ghahramani,

2016; Lakshminarayanan et al., 2017). This naturally begs the question:

How to select best-performing neural network ensembles with diverse architec-

tures from a NAS search space in order to improve the performances achieved

by existing NAS algorithms? To the best of our knowledge, only limited

efforts (e.g., (Zaidi et al., 2020)) have been devoted to this problem in

the NAS literature. Unfortunately, the neural ensemble search (NES) al-

gorithm based on random search or evolutionary algorithm in (Zaidi

et al., 2020) requires excessive search costs to select their final neural

network ensembles, which will not be affordable in resource-constrained

scenarios.

To this end, this work introduces a novel algorithm, namely neural en-

semble search via Bayesian sampling (NESBS), to effectively and efficiently

select the well-performing neural network ensemble with diverse archi-

tectures from a search space. We firstly represent the search space as

a supernet following conventional one-shot NAS algorithms and then

use the model parameters inherited from this supernet after its model

training to estimate the single-model performances and also the ensemble

performance of independently trained architectures (Sec. 5.2.1). Next,

since both single-model performances and diverse model predictions
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affect the final ensemble performance according to (Zhou, 2012), we

propose to use a variational posterior distribution of architectures based

on a trained supernet to characterize these two factors, i.e., single-model

performances and diverse model predictions (Sec. 5.2.2). We then in-

troduce two novel Bayesian sampling algorithms based on the posterior

distribution of architectures, i.e., Monte Carlo sampling (MC Sampling)

and Stein Variational Gradient Descent with regularized diversity (SVGD-

RD), to effectively and efficiently select ensembles with both competitive

single-model performances and compelling diverse model predictions

(Sec. 5.2.3), which is also guaranteed to be able to achieve impressive en-

semble performances (Zhou, 2012). Lastly, we use extensive experiments

to show that our NESBS algorithm is indeed able to select well-performing

neural network ensembles effectively and efficiently in practice (Sec. 5.4).

5.2 Neural Ensemble Search via Bayesian Sam-

pling

Let fA(x,θA) denote the output of an architecture A with input data x

and model parameter θA. Let S and ΘS denote a set of architectures and

their corresponding model parameters, respectively. Given the ensemble

scheme FS(x,ΘS) ≜ 1/n
∑
A∈S fA(x,θA) with an ensemble size of |S | = n,1

let Ltrain and Lval denote the training and validation loss respectively,

Neural Ensemble Search (NES) (Zaidi et al., 2020) can then be framed as a

1We apply such an ensemble scheme for simplicity following the work of (Zaidi et al.,
2020).
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bi-level combinatorial optimization problem:

min
S
Lval(FS(x,Θ∗S))

s.t. ∀ θ∗A ∈Θ
∗
S , θ

∗
A = argmin

θA

Ltrain(fA(x,θA)) .
(5.1)

Note that (5.1) is challenging to solve due to the following reasons:

(I) The enormous number of candidate architectures in the NAS search

space, e.g., ∼1025 in the DARTS search space (Liu et al., 2019), makes

the independent model training of every candidate architecture (i.e.,

the lower-level optimization in (5.1)) unaffordable. (II) The ensemble

search space is exponentially increasing in the ensemble size n, e.g.,

there are ∼mn different ensembles given m diverse architectures. The

combinatorial optimization problem (i.e., the upper-level optimization in

(5.1)) is thus intractable to solve within this huge ensemble search space.

Recently, Zaidi et al. (2020) have attempted to avoid these two problems

by selecting a small fraction of candidate architectures from the original

search space for their final ensemble search. Nonetheless, they fail to

explore the whole search space and therefore may only achieve limited

ensemble performances. Furthermore, their search cost is unaffordable

due to the independent model training of every selected architecture.

To this end, we novelly present the neural ensemble search via Bayesian

sampling (NESBS) algorithm to solve (5.1) effectively and efficiently. We

firstly employ the model parameters inherited from a supernet (i.e., a

representation of the NAS search space) after its model training to esti-

mate the single-model performances and also the ensemble performance

of independently trained architectures (Sec. 5.2.1). This only requires

the model training of the supernet and thus allows us to overcome the

aforementioned challenge I. We then derive a posterior distribution of
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architectures to characterize both the single-model performances and the

diverse model predictions of candidate architectures in the search space

(Sec. 5.2.2). Finally, based on this posterior distribution and also the

aforementioned ensemble performance estimation, we introduce Monte

Carlo Sampling (MC Sampling) and Stein Variational Gradient Descent

with regularized diversity (SVGD-RD) to explore the ensembles in the

whole search space effectively and efficiently (Sec. 5.2.3), which thus

allows us to overcome the aforementioned challenge II. An overview of

our NESBS is in Algorithm 5.1.

5.2.1 Model Training of Supernet

Similar to one-shot NAS algorithms (Liu et al., 2019; Pham et al., 2018),

we represent NAS search space as a supernet. This then allows us to

use the model parameters inherited from this trained supernet to es-

timate not only the single-model performances but also the ensemble

performance of independently trained candidate architectures in the

search space. However, in order to realize an accurate and fair estimation

of these performances, we need to further ensure that every candidate

architecture in the search space is trained for a comparable number of

steps, namely, the training fairness among candidate architectures (Chu

et al., 2019). To achieve this, in every training step of this supernet, we

uniformly randomly sample one single candidate architecture from this

supernet for model training (see Fig. 5.1). The training fairness of such a

training scheme can then be theoretically guaranteed, as demonstrated

in Appendix B.1. Moreover, we provide empirical results in Sec. 5.5.1 to

validate the effectiveness of such performance estimations.
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⋯ ⋯

Supernet Sampled Architectures during Training
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Figure 5.1: An illustration of the model training of supernet. The super-
net here consists of three candidate architectures with ri indicating the
selection of one architecture and θt

i denoting its model parameters at
step t. In every training step, only one architecture is uniformly sampled
to update its parameters and all other architectures will be ignored.

5.2.2 Distribution of Architectures

It has been demonstrated that both competitive single-model perfor-

mances and diverse model predictions are required to achieve compelling

ensemble performances (Zhou, 2012). That is, NES algorithms should be

capable of selecting architectures with both competitive single-model per-

formances and diverse model predictions to achieve competitive ensem-

ble performances. To realize this, we introduce a posterior distribution

of architectures to firstly characterize these two factors. Let D denote the

validation dataset, and p(A) and p(A|D) denote, respectively, the prior

and posterior distributions of a candidate architecture after its model

training where p(A) follows from a categorical uniform distribution, as

required in Sec. 5.2.1. According to the Bayes’ theorem, since p(A) is

uniform and p(D) is constant,

p(A|D) = p(D|A)p(A)/p(D) ∝ p(D|A) (5.2)

where p(D|A) (i.e., likelihood) is widely used to represent the single-

model performance (i.e., loss) in practice. So, (5.2) implies that the
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posterior distribution p(A|D) can also characterize the single-model per-

formances of architectures.

Meanwhile, given a γ-Lipschitz continuous loss function L(f ), the di-

versity of model predictions (i.e., ∥fA1
−fA2

∥2) can then be lower bounded

based on the Lipschitz continuity of L(·):

∥fA1
− fA2

∥2 ≥ γ−1|L(fA1
)−L(fA2

)| . (5.3)

Therefore, (5.3) suggests that in addition to being able to characterize

the single-model performances of architectures (i.e., L(f )), the posterior

distribution p(A|D) can estimate the diversity of model predictions for

different architectures (e.g., A1 and A2) using |p(A1|D)− p(A2|D)|.

However, it is intractable to obtain exact posterior distribution p(A|D)

in the NAS search space. So, we approximate it with a variational distri-

bution pα(A) (parameterized by a low-dimensional α) that can be opti-

mized via variational inference, i.e., by minimizing the KL divergence

between pα(A) and p(A|D). Equivalently, we only need to maximize

a lower bound of the log-marginal likelihood (i.e., the evidence lower

bound (ELBO) (Kingma and Welling, 2014)) to get an optimal variational

distribution pα∗(A):

max
α

EA∼pα(A)

[
logp(D|A)

]
−KL[pα(A)||p(A)] . (5.4)

Similar to (Kingma and Welling, 2014), a gradient-based optimization

algorithm with the reparameterization trick is employed to solve (5.4)

efficiently (see Sec. 5.3.3). While Xie et al. (2019b) have adopted a

similar form to (5.4) (without the KL term) during the model training of

the supernet (namely, the best-response posterior distribution), our post-

training posterior distribution is able to not only provide a more accurate
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characterization of the single-model performances but also contribute

to an improved ensemble search performance, as demonstrated in Sec.

5.5.2.

5.2.3 Bayesian Sampling

To solve (5.1) effectively and efficiently, we finally introduce two novel

Bayesian sampling algorithms based on the posterior distribution of

architectures in Sec. 5.2.2, i.e., Monte Carlo sampling (MC Sampling)

and Stein Variational Gradient Descent with regularized diversity (SVGD-

RD), to sample ensembles with both competitive single-model perfor-

mances and compelling diversity of model predictions, as required by

well-performing ensembles (Zhou, 2012).

5.2.3.1 Monte Carlo Sampling (MC Sampling)

Given the posterior distribution of neural architectures obtained in Sec.

5.2.2, we firstly propose to employ Monte Carlo sampling (MC Sampling)

to sample a set of neural architectures from this posterior distribution

(Algorithm 5.2). Specifically, MC Sampling guarantees that neural archi-

tectures with better single-model performances will be sampled (i.e., ex-

ploited) with higher probabilities. Meanwhile, architectures with diverse

model predictions can also be sampled (i.e., explored) due to the inherent

randomness in the sampling process. Compared with conventional NAS

algorithms that only select a single best-performing architecture in the

search space (Dong and Yang, 2019b; Xie et al., 2019b), our MC sampling

algorithm further extends these algorithms by exploring the capability of

diverse neural architectures while preserving its exploitation of neural

architectures with compelling single-model performances.
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Algorithm 5.1 NES via Bayesian Sampling (NESBS)

1: Input: Iterations T , ensemble size n, a supernet
2: Train the supernet to get its tuned parameters θ∗

3: Obtain the posterior distribution pα∗(A) with (5.4)
4: for iteration t = 1, . . . ,T do
5: Sample St of size n via Algorithm 5.2 or 5.3
6: Evaluate estimated Lval(FSt (x,Θ

∗
St

)) given θ∗

7: Select optimum S∗ = argminSt
Lval(FSt (x,Θ

∗
St

))

Algorithm 5.2 MC Sampling

1: Input: Ensemble size n, set S = ∅, posterior pα∗(A)
2: for iteration i = 1, . . . ,n do
3: Sample Ai ∼ pα∗(A)
4: S← S ∪ {Ai}
5: Output: S

Algorithm 5.3 SVGD-RD

1: Input: Diversity coefficient δ, ensemble size n, iterations L, initial
particles {x(0)

i }
n
i=1, posterior pα∗(A), kernel k(x,x′), step size {ϵl}Ll=1

2: for iteration l = 0, . . . ,L− 1 do

3: φ̂∗l (x) =
1
n

n∑
j=1

∇
x

(l)
j
k(x(l)

j ,x)− δ∇xk(x(l)
j ,x) + k(x(l)

j ,x)∇
x

(l)
j

logpα∗

4: x
(l+1)
i ← x

(l)
i + ϵl φ̂

∗
l (x

(l)
i )

5: Output: S = {Ai}ni=1 derived based on {x(L)
i }

n
i=1

5.2.3.2 SVGD with Regularized Diversity (SVGD-RD)

However, the diversity of sampled architectures using the MC Sampling

algorithm above cannot be controlled and hence may lead to poor en-

semble search results. So, in order to achieve a controllable diversity, we

resort to Stein Variational Gradient Descent (SVGD). Theoretically, SVGD

is capable of sampling particles with both large probability density and

good diversity where the diversity is explicitly encouraged (i.e., by the

second term in (2.8)). Nonetheless, in practice, the particles sampled by

SVGD may still fail to represent the target distribution well owing to the

lack of diversity among those sampled particles, as observed in (Zhuo
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Figure 5.2: The impact of δ in SVGD-RD algorithm. We use con-
tours and dots to denote the density of target distribution and
sampled particles, respectively. The target distribution is chosen
to be p(x)=1/Z

[
N (x|u1,Σ1) +N (x|u2,Σ2)

]
, where u1=(−1,0), u2=(0,1),

Σ1=Σ2=diag((0.25,0.5)) and Z denotes the normalization constant. Those
sampled particles are obtained from our Algorithm 5.3 using L=1000,
n=15, ϵl=0.1 and a radial basis function (RBF) kernel. Notably, our sam-
pled particles tend to become more diverse as δ is increased, indicating a
controllable (via δ) diversity of the final sampled particles in our SVGD-
RD algorithm. Meanwhile, SVGD-RD can consistently sample particles
with high probability densities with varying δ.

et al., 2018). Besides, the diversity of sampled particles in standard SVGD

still cannot be controlled by human experts.

We hence develop an SVGD with regularized diversity (SVGD-RD) sam-

pling algorithm that can achieve a controllable diversity among those

sampled particles. We follow the notations from Sec. 2.3. In particu-

lar, when optimizing the distribution q∗ (represented by the n particles

{x∗i }
n
i=1), we modify the objective in (2.4) by adding a term representing

the (controllable) diversity among the particles measured by the kernel

function k(x,x′):

q∗ = argmin
q∈Q

KL(q||p) +nδ Ex,x′∼q
[
k(x,x′)

]
(5.5)
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where δ is the parameter explicitly controlling the diversity, and p in (5.5)

denotes the posterior distribution pα∗(A) derived in Sec. 5.2.2 which we

intend to sample from. Following the work of SVGD, q∗ in (5.5) is rep-

resented by {x∗i }
n
i=1 denoting our final selected neural network ensemble

that can achieve both competitive single-model performances (i.e., large

probability density) and also diverse model predictions. Proposition

5.1 below provides one possible update rule for the particles {xi}ni=1 to

optimize (5.5) (see its proof in Appendix B.1). Finally, Algorithm 5.3

summarizes the details of our SVGD-RD algorithm and Sec. 5.3.4 pro-

vides its optimization details in practice. After obtaining those optimal

particles {x∗i }
n
i=1 in our SVGD-RD algorithm, we then apply these particles

to derive the architectures in our final selected ensembles (see details in

Sec. 5.3.4).

Proposition 5.1. Given the proximal operator proxh(y) = argminz h(z) +

1/2∥z − y∥22, by applying proximal gradient method (Parikh and Boyd, 2014)

and proper approximation, (5.5) can be optimized via the following updates

of the particles {xi}ni=1:

xi ← xi +
1
n

n∑
j=1

k(xj ,xi)∇xj logp(xj)

+∇xjk(xj ,xi)− δ∇xik(xj ,xi) .

Compared with MC Sampling, our SVGD-RD algorithm provides a

controllable trade-off between the single-model performances and the

diverse model predictions. On the one hand, the minimization of the KL

divergence term in (5.5) encourages the selection of architectures with

competitive single-model performances by favoring particles with high

probability densities, as shown by Proposition 5.2 below (its proof is in
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Appendix B.1).2 On the other hand, the maximization of the scaled

distance −nδ Ex,x′∼q
[
k(x,x′)

]
among the sampled particles leads to a

controllable diversity (via δ) among these sampled particles and also

a controllable diversity of the probability densities among these particles

(see Fig. 5.2), which also implies a controllable diversity of the model

predictions, as suggested in Sec. 5.2.2.

Proposition 5.2. Let p be a target density and k(x,x′) = c for every x = x′

where c is a constant. For any δ ∈ R, our SVGD-RD algorithm is equivalent

to the maximization of the density p w.r.t. x in the case of n = 1.

5.3 Experimental Settings

5.3.1 The Search Space

We use the DARTS (Liu et al., 2019) search space in our work: Each

candidate architecture in the search space consists of a stack of L cells,

which can be represented as a directed acyclic graph (DAG) of N nodes

denoted by {z0, z1, . . . , zN−1}. Among these N nodes in a cell, z0 and z1

denote the input nodes produced by two preceding cells, and zN denotes

the output of a cell, which is the concatenation of all intermediate nodes,

i.e., from z2 to zN−1. As in the work of Liu et al. (2019), to select the best-

performing architectures, we need to select their corresponding cells,

including the normal and reduction cell. We refer to DARTS (Liu et al.,

2019) for more details. In practice, this search space is represented as a

supernet stacked by 8 cells (6 normal cells and 2 reduction cells) with

initial channels of 16.
2Although Proposition 5.2 is only applicable in the case of n = 1, our SVGD-RD

is still capable of sampling particles with high probability densities when n > 1, as
validated in Fig. 5.2.
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5.3.2 The Model Training of Supernet

Following (Xu et al., 2020), we apply a partial channel connection with

K = 2 in the model training of the supernet, which allows us to accelerate

and reduce the GPU memory consumption during this model training.

We split the standard training dataset of CIFAR-10 into two piles in

our ensemble search: 70% randomly sampled data is used in the model

training of the supernet, and the rest is used to obtain the posterior

distribution of neural architectures in Sec. 5.2.2 and also the final selected

ensembles in Sec. 5.2.3. To achieve a fair and sufficient model training of

each candidate architecture, we adopt stochastic gradient descent (SGD)

with epoch 50, learning rate cosine scheduled from 0.1 to 0, momentum

0.9, weight decay 3 × 10−4 and batch size 128 in the model training of

the supernet, where one candidate architecture is uniformly randomly

sampled from this supernet in each training step.

5.3.3 Posterior Distribution

Variational posterior distribution. Following (Xie et al., 2019b), the

variational posterior distribution of architectures is represented as pα(A)

parameterized by α. Specifically, within the search space demonstrated

in our Sec. 5.3.1, each intermediate nodes zi is the output of one selected

operation o ∼ pαi
(o) using the inputs from its proceeding nodes or cells,

where O is a predefined operation set for our search. Specifically, given

αi = (αo1
i · · ·α

o|O|
i ), pαi

(o) can be represented as

pαi
(o) =

exp(αo
i /τ)∑

o∈O exp(αo
i /τ)

, (5.6)

where τ denotes the softmax temperature, which is usually set to be 1 in

practice. Based on this defined probability for each intermediate node zi ,
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our variational posterior distribution can be framed as

pα(A) =
N−2∏
i=2

pαi
(o) . (5.7)

More precisely, this representation is applied for single-path architecture

with identical cells. We use it to ease our representation. For double-path

architectures consisting of two different cells (i.e., normal and reduction

cell), e.g., the candidate architecture in the DARTS search space, a similar

representation can be obtained.

Optimization details. To optimize (5.4), we firstly relax our variational

posterior distribution to be differentiable using the Straight-Through

(ST) Gumbel-Softmax (Maddison et al., 2017; Jang et al., 2017) with the

reparameterization trick. More precisely, we propose a variant of ST

Gumbel-Softmax outputting the double-path architectures in the DARTS

search space. Then, we use stochastic gradient-based algorithms to opti-

mize (5.4) efficiently. In each optimization step, we sample one neural

architecture from the distribution pα(A) to estimate EA∼pα(A)

[
logp(D|A)

]
(i.e., the commonly used Cross-Entropy loss). In practice, we use Adam

(Kingma and Ba, 2015) with learning rate 0.01, β1 = 0.9, β2 = 0.999 and

weight decay 3 × 10−4 to update our variational posterior distribution

pα(A) for 20 epochs.

5.3.4 SVGD of Regularized Diversity

Continuous relaxation of variational posterior distribution. Notably,

SVGD (Liu and Wang, 2016) and also our SVGD-RD is applied for contin-

uous distribution. Unfortunately, the variational posterior distribution

pα(A) is discrete due to a discrete search space. To apply SVGD-RD, we
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firstly relax this discrete posterior into its continuous counterpart using

a mixture of Gaussian distribution. Specifically, we represent each opera-

tion o ∈ O in (5.6) into a one-hot vector ho. By introducing the random

variable oi ∈ R|O| and multi-variate normal distributionN (oi |ho,Σ) into

our relaxation, our relaxed posterior distribution of neural architectures

can be framed as

p̂α(A) =
N−2∏
i=2

1/Zi

∑
o∈O

pαi
(o)N (oi |ho,Σ) , (5.8)

where Zi denotes the normalization constant. Given the sampled particle

x∗ = (· · ·o∗i · · · ) in SVGD-RD, the final selected architecture can then be

derived using the determination of each selected operation o∗i , i.e.,

o∗i = argmin
o∈O

∥o∗i −ho∥2 . (5.9)

Optimization details. Since Liu and Wang (2016) have demonstrated

that SVGD is able to handle unnormalized target distributions, the nor-

malization constant in (5.8) can then be ignored in our SVGD-RD algo-

rithm. In practice, the covariance matrix Σ in (5.8) is set to an identity

matrix scaled by |O|. Besides, the parameter δ is optimized as a hyper-

parameter via grid search or Bayesian Optimization (Snoek et al., 2012)

within the range of [−2,1] in practice. To obtain well-performing par-

ticles in our SVGD-RD algorithms efficiently, we apply SGD using the

gradient provided in Sec. 5.2.3.2 with a radial basis function (RBF) kernel

on randomly initialized particles for L=1000 iterations under a learning

rate of 0.1 and a momentum of 0.9.

75



5.3. EXPERIMENTAL SETTINGS

5.3.5 Evaluation on Benchmark Datasets

Evaluation on CIFAR-10/100. We apply the same constructions in

DARTS (Liu et al., 2019) for our final performance evaluation on CIFAR-

10/100: The final selected architectures consist of 20 cells, and 18 of

them are identical normal cells, with the rest being the identical reduc-

tion cell. An auxiliary tower with a weight of 4 is located at the 13-th cell

of the final selected architectures. The final selected architecture is then

trained using stochastic gradient descent (SGD) for 600 epochs with a

learning rate cosine scheduled from 0.025 to 0, momentum 0.9, weight

decay 3×10−4, batch size 96 and initial channels 36. Cutout (Devries and

Taylor, 2017), and a scheduled DropPath, i.e., linearly decayed from 0.2

to 0, are employed to achieve SOTA generalization performance.

Evaluation on ImageNet. Following (Liu et al., 2019), the architectures

evaluated on ImageNet consist of 14 cells (12 identical normal cells and

2 identical reduction cells). To meet the requirement of evaluation under

the mobile setting (less than 600M multiply-add operations), the number

of initial channels for final selected architectures are conventionally set

to 44. We adopt the training enhancements in Liu et al. (2019); Chen et al.

(2019); Chen and Hsieh (2020), including an auxiliary tower of weight

0.4 and label smoothing. Following P-DARTS Chen et al. (2019) and

SDARTS-ADV Chen and Hsieh (2020), we train the selected architectures

from scratch for 250 epochs using a batch size of 1024 on 8 GPUs, SGD

optimizer with a momentum of 0.9 and a weight decay of 3× 10−5. The

learning rate applied in this training is warmed up to 0.5 for the first 5

epochs and then decreased to zero linearly.
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5.3.6 Adversarial Defense

Adversarial attack intends to find a small change for each input such that

this input with its corresponding small change will be misclassified by

a model. As ensemble is known to be a possible defense against such

adversarial attacks (Strauss et al., 2017), we also examine the effectiveness

of our NESBS algorithms by comparing the model robustness achieved by

our algorithms to other ensemble and ensemble search algorithms under

various benchmark adversarial attacks. To the best of our knowledge, we

are the first to examine the advantages of ensemble search algorithms in

defending against adversarial attacks.

In this experiment, two processes are required, i.e., attack and de-

fense. The attack process is a typical white-box attack scenario: Only a

single model (randomly sampled from an ensemble) is attacked by an

attacker, and this process will be repeated for n rounds given an ensem-

ble of size n in order to accurately measure the improvement of model

robustness induced by an ensemble. In each round, a different model

from this ensemble is selected to be attacked. The defense process is then

applied using neural network ensembles, i.e., neural network ensembles

will make predictions based on those perturbed images produced by

the aforementioned attacker. Corresponding to the attack process, we

also need to repeat this defense process for n rounds. In fact, such an

adversarial defense setting is reasonably practical when only a single

model from an ensemble is required to be publicly available for model

producers.

We apply the following attacks in this experiment: The Fast Gradient

Signed Method (FGSM) attack Goodfellow et al. (2015), the Projected

Gradient Descent (PGD) attack Madry et al. (2018), the Carlini Wagner

(CW) attack Carlini and Wagner (2017) and also the AutoAttack (Croce
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Figure 5.3: The comparison of search effectiveness (test error of ensembles
in the y-axis) and efficiency (evaluation budget in the x-axis) for different
ensemble search algorithms under varying ensemble size n. The single
best baseline refers to the single best architecture achieving the lowest
test error in the search space. The y-axis is shown in log-scale to ease
visualization. Note that the test error for each algorithm is reported with
the mean and standard error of five independent trials.

and Hein, 2020). In both the FGSM attack and the PGD attack, we impose

a L∞ norm constrain of 0.01. The step size and the number of iterations

in the PGD attack are set to 0.008 and 40, respectively. We adopt the

same configurations of the CW attack under a L2 norm constrain in

(Carlini and Wagner, 2017): We set the confidence constant, the range of

constant c, the number of binary search steps, and the maximum number

of optimization steps to 0, [0.001,10], 3, and 50, respectively; we then

adopt Adam (Kingma and Ba, 2015) optimizer with learning rate 0.01

and β1 = 0.9, β2 = 0.999 in its search process. Besides, we adopt the same

configuration of AutoAttack from (Croce and Hein, 2020).

5.4 Experiments

5.4.1 Search Effectiveness and Efficiency

As justified in Sec 5.2.3, both our MC Sampling and SVGD-RD algo-

rithms can sample neural architectures with competitive single-model
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performances and diverse model predictions, which are known to be

the criteria for well-performing ensembles (Zhou, 2012). To further

demonstrate that our algorithms are capable of selecting well-performing

ensembles effectively and efficiently based on this sampling property, we

compare our NESBS algorithm, including NESBS (MC Sampling) and

NESBS (SVGD-RD), with the following ensemble search baselines on

CIFAR-10 (Krizhevsky et al., 2009) in the DARTS (Liu et al., 2019) search

space: (a) Uniform random sampling which we refer to as URS, and (b)

NES-RS (Zaidi et al., 2020). That is, we only replace the Bayesian sam-

pling in our NESBS algorithm with these two different sampling/selection

algorithms in this experiment and we keep using the model parameters

inherited from a supernet to estimate the single-model and ensemble

performances of architectures (including the test errors). The detailed

experimental settings are in Sec. 5.3.

Figure 5.3 illustrates the search results. Note that both NES-RS and

our NESBS are able to achieve lower test errors than the single best-

performing architecture in the search space. These results therefore

demonstrate that these two ensemble search algorithms are indeed ca-

pable of achieving improved performance over conventional NAS algo-

rithms that select only one single architecture from the search space.

More importantly, given the same evaluation budgets, our NESBS al-

gorithm consistently achieves lower test errors than URS and NES-RS,

indicating the superior search effectiveness achieved by our NESBS al-

gorithm. Meanwhile, our NESBS algorithm requires fewer evaluation

budgets than URS and NES-RS to achieve comparable test errors, which

also suggests that our algorithm is more efficient than URS and NES-RS.

Interestingly, compared with MC Sampling, SVGD-RD can consistently

produce improved search effectiveness and efficiency, which likely results
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from its controllable trade-off between the single-model performances

and the diverse model predictions as justified in Sec. 5.2.3. Overall, these

results have well justified the effectiveness and efficiency of our NESBS

algorithm.

5.4.2 Search in NAS-Bench-201

To verify the effectiveness and efficiency of our NESBS algorithm, we

firstly compare it with other well-known NAS and ensemble (search) algo-

rithms in NAS-Bench-201 (Dong and Yang, 2020). Table 5.1 summarizes

the results. Table 5.1 shows that ensemble (search) algorithms, including

our NESBS, consistently achieve improved generalization performance

over conventional NAS algorithms. This is because ensemble (search) al-

gorithms will select neural network ensembles whereas NAS algorithms

will select only one single architecture. Moreover, it has been widely

verified that model ensembles generally outperform a single machine

learning model in practice (Zhou, 2012). In addition, our NESBS algo-

rithm outperforms other ensemble (search) baseline (i.e., DeepEns and

NES-RS), especially on large-scale datasets (i.e., CIFAR-100 (Krizhevsky

et al., 2009) and ImageNet-16-200 (Chrabaszcz et al., 2017)) while in-

curring less search costs than NES-RS, which thus implies the superior

performance of our NESBS over these ensemble (search) baselines. Even

on a small-scale dataset (i.e., CIFAR-10), our NESBS can also achieve

comparable search results to DeepEns and NES-RS. Interestingly, our

NESBS algorithm is even able to incur reduced search costs than conven-

tional NAS algorithms. This is likely because more training epochs have

been used in these NAS algorithms, whereas a small number of training

epochs can already contribute to well-performing results for our NESBS

algorithm.
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Table 5.1: Comparison of architectures selected by different NAS and
ensemble (search) algorithms in NAS-Bench-201 with ensemble size
n = 3. Test errors are reported with the mean and standard error of three
independent trials and our search costs are evaluated on a single Nvidia
1080Ti GPU. Results marked by † are reported by Dong and Yang (2020).

Architecture(s)
Test Error (%) Search Cost

(GPU Hours)CIFAR-10 CIFAR-100 ImageNet-16-200

Manual design
ResNet† (He et al., 2016) 6.03 29.14 56.37 -

NAS algorithms
ENAS† (Pham et al., 2018) 45.70±0.00 84.39±0.00 83.68±0.00 3.7
DARTS† (2nd) (Liu et al., 2019) 45.70±0.00 84.39±0.00 83.68±0.00 8.3
GDAS† (Dong and Yang, 2019b) 6.49±0.13 29.39±0.26 58.16±0.90 8.0
SETN† (Dong and Yang, 2019a) 13.81±4.63 43.13±7.77 68.10±4.07 8.6
RSPS† (Li and Talwalkar, 2019b) 12.34±1.69 41.67±4.34 68.86±3.88 2.1

Ensemble (search) algorithms
DeepEns (Lakshminarayanan et al., 2017) 5.75 25.27 54.70 -
NES-RS (Zaidi et al., 2020) 5.83±0.33 25.58±0.84 54.34±1.67 5.1

Our ensemble search algorithm
NESBS (MC Sampling) 5.76±0.25 25.39±0.69 53.47±1.75 1.1
NESBS (SVGD-RD) 5.92±0.07 25.00±0.17 52.68±0.35 1.2

5.4.3 Search in The DARTS Search Space

We further demonstrate the superior search effectiveness and efficiency

of our NESBS by comparing it with other NAS and ensemble (search)

baselines in a larger search space (i.e., DARTS (Liu et al., 2019) search

space) using both classification and adversarial defense tasks on CIFAR-

10/100 or ImageNet (Deng et al., 2009). We follow Sec. 5.3.5 to evaluate

the final neural network ensembles selected by our NESBS algorithm

with ensemble size n = 3, T = 5, and optimization details in Sec. 5.3.

Ensemble for classification. Table 5.2 summarizes the comparison

of classification performances on CIFAR-10/100. Similar to the results

in Sec. 5.4.2, ensemble (search) algorithms, including our NESBS, are

generally able to achieve improved generalization performances over

conventional NAS algorithms, which thus justifies the essence of en-

semble (search) algorithms for improved performance. Notably, even

compared with other ensemble baselines such as MC DropPath (i.e., de-
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Table 5.2: Comparison of different image classifiers on CIFAR-10/100.
Results of MC DropPath are from a drop probability of 0.01 and our
search costs are evaluated on Nvidia 1080Ti.

Architecture(s)
Test Error (%) Params (M) Search Cost

(GPU Days)
Search Method

C10 C100 C10 C100

NAS algorithms
NASNet-A (Zoph et al., 2018) 2.65 - 3.3 - 2000 RL
AmoebaNet-A (Real et al., 2019b) 3.34 18.93 3.2 3.1 3150 evolution
PNAS (Liu et al., 2018) 3.41 19.53 3.2 3.2 225 SMBO
ENAS (Pham et al., 2018) 2.89 19.43 4.6 4.6 0.5 RL
DARTS (Liu et al., 2019) 2.76 17.54 3.3 3.4 1 gradient
GDAS (Dong and Yang, 2019b) 2.93 18.38 3.4 3.4 0.3 gradient
P-DARTS (Chen et al., 2019) 2.50 - 3.4 - 0.3 gradient
DARTS- (avg) (Chu et al., 2020) 2.59 17.51 3.5 3.3 0.4 gradient
SDARTS-ADV (Chen and Hsieh, 2020) 2.61 - 3.3 - 1.3 gradient

Ensemble (search) algorithms
MC DropPath (ENAS) 2.88 16.83 3.8‡ 3.9‡ - -
DeepEns (ENAS) 2.49 15.04 3.8‡ 3.9‡ - -
DeepEns (DARTS) 2.42 14.56 3.3‡ 3.4‡ - -
NES-RS♯ (Zaidi et al., 2020) 2.50 15.24 3.0‡ 3.1‡ 0.7 greedy

Our ensemble search algorithm
NESBS (MC Sampling) 2.41 14.70 3.8‡ 3.9‡ 0.2 sampling
NESBS (SVGD-RD) 2.36 14.55 3.7‡ 3.8‡ 0.2 sampling
‡ Reported as the averaged parameter size of the architectures in a neural network ensemble.
♯ Obtained from a pool of size 50, in which every architecture is uniformly randomly sampled from the DARTS search

spaces and then trained independently for 50 epochs following the evaluation settings in Sec. 5.3.5.

Table 5.3: Comparison of image classifiers on ImageNet. The ensemble
size is set to n = 3 for NES-RS and NESBS.

Architecture(s)
Test Error (%)

Params +×
Top-1 Top-5 (M) (M)

NAS algorithms
NASNet-A 26.0 8.4 5.3 564
AmoebaNet-A 25.5 8.0 5.1 555
PNAS 25.8 8.1 5.1 588
DARTS 26.7 8.7 4.7 574
GDAS 26.0 8.5 5.3 581
P-DARTS 24.4 7.4 4.9 557
SDARTS-ADV 25.2 7.8 5.4 594

Ensemble (search) algorithm
NES-RS 23.4 6.8 3.9 432

Our ensemble search algorithm
NESBS (MC Sampling) 22.3 6.2 4.6 522
NESBS (SVGD-RD) 22.3 6.1 4.9 562

veloped following Monte Carlo Dropout (Gal and Ghahramani, 2016))

and DeepEns, our NESBS is still able to achieve improved performances.

Since these ensemble baselines are orthogonal to our NESBS, they can

82



5.4. EXPERIMENTS

be integrated into our NESBS for further performance improvement in

real-world applications. More importantly, our algorithm outperforms

NES-RS by achieving both improved search effectiveness (lowest test

errors) and efficiency (lowest search costs). Furthermore, our NESBS even

incurs comparable search costs compared with the most efficient NAS

algorithms (e.g., GDAS, P-DARTS), which also highlights the efficiency of

our NESBS. Similar results on ImageNet can be achieved by our NESBS

as shown in Table 5.3. 3

Ensemble for adversarial defense. Ensemble methods have already

been shown to be an essential and effective defense mechanism against

adversarial attacks (Strauss et al., 2017). Specifically, an adversarial at-

tacker can only use a single model randomly sampled from an ensemble to

generate the adversarial examples, whereas the ensemble method defends

against adversarial attacks (i.e., makes its predictions) using all models

in this ensemble. Ensemble methods can defend against the adversarial

attacks in such a setting because the generated adversarial examples

using only one single model are unlikely to fool all models in an en-

semble. More details are provided in Sec. 5.3.6. Table 5.4 summarizes

the comparison of adversarial defense among ensemble (search) algo-

rithms on CIFAR-10/100 under different white-box adversarial attacks,

including the Fast Gradient Signed Method (FGSM) attack Goodfellow et al.

(2015), the Projected Gradient Descent (PGD) attack Madry et al. (2018),

the Carlini Wagner (CW) attack Carlini and Wagner (2017), and the Au-

toAttack (Croce and Hein, 2020). Table 5.4 shows that ensemble (search)

algorithms are indeed able to significantly improve the performance of

3Following the convention of NAS and ensemble search algorithms in Table 5.3, the
ensembles selected by our NESBS are also searched on CIFAR-10 and then transferred
to ImageNet.
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Table 5.4: Comparison of adversarial defense among different ensem-
ble (search) algorithms on CIFAR-10/100 under white-box adversarial
attacks. The Attack and Defense columns denote the test accuracy under
the attack using a single model randomly sampled from an ensemble and
the defense using the whole ensemble, respectively. Each result reports
the mean and standard deviation of test accuracies for 3 rounds of the
attack-defense process with an ensemble size of n = 3.

Method
FGSM PGD-40 CW AutoAttack

Attack (%) Defense (%) Attack (%) Defense (%) Attack (%) Defense (%) Attack (%) Defense (%)

On CIFAR-10 Dataset
DeepEns - - - - - - - -
↪→ RobNet-free 66.62±0.32 85.25±0.39 41.81±0.80 77.48±0.67 5.74±1.41 86.53±0.50 21.35±0.33 45.51±0.15
↪→ ENAS 77.85±0.58 87.94±0.21 59.51±1.13 86.57±0.15 31.36±1.20 85.20±0.77 31.71±0.72 50.96±0.07
↪→ DARTS 76.79±0.80 88.21±0.14 57.71±1.65 82.02±0.10 26.90±1.37 82.46±0.35 29.97±1.17 49.67±0.14

NES-RS 79.19±1.39 89.32±0.27 65.59±2.11 85.22±0.41 37.20±4.62 86.75±0.88 35.00±1.15 53.80±0.14

NESBS (MC Sampling) 78.75±1.29 89.15±0.08 63.60±1.87 85.35±0.31 37.71±1.97 86.86±0.66 36.02±0.64 56.90±0.17
NESBS (SVGD-RD) 79.12±0.61 89.86±0.33 65.53±1.56 85.37±0.38 38.27±1.27 86.00±1.10 37.55±0.68 57.15±0.20

On CIFAR-100 Dataset
DeepEns - - - - - - - -
↪→ RobNet-free 36.47±0.25 61.39±0.30 18.18±0.47 52.61±0.13 2.36±0.13 69.44±0.04 7.31±0.35 24.56±0.33
↪→ ENAS 46.40±0.37 64.94±0.27 28.87±0.27 56.79±0.25 9.60±0.30 69.43±0.44 11.53±0.47 27.01±0.27
↪→ DARTS 46.98±0.57 65.38±0.23 28.78±0.74 57.10±0.04 9.73±0.43 70.15±0.29 11.20±0.40 26.86±0.36

NES-RS 47.10±1.46 65.33±0.36 30.68±1.66 58.80±0.80 9.96±1.45 70.24±0.33 12.01±0.93 27.49±0.34

NESBS (MC Sampling) 50.69±1.58 67.63±0.05 33.37±0.42 60.36±0.62 15.64±2.83 71.25±1.27 13.11±1.16 29.87±1.17
NESBS (SVGD-RD) 51.47±0.40 66.66±0.13 35.02±0.37 59.96±0.18 16.72±0.61 69.88±0.16 14.62±0.55 31.07±0.33

adversarial defense, i.e., the test accuracies in the Defense column are

consistently higher than the ones in Attack column. More importantly,

even under different white-box adversarial attacks, our NESBS algorithm

can generally achieve improved defense performances (i.e., higher test

accuracy in the Defense columns) than other baselines including Deep-

Ens and NES-RS. These results thus further support the effectiveness of

our NESBS over existing ensemble (search) algorithms. Besides, even

regarding the adversarial robustness of the single models in an ensemble,

the architectures selected by our NESBS are also more advanced (i.e., by

achieving higher test accuracy in the Attack columns) than well-known

architectures such as RobNet (Guo et al., 2020) and DARTS.
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Table 5.5: Quantitative comparison of the single-model performances
(measured by ATE (%), smaller is better) and the diversity of model pre-
dictions (measured by PPD (%), larger is better) achieved by different en-
semble (search) algorithms with an ensemble size of 3 on CIFAR-10/100.

Method
C10 C100

ATE PPD ATE PPD

MC DropPath (DARTS) 2.71 0.39 16.68 2.63
DeepEns (DARTS) 2.69 2.08 16.18 12.45
NES-RS 2.87 2.29 17.20 14.14

NESBS (MC Sampling) 2.80 2.57 16.70 13.84
NESBS (SVGD-RD) 2.78 2.27 16.50 13.16

5.4.4 Single-model Performances and Diverse Model Pre-

dictions

We demonstrate that the effectiveness of our NESBS results from its ability

to achieve a good trade-off between the single-model performances and

the diversity of model predictions. We firstly quantitatively compare the

single-model performances (measured by the averaged test error (ATE)

of the models in an ensemble) and the diversity of model predictions

(measured by the pairwise predictive disagreement (PPD) of an ensemble

(Fort et al., 2019)) achieved by different ensemble (search) algorithms

on CIFAR-10/100. We further qualitatively visualize their single-model

performances and diverse model predictions using a histogram of the

ATE of the models in their ensembles and a t-SNE (Van der Maaten and

Hinton, 2008) plot of their model predictions, respectively.

Table 5.5 and Fig. 5.4 present the results of our quantitative and qual-

itative comparisons, respectively. Compared with the ensemble baselines

of MC DropPath and DeepEns, our NESBS is capable of enjoying a larger

diversity of model predictions while preserving competitive single-model

performances. Meanwhile, compared with the ensemble search baselines

of NES-RS, our algorithm can achieve improved single-model perfor-
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Figure 5.4: Qualitative comparison of (a) the single-model performances
and (b) the diverse model predictions achieved by different ensemble
(search) algorithms with an ensemble size of n = 3 on CIFAR-10. Each
architecture in (b) is independently evaluated for ten times to visualize
their model predictions, which follows from DeepEns.

mances while maintaining comparably diverse model predictions. These

results suggest that our NESBS is able to select ensembles achieving a

better trade-off between the single-model performances and the diversity

of model predictions among these baselines, which is known to be an

important criterion for well-performing ensembles (Zhou, 2012). Thus,

Table 5.5 and Fig. 5.4 provide empirical justifications for the improved

effectiveness of NESBS.

5.5 More Results

5.5.1 Ensemble Performance Estimation

As shown in Sec. 5.2.1, we apply the model parameters inherited from a

trained supernet to estimate the performance of candidate architectures

as well as their ensembles in our NESBS algorithm. We therefore use the

following three metrics to measure the effectiveness of such estimation in

the DARTS search space: the Spearman’s rank order coefficient between
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Table 5.6: The correlation between the estimated and true performances
of candidate architectures and their ensembles in the DARTS search space
on CIFAR-10.

Metric n = 1 n = 3 n = 5 n = 7

Spearman 0.65 0.33 0.40 −0.12
Pearson 0.82 0.45 0.45 −0.16
Agreement-30% 33% 20% 31% 25%

the estimated and true performances, the Pearson correlation coefficient

between the estimated and true performances, and the percentage of

architectures achieving both Top-k estimated performance and Top-k

true performances (named the Agreement-k). Since the evaluation of

the true performances is prohibitively costly, we randomly sample 10

architectures of diverse estimated performances from the DARTS search

space for this experiment. Notably, based on these 10 architectures, there

are hundreds of possible ensembles under the ensemble size of 3, 5, 7,

which we believe is sufficiently large to validate the effectiveness of our

performance estimations. To obtain the true performance of candidate

architectures as well as their ensembles, we train these architectures

independently for 100 epochs following the settings in Sec. 5.3.5.

Table 5.6 summarizes the results. Notably, the estimated and true

performances are shown to be positively correlated in the case of n=1,3,5

by achieving relatively high Spearman and Pearson coefficients as well

as a high agreement in these cases. Although the coefficients are low

when the ensemble size is larger (i.e., n=7), the estimated and true per-

formances are still capable of achieving a reasonably good agreement in

this case. Based on these results, we argue that our estimated ensemble

performance is informative and effective for our ensemble search. This

effectiveness can also be supported by the competitive search results

achieved by our NESBS in Sec. 5.4.3.
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Figure 5.5: The comparison of performance discrepancy with the post-
training and best-response posterior distribution on CIFAR-10. This
performance discrepancy is measured by the gap of test error between
the best-performing architecture (i.e., the architecture with the smallest
test error) and the maximal-probability architecture (i.e., the architecture
with the largest probability in the corresponding posterior distribution)
in the DARTS search space.

5.5.2 Post-training vs. Best-response Posterior Distribu-

tion

To examine the advantages of our post-training posterior distribution, we

compare it with its best-response counterpart applied in (Dong and Yang,

2019b; Xie et al., 2019b). While our post-training posterior distribution

is obtained after the model training of the supernet, the best-response

posterior distribution is updated during the model training of the su-

pernet. We refer to (Dong and Yang, 2019b; Xie et al., 2019b) for more

details about this best-response posterior distribution. We follow the

optimization details in Sec. 5.3.2 and 5.3.3 to obtain these two posterior

distributions.

More accurate characterization of single-model performances using

post-training posterior distribution. We firstly compare the charac-
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terization of single-mode performance using these two posterior distri-

butions by examining the performance discrepancy between their best-

performing architecture (i.e., the architecture achieving the smallest test

error) and maximal-probability architecture (i.e., the architecture achiev-

ing the largest probability in the corresponding posterior distribution)

in the search space. In this experiment, the performance discrepancy

is measured by the gap of test error achieved by the best-performing

architecture and the maximal-probability architecture using the model

parameters inherited from the supernet.

Figure 5.5 illustrates the comparison. The results show that our post-

training posterior distribution enjoys a smaller performance discrepancy,

suggesting that our post-training posterior distribution is able to provide

a more accurate characterization of the single-model performances. Inter-

estingly, the best-response counterpart contributes to the best-performing

architecture with a lower test error than our post-training posterior distri-

bution, which should result from the Matthew Effect as justified in (Hong

et al., 2020). Specifically, well-performing architectures contribute to the

frequent selections of these architectures for their model training during

the optimization of the best-response posterior distribution. This will

finally result in unfair model training in the search space and therefore

the inaccurate characterization of single-model performances. Notably,

we need a more accurate characterization of single-mode performance in

this work, as shown in Sec. 5.2.2. Therefore, our post-training posterior

distribution should be more suitable than its best-response counterpart

in our ensemble search.

Improved performance of selected ensembles using post-training pos-

terior distribution. We then compare the final ensemble test perfor-
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Table 5.7: The comparison of true ensemble test error (%) on CIFAR-
10 achieved by our NESBS algorithm using the post-training posterior
distribution and its best-response counterpart with an ensemble size
of n=3. We use ∆ to denote the improved generalization performance
achieved by our post-training posterior distribution.

Method Best-response Post-training

NESBS (MC Sampling) 4.74 4.54∆=0.20
NESBS (SVGD-RD) 4.81 4.48∆=0.33

mance achieved by our NESBS algorithm using the post-training posterior

distribution and its best-response counterpart on CIFAR-10 with the en-

semble size of n = 3. To obtain the final ensemble performance, we train

each architecture in an ensemble for 100 epochs following the settings in

Sec. 5.3.5. Table 5.7 summarizes the results. Notably, our post-training

posterior distribution is shown to be capable of contributing to an im-

proved ensemble performance than its best-response counterpart, which

further demonstrates the advantages of applying the post-training poste-

rior distribution in our ensemble search.

5.5.3 The Advantages of Controllable Diversity in SVGD-

RD

To examine the advantages of controllable diversity in our SVGD-RD, we

firstly compare the search effectiveness and efficiency achieved by our

NESBS (MC Sampling) and NESBS (SVGD-RD) algorithm with varying

softmax temperature τ (appeared in (5.6)). A larger temperature τ will

lead to a flatter posterior distribution and hence degenerate its capabil-

ity of characterizing single-model performances of neural architectures

as indicated in (5.6). We use these posterior distributions with varying

temperature τ to simulate the possible posterior distributions we may

obtain in practice. Figure 5.6 illustrates the comparison on CIFAR-10 in
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Figure 5.6: The comparison of search effectiveness (test error of ensembles
in the y-axis) and efficiency (evaluation budget in the x-axis) between our
NESBS (MC Sampling) and NESBS (SVGD-RD) algorithm under varying
softmax temperature τ . The single best baseline refers to the single best
architecture achieving the lowest test error in the search space. Each test
error is reported with the mean and standard error of five independent
trials.

the DARTS search space with an ensemble size of n = 5. Notably, our

NESBS (SVGD-RD) with controllable diversity can consistently achieve

improved search effectiveness and efficiency than our NESBS (MC Sam-

pling). Interestingly, this improvement becomes larger in the case of

τ = 0.1,10.0, which should be the consequences of a bad exploration and

exploitation achieved by our NESBS (MC Sampling), respectively. These

results therefore suggest that the controllable diversity in our SVGD-RD

generally can lead to improved search effectiveness and efficiency than

our NESBS (MC Sampling).

We further provide the comparison of ensemble test error achieved

by our SVGD-RD with varying δ under different softmax temperature

τ in Figure 5.7. Notably, when the posterior distribution tends to be

flatter (i.e., τ = 10), a smaller δ is preferred by our SVGD-RD in order

to sample architectures with better single-model performances while

maintaining the compelling diverse model predictions. Meanwhile, when

this posterior distribution tends to be sharper (i.e., τ = 0.1), a larger

δ is preferred by our SVGD-RD in order to sample architectures with
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Figure 5.7: The comparison of ensemble test error achieved by our NESBS
(SVGD-RD) algorithm with varying δ under different softmax tempera-
ture τ given an ensemble size of n = 5. We use δ∗ to denote the optimal δ
we obtained in our SVGD-RD algorithm under different temperature τ .
The test error for each δ is reported with the mean and standard error of
five independent trials.

a larger diverse model predictions while preserving the competitive

single-model performances. Based on this controllable diversity and

hence the controllable trade-off between the single-model performances

and the diverse model predictions, our SVGD-RD is thus capable of

achieving comparable performances under varying τ , which usually

improve over our NESBS (MC Sampling) by comparing them with the

results in Figure 5.6. These results further validate the advantages of the

controllable diversity in our SVGD-RD.

5.6 Conclusion

This work presents a novel neural ensemble search algorithms, called

NESBS, that can effectively and efficiently select well-performing neural

network ensembles with diverse architectures from a NAS search space.

Our extensive experiments have shown that NESBS is able to achieve

improved performances while preserving a comparable search cost com-

pared with conventional NAS algorithms. Moreover, even compared

with other ensemble (search) baselines (e.g., DeepEns and NES-RS), our
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NESBS is also capable of enjoying boosted search effectiveness and effi-

ciency, which further suggests the superior performance of our NESBS in

practice.
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Chapter 6

NASI: Label- and Data-agnostic

Neural Architecture Search at

Initialization

This chapter is based on the following work published at ICLR 2022:

Shu, Y., Cai, S., Dai, Z., Ooi, B. C., & Low, B. K. H. (2022). NASI: Label-

and Data-agnostic Neural Architecture Search at Initialization. In Proc.

ICLR-22.

6.1 Introduction

The past decade has witnessed the wide success of deep neural networks

(DNNs) in computer vision and natural language processing. These

DNNs, e.g., VGG (Simonyan and Zisserman, 2015), ResNet (He et al.,

2016), and MobileNet (Howard et al., 2017), are typically handcrafted

by human experts with considerable trials and errors. The human efforts

devoting to the design of these DNNs are, however, not affordable nor

scalable due to an increasing demand of customizing DNNs for different
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tasks. To reduce such human efforts, Neural Architecture Search (NAS)

(Zoph and Le, 2017) has recently been introduced to automate the design

of DNNs. As summarized in (Elsken et al., 2019a), NAS conventionally

consists of a search space, a search algorithm, and a performance evalua-

tion. Specifically, the search algorithm aims to select the best-performing

neural architecture from the search space based on its evaluated per-

formance via performance evaluation. In the literature, various search

algorithms (Luo et al., 2018a; Zoph et al., 2018; Real et al., 2019b) have

been proposed to search for architectures with comparable or even better

performance than the handcrafted ones.

However, these NAS algorithms are inefficient due to the requirement

of model training for numerous candidate architectures during the search

process. To improve the search inefficiency, one-shot NAS algorithms

(Dong and Yang, 2019b; Pham et al., 2018; Liu et al., 2019; Xie et al.,

2019b) have trained a single one-shot architecture and then evaluated the

performance of candidate architectures with model parameters inherited

from this fine-tuned one-shot architecture. So, these algorithms can

considerably reduce the cost of model training, but still require the

training of the one-shot architecture. This naturally leads to the question

whether NAS is realizable at initialization such that model training can be

completely avoided during the search process? To the best of our knowledge,

only a few efforts to date have been devoted to developing NAS algorithms

without model training empirically (Mellor et al., 2020a; Park et al., 2020;

Abdelfattah et al., 2021; Chen et al., 2021).

This work presents a novel NAS algorithm called NAS at Initialization

(NASI) that can completely avoid model training to boost search efficiency.

To achieve this, NASI exploits the capability of a Neural Tangent Kernel

(NTK) (Jacot et al., 2018; Lee et al., 2019a) in being able to formally char-
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acterize the performance of infinite-wide DNNs at initialization, hence

allowing the performance of candidate architectures to be estimated and

realizing NAS at initialization. Specifically, given the estimated perfor-

mance of candidate architectures by NTK, NAS can be reformulated into

an optimization problem without model training (Sec. 6.2.1). However,

NTK is prohibitively costly to evaluate. Fortunately, we can approximate

it1 with a similar form to gradient flow (Wang et al., 2020b) (Sec. 6.2.2).

This results in a reformulated NAS problem that can be solved efficiently

by a gradient-based algorithm via additional relaxation with Gumbel-

Softmax (Jang et al., 2017; Maddison et al., 2017) (Sec. 6.2.3). Interest-

ingly, NASI is shown to be label- and data-agnostic under mild conditions,

which thus implies the transferability of architectures selected by NASI

over different datasets (Sec. 6.3).

We will firstly empirically demonstrate the improved search efficiency

and the competitive search effectiveness achieved by NASI in NAS-Bench-

1Shot1 (Zela et al., 2020b) (Sec. 6.5.1). Compared with other NAS al-

gorithms, NASI incurs the smallest search cost while preserving the

competitive performance of its selected architectures. Meanwhile, the

architectures selected by NASI from the DARTS (Liu et al., 2019) search

space over CIFAR-10 consistently enjoy the competitive or even outper-

formed performance when evaluated on different benchmark datasets,

e.g., CIFAR-10/100 and ImageNet (Sec. 6.5.3), indicating the guaran-

teed transferability of architectures selected by our NASI. In Sec. 6.5.4,

NASI is further demonstrated to be able to select well-performing ar-

chitectures on CIFAR-10 even with randomly generated labels or data,

which strongly supports the label- and data-agnostic search and also the

guaranteed transferability achieved by our NASI.

1More precisely, we approximate the trace norm of NTK.
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6.2 Neural Architecture Search at Initialization

6.2.1 Reformulating NAS via NTK

Given a loss function L and model parameters θ(A) of architecture A,

we denote the training and validation loss as Ltrain and Lval, respectively.

NAS is conventionally formulated as a bi-level optimization problem (Liu

et al., 2019):

minALval(θ∗(A);A)

s.t. θ∗(A) ≜ argminθ(A)Ltrain(θ(A);A) .
(6.1)

Notably, model training is required to evaluate the validation perfor-

mance of each candidate architecture in (6.1). The search efficiency of

NAS algorithms (Real et al., 2019b; Zoph et al., 2018) based on (6.1) is

thus severely limited by the cost of model training for each candidate

architecture. Though recent works (Pham et al., 2018) have consider-

ably reduced this training cost by introducing a one-shot architecture for

model parameter sharing, such a one-shot architecture requires training

and hence incurs the training cost.

To completely avoid this training cost, we exploit the capability

of NTK for characterizing the performance of DNNs at initialization.

Specifically, Sec. 2.4 has revealed that the training dynamics of an over-

parameterized DNN can be governed by its linearization at initialization.

With the MSE loss, the training dynamics of such linearization are further

determined by its constant NTK. Therefore, the training dynamics and

hence the performance of a DNN can be characterized by the constant

NTK of its linearization. However, this constant NTK is computation-

ally costly to evaluate. To this end, we instead characterize the training

dynamics (i.e., MSE) of DNNs in Proposition 6.1 using the trace norm
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of NTK at initialization, which can be efficiently approximated. For

simplicity, we use this MSE loss in our analysis. Other widely adopted

loss functions (e.g., cross entropy with softmax) can also be applied, as

supported in our experiments. Note that throughout this work, the pa-

rameterization and initialization of DNNs follow that of Jacot et al. (2018).

For a L-layer DNN, we denote the output dimension of its hidden layers

and the last layer as n1 = · · · = nL−1 = k and nL = n, respectively.

Proposition 6.1. Suppose that ∥x∥2 ≤ 1 for all x ∈ X and Y ∈ [0,1]mn for

a given dataset (X ,Y ) of size |X | = m, a given L-layer neural architecture A

outputs ft ∈ [0,1]mn as predicted labels of Y with the corresponding MSE loss

Lt, λmin(Θ0) > 0 for the given NTK Θ0 w.r.t. ft at initialization, and gradient

descent (or gradient flow) is applied with learning rate η < λ−1
max(Θ0). Then,

for any t ≥ 0, there exists a constant c0 > 0 such that as k→∞,

Lt ≤mn2(1− ηλ(Θ0))q + ϵ

with probability arbitrarily close to 1 where q is set to 2t if t < 0.5, and 1

otherwise, λ(Θ0) ≜ (mn)−1∑mn
i=1λi(Θ0), and ϵ ≜ 2c0

√
n/(mk)

(
1 + c0

√
1/k

)
.

Its proof is in Appendix C.1.3. Proposition 6.1 implies that NAS can

be realizable at initialization. Specifically, given a fixed and sufficiently

large training budget t, in order to select the best-performing architecture,

we can simply minimize the upper bound of Lt in (6.1) over all the

candidate architectures in the search space. Here, Lt can be applied to

approximated Lval since both strong theoretical (Mohri et al., 2018) and

empirical (Hardt et al., 2016) justifications in the literature have shown

that training and validation loss are generally highly related. Hence, (6.1)
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can be reformulated as

minA mn2(1− ηλ(Θ0(A))) + ϵ s.t. λ(Θ0(A)) < η−1. (6.2)

Note that the constraint in (6.2) is derived from the condition η < λ−1
max(Θ0(A))

in Proposition 6.1, and η and ϵ are typically constants2 during the search

process. Following the definition of trace norm, (6.2) can be further

reduced into

maxA
∥∥∥Θ0(A)

∥∥∥
tr

s.t.
∥∥∥Θ0(A)

∥∥∥
tr
< mnη−1 . (6.3)

Notably, Θ0(A) only relies on the initialization ofA. So, no model training

is required in optimizing (6.3), which achieves our objective of realizing

NAS at initialization.

Furthermore, (6.3) suggests an interesting interpretation of NAS: NAS

intends to select architectures with a good trade-off between their model

complexity and the optimization behavior in their model training. Par-

ticularly, architectures containing more model parameters will usually

achieve a larger ∥Θ0(A)∥tr according to the definition in (2.9), which hence

provides an alternative to measuring the complexity of architectures. So,

maximizing ∥Θ0(A)∥tr leads to architectures with large complexity and

therefore strong representation power. On the other hand, the complex-

ity of the selected architectures is limited by the constraint in (6.3) to

ensure a well-behaved optimization with a large learning rate η in their

model training. By combining these two effects, the optimization of (6.3)

naturally trades off between the complexity of the selected architectures

and the optimization behavior in their model training for the best perfor-

2The same learning rate is shared among all candidate architectures in the search
space for their model training during the search process in conventional NAS algorithms
such as in (Liu et al., 2019).
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mance. Sec. 6.6.1 will validate such trade-off. Interestingly, Chen et al.

(2021) have revealed a similar insight of NAS to us.

6.2.2 Approximating the Trace Norm of NTK

The optimization of our reformulated NAS in (6.3) requires the evaluation

of ∥Θ0(A)∥tr for each architecture A in the search space, which can be

obtained by

∥∥∥Θ0(A)
∥∥∥

tr
=

∑
x∈X

∥∥∥∇θ0(A)f (x,θ0(A))
∥∥∥2

F
, (6.4)

where ∥ · ∥F denotes the Frobenius norm. However, the Frobenius norm

of the Jacobian matrix in (6.4) is costly to evaluate. So, we propose to

approximate this term. Specifically, given a γ-Lipschitz continuous loss

function3 Lx (i.e.,
∥∥∥∇f Lx∥∥∥2

≤ γ for all x ∈ X ),

γ−1
∥∥∥∇θ0(A)Lx

∥∥∥
2

= γ−1
∥∥∥∇f L⊤x ∇θ0(A)f (x,θ0(A))

∥∥∥
2
≤

∥∥∥∇θ0(A)f (x,θ0(A))
∥∥∥

F
.

(6.5)

The Frobenius norm
∥∥∥∇θ0(A)f (x,θ0(A))

∥∥∥
F

can therefore be approximated

efficiently by its lower bound given in (6.5) through automatic differenti-

ation (Baydin et al., 2017).

Meanwhile, the evaluation of ∥Θ0(A)∥tr in (6.4) requires iterating over

the entire dataset of size m, which incurs O(m) time. Fortunately, this

incurred time can be reduced by parallelization over mini-batches. Let

the set Xj denote the input feature vectors of the j-th randomly sampled

3The γ-Lipschitz continuity is satisfied by widely adopted loss functions, as ex-
plained in Appendix C.1.3.
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mini-batch of size |Xj | = b. By combining (6.4) and (6.5),

∥∥∥Θ0(A)
∥∥∥

tr
≥ γ−1∑

x∈X
∥∥∥∇θ0(A)Lx

∥∥∥2
2
≥ bγ−1∑m/b

j=1

∥∥∥∥b−1∑
x∈Xj ∇θ0(A)Lx

∥∥∥∥2

2
,

(6.6)

where the last inequality follows from Jensen’s inequality. Note that (6.6)

provides an approximation of ∥Θ0(A)∥tr incurring O(m/b) time because

the gradients within a mini-batch can be evaluated in parallel. Moreover,

we further approximate the summation over m/b mini-batches in (6.6) by

one single uniformly randomly sampled mini-batch Xj . Formally, under

the definition of ∥Θ̃0(A)∥tr ≜ ∥b−1∑
x∈Xj ∇θ0(A)Lx∥22 , our final approxima-

tion of ∥Θ0(A)∥tr becomes

∥Θ0(A)∥tr ≈mγ−1∥Θ̃0(A)∥tr . (6.7)

This final approximation incurs only O(1) time and can effectively char-

acterize the performance of neural architectures, as demonstrated in our

experiments. Interestingly, a similar form called gradient flow (Wang

et al., 2020b) has also been applied in network pruning at initialization.

6.2.3 Optimization and Search Algorithm

The approximation of ∥Θ0(A)∥tr in Sec. 6.2.2 engenders an efficient op-

timization of our reformulated NAS in (6.3): Firstly, we apply a penalty

method to transform (6.3) into an unconstrained optimization prob-

lem. Given a penalty coefficient µ and an exterior penalty function

F(x) ≜ max(0,x) with a pre-defined constant ν ≜ γnη−1, and a randomly

sampled mini-batch Xj , by replacing ∥Θ0(A)∥tr with the approximation
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in (6.7), our reformulated NAS problem (6.3) can be transformed into

maxA
[
∥Θ̃0(A)∥tr −µF(∥Θ̃0(A)∥tr − ν)

]
. (6.8)

Interestingly, (6.8) implies that the complexity of the final selected archi-

tectures is limited by not only the constraint ν (discussed in Sec. 6.2.1) but

also the penalty coefficient µ: For a fixed constant ν, a larger µ imposes a

stricter limitation on the complexity of architectures (i.e., ∥Θ̃0(A)∥tr < ν)

in the optimization of (6.8).

The optimization of (6.8) in the discrete search space, however, is in-

tractable. So, we apply some optimization tricks to simplify it: Following

that of Pham et al. (2018); Liu et al. (2019); Xie et al. (2019b), we repre-

sent the search space as an one-shot architecture such that the candidate

architectures are subgraphs of this one-shot architecture. Next, instead

of optimizing (6.8), we introduce a distribution pα(A) (parameterized

by α) over the candidate architectures in this search space like that in

(Zoph and Le, 2017; Pham et al., 2018; Xie et al., 2019b), and optimize

the expected performance of architectures sampled from pα(A):

maxαEA∼pα(A)

[
R(A)

]
s.t.R(A) ≜ ∥Θ̃0(A)∥tr −µF(∥Θ̃0(A)∥tr − ν) . (6.9)

Then, we apply Gumbel-Softmax (Jang et al., 2017; Maddison et al., 2017)

to relax the optimization of (6.9) to be continuous and differentiable using

the reparameterization trick. Specifically, for a given α, to sample an

architecture A, we simply have to sample g from p(g) = Gumbel(0,1) and

then determineA using α and g (more details in Sec. 6.4.3). Consequently,

(6.9) can be transformed into

maxαEg∼p(g)

[
R(A(α,g))

]
. (6.10)
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After that, we approximate (6.10) based on its first-order Taylor expan-

sion at initialization such that it can be optimized efficiently through a

gradient-based algorithm. In particular, given the first-order approxima-

tion within the ξ-neighborhood of initialization α0 (i.e., ∥∆∥2 ≤ ξ):

Eg∼p(g)

[
R(A(α0 +∆,g))

]
≈ Eg∼p(g)

[
R(A(α0,g)) +∇α0

R(A(α0,g))⊤∆
]
,

(6.11)

the maximum of (6.11) is achieved when

∆∗ = argmax
∥∆∥2≤ξ

Eg∼p(g)

[
∇α0

R(A(α0,g))⊤∆
]

= ξEg∼p(g)

 ∇α0
R(A(α0,g))∥∥∥Eg∼p(g)[∇α0

R(A(α0,g))]
∥∥∥

2

 .
(6.12)

The closed-form solution in (6.12) follows from the definition of dual

norm and requires only a one-step optimization, i.e., without the iterative

update of ∆. Similar one-step optimizations have also been adopted by

other works (Goodfellow et al., 2015; Wang et al., 2020b).

Unfortunately, the expectation in (6.12) makes the evaluation of ∆∗

intractable. Monte Carlo sampling is thus applied to estimate ∆∗ effi-

ciently: Given T sequentially sampled g (i.e., g1, . . . ,gT ) and let Gi ≜

∇α0
R(A(α0,gi)), ∆∗ can be approximated as

∆∗ ≈ ξ
T

T∑
t=1

Gt

max(∥G1∥2, . . . ,∥Gt∥2)
. (6.13)

Note that the expectation
∥∥∥Eg∼p(g)[∇α0

R(A(α0,g))]
∥∥∥

2
in (6.12) has been

approximated by max(∥G1∥2, . . . ,∥Gt∥2) in (6.13) for the sample of g at

time t, which is somehow inspired by AMSGrad (Reddi et al., 2018).

Interestingly, this approximation is non-decreasing in t and therefore

achieves a similar effect of learning rate decay, which may lead to a better-

behaved optimization of ∆∗. With the optimal ∆∗ and α∗ = α0 +∆∗, the
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Algorithm 6.1 NAS at Initialization (NASI)

1: Input: dataset D ≜ (X ,Y ), batch size b, steps T , penalty coefficient µ,
constraint constant ν, initialized model parameters θ0 for one-shot
architecture and distribution pα0

(A) with initialization α0 = 0, set
ξ = 1

2: for step t = 1, . . . ,T do
3: Sample data Dt ∼ D of size b
4: Sample gt ∼ p(g) = Gumbel(0,1) and determine sampled architec-

ture At based on α0, gt
5: Evaluate gradient Gt = ∇α0

R(At) with data Dt
6: Estimate ∆∗ with (6.13) and get α∗ = α0 +∆∗

7: Select architecture A∗ = argmaxApα∗(A)

final architecture can then be selected as A∗ ≜ argmaxApα∗(A), which

completes our NAS at Initialization (NASI) algorithm detailed in Algo-

rithm 6.1. Interestingly, this simple and efficient solution in (6.13) can

already allow us to select architectures with competitive performances,

as shown in our experiments (Sec. 6.5).

6.3 Label- and Data-agnostic Search of NASI

Besides the improved search efficiency by completely avoiding model

training during the search, NASI can even guarantee the transferability of

its selected architectures with its provable label- and data-agnostic search

under mild conditions shown in Sec. 6.3.1 and Sec. 6.3.2, respectively.

Particularly, with such provable label- and data-agnostic search, the final

selected architectures by NASI on a proxy dataset are also likely to be se-

lected and hence guaranteed to perform well on the target datasets under

aforementioned mild conditions. So, the transferability of architectures

selected via such label- and data-agnostic search can be guaranteed, as

validated in Sec. 6.5 empirically.

104



6.3. LABEL- AND DATA-AGNOSTIC SEARCH OF NASI

1 2 3
1e3

1

2

3

Ap
pr

ox
 w

/ R
an

do
m

 L
ab

els

1e3

½=1:00

Search Space 1

2 4 6

Approx w/ True Labels
1e3

2

4

6

8
1e3

½=1:00

Search Space 2

2 4
1e5

2

4

1e5

½=1:00

Search Space 3

2 4 6
1e3

1

2

Ap
pr

ox
 w

/ R
an

do
m

 D
at

a 1e3

½=0:94

Search Space 1

0.5 1.0 1.5

Approx w/ True Data
1e4

2

4

6

1e3

½=0:95

Search Space 2

2.5 5.0 7.5
1e5

1

2

3

4
1e5

½=0:94

Search Space 3

(a) Label-agnostic (b) Data-agnostic

Figure 6.1: Comparison of the approximated ∥Θ0(A)∥tr following (6.7)
in the three search spaces of NAS-Bench-1Shot1 (Zela et al., 2020b) on
CIFAR-10 (a) between random vs. true labels, and (b) between random
vs. true data. Each pair (x,y) denotes the approximation of one candidate
architecture in the search space with true vs. random labels (or data),
respectively. The trends of these approximations are further illustrated
by the lines in orange. In addition, Pearson correlation coefficient ρ of
the approximations with random vs. true labels (or data) is given in the
corner.

6.3.1 Label-Agnostic Search

Our reformulated NAS problem (6.3) explicitly reveals that it can be

optimized without the need of the labels from a dataset. Though the

approximation of ∥Θ0(A)∥tr in (6.7) seemingly depends on the labels,

(6.7) can, however, be derived using random labels. This is because the

Lipschitz continuity assumption on the loss function required by (6.5),

which is necessary for the derivation of (6.7), remains satisfied when

random labels are used. So, the approximation in (6.7) (and hence our

optimization objective (6.8) that is based on this approximation) is label-

agnostic, which justifies the label-agnostic nature of NASI. Interestingly,

NAS algorithms with a similar label-agnostic search have already been

developed in (Liu et al., 2020), which further implies the reasonableness

of such label-agnostic search.

The label-agnostic approximation of ∥Θ0(A)∥tr is demonstrated in

Fig. 6.1a using the three search spaces of NAS-Bench-1Shot1 with ran-

domly selected labels. According to Fig. 6.1a, the large Pearson corre-

lation coefficient (i.e., ρ ≈ 1) implies a strong correlation between the

approximations with random vs. true labels, which consequently val-
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idates the label-agnostic approximation of ∥Θ0(A)∥tr. Overall, these

empirical observations have verified that the approximation of ∥Θ0(A)∥tr

and hence NASI based on the optimization over this approximation are

label-agnostic, which will be further validated empirically in Sec. 6.5.4.

6.3.2 Data-Agnostic Search

Besides being label-agnostic, NASI is also guaranteed to be data-agnostic.

To justify this, we prove in Proposition 6.2 (following from the notations

in Sec. 6.2.1) below that ∥Θ0(A)∥tr is data-agnostic under mild conditions.

Proposition 6.2. Suppose that x ∈ Rn0 and ∥x∥2 ≤ 1 for all x ∈ X given

a dataset (X ,Y ) of size |X | = m, a given L-layer neural architecture A is

randomly initialized, and the γ-Lipschitz continuous nonlinearity σ satisfies

|σ (x)| ≤ |x|. Then, for any two data distributions P (x) and Q(x), denote

Z ≜
∫
∥P (x)−Q(x)∥dx, as n1, . . . ,nL−1→∞ sequentially,

(mn)−1
∣∣∣∣∥∥∥Θ0(A;P )∥tr − ∥Θ0(A;Q)

∥∥∥
tr

∣∣∣∣ ≤ n−1
0 ZD(γ)

with probability arbitrarily close to 1. D(γ) is set to L if γ = 1, and (1 −

γ2L)/(1−γ2) otherwise.

Its proof is in Appendix C.1.4. Proposition 6.2 reveals that for any

neural architecture A, ∥Θ0(A)∥tr is data-agnostic if either one of the

following conditions is satisfied: (a) Different datasets achieve a small Z

or (b) the input dimension n0 is large. Interestingly, these two conditions

required by the data-agnostic ∥Θ0(A)∥tr can be well-satisfied in practice.

Firstly, we always have Z < 2 according to the property of probability

distributions. Moreover, many real-world datasets are of high dimensions

such as ∼103 for CIFAR-10 (Krizhevsky et al., 2009) and ∼105 for COCO
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(Lin et al., 2014). Since ∥Θ0(A)∥tr under such mild conditions is data-

agnostic, NASI using ∥Θ0(A)∥tr as the optimization objective in (6.3) is

also data-agnostic.

While ∥Θ0(A)∥tr is costly to evaluate, we demonstrate in Fig. 6.1b that

the approximated ∥Θ0(A)∥tr in (6.7) is also data-agnostic using random

data following the standard Gaussian distribution. Similar to the results

using true vs. random labels in Fig. 6.1a, the approximated ∥Θ0(A)∥tr

using random vs. true data are also highly correlated with a large Pearson

correlation coefficient (i.e., ρ > 0.9). Interestingly, the correlation here

is slightly smaller than the label-agnostic approximations in Fig. 6.1a,

which implies that the approximated ∥Θ0(A)∥tr is more agnostic to the

labels than data. Based on these results, the approximated ∥Θ0(A)∥tr is

guaranteed to be data-agnostic. So, NASI based on the optimization over

such a data-agnostic approximation is also data-agnostic, which will be

further validated empirically in Sec. 6.5.4.

6.4 Experimental Settings

6.4.1 Determination of Constraint ν and Penalty Coeffi-

cient µ

As demonstrated in Sec. 6.2.1, constraint ν (derived from ∥Θ0(A)∥tr <

mnη−1 in (6.3)) introduces a trade-off between the complexity of final

selected architectures and the optimization behavior in their model train-

ing. This constraint ν hence is of great importance to our NASI algorithm.

Though ν has already been pre-defined as ν ≜ γnη−1 in Sec. 6.2.3, we still

tend to take it as a hyper-parameter to be determined for the selection

of best-performing architectures in practice. Specifically, in this work,
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two methods are adopted to determine ν during the search progress: The

fixed and adaptive method shown as below. Notably, the final archi-

tectures selected by NASI via the fixed and adaptive method are called

NASI-FIX and NASI-ADA, respectively. Note that our experiments in

the main text suggest that both methods can select architectures with

competitive generalization performance over different tasks.

The fixed determination. We initialize and fix ν with ν0 during the

whole search process. Hence, ν0 is required to provide a good trade-off be-

tween the complexity of architectures and their optimization behavior in

the search space. Intuitively, the expectation of architecture complexity in

the search space can help to select architectures with medium complexity

and hence implicitly achieve a good trade-off between the complexity of

architectures and their optimization behavior. Specifically, we randomly

sample N = 50 architectures in the search space (i.e., A1, · · · ,AN ), and

then determine ν0 before the search process by

ν = ν0 = N−1
N∑
i

∥Θ̃0(Ai)∥tr . (6.14)

Note that we can further enlarge ν0 in practice to encourage the selection

of architectures with larger complexity.

The adaptive determination. We initialize ν with a relatively large ν0

and then adaptively update it with the expected ∥Θ̃0(A)∥tr of sampled

architectures during the search process. Specifically, with sampled archi-

tectures A1, · · · ,At in the history, ν at time t (i.e., νt) during the search
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process is given by

νt = t−1

ν0 +
t−1∑
τ=1

∥Θ̃0(Aτ )∥tr

 . (6.15)

We apply a relatively large ν0 to ensure a loose constraint on the complex-

ity of architectures in the first several steps of the search process. Note

that the adaptive determination provides a more accurate approximation

of the expected complexity of architectures in the search space than the

fixed determination method if more architectures are sampled to update

νt, i.e., t > N .

Note that (6.8) in Sec. 6.2.3 further reveals the limitation on the com-

plexity of final selected architectures by the penalty coefficient µ. Par-

ticularly, µ=0 indicates no limitation on the complexity of architectures.

Following from the introduced trade-off between the complexity of fi-

nal selected architectures and the optimization behavior in their model

training by the constraint ν, for a search space with relatively larger-

complexity architectures, a larger penalty coefficient µ (i.e., µ = 2) is

preferred to search for architectures with relatively smaller complexity

to ensure a well-behaved optimization with a larger learning rate η. On

the contrary, for a search space with relatively smaller-complexity ar-

chitectures, a lower penalty coefficient µ (i.e., µ=1) is adopted to ensure

the complexity and hence the representation power of the final selected

architectures. Sec. 6.6.4 provides further ablation study on the constraint

ν and the penalty coefficient µ.

6.4.2 The DARTS Search Space

Following from the DARTS (Liu et al., 2019) search space, candidate

architecture in our search space comprise a stack of L cells, and each
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cell can be represented as a directed acyclic graph (DAG) of N nodes

denoted by {x0,x1, . . . ,xN−1}. To select the best-performing architectures,

we instead need to select their corresponding cells, including the normal

and reduction cell. Specifically, x0 and x1 denote the input nodes, which

are the output of two preceding cells, and the output xN of a cell is the

concatenation of all intermediate nodes from x2 to xN−1. Following that

of SNAS (Xie et al., 2019b), by introducing the distribution of architecture

in the search space (i.e., pα(A) in (6.9)), each intermediate nodes xi (2 ≤

i ≤N −1) denotes the output of a single sampled operation oi ∼ pi(o) with∑
o∈O pi(o) = 1 given a single sampled input xj ∼ pi(x) with j ∈ 0, · · · , i − 1

and
∑i−1

j=0pi(xj) = 1, where O is a predefined operation set. After the

search process, only operations achieving the top-2 largest pi(o) and

inputs achieving the top-2 largest pi(x) for node xi are retained. Each

intermediate node xj hence connects to two preceding nodes with the

corresponding selected operations.

Following from DARTS, the candidate operation set O includes fol-

lowing operations: 3× 3 max pooling, 3× 3 avg pooling, identity, 3× 3

separable conv, 5× 5 separable conv, 3× 3 dilated separable conv, 5× 5

dilated separable conv. Note that our search space has been modified

slightly based on the standard DARTS (Liu et al., 2019) search space:

(a) Operation zero is removed from the candidate operation set in our

search space since it can never been selected in the standard DARTS

search space, and (b) the inputs of each intermediate node are selected

independently from the selection of operations, while DARTS attempts

to select the inputs of intermediate nodes by selecting their coupling

operations with the largest weights. Notably, following from DARTS,

we need to search for two different cells: A normal cell and a reduction

cell. Besides, a max-pooling operation in between normal and reduction
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cell is applied to down-sampling intermediate features during the search

process inspired by NAS-Bench-1Shot1 (Zela et al., 2020b).

6.4.3 Sampling Architecture with Gumbel-Softmax

Notably, aforementioned pi(o) and pi(x) for the node xi follow the categor-

ical distributions. To relax the optimization of (6.9) with such categorical

distributions to be continuous and differentiable, Gumbel-Softmax (Jang

et al., 2017; Maddison et al., 2017) is applied. Specifically, supposing pi(o)

and pi(x) are parameterized by αo
i,j and αx

i,k respectively, with Straight-

Through (ST) Gumbel Estimator (Jang et al., 2017), we can sample the

single operation and input for the node xi (2 ≤ i ≤ N − 1) during the

search process by

j∗ = argmax
j

exp((αo
i,j + goi,j)/τ)∑

j exp((αo
i,j + goi,j)/τ)

k∗ = argmax
k

exp((αx
i,k + gxi,k)/τ)∑

k exp((αx
i,k + gxi,k)/τ)

,

(6.16)

where goi,j and gxi,k are sampled from Gumbel(0, 1) and τ denotes the

softmax temperature, which is conventionally set to be 1 in our experi-

ments. Note that in (6.16), j ∈
[
0, · · · , |O| − 1

]
and k ∈ [0, · · · , i − 1], which

correspond to the |O| operations in the operation setO and the i candidate

inputs for the node xi , respectively. Notably, the gradient through ST

can be approximated by its continuous counterpart as suggested in (Jang

et al., 2017), thus allowing the continuous and differentiable optimiza-

tion of (6.9). By sampling the discrete operation and input with (6.16)

for each nodes in the cells, the final sampled architecture can hence be

determined.
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6.4.4 Evaluation on CIFAR-10/100 and ImageNet

Evaluation on CIFAR-10/100. Following DARTS (Liu et al., 2019), the

final selected architectures consist of 20 searched cells: 18 of them are

identical normal cell and 2 of them are identical reduction cell. An

auxiliary tower with weight 0.4 is located at 13-th cell of the final selected

architectures and the number of initial channels is set to be 36. The

final selected architecture are then trained via stochastic gradient descent

(SGD) of 600 epochs with a learning rate cosine scheduled from 0.025 to 0,

momentum 0.9, weight decay 3×10−4 and batch size 96 on a single Nvidia

2080Ti GPU. Cutout (Devries and Taylor, 2017), and ScheduledDropPath

linearly increased from 0 to 0.2 are also employed for regularization

purpose.

Evaluation on ImageNet. We evaluate the transferability of the selected

architectures from CIFAR-10 to ImageNet. The architecture comprises of

14 cells (12 normal cells and 2 reduction cells). To evaluate in the mobile

setting (under 600M multiply-add operations), the number of initial

channels is set to 46. We adopt conventional training enhancements (Liu

et al., 2019; Chen et al., 2019; Chen and Hsieh, 2020) include an auxiliary

tower loss of weight 0.4 and label smoothing. Following P-DARTS (Chen

et al., 2019) and SDARTS-ADV (Chen and Hsieh, 2020), we train the

model from scratch for 250 epochs with a batch size of 1024 on 8 Nvidia

2080Ti GPUs. The learning rate is warmed up to 0.5 for the first 5 epoch

and then decreased to zero linearly. We adopt the SGD optimizer with

0.9 momentum and a weight decay of 3× 10−5.
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Figure 6.2: Comparison of search efficiency (search budget in x-axis)
and effectiveness (test error evaluated on CIFAR-10 in y-axis) between
NASI and other NAS algorithms in the three search spaces of NAS-Bench-
1Shot1. The test error for each algorithm is reported with the mean and
standard error after ten independent searches.

6.5 Experiments

6.5.1 Search in NAS-Bench-1Shot1

We firstly validate the search efficiency and effectiveness of NASI in

the three search spaces of NAS-Bench-1Shot1 (Zela et al., 2020b) on

CIFAR-10. As the three search spaces are relatively small, a lower penalty

coefficient µ and a larger constraint ν (i.e., µ=1 and ν=1000) are adopted

to encourage the selection of high-complexity architectures in the opti-

mization of (6.8). Here, ν is determined adaptively as shown in Sec. 6.4.1.

Figure 6.2 shows the results comparing the efficiency and effectiveness

between NASI with a one-epoch search budget and other NAS algorithms

with a maximum search budget of 20 epochs to allow sufficient model

training during their search process. Figure 6.2 reveals that among all

these three search spaces, NASI consistently selects architectures of bet-

ter generalization performance than other NAS algorithms with a search

budget of only one epoch. Interestingly, the selected architectures by

the one-epoch NASI achieve performances that are comparable to the

best-performing NAS algorithms with 19×more search budget. Above all,

NASI guarantees its benefits of improving the search efficiency of NAS al-
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gorithms considerably without sacrificing the generalization performance

of its selected architectures.

6.5.2 Search in NAS-Bench-201

To further justify the improved search efficiency and competitive search

effectiveness of our NASI algorithm, we also compare it with other state-

of-the-art NAS algorithms in NAS-Bench-201 (Dong and Yang, 2020) on

CIFAR-10/100 (C10/100) and ImageNet-16-200 (IN-16-200) 4. Table 6.1

summarizes the comparison. Note that the baselines in Table 6.1 are

obtained from TE-NAS (Chen et al., 2021) paper. Notably, compared

with training-based NAS algorithms, our NASI algorithm can achieve

significantly improved search efficiency while maintaining a competi-

tive or even outperforming test performance. Furthermore, our NASI

algorithm is shown to be able to enjoy both improved search efficiency

and effectiveness when compared with most other training-free baselines.

Although TE-NAS, as the best-performing training-free NAS algorithm

on both CIFAR-10/100, achieves a relatively improved test accuracy than

our NASI (T ), our NASI with a search budget of T = 30s is 50× more

efficient than TE-NAS and is able to achieve compelling test performance

on all the three datasets. Moreover, by providing a larger search budget,

our NASI algorithm (i.e., NASI (4T )) can in fact achieve comparable (on

CIFAR-10/100) or even better (on ImageNet-16-120) search results with

12× lower search cost compared with TE-NAS.

4ImageNet-16-200 is a down-sampled variant of ImageNet (ImageNet16×16)
(Chrabaszcz et al., 2017)
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Table 6.1: The comparison among state-of-the-art (SOTA) NAS algo-
rithms on NAS-Bench-201. The performance of the final architectures
selected by NASI is reported with the mean and standard deviation of
four independent trials. The search costs are evaluated on a single Nvidia
1080Ti.

Architecture
Test Accuracy (%) Search Cost

(GPU Sec.)
Search Method

C10 C100 IN-16-120

ResNet (He et al., 2016) 93.97 70.86 43.63 - -

ENAS (Pham et al., 2018) 54.30 15.61 16.32 13315 RL
DARTS (1st) (Liu et al., 2019) 54.30 15.61 16.32 10890 gradient
DARTS (2nd) (Liu et al., 2019) 54.30 15.61 16.32 29902 gradient
GDAS (Dong and Yang, 2019b) 93.61±0.09 70.70±0.30 41.84±0.90 28926 gradient

NASWOT (N=10) (Mellor et al., 2020a) 92.44±1.13 68.62±2.04 41.31±4.11 3 training-free
NASWOT (N=100) (Mellor et al., 2020a) 92.81±0.99 69.48±1.70 43.10±3.16 30 training-free
NASWOT (N=1000) (Mellor et al., 2020a) 92.96±0.81 69.98±1.22 44.44±2.10 306 training-free
TE-NAS (Chen et al., 2021) 93.90±0.47 71.24±0.56 42.38±0.46 1558 training-free
KNAS (Xu et al., 2021) 93.05 68.91 34.11 4200 training-free

NASI (T ) 93.08±0.24 69.51±0.59 40.87±0.85 30 training-free
NASI (4T ) 93.55±0.10 71.20±0.14 44.84±1.41 120 training-free

6.5.3 Search in the DARTS Search Space

We then compare NASI with other NAS algorithms in a more complex

search space than NAS-Bench-1Shot1, i.e., the DARTS (Liu et al., 2019)

search space (detailed in Sec. 6.4.2). Here, NASI selects the architecture

with a search budget of T=100, batch size of b=64 and µ=2. Besides,

two different methods are applied to determine the constraint ν during

the search process: the adaptive determination with an initial value of

500 and the fixed determination with a value of 100. The final selected

architectures with adaptive and fixed ν are, respectively, called NASI-

ADA and NASI-FIX (visualized in Sec. 6.6.3), which are then evaluated

on CIFAR-10/100 (Krizhevsky et al., 2009) and ImageNet (Deng et al.,

2009) following Sec. 6.4.4.

Table 6.2 summarizes the generalization performance of the final ar-

chitectures selected by various NAS algorithms on CIFAR-10/100. Com-

pared with popular training-based NAS algorithms, NASI achieves a

substantial improvement in search efficiency and maintains a competitive

generalization performance. Even when compared with the training-free
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Table 6.2: Performance comparison among state-of-the-art (SOTA) image
classifiers on CIFAR-10/100. The performance of the final architectures
selected by NASI is reported with the mean and standard deviation of
five independent evaluations. The search costs are evaluated on a single
Nvidia 1080Ti.

Architecture
Test Error (%) Params (M) Search Cost

(GPU Hours)
Search Method

C10 C100 C10 C100

DenseNet-BC (Huang et al., 2017b) 3.46∗ 17.18∗ 25.6 25.6 - manual

NASNet-A (Zoph et al., 2018) 2.65 - 3.3 - 48000 RL
AmoebaNet-A (Real et al., 2019b) 3.34±0.06 18.93† 3.2 3.1 75600 evolution
PNAS (Liu et al., 2018) 3.41±0.09 19.53∗ 3.2 3.2 5400 SMBO
ENAS (Pham et al., 2018) 2.89 19.43∗ 4.6 4.6 12 RL
NAONet (Luo et al., 2018a) 3.53 - 3.1 - 9.6 NAO

DARTS (2nd) (Liu et al., 2019) 2.76±0.09 17.54† 3.3 3.4 24 gradient
GDAS (Dong and Yang, 2019b) 2.93 18.38 3.4 3.4 7.2 gradient
NASP (Yao et al., 2020) 2.83±0.09 - 3.3 - 2.4 gradient
P-DARTS (Chen et al., 2019) 2.50 - 3.4 - 7.2 gradient
DARTS- (avg) (Chu et al., 2020) 2.59±0.08 17.51±0.25 3.5 3.3 9.6 gradient
SDARTS-ADV (Chen and Hsieh, 2020) 2.61±0.02 - 3.3 - 31.2 gradient
R-DARTS (L2) (Zela et al., 2020a) 2.95±0.21 18.01±0.26 - - 38.4 gradient

TE-NAS♯ (Chen et al., 2021) 2.83±0.06 17.42±0.56 3.8 3.9 1.2 training-free

NASI-FIX 2.79±0.07 16.12±0.38 3.9 4.0 0.24 training-free
NASI-ADA 2.90±0.13 16.84±0.40 3.7 3.8 0.24 training-free
† Reported by Dong and Yang (2019b) with their experimental settings.
∗ Obtained by training corresponding architectures without cutout (Devries and Taylor, 2017) augmentation.
♯ Evaluated using our experimental settings in Sec. 6.4.4.

NAS algorithm (i.e., TE-NAS), NASI is also able to select competitive

or even outperformed architectures with a smaller search cost. Besides,

NASI-FIX achieves the smallest test error on CIFAR-100, which demon-

strates the transferability of the architectures selected by NASI over differ-

ent datasets. We also evaluate the performance of the final architectures

selected by NASI on ImageNet and summarize the results in Table 6.3.

Notably, NASI-FIX and NASI-ADA outperform the expert-designed ar-

chitecture ShuffleNet 2×(v2), NAS-based architecture MnasNet-92 and

DARTS by a large margin, and are even competitive with best-performing

one-shot NAS algorithm DARTS-. Notably, while achieving better general-

ization performance than TE-NAS (ImageNet), NASI (C10) is even shown

to be more efficient by directly transferring the architectures selected on

CIFAR-10 to ImageNet based on its provable transferability in Sec. 6.3.

Meanwhile, by directly searching on ImageNet, NASI-ADA (ImageNet)

is able to achieve further improved performance over NASI-ADA (C10)
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Table 6.3: Performance comparison among SOTA image classifiers on
ImageNet. Note that architectures followed by C10 are transferred from
the CIFAR-10 dataset, while architectures followed by ImageNet are
directly selected on ImageNet.

Architecture
Test Error (%) Params

(M)
+×
(M)

Search Cost
(GPU Days)Top-1 Top-5

Inception-v1 (Szegedy et al., 2015a) 30.1 10.1 6.6 1448 -
MobileNet (Howard et al., 2017) 29.4 10.5 4.2 569 -
ShuffleNet 2×(v2) (Ma et al., 2018) 25.1 7.6 7.4 591 -

NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 564 2000
AmoebaNet-A (Real et al., 2019b) 25.5 8.0 5.1 555 3150
PNAS (Liu et al., 2018) 25.8 8.1 5.1 588 225
MnasNet-92 (Tan et al., 2019b) 25.2 8.0 4.4 388 -

DARTS (Liu et al., 2019) 26.7 8.7 4.7 574 4.0
SNAS (mild) (Xie et al., 2019b) 27.3 9.2 4.3 522 1.5
GDAS (Dong and Yang, 2019b) 26.0 8.5 5.3 581 0.21
ProxylessNAS (Cai et al., 2019b) 24.9 7.5 7.1 465 8.3
P-DARTS (Chen et al., 2019) 24.4 7.4 4.9 557 0.3
DARTS- (Chu et al., 2020) 23.8 7.0 4.5 467 4.5
SDARTS-ADV (Chen and Hsieh, 2020) 25.2 7.8 5.4 594 1.3

TE-NAS (C10) (Chen et al., 2021) 26.2 8.3 5.0 - 0.05
TE-NAS (ImageNet) (Chen et al., 2021) 24.5 7.5 5.4 - 0.17

NASI-FIX (C10) 24.3 7.3 5.2 585 0.01
NASI-FIX (ImageNet) 24.4 7.4 5.5 615 0.01
NASI-ADA (C10) 25.0 7.8 4.9 559 0.01
NASI-ADA (ImageNet) 24.8 7.5 5.2 585 0.01

while the performance of NASI-FIX (ImageNet) and NASI-FIX (C10) are

quite similar.5 Above all, the results on ImageNet further confirm the

good transferability of the architectures selected by NASI to larger-scale

datasets.

6.5.4 Label- and Data-Agnostic Search

To further validate the label- and data-agnostic search achieved by our

NASI as discussed in Sec. 6.3, we compare the generalization performance

of the final architectures selected by NASI using random labels and data

on CIFAR-10. The random labels are randomly selected from all possible

5In order to maintain the same initial channels between NASI-FIX (ImageNet) and
NASI-FIX (C10), the multiply-add operations of NASI-FIX (ImageNet) has to be larger
than 600M by a small margin.
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Table 6.4: Performance comparison of architectures selected with random
or true labels/data by NASI on CIFAR-10. The standard method denotes
the search with the true labels and data of CIFAR-10 and each test error
is reported with the mean and standard deviation of five independent
searches.

Method
NAS-Bench-1Shot1

DARTS
S1 S2 S3

Standard 7.3±1.1 7.2±0.4 7.2±0.6 2.95±0.13
Random Label 6.8±0.3 7.0±0.4 7.5±1.4 2.90±0.12
Random Data 6.6±0.2 7.5±0.7 7.3±0.9 2.97±0.10

categories while the random data is i.i.d. sampled from the standard

Gaussian distribution. Both NAS-Bench-1Shot1 and the DARTS search

space are applied in this performance comparison where the same search

and training settings in Sec. 6.5.1 and Sec. 6.5.3 are adopted.

Table 6.4 summarizes the performance comparison. Interestingly,

among all the four search spaces, comparable generalization perfor-

mances are obtained on CIFAR-10 for both the architectures selected

with random labels (or data) and the ones selected with true labels and

data. These results hence confirm the label- and data-agnostic search

achieved by NASI, which therefore also further validates the transferabil-

ity of the architectures selected by NASI over different datasets.

6.6 More Results

6.6.1 Trade-off Between Model Complexity and Optimiza-

tion Behaviour

In this section, we empirically validate the existence of trade-off between

model complexity of selected architectures and the optimization behavior

in their model training for our reformulated NAS detailed in Sec. 6.2.1.
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Figure 6.3: The relation between test error and approximated ∥Θ0(A)∥tr of
candidate architectures in the three search spaces of NAS-Bench-1Shot1
over CIFAR-10. Note that x-axis denotes the approximated ∥Θ0(A)∥tr,
which is averaged over the architectures grouped in the same bin based
on their approximated ∥Θ0(A)∥tr. Correspondingly, y-axis denotes the av-
eraged test error with standard deviation (scaled by 0.5) of these grouped
architectures. In addition, the red lines demonstrate the smallest test
errors achieved by candidate architectures in these three search spaces.

The trade-off in NAS-Bench-1Shot1. Specifically, Figure 6.3 illustrates

the relation between test error and approximated ∥Θ0(A)∥tr of candidate

architectures in the three search spaces of NAS-Bench-1Shot1. Note

that with the increasing of the approximated ∥Θ0(A)∥tr, the test error

decreases rapidly to a minimum and then increase gradually, which im-

plies that architectures only with certain ∥Θ0(A)∥tr (or with desirable

complexity instead of the largest complexity) can achieve the best gen-

eralization performance. These results hence validate the existence of

trade-off between the model complexity and the generalization perfor-

mance of selected architectures. Note that such trade-off usually results

from different optimization behavior in the model training of those se-

lected architectures as demonstrated in the following experiments.

The trade-off in the DARTS search space. We then illustrate the op-

timization behavior of the final selected architecture from the DARTS

search space with different constraint and penalty coefficient in Figure 6.4

to further confirm the existence of such trade-off in our reformulated

NAS (6.3). Specifically, we apply NASI with the fixed determination of

119



6.6. MORE RESULTS

ν to select architectures in the the DARTS search space over CIFAR-10,

where ν0 in the fixed determination method introduced in Sec. 6.4.1

is modified manually for the comparison. Besides, a search budget of

T = 100 and batch size of b = 64 are adopted. These final selected archi-

tectures are then trained on CIFAR-10 following Sec. 6.5.3.

Note that, in Figure 6.4(a), with the increasing of ν, the final selected

architectures by NASI contain more parameters and hence achieve larger

complexity. Meanwhile, the final selected architecture with ν=10 enjoys

a faster convergence rate in the first 50 epochs, but a poorer general-

ization performance than the one with ν= 200. Interestingly, the final

selected architecture with ν=100 realizes the fastest convergence and

the best generalization performance by achieving a proper complexity

of final selected architectures. These results validate the existence and

also the importance of the trade-off between the complexity of final se-

lected architectures and the optimization behavior in their model training.

However, the trade-off introduced by the penalty coefficient µ shown in

Figure 6.4(b) is hard to be observed, which indicates that the constraint

ν is of greater importance than the penalty coefficient µ in terms of the

trade-off between the complexity of architectures and their optimization

behavior. Interestingly, Figure 6.4(b) can still reveal the slower conver-

gence rate and poorer generalization performance caused by the selection

of architecture with relatively larger complexity, i.e., µ=1.

6.6.2 Comparison to Other Training-Free Metrics

We compare our methods with other training-free NAS methods using

both the Spearman correlation and the Kendall’s tau between the training-

free metrics and the test accuracy on CIFAR-10 in the three search spaces

of NAS-Bench-1Shot1. We adopt one uniformly randomly sampled mini-
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Figure 6.4: The optimization behavior (test error on CIFAR-10 in model
training) of the final selected architectures with different constraint ν
and penalty coefficient µ. The model parameter (MB) denoted by p of
each architecture is given in the top-right corner.

Table 6.5: Comparison of the Spearman correlation and the Kendall’s tau
for various training-free metrics in the three search spaces of NAS-Bench-
1Shot1 on CIFAR-10.

Methods
Spearman Correlation Kendall’s Tau

S1 S2 S3 S1 S2 S3

SNIP (Lee et al., 2019b) −0.49 −0.62 −0.79 −0.39 −0.49 −0.63
GraSP (Wang et al., 2020b) 0.41 0.54 0.17 0.33 0.42 0.15
SynFlow (Tanaka et al., 2020) −0.52 −0.45 −0.53 −0.42 −0.40 −0.47
NASWOT (Mellor et al., 2020a) 0.21 0.32 0.54 0.16 0.24 0.44

NASI (conditioned) 0.62 0.74 0.76 0.44 0.53 0.53

batch data to evaluate these two correlations and apply the same imple-

mentations of these training-free NAS methods in (Abdelfattah et al.,

2021) for the comparison. Table 6.5 summarizes the comparison, where

the results of our metric are reported under the constraint in (6.3). Inter-

estingly, our metric generally achieves a higher positive correlation than

other training-free metrics, which confirms the reasonableness and also

the effectiveness of our training-free metric.

6.6.3 Architectures Selected by NASI

The final selected cells in the DARTS search space (i.e., NASI-FIX and

NASI-ADA used in Sec. 6.5.3) are illustrated in Figure 6.5, where different

operations are denoted with different colors for clarification. Interest-
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Figure 6.5: The final selected normal and reduction cells of NASI-FIX
and NASI-ADA in the reduced DARTS search space on CIFAR-10. Note
that x0,x1 denote the input nodes, x2,x3,x4,x5 denote intermediate nodes
and x6 denotes the output node as introduced in Sec. 6.4.2.
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ingly, according to the definitions and findings in (Shu et al., 2020), these

final selected cells by NASI are relatively deeper and shallower than the

ones selected by other NAS algorithms and hence may achieve worse

generalization performance. Nonetheless, in our experiments, the ar-

chitectures constructed with these cells (i.e., NASI-FIX and NASI-ADA)

achieve competitive or even better generalization performance than the

ones selected by other NAS algorithms as shown in Table 6.2 and Ta-

ble 6.3. A possible explanation is that our NASI algorithm provides a

good trade-off between the complexity of architectures and the optimiza-

tion in their model training, while other NAS algorithms implicitly prefer

architectures with smaller complexity and faster convergence rate as re-

vealed in (Shu et al., 2020). Note that the final selected cells in NASI-FIX

and NASI-ADA are of great similarity to each other, which hence implies

that the adaptive determination and the fixed determination of constraint

ν share similar effects on the selection of final architectures.

6.6.4 Ablation Studies and Discussions

The impacts of architecture width. As our theoretically grounded

performance estimation of neural architectures relies on an infinite width

assumption (i.e., n→∞ in Proposition 6.1), we investigate the impacts

of varying architecture width on the generalization performance of final

selected architectures by our NASI. We adopt the same search settings in

Sec. 6.5.1 but with a varying architecture width (i.e., a varying number of

initial channels) on CIFAR-10 for the three search spaces of NAS-Bench-

1Shot1. Table 6.6 shows results of the effectiveness of our NASI in NAS-

Bench-1Shot1 with varying architecture widths N : NASI consistently

selects well-performing architectures and a larger width (N = 32) enjoys

better search results. Hence, the infinite width assumption for NTK does
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Table 6.6: Search with varying architecture widths N in the three search
spaces of NAS-Bench-1Shot1.

Spaces N = 2 N = 4 N = 8 N = 16 N = 32

S1 7.0±0.6 8.3±1.8 8.0±2.2 7.3±1.5 6.5±0.2
S2 7.3±0.7 8.0±1.5 7.3±0.6 7.3±0.4 7.0±0.2
S3 7.6±0.8 7.7±1.1 6.8±0.1 6.8±0.3 6.4±0.2

not cause any empirical issues for our NASI.

The effectiveness of NTK trace norm approximations. Since the trace

norm of NTK is costly to evaluate, we have provided our approximation to

it in Sec. 6.2.2. In this section, we empirically validate the effectiveness of

our NTK trace norm approximation. Specifically, we evaluate the Pearson

correlation between our approximations (including the approximations

using the sum of sample gradient norm in the first inequality of (6.6)

and the approximations using mini-batch gradient norm in (6.7)) and the

exact NTK trace norm under varying batch size in the three search spaces

of NAS-Bench-1Shot1. The results are summarized in Table 6.7. The

results confirm that our approximation is reasonably good to estimate

the exact NTK trace norm of different architectures by achieving a high

Pearson correlation between our approximations and the exact NTK

trace norm. Interestingly, a larger batch size of mini-batch gradient

norm generally achieves a better approximation, and the sum of sample

gradient norm achieves the best approximation, which can be explained

by the possible approximation errors we introduced when deriving our

(6.6) and (6.7).

The impacts of batch size. Since we only adopt a mini-batch to approx-

imate the NTK trace norm shown in Sec. 6.2.2, we further examine the

impacts of varying batch size on the search results in the three search
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Table 6.7: Pearson correlation between our NTK trace norm approx-
imation and the exact NTK trace norm in the three search spaces of
NAS-Bench-1Shot1.

Spaces
Mini-batch

Sum
b = 4 b = 8 b = 16 b = 32 b = 64 b = 128

S1 0.74 0.80 0.84 0.83 0.85 0.86 0.88
S2 0.82 0.87 0.90 0.89 0.91 0.91 0.92
S3 0.66 0.74 0.81 0.79 0.82 0.84 0.87

Table 6.8: Search with varying batch sizes b in the three search spaces of
NAS-Bench-1Shot1.

Spaces b = 8 b = 16 b = 32 b = 64 b = 128

S1 6.8±0.3 6.7±0.2 6.7±0.1 6.0±0.3 7.0±0.3
S2 6.9±0.2 7.3±0.4 7.1±0.2 7.2±0.3 6.8±0.2
S3 7.0±0.3 6.6±0.2 6.7±0.2 6.6±0.1 7.1±0.2

spaces of NAS-Bench-1Shot1 in this section. Table 6.8 summarizes the

search results. Interestingly, the results show that our approximation

under varying batch sizes achieves comparable search results, further con-

firming the effectiveness of our approximations in select well-performing

architectures.

The impacts of constraint ν and penalty coefficient µ. Based on the

analysis in Sec. 6.2.3 and the results in Sec. 6.6.1, the choice of constraint

ν and penalty coefficient µ is thus non-trivial to select best-performing

architectures since they trade off the complexity of final selected archi-

tectures and the optimization in their model training. In this section,

we demonstrate their impacts on the generalization performance of the

finally selected architectures and also the effectiveness of our fixed de-

termination on the constraint ν in detail. Notably, we adopt the same

settings (including the search and training settings) as those in Sec. 6.6.1

on the DARTS search space, where ν0 in the fixed determination method
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Figure 6.6: The impacts of constraint ν and penalty coefficient µ on the
generalization performance of the final selected architectures by NASI:
(a) their joint impacts, and (b) their individual impacts.

introduced in Sec. 6.4.1 is modified manually for the comparison.

Figure 6.6 summarizes their impacts into two parts: the joint impacts

in Figure 6.6(a) and the individual impacts in Figure 6.6(b). Notably,

in both plots, with the increasing of ν or µ, the test error of the final

selected architecture by NASI gradually decreases to a minimal and then

increase steadily, hence further validating the existence of the trade-off

introduced by ν and µ. Moreover, the final selected architectures with

ν=100 significantly outperform other selected architectures. This result

thus supports the effectiveness of our fixed determination method for

ν in NASI. Interestingly, Figure 6.6(b) reveals a less obvious decreasing

trend of test error for µ compared with ν, which hence further implies

the greater importance of constraint ν than penalty coefficient µ in terms

of the generalization performance of the final selected architectures.

Therefore, in our experiments, we conventionally set penalty coefficient

µ=1 for small-complexity search spaces and µ=2 for large-complexity

search spaces as introduced in Sec. 6.4.1.

126



6.7. CONCLUSION

6.7 Conclusion

This work describes a novel NAS algorithm called NASI that exploits the

capability of NTK for estimating the performance of candidate architec-

tures at initialization. Consequently, NASI can completely avoid model

training during the search process to achieve higher search efficiency than

existing NAS algorithms. NASI can also achieve competitive generaliza-

tion performance across different search spaces and benchmark datasets.

Interestingly, NASI is guaranteed to be label- and data-agnostic under

mild conditions, which implies the transferability of the final architec-

tures selected by NASI over different datasets. With all these advantages,

NASI can thus be adopted to select well-performing architectures for

unsupervised tasks and larger-scale datasets efficiently, which to date

remains challenging to other training-based NAS algorithms. Further-

more, NASI can also be integrated into other training-based one-shot

NAS algorithms to improve their search efficiency while preserving the

search effectiveness of these training-based algorithms.
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Chapter 7

Unifying and Boosting

Gradient-based Training-Free

Neural Architecture Search

This chapter is based on the following work:

Shu, Y., Dai, Z. Wu, Z. & Low, B.K.H. (2022). Unifying and Boosting

Gradient-based Training-Free Neural Architecture Search. Under review

of NeurIPS-22.

7.1 Introduction

Recent years have witnessed a surging interest in applying deep neural

networks (DNNs) in real-world applications, e.g., machine translation

(Stahlberg, 2020), object detection (Zhao et al., 2019), among others. In

order to achieve compelling performances in these applications, many

domain-specific neural architectures have been handcrafted by human

experts with considerable efforts. However, these efforts have gradu-

ally become unaffordable due to the growing demand for customizing
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neural architectures for different tasks. To this end, neural architecture

search (NAS) (Zoph and Le, 2017) has been proposed to design neural

architectures automatically. While many training-based NAS algorithms

(Pham et al., 2018; Liu et al., 2019) have achieved state-of-the-art (SOTA)

performances in various tasks, their search costs usually are unaffordable

in resource-constrained scenarios mainly due to their requirement for

training DNNs during the search. As a result, a number of training-

free metrics have been developed to realize training-free NAS (Mellor

et al., 2020b; Chen et al., 2021). Surprisingly, these training-free NAS

algorithms are able to achieve competitive empirical performances even

compared with other training-based NAS algorithms while incurring

significantly reduced search costs. Moreover, the architectures selected

by these training-free NAS algorithms have been empirically found to

transfer well to different tasks (Chen et al., 2021; Shu et al., 2021).

Despite the impressive empirical performances of the NAS algorithms

using training-free metrics, a unified theoretical analysis of these training-

free metrics is still lacking in the literature, leading to a few significant

implications. Firstly, the theoretical relationships of these training-free

metrics are unclear, making it challenging to explain why they usually

lead to comparable empirical results (Abdelfattah et al., 2021). Secondly,

there is no theoretical guarantee for the empirically observed compelling

performances of the architectures selected by NAS algorithms using these

training-free metrics. As a consequence, the reason why NAS using these

training-free metrics works well is still not well understood, and hence

there lacks theoretical assurances for NAS practitioners when deploying

these algorithms. To the best of our knowledge, the theoretical aspect of

NAS with training-free metrics has only been preliminarily studied by

Shu et al. (2021). However, their analyses are only based on the training
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rather than generalization performances of different architectures and

are restricted to a single training-free metric. Thirdly, there may exist

untapped potential in existing training-free NAS algorithms, which prob-

ably can be unveiled through a unified theoretical understanding of their

training-free metrics.

To this end, we perform a unified theoretical analysis of gradient-based

training-free NAS to resolve all the three problems discussed above in

this work. Firstly, we theoretically prove the connections among different

gradient-based training-free metrics in Sec. 7.3.1. Secondly, based on

these provable connections, we derive a generalization bound for Deep

Neural Networks (DNNs) with these training-free metrics and then use

them to provide principled interpretations for the compelling empirical

performances of existing training-free NAS algorithms (Secs. 7.3.2 and

7.3.3). Moreover, we demonstrate that our theoretical interpretation for

training-free NAS algorithms, surprisingly, displays the same preference

of architecture topology (i.e., wide or deep) as training-based NAS al-

gorithms under certain conditions (Sec. 7.3.5), which helps to justify

the practicality of our theoretical interpretations. Thirdly, by exploit-

ing our unified theoretical analysis, we develop a novel NAS framework

named hybrid NAS (HNAS) to consistently boost existing training-free

NAS algorithms (Sec. 7.4) in a principled way. Remarkably, through a

theory-inspired combination with Bayesian optimization (BO), our HNAS

framework enjoys the advantages of both training-based (i.e., remarkable

search effectiveness) and training-free (i.e., superior search efficiency)

NAS simultaneously, making it more advanced than existing training-free

and training-based NAS algorithms. Lastly, we use extensive experiments

to verify the insights derived from our unified theoretical analysis, as

well as the search effectiveness and efficiency of our non-trivial HNAS
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framework (Sec. 7.5).

7.2 Notations and Backgrounds

7.2.1 Neural Tangent Kernel

To simplify the analysis in this work, we consider a L-layer DNN with

identical widths n1 = · · · = nL−1 = n and scalar output (i.e., nL = 1) based

on the formulation of DNNs in (Jacot et al., 2018). Let f (x,θ) be the

output of a DNN with input x ∈ Rn0 and parameters θ ∈ Rd that are

initialized using the standard normal distribution, the NTK matrix Θ ∈

Rm×m over a dataset of size m is defined as

Θ(x,x′;θ) = ∇θf (x,θ)⊤∇θf (x′,θ) . (7.1)

Jacot et al. (2018) have shown that this NTK matrix Θ will finally

converge to a deterministic form Θ∞ in the infinitely wide DNN model.

Meanwhile, Arora et al. (2019a); Allen-Zhu et al. (2019) have further

proven that a similar result, i.e., Θ ≈Θ∞, can also be achieved in over-

parameterized DNNs of finite width. Besides, Arora et al. (2019a); Lee

et al. (2019a) have revealed that the training dynamics of DNNs can be

well-characterized using this NTK matrix at initialization (i.e., Θ0 based

on the initialized model parameters θ0) under certain conditions. More

recently, Yang and Littwin (2021) have further demonstrated that these

conclusions about NTK matrix shall also hold for DNNs with any reason-

able architecture, even including recurrent neural networks (RNNs) and

graph neural networks (GNNs). Therefore, the conclusions drawn based

on the formulation above in this work shall also be applied to the NAS

search spaces with complex architectures, which we validate empirically.
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7.2.2 Gradient-based Training-free Metrics for NAS

We firstly introduce the training-free metrics that have been applied in

training-free NAS. Particularly, in this work, we focus on the study of the

training-free metrics that are based on the gradients of initialized model

parameters, namely gradient-based training-free metrics as introduced

below.

Gradient norm of initialized model parameters. While Abdelfattah

et al. (2021) are the first to apply the gradient norm of initialized model

parameters to estimate the generalization performance of candidate ar-

chitectures in the search space, the same gradient norm has also been

derived by Shu et al. (2021) for their approximation purpose. Following

the notations in Sec. 7.2, let ℓ(·, ·) be the loss function, we define this

gradient norm over dataset S = {(xi , yi)}mi=1 as

MGrad ≜

∥∥∥∥∥∥∥∥ 1
m

m∑
i=1

∇θ0
ℓ(f (xi ,θ0), yi)

∥∥∥∥∥∥∥∥
2

. (7.2)

SNIP and GraSP. While SNIP (Lee et al., 2019b) and GraSP (Wang

et al., 2020a) are originally applied in training-free network pruning,

Abdelfattah et al. (2021) borrow them into training-free NAS to esti-

mate the performance of candidate architectures without the necessity

of model training. Following the notations in Sec. 7.2, let Hi denote the

hessian matrix induced by input xi , training-free metric SNIP and GraSP
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on dataset S = {(xi , yi)}mi=1 can be defined as

MSNIP ≜

∣∣∣∣∣∣∣∣ 1
m

m∑
i

θ⊤0 ∇θ0
ℓ(f (xi ,θ0), yi)

∣∣∣∣∣∣∣∣
MGraSP ≜

∣∣∣∣∣∣∣∣ 1
m

m∑
i

θ⊤0
(
Hi∇θ0

ℓ(f (xi ,θ0), yi)
)∣∣∣∣∣∣∣∣ .

(7.3)

Trace norm of NTK matrix at initialization. Recently, Shu et al. (2021)

have reformulated the NAS problem into a constrained optimization

using the trace norm of NTK matrix at initialization. Empirical results

in (Shu et al., 2021) show that this NTK trace norm is highly correlated

to the generalization performance of candidate architectures under their

derived constraint. Let Θ0 be the NTK matrix based on initialized model

parameters θ0, without considering the constraint in (Shu et al., 2021),

we frame this training-free metric on dataset S = {(xi , yi)}mi=1 as blow using

the notations in Sec. 7.2,

MTrace ≜
√
∥Θ0∥tr/m . (7.4)

7.3 Theoretical Analyses for Training-free NAS

7.3.1 Connections among Training-free Metrics

Notably, though the gradient-based training-free metrics introduced in

Sec. 7.2.2 seem to have distinct mathematical forms, most of them will

actually achieve similar empirical performances in practice (Abdelfattah

et al., 2021). More interestingly, these metrics in fact share the sim-

ilarity of using the gradients of initialized model parameters in their

calculations. Based on these facts, we propose the following hypothesis

to explain the similar performances achieved by different training-free
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metrics in Sec. 7.2.2: The training-free metrics in Sec. 7.2.2 may be theo-

retically connected and hence could provide similar characterization for the

generalization performances of architectures. We validate this hypothesis

affirmatively and use the following theorem to establish the theoretical

connections among these metrics.

Theorem 7.1. Let the loss function ℓ(·, ·) in gradient-based training-free met-

rics be β-Lipschitz continuous and γ-Lipschitz smooth in the first argument.

There exist the constants C1,C2,C3 > 0, with a high probability,

MGrad ≤ C1MTrace, MSNIP ≤ C2MTrace, MGraSP ≤ C3MTrace .

The proof of Theorem 7.1 are given in Appendix D.1.1. Notably,

our Theorem 7.1 implies that with a high probability, architectures of

largerMGrad,MSNIP orMGrad will also achieve a largerMTrace given the

inequalities above. That is, the value of MGrad, MSNIP and MGrad for

different architectures in the NAS search space should be highly corre-

lated with the value of MTrace. As a consequence, these training-free

metrics should be able to provide similar estimation of the generalization

performances of architectures (validated in Sec. 7.5.2) and hence similar

performances can be achieved when using these metrics (validated in

Sec. 7.5.4). Overall, the training-free NAS metrics from Sec. 7.2.2 can all

be theoretically connected withMTrace despite their distinct mathemati-

cal forms. Note that though our Theorem 7.1 is only able to establish the

theoretical connections betweenMTrace and other training-free metrics,

our empirical results in Sec. 7.6.1 further reveal that any two training-free

metrics from Sec. 7.2.2 will also be highly correlated. Interestingly, these

results serve as principled justifications for the similar performances

achieved by these training-free metrics in (Abdelfattah et al., 2021).
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7.3.2 A Generalization Bound Induced by Training-free

Metrics

Let dataset S={(xi , yi)}mi=1 be randomly sampled from a distribution D,

we denote LS(·) as the training error on S and LD(·) as the correspond-

ing generalization error on D. Intuitively, a smaller generalization error

indicates a better generalization performance. Thanks to the common

theoretical underpinnings of gradient-based training-free metrics formal-

ized by Theorem 7.1, we can perform a unified generalization analysis for

DNNs in terms of these metrics by making use of the NTK theory (Jacot

et al., 2018). Define ℓ(f ,y) ≜ (f − y)2/2 and η0 ≜ min{2n−1(λmin(Θ∞) +

λmax(Θ∞))−1,mλ−1
max(Θ0)} with λmin(·),λmax(·) being the minimum and

maximum eigenvalue of a matrix respectively, we derive the following

theorem:

Theorem 7.2. Assume ∥xi∥2 ≤ 1 and f (xi ,θ0),λmin(Θ0), yi ∈ [0,1] for any

(xi , yi) ∈ S. There exists a constant N ∈ N such that for any n > N , when

applying gradient descent with learning rate η < η0, the generalization error

of ft at time t > 0 can be bounded as below with a high probability,

LD(ft) ≤ LS(ft) +O(κ/M) .

Here,M can be any metric in Sec. 7.2.2 and κ ≜ λmax(Θ0)/λmin(Θ0) is the

condition number of Θ0.

Its proof is in Appendix D.1.2 and the second term O(κ/M) in Theo-

rem 7.2 represents the generalization gap of DNN models. Notably, our

Theorem 7.2 provides an explicit theoretical connection between the

gradient-based training-free metrics from Sec. 7.2.2 and the generaliza-

tion gap of DNNs, which later serves as the foundation to theoretically
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interpret the compelling performances achieved by existing training-free

NAS algorithms (Sec. 7.3.3). Compared to the traditional Rademacher

complexity (Mohri et al., 2012), these training-free metrics provide alter-

native methods to measure the complexity of DNNs when estimating the

generalization gap of DNNs.

7.3.3 Concrete Generalization Guarantees for Training-

Free NAS

Since the first term LS(·) in our Theorem 7.2 may also depend on the

training-free metric M, it also needs to be taken into account when

analyzing the generalization performance (or generalization error LD(·))

for training-free NAS methods. To this end, in this section, we derive

concrete generalization guarantees for NAS methods using training-free

metrics by considering two different scenarios (i.e., the realizable and

non-realizable scenarios) for the training error term LS(·) in Theorem 7.2,

which finally give rise to principled interpretations for different training-

free NAS methods (Abdelfattah et al., 2021; Shu et al., 2021; Chen et al.,

2021).

The realizable scenario. Similar to (Mohri et al., 2012), we assume

that a zero training error (i.e., LS(ft) → 0 when t is sufficiently large)

can be achieved in the realizable scenario. By further assuming that

the condition number κ in Theorem 7.2 is bounded by κ0 for all candi-

date architectures in the search space, we can then derive the following

generalization guarantee (Corollary 7.1) for the realizable scenario.

Corollary 7.1. Under the conditions in Theorem 7.2, for ft at convergence

(i.e., t →∞) in the realizable scenario and for any training-free metricM
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from Sec. 7.2.2, the following holds with a high probability,

LD(ft) ≤ O(1/M) .

Corollary 7.1 is obtained by introducing LS(ft) = 0 and κ ≤ κ0 into

Theorem 7.2. Importantly, Corollary 7.1 suggests that in the realizable

scenario, the generalization error of DNNs is negatively correlated with

the metrics from Sec. 7.2.2. That is, an architecture with a larger value of

training-free metricM generally achieves a better generalization perfor-

mance. This implies that in order to select well-performing architectures,

we can simply maximize M to find A∗ = argmaxAM(A) where A de-

notes any architecture in the search space. Interestingly, this formulation

aligns with the training-free NAS method from (Abdelfattah et al., 2021),

which has made use of the metricsMGrad,MSNIP andMGraSP to achieve

good empirical performances. Therefore, our Corollary 7.1 provides a

valid generalization guarantee and also a principled justification for the

method from (Abdelfattah et al., 2021).

The non-realizable scenario. In practice, different candidate architec-

tures in a NAS search space typically have diverse non-zero training

errors (Shu et al., 2021) and κ (Chen et al., 2021). Therefore, the as-

sumptions of the zero training error and the bounded κ in the realizable

scenario above may be impractical. In light of this, we drop these two

assumptions and derive the following generalization guarantee (Corol-

lary 7.2) for the non-realizable scenario, which, interestingly, facilitates

theoretically grounded interpretations for the training-free NAS methods

from (Shu et al., 2021; Chen et al., 2021).

Corollary 7.2. Under the conditions in Theorem 7.2, for any ft at time t > 0
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and any training-free metricM from Sec. 7.2.2 in the non-realizable scenario,

there exists a constant c > 0 such that with a high probability,

LD(ft) ≤
1
2
m

(
1− ηM2/(mc)

)2t
+O(κ/M) .

Its proof is given in Appendix D.1.3. Notably, our Corollary 7.2

suggests that whenM∈ [0,
√
mc/η], an architecture with a larger value of

the metricM will lead to a better generalization performance because

such a model has both a faster convergence (i.e., the first term decreases

faster w.r.t time t) and a smaller generalization gap (i.e., the second term

is smaller). Interestingly, Shu et al. (2021) have leveraged this insight

to introduce the training-free metric ofMTrace with a constraint, which

has achieved a higher correlation with the generalization performance

of architectures than the metrics from (Abdelfattah et al., 2021). This

therefore implies that our Corollary 7.2 followed by (Shu et al., 2021)

provides a better characterization of the generalization performance of

architectures than Corollary 7.1 followed by (Abdelfattah et al., 2021)

since the non-realizable scenario we have considered will be more realistic

than the realizable scenario as explained above. Meanwhile, Corollary 7.2

also suggests that there exists a trade-off in terms of M between the

model convergence (i.e., the first term) and the generalization gap (i.e.,

the second term) whenM >
√
mc/η, which surprisingly is similar to the

empirically motivated trainability and expressivity trade-off in (Chen

et al., 2021). In addition, Corollary 7.2 also indicates that for architectures

achieving similar values ofM, the ones with smaller condition numbers

κ generally achieve better generalization performance. Interestingly,

such a result also aligns with the conclusion from (Chen et al., 2021).

Therefore, our Corollary 7.2 also provides a principled justification for
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the training-free NAS method in (Chen et al., 2021).

7.3.4 Guaranteed Transferability for Training-Free NAS

In practice, the transferability of the architectures selected by both

training-based and training-free NAS algorithms has been widely verified

empirically (Liu et al., 2019; Chen et al., 2021; Shu et al., 2021). This

naturally begs the question: Can the transferability of the architectures

selected by training-free NAS algorithms also be theoretically guaranteed? To

answer this question, we perform a unified analysis of the transferability

of the architectures selected by NAS algorithms using the training-free

metrics from Sec. 7.2.2. Let M and M′ be any the same training-free

metric from Sec. 7.2.2 that are evaluated on dataset S (sampled from

an underlying distribution D) and S ′ (sampled from a different underly-

ing D′) with empirical distribution P (x) and P ′(x), respectively. Define

Mmin ≜ min(MTrace,M′Trace) and Z ≜
∫
∥P (x)− P ′(x)∥dx, we then derive

the following theorem:

Theorem 7.3. Assume that the 1-Lipschitz continuous activation function σ

in the DNN model f satisfies |σ (x)| ≤ |x|, under the conditions in Theorem 7.2,

there exists a constant α > 0 such that as n→∞, for any ft obtained at time t >

0, the following holds with a high probability whenM′ > α(2n0Mmin)−1Z),

LD(ft) ≤ LS(ft) +O(κ/(M′ −α(2n0Mmin)−1Z)) .

Theorem 7.3 reveals that the generalization error w.r.t. an underlying

distribution D can be upper-bounded by the combination of the training

error on its empirical dataset S (i.e., LS(·)) and a generalization gap which

depends on the metricM′ evaluated using a different dataset S ′. This suggests

that an architecture selected using the training-free metric on a dataset
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Figure 7.1: Two different architecture topologies for our analysis.

S ′ is also likely to produce compelling performances on another dataset

S which may follow a different underlying distribution D. Therefore,

Theorem 7.3 provides a theoretical foundation for the transferability

of the architectures selected by NAS methods using the training-free

metrics from Sec. 7.2.2. Similar to the conclusions from (Shu et al.,

2021), Theorem 7.3 demonstrates that a smaller (2n0)−1Z leads to a better

transferability for the architectures selected by training-free NAS because

it reduces the generalization gap in Theorem 7.3. This transferability is

improved when either (a) the input dimension (i.e., n0) is large which is

satisfied by many real-world datasets (e.g., ImageNet (Deng et al., 2009))

and (b) the divergence between the datasets (i.e., Z) is small.

7.3.5 Connection to Architecture Topology

Interestingly, we can even prove that the condition number κ in our Corol-

lary 7.2 is theoretically related to the architecture topology, i.e., whether

the architecture is wide (and shallow) or deep (and narrow). Inspired by

the analysis from (Shu et al., 2020), we firstly analyze the eigenvalues of

the NTK matrices of two different architecture topologies (i.e., wide vs.

deep architectures), which gives us an insight into the difference between

their corresponding κ. We mainly consider the following wide (i.e., f )
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and deep (i.e., f ′) architecture illustrated in Figure 7.1, respectively:

f (x) = 1⊤
∑L

i=1 W(i)x , f ′(x) = 1⊤(
∏L

i=1 W(i))x (7.5)

where W(i) ∈ Rn×n for any i ∈ {1, · · · ,L} and every element of W(i) is inde-

pendently initialized using the standard normal distribution. Here, 1

denotes an n-dimensional vector with every element being one. Let Θ0

and Θ′0 be the NTK matrices of f and f ′ that are evaluated on the finite

dataset S = {(xi , yi)}mi=1, respectively, we derive the following theorem:

Theorem 7.4. Let dataset S be normalized using its statistic mean and co-

variance such that E[x] = 0 and X⊤X = I given X ≜ [x1x2 · · ·xm], we have

Θ0 = Ln · I , E
[
Θ′0

]
= LnL · I .

Its proof is in Appendix D.1.5. Notably, Theorem 7.4 shows that the

NTK matrix of the wide architecture in (7.5) is guaranteed to be a scaled

identity matrix, whereas the NTK matrix of the deep architecture in (7.5)

is a scaled identity matrix only in expectation over random initialization.

Consequently, we always have κ = 1 for the initialized wide architecture,

while κ > 1 with high probability for the initialized deep architecture.

Also note that as we have discussed in Sec. 7.3.3, our Corollary 7.2 shows

that (given similar values ofM) an architecture with a smaller κ is likely

to generalize better. Therefore, this implies that wide architectures gener-

ally achieve better generalization performance than deep architectures

(given similar values ofM). This, surprisingly, aligns with the findings

from (Shu et al., 2020) which shows that wide architectures are preferred

in training-based NAS due to their competitive performances in practice.

More interestingly, based on the definition ofMTrace (7.4), Theorem 7.4

also indicates that deep architectures are expected to have larger values
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ofMTrace (due to the larger scale of E
[
Θ′0

]
for deep architectures) and

hence achieve larger model complexities than wide architectures.

7.4 Hybrid Neural Architecture Search

7.4.1 A Unified Objective for Training-Free NAS

Our theoretical understanding of training-free NAS in Sec. 7.3 finally

allows us to address the following question in a principled way: How can

we consistently boost existing training-free NAS algorithms? Specifically, to

realize this target, we propose to select well-performing architectures by

minimizing the upper bound on the generalization error in Corollary 7.2

given any training-free metric from Sec. 7.2.2. We expect this choice to

lead to improved performances over the method from (Abdelfattah et al.,

2021) because Corollary 7.2 provides a more practical generalization

guarantee for training-free NAS than Corollary 7.1 followed by (Abdelfat-

tah et al., 2021) (Sec. 7.3.3). Formally, let A be any architecture in the

search space and letM be any training-free metric from Sec. 7.2.2, then

the NAS problem can be formulated below in a unified manner:

min
A

1
2
m

(
1−

η

mc
M2(A)

)2t
+O

(
κ(A)
M(A)

)
. (7.6)

We further reformulate (7.6) into the following form:

min
A

κ(A)/M(A) +µF(M2(A)− ν) (7.7)

where F(x) ≜ x2t, and µ and ν are hyperparameters we introduced to

absorb the impact of all other parameters in (7.6). Compared with the

diverse form of NAS objectives in (Abdelfattah et al., 2021; Chen et al.,
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Algorithm 7.1 Hybrid Neural Architecture Search (HNAS)

1: Input: Training and validation dataset, metricM evaluated on archi-
tecture pool P , and F(·)

2: for step k = 1, . . . ,K do
3: Choose µk ,νk using BO algorithm based on its exploration and

exploitation trade-off
4: Obtain the optimal candidate A∗k in P by solving (7.7)
5: Evaluate the validation performance of A∗k
6: Update the GP surrogate applied in the BO algorithm
7: Select the final architecture A∗ achieving the best validation perfor-

mance among {A∗k}
K
k=1.

2021; Shu et al., 2021), our (7.7) proposes a unified form of NAS objec-

tives for all the training-free metrics in Sec. 7.2.2, making it easier for

practitioners to deploy NAS with different training-free metrics. Note

that our NAS objective in (7.7) is a natural consequence of our generaliza-

tion guarantee in Corollary 7.2 and therefore will be more theoretically

grounded, in contrast to the empirically motivated objective in (Chen

et al., 2021). Moreover, our (7.7) advances the training-free NAS method

based onMTrace from (Shu et al., 2021), because our (7.7) (a) is derived

from the generalization error instead of the training error (that is fol-

lowed by (Shu et al., 2021)) of DNNs, which therefore will be more sound

and practical, (b) have unified all the training-free metrics from Sec. 7.2.2,

and (c) have considered the impact of condition number κ which is shown

to be critical in practice (see our Sec. 7.6.2). Above all, our unified NAS

objective in (7.7) is expected to be able to lead to improved performances

over other existing training-free NAS methods.

7.4.2 Optimization and Search Algorithm

Our theoretically motivated NAS objective in (7.7) has unified all

training-free metrics from Sec. 7.2.2 and improved over existing training-

free NAS methods. However, its practical deployment requires the de-
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termination of the hyperparameters µ and ν,1 which can be non-trivial

in practice. To this end, we further introduce Bayesian optimization (BO)

(Snoek et al., 2012) to optimize the hyperparameters µ and ν in order to

maximize the true validation performance of the architectures selected by

different µ and ν. Specifically, BO uses a Gaussian process (GP) as a surro-

gate to model the objective function (i.e., the validation performance) in

order to sequentially choose the queried inputs (i.e., the values of µ and

ν). This finally completes our theoretically grounded NAS framework

called hybrid NAS (HNAS), which novelly unifies all training-free metrics

from Sec. 7.2.2 (Algorithm 7.1). In every iteration k of HNAS, we firstly

select the optimal candidate A∗k by maximizing our training-free NAS

objective in (7.7) using the values of µ and ν queried by BO in the current

iteration. Next, we evaluate the validation performance of A∗k and then

use it to update the GP surrogate, which will be used to choose the values

of µ and ν in the next iteration. After HNAS completes, the final selected

architecture is chosen as the one achieving the best validation perfor-

mance among all the optimal candidates. Thanks to the use of validation

performance as the objective for BO, our HNAS is expected to be able to

enjoy the advantages of both training-free (i.e., superior search efficiency)

and training-based NAS (i.e., remarkable search effectiveness) as sup-

ported by our extensive empirical results in Sec. 7.5.4. More interestingly,

by novelly introducing BO to optimize the low-dimensional continuous

hyperparameters µ and ν rather than the high-dimensional discrete ar-

chitectural hyperparameters in the NAS search space, our HNAS is able

to avoid the high-dimensional discrete optimization issues that standard

BO algorithms usually attain when directly optimizing in the NAS search

space, allowing our HNAS to be more efficient and effective in practice as

1We usually set t = 1 in practice.
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Figure 7.2: Correlation betweenMTrace and other training-free metrics
from Sec. 7.2.2, which are evaluated in NAS-Bench-101/201. The correla-
tion coefficient r is given in the corner of each plot.

supported in our Sec. 7.5.4.

7.5 Experiments

7.5.1 Connections among Training-free Metrics

We firstly verify the theoretical connections betweenMTrace and other

training-free metrics from Sec. 7.2.2 by examining their Spearman cor-

relations for all architectures in NAS-Bench-101 (Ying et al., 2019) and

NAS-Bench-201 (Dong and Yang, 2020) using CIFAR-10 (Krizhevsky

et al., 2009). Figure 7.2 illustrates the result where all these training-free

metric are evaluated using a batch of randomly sampled data following

that of (Abdelfattah et al., 2021). 2 Notably, Figure 7.2 demonstrates

thatMTrace and other training-free metrics from Sec. 7.2.2 are indeed

highly correlated since they consistently achieve high positive corre-

2We follow the same approach to evaluate these training-free metrics in the following
sections.
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Table 7.1: Connection between the generalization guarantees in our
Sec.7.3.3 and the generalization performance (test error on CIFAR-10) of
architectures in NAS-Bench-101 and NAS-Bench-201.

Metric
NAS-Bench-101 NAS-Bench-201

Spearman Kendall’s Tau Spearman Kendall’s Tau

Realizable scenario
MGrad −0.25 −0.17 0.64 0.47
MSNIP −0.21 −0.15 0.64 0.47
MGraSP −0.45 −0.31 0.57 0.40
MTrace −0.30 −0.21 0.54 0.39

Non-realizable scenario
MGrad 0.35 0.23 0.75 0.56
MSNIP 0.37 0.25 0.75 0.56
MGraSP 0.46 0.32 0.69 0.50
MTrace 0.33 0.23 0.70 0.51

lations. These results thus strongly support our theoretical results in

Theorem 7.1. The correlation between any two training-free metrics from

Sec. 7.2.2 is in Sec. 7.6.1, which shows that all training-free metrics from

Sec. 7.2.2 are also highly correlated.

7.5.2 Generalization Guarantees for Training-Free NAS

We then verify the validity of our generalization guarantees for training-

free NAS (Sec. 7.3.3) by examining the correlation between the generaliza-

tion bound in the realizable (Corollary 7.1) or non-realizable (Corollary

7.2) scenario and the test errors of architectures in NAS-Bench-101/201.

Similar to HNAS (Algorithm 7.1), we use BO with hundreds of iterations

to decide the non-trivial parameters in Corollary 7.2. Table 7.1 summa-

rizes the results on CIFAR-10 where a higher positive correlation implies

a better agreement between our generalization guarantee and the gen-

eralization performance of architectures. As shown, the generalization

bound in the realizable scenario performs a compelling characterization
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Table 7.2: Comparison of topology, κ, andMTrace of different architec-
tures. The topology width/depth of an architecture is followed by the
maximum value in the search space (separated by a slash).

Architecture
Topology MTrace Condition Number

Width Depth κ

NASNet 5.0/5.0 2/6 31±2 118±41
AmoebaNet 4.0/5.0 4/6 36±2 110±39
ENAS 5.0/5.0 2/6 36±2 98±33
DARTS 3.5/4.0 3/5 33±2 122±58
SNAS 4.0/4.0 2/5 31±2 126±47

WIDE 4.0/4.0 2/5 27±1 141±36
DEEP 1.5/4.0 5/5 131±16 209±107

of the test errors in NAS-Bench-201 by achieving large positive corre-

lations, whereas it fails to provide a precise characterization in a larger

search space, i.e., NAS-Bench-101. Fortunately, our generalization bound

in the non-realizable scenario performs consistent improvement over it

by obtaining higher positive correlations. These results thus imply that

Corollary 7.1 may only provide a good characterization for training-free

NAS in small-scale search spaces, whereas our Corollary 7.2 can be more

valid and robust in practice. As a result, our (7.6) following Corollary 7.2

should indeed be able to improve over the NAS objective in (Abdelfattah

et al., 2021) following Corollary 7.1 as justified in our Sec. 7.4 above.

Meanwhile, the comparable results achieved by all training-free metrics

from Sec. 7.2.2 further validate the connections among these metrics

(Theorem 7.1). Moreover, the results in Sec. 7.6.2 further confirm the

validity and practicality of our generalization guarantees for training-free

NAS.
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7.5.3 Connection to Architecture Topology

To validate the theoretical connections between architecture topology

(wide vs. deep) and the value of training-free metricMTrace as well as

the condition number κ shown in Sec. 7.3.5, we compare the topology

width/depth,MTrace and κ of the architectures selected by different state-

of-the-art training-based NAS algorithms in the DARTS search space,

including NASNet (Zoph et al., 2018), AmoebaNet (Real et al., 2019b),

ENAS (Pham et al., 2018), DARTS (Liu et al., 2019), and SNAS (Xie

et al., 2019b). Table 7.2 summarizes the results where we apply the same

definition of topology width/depth in (Shu et al., 2020) (more details

in (Shu et al., 2020)). We also include the widest (called WIDE) and

the deepest (called DEEP) architecture in the DARTS search space into

this comparison. As shown, wide architectures (i.e., all architectures

except DEEP in Table 7.2) consistently achieve lower condition number κ

and smaller values ofMTrace than deep architecture (i.e., DEEP), which

aligns with our theoretical insights in Sec. 7.3.5.

7.5.4 Effectiveness and Efficiency of HNAS

To justify that our theoretically motivated HNAS is able to enjoy the

advantages of both training-free (i,e., the superior search efficiency) and

training-based (i.e., the remarkable search effectiveness) NAS, we com-

pare it with other baselines in NAS-Bench-201 (Table 7.3). HNAS, surpris-

ingly, advances both training-based and training-free baselines by consis-

tently selecting architectures achieving the best performances, leading to

smaller gaps toward the optimal test errors in the search space. Mean-

while, HNAS requires at most 13× lower search costs than training-based

NAS algorithms, which is even smaller than the training-free baseline
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Table 7.3: Comparison among NAS algorithms in NAS-Bench-201. The
result of HNAS is reported with the mean and standard deviation of
5 independent searches and its search costs are evaluated on a Nvidia
1080Ti. C & D in the last column denote continuous and discrete search
space, respectively.

Architecture
Test Accuracy (%)

Cost Method Applicable
C10 C100 IN-16 (GPU Sec.) Space

ResNet (He et al., 2016) 93.97 70.86 43.63 - manual -

REA† 93.92±0.30 71.84±0.99 45.15±0.89 12000 evolution C & D
RS (w/o sharing)† 93.70±0.36 71.04±1.07 44.57±1.25 12000 random C & D
REINFORCE† 93.85±0.37 71.71±1.09 45.24±1.18 12000 RL C & D
BOHB† 93.61±0.52 70.85±1.28 44.42±1.49 12000 BO+bandit C & D

ENAS‡ (Pham et al., 2018) 93.76±0.00 71.11±0.00 41.44±0.00 15120 RL C
DARTS (1st)‡ (Liu et al., 2019) 54.30±0.00 15.61±0.00 16.32±0.00 16281 gradient C
DARTS (2nd)‡ (Liu et al., 2019) 54.30±0.00 15.61±0.00 16.32±0.00 43277 gradient C
GDAS‡ (Dong and Yang, 2019b) 93.44±0.06 70.61±0.21 42.23±0.25 8640 gradient C

NASWOT (Mellor et al., 2020b) 92.96±0.81 69.98±1.22 44.44±2.10 306 training-free C & D
TE-NAS (Chen et al., 2021) 93.90±0.47 71.24±0.56 42.38±0.46 1558 training-free C
KNAS (Xu et al., 2021) 93.05 68.91 34.11 4200 training-free C & D
NASI (Shu et al., 2021) 93.55±0.10 71.20±0.14 44.84±1.41 120 training-free C

HNAS (MGrad) 94.04±0.21 71.75±1.04 45.91±0.88 3010 hybrid C & D
HNAS (MSNIP) 93.94±0.02 71.49±0.11 46.07±0.14 2976 hybrid C & D
HNAS (MGraSP) 94.13±0.13 72.59±0.82 46.24±0.38 3148 hybrid C & D
HNAS (MTrace) 94.07±0.10 72.30±0.70 45.93±0.37 3006 hybrid C & D

Optimal 94.37 73.51 47.31 - - -
† Reported by Dong and Yang (2020).
‡ Re-evaluated for 5 times using the codes provided by Dong and Yang (2020).

KNAS. Moreover, thanks to the superior evaluation efficiency of training-

free metrics, HNAS can be deployed efficiently in not only continuous

(where search space is represented as a supernet) but also discrete search

space. As for NAS under limited search budgets (Figure 7.3), HNAS

also advances all other baselines by achieving improved search efficiency

and effectiveness. Sec. 7.6.4 further includes the impressive search re-

sults achieved by HNAS on CIFAR-10/100 and ImageNet in the DARTS

search space. Overall, HNAS is indeed able to enjoy the advantages of

both training-free (i.e., the superior search efficiency) and training-based

NAS (i.e., the remarkable search effectiveness), which consistently boosts

existing training-free NAS methods.

149



7.6. MORE RESULTS

5000 10000 15000

6.0

6.5

7.0

7.5

8.0
Te

st 
Er

ro
r (

%
)

Opt

C10

5000 10000 15000
Search Budget (seconds)

28

30

32

Opt

C100

5000 10000 15000

54

56

58

60

Opt

IN-16

BOHB RANDOM REA REINFORCE GDAS ZERO-COST HNAS

Figure 7.3: Comparison between HNAS (MTrace) and other NAS baselines
in NAS-Bench-201 under varying search budgets. Here, the ZERO-COST
method is borrowed from (Abdelfattah et al., 2021) by usingMTrace and
each algorithm is reported with the mean and standard error of ten
independent searches.
Table 7.4: Connection between any two training-free metrics (i.e.,M1
andM2 in the table) from Sec. 7.2.2 in NAS-Bench-101/201. Note that
each training-free metric is evaluated using a batch of randomly sampled
data from CIFAR-10 following that of (Abdelfattah et al., 2021).

M1 M2
NAS-Bench-101 NAS-Bench-201

Pearson Spearman Kendall’s Tau Pearson Spearman Kendall’s Tau

Gradient-based training-free metrics
MGrad MSNIP 0.98 0.98 0.87 1.00 1.00 0.97
MGrad MGraSP 0.35 0.61 0.43 0.60 0.92 0.77
MGrad MTrace 0.98 0.98 0.87 0.98 0.97 0.85
MSNIP MGraSP 0.34 0.59 0.42 0.55 0.92 0.77
MSNIP MTrace 0.94 0.93 0.77 0.97 0.96 0.83
MGraSP MTrace 0.37 0.57 0.40 0.69 0.89 0.73

MKNAS MGrad 0.95 0.96 0.83 0.88 0.94 0.80
MKNAS MSNIP 0.91 0.92 0.75 0.87 0.94 0.78
MKNAS MGraSP 0.37 0.65 0.46 0.45 0.87 0.69
MKNAS MTrace 0.96 0.96 0.84 0.89 0.97 0.86

Non-gradient-based training-free metrics
MFisher MTrace 0.69 0.97 0.85 0.30 0.78 0.69
MSynFlow MTrace 0.02 0.50 0.34 0.07 0.49 0.35
MNASWOT MTrace 0.08 0.11 0.08 0.10 0.32 0.22

7.6 More Results

7.6.1 Connections among Training-Free Metrics

Besides the theoretical (Theorem 7.1) and empirical (Sec. 7.3.1) con-

nections betweenMTrace and other gradient-based training-free metrics

from Sec. 7.2.2, we further show in Table 7.4 that any two metrics from

Sec. 7.2.2 are highly correlated, i.e., they consistently achieve large posi-
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tive correlations in both NAS-Bench-101 and NAS-Bench-201. Similar

to the results in our Sec. 7.3.1, the correlation betweenMGraSP and any

other training-free metric is generally lower than other pairs, which may

result from the hessian matrix that has only been applied in MGraSP.

Furthermore, to figure out whether our Theorem 7.1 is also applicable to

non-gradient-based training-free metrics, we then provide the correlation

between MFisher (Turner et al., 2020), MSynFlow (Tanaka et al., 2020),

MNASWOT (Mellor et al., 2020b) andMTrace for a comparison. 3 Interest-

ingly, bothMFisher andMSynFlow achieve higher positive correlations with

MTrace thanMNASWOT in general. According to their mathematical forms

in the corresponding papers, such a phenomenon may result from the fact

thatMFisher andMSynFlow have contained certain gradient information

whileMNASWOT only relies on the outputs of each layer in an initialized

architecture. 4 These results therefore imply that our Theorem 7.1 may

also provide valid theoretical connections for the training-free metrics

that are not gradient-based but still contain certain gradient information.

7.6.2 Valid Generalization Guarantees for Training-Free

NAS

To further support that our Corollary 7.2 presents a more practical and

valid generalization guarantee for training-free NAS in practice, we ex-

amine the true generalization performances of all candidate architectures

under their different value of training-free metrics in Figure 7.4 (a) and

exhibit the correlation between the condition number and the true gen-

eralization performances of all candidate architectures in Figure 7.4 (b).

3Note that bothMFisher andMSynFlow are also adopted by Abdelfattah et al. (2021)
for training-free NAS.

4Since the gradient information contained inMFisher andMSynFlow is different from
the gradient of initialized model parameters from loss function or the output of a DNN,
they are not taken as the gradient-based training-free metrics in this work.
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(a) Varying architecture performances in the search space
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(b) Correlation between condition numbers and architecture performances

Figure 7.4: (a) Varying architecture performances under different value of
training-free metrics in NAS-Bench-201. Note that the x-axis denotes the
averaged value of training-free metrics over the architectures grouped in
the same bin and y-axis denoted the test error evaluated on CIFAR-10. (b)
Correlation between the condition numbers and the true generalization
performances of the architectures within the same bin (i.e., the y-axis).
Note that the x-axis denotes the corresponding 20 bins in Figure 7.4 (a).

Specifically, we group the value of training-free metrics in NAS-Bench-

201 into 20 bins and then plot the test errors on CIFAR-10 of all can-

didate architectures within the same bin into the blue vertical lines in

Figure 7.4 (a). Besides, we plot the averaged test errors over the archi-

tectures within the same bin into the black dash lines in Figure 7.4 (a).

Besides, each correlation between condition number and test error in

Figure 7.4 (b) is computed using the candidate architectures within the

same bin.

Notably, as illustrated by the black dash lines in Figure 7.4 (a), there

consistently exists a trade-off for all the training-free metrics in Sec. 7.2.2.

Specifically, there exists an optimal valueMopt for each training-free met-

ricM that is capable of achieving the best generalization performance

in the search space. WhenM <Mopt, architecture with a larger value

ofM typically enjoys a better generalization performance. On the con-

trary, whenM >Mopt, architecture with a smaller value ofM generally
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achieves a better generalization performance. Interestingly, these results

perfectly align with our Corollary 7.2. Furthermore, Figure 7.4 (b) shows

that the condition number is indeed highly correlated to the general-

ization performance of candidate architectures and a smaller condition

number is generally preferred in order to select well-performing architec-

tures in training-free NAS. More interestingly, similar phenomenons can

also be found in (Shu et al., 2021) and (Chen et al., 2021). Remarkably,

our Corollary 7.2 can provide theoretically grounded interpretations

for these results, whereas Corollary 7.1 fails to characterize these phe-

nomenons. Consequently, our Corollary 7.2 is shown to be more practical

and valid in practice.

Based on the conclusions above, we then compare the impacts of the

trade-off and condition number κ mentioned above by examining the

correlation between the true generalization performances of candidate ar-

chitectures and their training-free metrics applied in different scenarios.

Here, we use the same parameters applied in Sec. 7.5.2 for Corollary 7.2.

Table 7.5 summarizes the comparison. Note that the non-realizable sce-

nario is equivalent to the realizable scenario + trade-off + κ as suggested

by our Corollary 7.2. As revealed in Table 7.5, both trade-off and con-

dition number κ are necessary to achieve an improved characterization

of architecture performances over the one in the realizable scenario fol-

lowed by (Abdelfattah et al., 2021), which again verifies the practicality

and validity of our Corollary 7.2. More interestingly, condition number κ

is shown to be more essential than the trade-off for training-free NAS in

order to improve the correlations in the realizable scenario. By integrat-

ing both trade-off and condition number κ into the realizable scenario,

the non-realizable scenario consistently enjoys the highest correlations

on different datasets, which also further verifies the improvement of our
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Table 7.5: Correlation between the test errors of candidate architectures
in NAS-Bench-201 and their training-free metrics applied in several
different scenarios. We refer to Sec. 7.3.3 for more details about the
trade-off and condition number κ applied in the following scenarios.

Dataset Scenario
Spearman Kendall’s Tau

MGrad MSNIP MGraSP MTrace MGrad MSNIP MGraSP MTrace

C10

Realizable 0.637 0.639 0.566 0.538 0.469 0.472 0.400 0.387
Realizable + Trade-off 0.642 0.641 0.570 0.549 0.475 0.474 0.403 0.397
Realizable + κ 0.724 0.728 0.658 0.657 0.530 0.533 0.474 0.474
Non-realizable 0.750 0.748 0.686 0.697 0.559 0.556 0.501 0.512

C100

Realizable 0.638 0.638 0.571 0.535 0.473 0.475 0.409 0.385
Realizable + Trade-off 0.642 0.645 0.578 0.546 0.476 0.481 0.414 0.394
Realizable + κ 0.716 0.719 0.649 0.651 0.527 0.529 0.469 0.470
Non-realizable 0.740 0.746 0.680 0.686 0.552 0.557 0.498 0.504

IN-16

Realizable 0.578 0.578 0.550 0.486 0.430 0.433 0.397 0.354
Realizable + Trade-off 0.588 0.589 0.566 0.526 0.438 0.441 0.408 0.382
Realizable + κ 0.646 0.649 0.612 0.587 0.472 0.474 0.443 0.423
Non-realizable 0.682 0.685 0.655 0.660 0.505 0.506 0.480 0.482

training-free NAS objective (7.7) over the one used in (Abdelfattah et al.,

2021).

7.6.3 Guaranteed Transferability for Training-Free NAS

To verify our transferability guarantee for training-free NAS (Sec. 7.3.4),

we examine the deviation of the correlation between the architecture per-

formance and the generalization bounds in Sec. 7.3.3 using training-free

metrics evaluated on different datasets. That is, training-free metrics and

architecture performance can be evaluated on different datasets. Table 7.6

summarizes the results using CIFAR-10/100 (C10/100) and ImageNet-

16-120 (IN-16) (Chrabaszcz et al., 2017) in NAS-Bench-201 where we use

the same parameters as Sec. 7.5.2 for Corollary 7.2. Notably, nearly the

same correlations (i.e., with extremely small deviations) are achieved for

training-free metrics evaluated on different datasets. This implies that

the training-free metrics computed on a dataset S can also provide a good

characterization of the architecture performance evaluated on another

dataset S ′. Therefore, the architectures selected by training-free NAS al-

gorithms on S are also likely to produce a compelling performance on S ′.
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Table 7.6: Deviation of the correlation between the test errors in NAS-
Bench-201 and the generalization bounds in Sec. 7.3.3 using training-free
metrics evaluated on various datasets. Each correlation is reported with
the mean and standard deviation using the metrics evaluated on CIFAR-
10/100 and ImageNet-16-120.

Dataset
Training-free Metrics

MGrad MSNIP MGraSP MTrace

Realizable scenario
C10 0.64±0.01 0.64±0.01 0.58±0.02 0.55±0.01
C100 0.64±0.01 0.64±0.01 0.58±0.03 0.54±0.02
IN-16 0.57±0.01 0.57±0.01 0.52±0.03 0.47±0.02

Non-realizable scenario
C10 0.75±0.00 0.75±0.00 0.69±0.01 0.69±0.00
C100 0.74±0.00 0.74±0.00 0.69±0.01 0.69±0.01
IN-16 0.69±0.00 0.69±0.00 0.63±0.01 0.65±0.00

That is, the transferability of the architectures selected by training-free

NAS is guaranteed.

7.6.4 HNAS in the DARTS Search Space

To support the effectiveness and efficiency of our HNAS, we also ap-

ply HNAS in the DARTS (Liu et al., 2019) search space to find well-

performing architectures on CIFAR-10/100 and ImageNet (Deng et al.,

2009). Specifically, we sample a pool of 60000 architecture to evalu-

ate their training-free metrics on CIFAR-10 in order to maintain high

computational efficiency for these training-free metrics. For the results

on CIFAR-10/100, we then apply the BO algorithm for 25 steps with a

10-epoch model training for the selected architectures in our HNAS (Al-

gorithm 7.1). As for the results on ImageNet, we apply the BO algorithm

for 10 steps with a 3-epoch model training for the selected architectures

in our HNAS. We follow (Liu et al., 2019) to construct 20-layer final

selected architectures with an auxiliary tower of weight 0.4 for CIFAR-10
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(0.6 for CIFAR-100) located at 13-th layer and 36 initial channels. We

evaluate these architectures on CIFAR-10/100 using stochastic gradient

descent (SGD) of 600 epochs with a learning rate cosine scheduled from

0.025 to 0 for CIFAR-10 (from 0.035 to 0.001 for CIFAR-100), momentum

0.9, weight decay 3×10−4and batch size 96. Both Cutout (Devries and

Taylor, 2017), and ScheduledDropPath linearly increased from 0 to 0.2 for

CIFAR-10 (from 0 to 0.3 for CIFAR-100) are employed for regularization

purposes on CIFAR-10/100. As for the evaluation on ImageNet, we train

the 14-layer architecture from scratch for 250 epochs with a batch size

of 1024. The learning rate is warmed up to 0.7 for the first 5 epochs

and then decreased to zero with a cosine schedule. We adopt the SGD

optimizer with 0.9 momentum and a weight decay of 3×10−5.

The results on CIFAR-10/100 and ImageNet are summarized in Ta-

ble 7.7 and Table 7.8, respectively. As shown in Table 7.7, both our HNAS

(C10) and HNAS (C100) are capable of achieving state-of-the-art perfor-

mance on CIFAR-10 and CIFAR-100, correspondingly, while incurring

lower search costs than other training-based NAS algorithms. Even com-

pared with other training-free NAS baselines, e.g., TE-NAS, our HNAS

can still enjoy a compelling search cost. Overall, these results further

validate that our HNAS is indeed able to enjoy the superior search effi-

ciency of training-free NAS and also the remarkable search effectiveness

of training-based NAS. More interestingly, our HNAS (C10) can achieve

a lower test error on CIFAR-10 but a higher test error on CIFAR-100

when compared with HNAS (C100). This result indicates that similar to

training-based NAS algorithms, directly searching on the target dataset

is also able to improve the final performance in HNAS. By exploiting this

advantage over other training-free NAS baselines, our HNAS thus is ca-

pable of selecting architectures achieving higher performances, as shown
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Table 7.7: Performance comparison among state-of-the-art (SOTA) neural
architectures on CIFAR-10/100. The performance of the final architec-
tures selected by HNAS is reported with the mean and standard deviation
of five independent evaluations. The search costs are evaluated on a single
Nvidia 1080Ti. Note that HNAS (C10 or C100) denoted the architecture
selected by our HNAS using the dataset CIFAR-10 or CIFAR-100, respec-
tively.

Architecture
Test Error (%) Params (M) Search Cost

(GPU Hours)
Search Method

C10 C100 C10 C100

DenseNet-BC (Huang et al., 2017b) 3.46∗ 17.18∗ 25.6 25.6 - manual

NASNet-A (Zoph et al., 2018) 2.65 - 3.3 - 48000 RL
AmoebaNet-A (Real et al., 2019b) 3.34±0.06 18.93† 3.2 3.1 75600 evolution
PNAS (Liu et al., 2018) 3.41±0.09 19.53∗ 3.2 3.2 5400 SMBO
ENAS (Pham et al., 2018) 2.89 19.43∗ 4.6 4.6 12 RL
NAONet (Luo et al., 2018a) 3.53 - 3.1 - 9.6 NAO

DARTS (2nd) (Liu et al., 2019) 2.76±0.09 17.54† 3.3 3.4 24 gradient
GDAS (Dong and Yang, 2019b) 2.93 18.38 3.4 3.4 7.2 gradient
NASP (Yao et al., 2020) 2.83±0.09 - 3.3 - 2.4 gradient
P-DARTS (Chen et al., 2019) 2.50 - 3.4 - 7.2 gradient
DARTS- (avg) (Chu et al., 2020) 2.59±0.08 17.51±0.25 3.5 3.3 9.6 gradient
SDARTS-ADV (Chen and Hsieh, 2020) 2.61±0.02 - 3.3 - 31.2 gradient
R-DARTS (L2) (Zela et al., 2020a) 2.95±0.21 18.01±0.26 - - 38.4 gradient

TE-NAS♯ (Chen et al., 2021) 2.83±0.06 17.42±0.56 3.8 3.9 1.2 training-free
NASI-ADA Shu et al. (2021) 2.90±0.13 16.84±0.40 3.7 3.8 0.24 training-free

HNAS (C10) 2.62±0.04 17.10±0.18 3.4 3.5 2.4 hybrid
HNAS (C100) 2.78±0.05 16.29±0.14 3.7 3.8 2.7 hybrid
† Reported by Dong and Yang (2019b) with their experimental settings.
∗ Obtained by training corresponding architectures without cutout (Devries and Taylor, 2017) augmentation.
♯ Reported by Shu et al. (2021) with their experimental settings.

in Table 7.7. Similar results are also achieved on ImageNet as shown

in Table 7.8. Overall, these results have further supported the superior

search efficiency and remarkable search effectiveness of our HNAS that

we have verified in Sec. 7.5.4.

7.6.5 Ablation Studies

Ablation study on initialization method. While our theoretical analy-

ses throughout this work are based on the initialization using the standard

normal distribution (Sec. 7.2), 5 we wonder whether our theoretical results

are also applicable to DNNs using different initialization methods, e.g., Xavier

(Glorot and Bengio, 2010) and Kaiming (He et al., 2015a) initialization.

Specifically, we compare the correlation between the true generalization

5Note that this initialization is equivalent to the LeCun initialization (LeCun et al.,
2012) according to (Jacot et al., 2018).
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Table 7.8: Performance comparison among SOTA image classifiers on
ImageNet.

Architecture
Test Error (%) Params

(M)
+×
(M)

Search Cost
(GPU Days)Top-1 Top-5

Inception-v1 (Szegedy et al., 2015a) 30.1 10.1 6.6 1448 -
MobileNet (Howard et al., 2017) 29.4 10.5 4.2 569 -
ShuffleNet 2×(v2) (Ma et al., 2018) 25.1 7.6 7.4 591 -

NASNet-A (Zoph et al., 2018) 26.0 8.4 5.3 564 2000
AmoebaNet-A (Real et al., 2019b) 25.5 8.0 5.1 555 3150
PNAS (Liu et al., 2018) 25.8 8.1 5.1 588 225
MnasNet-92 (Tan et al., 2019b) 25.2 8.0 4.4 388 -

DARTS (Liu et al., 2019) 26.7 8.7 4.7 574 4.0
SNAS (mild) (Xie et al., 2019b) 27.3 9.2 4.3 522 1.5
GDAS (Dong and Yang, 2019b) 26.0 8.5 5.3 581 0.21
ProxylessNAS (Cai et al., 2019b) 24.9 7.5 7.1 465 8.3
DARTS- (Chu et al., 2020) 23.8 7.0 4.5 467 4.5
SDARTS-ADV (Chen and Hsieh, 2020) 25.2 7.8 5.4 594 1.3

TE-NAS (C10) (Chen et al., 2021) 26.2 8.3 5.0 - 0.05
TE-NAS (ImageNet) (Chen et al., 2021) 24.5 7.5 5.4 - 0.17
NASI-ADA (Shu et al., 2021) 25.0 7.8 4.9 559 0.01

HNAS (C100) 24.8 7.8 5.2 601 0.1
HNAS (ImageNet) 24.3 7.4 5.1 575 0.5

performances of all candidate architectures in NAS-Bench-201 and the

generalization guarantees in Sec. 7.3.3 that are evaluated using different

initialization methods. Table 7.9 summarizes the comparison. Here, we

use the same parameters applied in Sec. 7.5.2 for Corollary 7.2. No-

tably, Table 7.9 shows that our generalization guarantees for training-free

NAS, i.e., Corollary 7.1, 7.2, can also perform well for training-free NAS

using DNNs initialized with different methods, indicating a wider ap-

plication of our generalization guarantees in Sec. 7.3.3. Of note, LeCun

initialization can achieve the best results among the three initialization

methods in Table 7.9 since it satisfies our assumption about the initializa-

tion of DNNs. As an implication, LeCun initialization is more preferred

when using the training-free metrics from Sec. 7.2.2 to characterize the

architecture performances in training-free NAS.
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Table 7.9: Correlation between the test errors (on CIFAR-10) of all ar-
chitectures in NAS-Bench-201 and our generalization guarantees in
Sec. 7.3.3 that are evaluated on DNNs using different initialization meth-
ods.

Initialization
Spearman Kendall’s Tau

MGrad MSNIP MGraSP MTrace MGrad MSNIP MGraSP MTrace

Realizable scenario
LeCun (LeCun et al., 2012) 0.637 0.639 0.566 0.538 0.469 0.472 0.400 0.387
Xavier (Glorot and Bengio, 2010) 0.608 0.627 0.449 0.465 0.445 0.463 0.316 0.334
He (He et al., 2015a) 0.609 0.615 0.340 0.460 0.446 0.454 0.242 0.334

Non-realizable scenario
LeCun (LeCun et al., 2012) 0.750 0.748 0.686 0.697 0.559 0.556 0.501 0.512
Xavier (Glorot and Bengio, 2010) 0.676 0.685 0.615 0.635 0.493 0.501 0.442 0.460
He (He et al., 2015a) 0.607 0.611 0.505 0.569 0.436 0.439 0.358 0.407

Ablation study on batch size. Theoretically, the training-free metrics

from Sec. 7.2.2 are defined over the whole training dataset. In practice, we

usually only apply a batch of randomly sampled data points to evaluate

these training-free metrics in order to achieve a desirable computational

efficiency, which follows (Abdelfattah et al., 2021). To investigate the

impact of batch size on these metrics, we examine the correlation between

the true generalization performances of all candidate architectures in

NAS-Bench-201 and their generalization guarantees in the non-realizable

scenario under varying batch sizes. Table 7.10 summarizes the results.

Here, we use the same parameters applied in Sec. 7.5.2 for Corollary 7.2.

Besides the impact of batch size on training-free metrics, we also include

the impact of batch size on condition number κ in this table. Specifically,

in the upper part of Table 7.10, the correlations are evaluated using a

batch size of 64 for κ and varying batch sizes for any training-free metric

M from Sec. 7.2.2. Meanwhile, in the lower part of Table 7.10, the

correlations are evaluated using varying batch sizes for κ and a batch

size of 64 for any training-free metric M. Notably, Table 7.10 shows

that similar results will be achieved even when training-free metrics are

evaluated under varying batch sizes, whereas κ evaluated under varying

batch sizes will lead to distinguished results, indicating that κ is more
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Table 7.10: Correlation between the test errors (on CIFAR-10) of all
architectures in NAS-Bench-201 and their generalization guarantees in
the non-realizable scenario under varying batch size.

Batch Size
Spearman Kendall’s Tau

MGrad MSNIP MGraSP MTrace MGrad MSNIP MGraSP MTrace

Batch size 64 for κ and varying batch sizes for anyM
4 0.737 0.741 0.671 0.684 0.547 0.550 0.487 0.501
8 0.739 0.743 0.676 0.689 0.549 0.552 0.492 0.506

16 0.747 0.748 0.685 0.690 0.556 0.556 0.499 0.507
32 0.750 0.748 0.687 0.690 0.558 0.556 0.502 0.506
64 0.750 0.748 0.686 0.697 0.559 0.556 0.501 0.512

Varying batch sizes for κ and batch size 64 for anyM
4 0.578 0.585 0.569 0.509 0.416 0.421 0.402 0.362
8 0.597 0.603 0.591 0.542 0.429 0.433 0.419 0.386

16 0.628 0.633 0.620 0.582 0.462 0.455 0.442 0.414
32 0.663 0.666 0.645 0.621 0.479 0.481 0.462 0.445
64 0.750 0.748 0.686 0.697 0.559 0.556 0.501 0.512

sensitive to batch size than training-free metrics. As an implication,

while a small batch size is also able to perform well in practice, a large

batch size is more preferred when using our generalization guarantees

for training-free NAS.

Ablation study on layer width. While our theoretical analyses are

based on over-parameterized DNNs, i.e., n > N in our Theorem 7.2, we

are also curious about how the layer width will influence our empirical

results. In particular, we examine the correlation between the true gener-

alization performances of all candidate architectures in NAS-Bench-201

and their generalization guarantee in the non-realizable scenario under

varying layer width. Similar to the ablation study on batch size, we in-

vestigate the impacts of layer width on the training-free metrics from

Sec. 7.2.2 and the condition number κ separately. Table 7.11 summarizes

the results. Here, we use the same parameters applied in Sec. 7.5.2 for

Corollary 7.2. As shown in Table 7.11, our generalization guarantee in

the non-realizable scenario also performs well when layer width becomes
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Table 7.11: Correlation between the test errors (on CIFAR-10) of all ar-
chitectures in NAS-Bench-201 and their generalization guarantees in the
non-realizable scenario under varying layer widths, which are measured
by the number of initial channels in our experiments. Larger initial
channels indicates a large layer width.

Init Channels
Spearman Kendall’s Tau

MGrad MSNIP MGraSP MTrace MGrad MSNIP MGraSP MTrace

4 channels for κ and varying channels for anyM
4 0.744 0.746 0.688 0.732 0.550 0.552 0.499 0.539
8 0.750 0.753 0.707 0.744 0.556 0.559 0.515 0.550

16 0.753 0.753 0.728 0.750 0.558 0.559 0.535 0.556
32 0.755 0.756 0.736 0.752 0.560 0.562 0.543 0.558

Varying channels for κ and 32 channels for anyM
4 0.755 0.756 0.736 0.752 0.560 0.562 0.543 0.558
8 0.720 0.722 0.700 0.709 0.529 0.531 0.512 0.522

16 0.698 0.700 0.677 0.681 0.511 0.514 0.492 0.498
32 0.686 0.688 0.664 0.664 0.501 0.503 0.481 0.484

smaller. Surprisingly, similar results can be achieved for training-free

metrics evaluated under varying layer widths, whereas a larger layer

width for training-free metrics typically leads to marginally higher cor-

relations in Table 7.11. On the contrary, a larger layer width for κ leads

to lower correlations in Table 7.11. This may result from the similar

behavior that can be achieved by layer width and topology width since

both layer width and topology width are used to measure the width of

DNN but in totally different perspectives. Therefore, increasing layer

width will make deep architectures (in terms of topology) more indis-

tinguishable from wide architectures (in terms of topology) and hence

make it harder to apply our generalization guarantee in Corollary 7.2

to characterize the architecture performances in a search space. As an

implication, a large layer width for training-free metrics and a smaller

layer width for condition number κ are more preferred when applying

our generalization guarantees for training-free NAS in practice.
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Ablation study on generalization guarantees, transferability guarantee

and HNAS algorithm using non-gradient-based training-free metrics.

Since Sec. 7.6.1 has validated that our Theorem 7.1 may also provide

valid theoretical connections for certain non-gradient-based training-

free metrics, we wonder whether our theoretical generalization guarantees,

transferability guarantee and HNAS based on Theorem 7.1 are also applicable

to these non-gradient-based training-free metrics. In particular, we firstly

examine the correlation between the true generalization performances of

all candidate architectures in NAS-Bench-201 and their generalization

(Sec. 7.3.3) and transferability guarantees (Sec. 7.3.4) using training-free

metrics MFisher, MSynFlow and MNASWOT. Table 7.12 summarizes the

results. Here, we use the same parameters applied in Sec. 7.5.2 for

Corollary 7.2. WhileMFisher andMSynFlow enjoy higher correlation to

MTrace thanMNASWOT in Sec. 7.6.1, our generalization and transferability

guarantees also performs better when usingMFisher andMSynFlow. We

then apply our HNAS based on these training-free metrics in NAS-Bench-

201 and the Table 7.13 summarizes the search results. Similarly, our

HNAS based on MFisher and MSynFlow can also find better-performing

architectures than HNAS (MNASWOT). Surprisingly, HNAS (MSynFlow)

can even achieve competitive results when compared with HNAS using

gradient-based training-free metrics. These results therefore indicate

that our HNAS sometimes may also be able to improve over training-

free NAS using non-gradient-based training-free metrics especially when

these non-gradient-based training-free metrics contain certain gradient

information.

Ablation study on the optimization process of HNAS. In this section,

we examine the evolution of the correlation between the test errors of
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Table 7.12: Correlation between the test errors of all architectures in
NAS-Bench-201 and our generalization guarantees in Sec. 7.3.3 using
training-free metricsMKNAS,MFisher,MSynFlow andMNASWOT that are
evaluated on various datasets. Each correlation is reported with the mean
and standard deviation using the metrics evaluated on CIFAR-10/100
and ImageNet-16-120.

Dataset
Spearman Kendall’s Tau

MKNAS MFisher MSynFlow MNASWOT MKNAS MFisher MSynFlow MNASWOT

Realizable scenario
C10 0.53±0.02 0.39±0.01 0.78±0.00 0.09±0.02 0.39±0.02 0.29±0.01 0.58±0.00 0.10±0.00
C100 0.53±0.03 0.39±0.01 0.76±0.00 0.09±0.02 0.38±0.02 0.29±0.01 0.57±0.00 0.11±0.01
IN-16 0.46±0.02 0.32±0.01 0.75±0.00 0.16±0.02 0.33±0.02 0.24±0.01 0.56±0.00 0.15±0.02

Non-realizable scenario
C10 0.66±0.02 0.51±0.00 0.81±0.00 0.05±0.00 0.49±0.02 0.37±0.00 0.61±0.00 0.03±0.00
C100 0.67±0.03 0.51±0.01 0.80±0.02 0.05±0.01 0.49±0.02 0.37±0.00 0.60±0.00 0.03±0.00
IN-16 0.62±0.04 0.44±0.00 0.78±0.00 0.05±0.01 0.45±0.03 0.32±0.00 0.59±0.00 0.03±0.00

candidate architectures in the NAS search space and their generalization

guarantees in the non-realizable scenario with the BO steps in our HNAS

framework. Figure 7.5 illustrates the results in NAS-Bench-201, which

are based on CIFAR-10 dataset and training-free metricMTrace. Note that

in every BO step of Figure 7.5, the Spearman correlation we reported

corresponds to the pair of hyperparameters µ and ν that achieves the best

validation performance in the query history. As shown in Figure 7.5, our

HNAS framework, interestingly, is indeed selecting better-performing

architectures by selecting hyperparameters µ and ν that can achieve

higher Spearman correlation in the search space. These results therefore

further justify the advantages of introducing BO algorithms into training-

free NAS.

7.7 Conclusion and Discussion

This work performs a unified theoretical analysis of NAS algorithms

using gradient-based training-free metrics, which allows us to (a) theo-

retically unveil the connections among these training-free metrics, (b)

provide theoretical guarantees for the empirically observed compelling
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Table 7.13: Comparison among HNAS using different training-free met-
rics in NAS-Bench-201. The performance of each HNAS variant is
reported with the mean and standard deviation of five independent
searches and the search costs are evaluated on a single Nvidia 1080Ti.

Architecture
Test Accuracy (%)

Search Cost
C10 C100 IN-16 (GPU Sec.)

HNAS (MGrad) 94.04±0.21 71.75±1.04 45.91±0.88 3010
HNAS (MSNIP) 93.94±0.02 71.49±0.11 46.07±0.14 2976
HNAS (MGraSP) 94.13±0.13 72.59±0.82 46.24±0.38 3148
HNAS (MTrace) 94.07±0.10 72.30±0.70 45.93±0.37 3006

HNAS (MKNAS) 94.19±0.06 72.94±0.52 46.31±0.38 3081

HNAS (MFisher) 93.28±0.73 69.42±1.36 42.85±2.09 3309
HNAS (MSynFlow) 94.13±0.00 72.50±0.00 45.47±0.00 3615
HNAS (MNASWOT) 92.10±0.62 66.81±0.32 39.26±0.72 2832

Optimal 94.37 73.51 47.31 -

performance of these training-free NAS algorithms, and (c) exploit these

theoretical understandings to develop a novel framework called HNAS

that can consistently boost existing training-free NAS. We expect that our

theoretical understanding could provide valuable prior knowledge for

the design of training-free metrics and NAS search space in the future.

Moreover, considering the close relationship between network pruning

and NAS, we expect our unified theoretical analyses to be capable of

inspiring more theoretical understanding and improvement over existing

training-free network pruning algorithms in the literature. More impor-

tantly, the impressive performance achieved by our HNAS framework

is expected to be able to encourage more attention to the integration of

training-free and training-based approaches in other machine learning

fields in order to enjoy the advantages of these two types of methods

simultaneously.
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Figure 7.5: Evolution of the correlation between the test errors (on CIFAR-
10) of all architectures in NAS-Bench-201 and their generalization guar-
antees (usingMTrace) in the non-realizable scenario with the BO steps in
our HNAS framework.
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Chapter 8

Conclusion and Future Work

8.1 Summary

This thesis has presented our four works in NAS that help to understand

and further improve the search effectiveness as well as the search effi-

ciency of recent NAS algorithms, supported by large-scale experiments.

To summarize this thesis, we give a brief summary of our four works in

this thesis respectively as below.

Chapter 4. In the literature, most of the efforts have been dedicated to

developing efficient and effective NAS algorithms (Akimoto et al., 2019;

Liu et al., 2019; Luo et al., 2018b; Nayman et al., 2019; Xie et al., 2019b)

in the NAS area. Nonetheless, to our best knowledge, less or even no at-

tention has been devoted to those architectures selected by popular NAS

algorithms to understand what types of architectures are selected by these

NAS algorithms and why they are selected. These questions are however

fundamental to understanding and improving existing NAS algorithms.

In Chapter 4, we reveal that those architectures selected by popular NAS

algorithms tend to favor wide and shallow cells by examining the con-

nection topologies of these architectures, which may result from their
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fast and stable convergence in the model training. We further empirically

and theoretically show that those architectures with wider and shallower

cells consistently enjoy a smoother loss landscape and smaller gradient

variance than their random variants, which contribute to their better con-

vergence behavior and consequently the selection of these architectures

given a limited search budget. However, architectures with wide and

shallow cells may not generalize better than other candidate architec-

tures despite their well-behaved convergence, leading to further research

on how to accurately estimate the final generalization performance of

candidate architectures in the search space. Besides, the inclusion of our

aforementioned understanding into the design of NAS search space may

help to further improve the search efficiency and effectiveness of popular

NAS algorithms.

Chapter 5. Conventional NAS algorithms aim to select only one sin-

gle architecture from their search spaces and hence have overlooked the

capability of other candidate architectures in helping improve the per-

formance of their final selected architecture. Our work in Chapter 5

therefore presents two novel ensemble search algorithms, i.e., NESBS

(MC sampling) and NESBS (SVGD-RD), that can effectively and efficiently

select well-performing ensembles of architectures from the NAS search

space, which can further improve the performance achieved by conven-

tional NAS algorithms. Empirical results show that in both classification

and adversarial defense tasks on various benchmark datasets, our NESBS

algorithms are able to achieve consistently improved performances com-

pared with conventional NAS algorithms while incurring comparable

search costs. Furthermore, even compared with the ensemble search base-

lines (e.g., Deep Ensemble and ensemble using Monte Carlo Dropout),
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our algorithms can also enjoy improved search effectiveness and efficiency.

As our algorithms rely on the effectiveness of our ensemble performance

estimation (Sec. 5.2.1), an interesting future direction is to study how to

further improve this performance estimation in order to achieve a higher

ensemble performance.

Chapter 6. Recent training-based NAS algorithms typically require

the model training of the supernet or the candidate architectures in the

search space, which is however computationally expensive in practice.

This naturally begs the question whether NAS can be conducted without

any model training during the search process. To this end, in Chapter 6,

we propose a novel NAS algorithm called NAS at Initialization (NASI) by

using the theory of Neural Tangent Kernel (NTK) (Jacot et al., 2018; Lee

et al., 2019a) to formally estimate the converged performance of infinite-

wide DNNs at initialization, hence allowing NAS to be conducted without

any model training. More importantly, the architectures selected by NASI

are proven to be transferable with its label- and data-agnostic search.

Empirical results on various benchmarks have shown that our NASI

algorithm significantly advances other popular NAS algorithms in search

efficiency while maintaining a comparable generalization performance

for those selected architectures. We think that our theoretical justification

for the transferability of our NASI can be generalized to other popular

NAS algorithms, which thus provides further theoretical understanding

of NAS.

Chapter 7. Though recent training-free NAS algorithms using various

zero-cost metrics are already shown to be able to achieve competitive

performance even compared with those training-based counterparts,

the reason why NAS using these training-free metrics performs well in
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practice remains a mystery in the literature. To this end, our work in

Chapter 7 presents a unified theoretical analysis based on the theory of

NTK to derive the theoretical connection, the generalization guarantees

and the transferability guarantees for gradient-based training-free NAS,

which helps to understand the practical performance achieved by various

training-free NAS algorithms. Remarkably, these theoretical analyses

indeed align with the empirical results, which therefore implies the valid-

ity of our theoretical analyses. Moreover, by exploiting these theoretical

understandings, a novel NAS framework called HNAS is proposed to

further improve the search effectiveness of training-free NAS algorithms.

Finally, we believe our principled analyses can inspire more theoretical

studies in the field of NAS or even AutoML.

8.2 Future Outlook

8.2.1 NAS in Different Scenarios

While many well-performing NAS algorithms have been proposed in

a standard setting i.e., NAS based on a one-shot supervised task in a

single agent, NAS algorithms in other different scenarios are still under-

developed. For example, while standard NAS algorithms usually require

dataset labels to select best-performing architecture, these labels are ex-

pensive to get in real-world applications. In this scenario, how can we

select well-performing architectures without labels? Besides, the real-world

datasets are typically collected sequentially. This naturally leads to the

question how to select well-performing architectures in an online manner.

There has also been an increasing interest in introducing collaborative

mechanism into machine learning algorithms for a higher effectiveness

or efficiency in recent years (Sim et al., 2021). By borrowing this idea
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into NAS, how can we select well-performing architectures a collaborative

NAS setting where several agents need to find their best-performing architec-

tures on self-interested datasets collaboratively? Above all, developing NAS

algorithms in different Scenarios will be an interesting and promising

direction to explore.

8.2.2 Beyond NAS in AutoML

As a sub-field of AutoML, NAS shares many similarities to other sub-

fields, such as automatic data augmentation and hyper-parameter op-

timization. Inspired by the impressive results achieved by our works

in this thesis, how to extend our ideas in this thesis into automatic data

augmentation and hyper-parameter optimization will be an interesting topic

to investigate on. Besides, algorithms are usually designed designed to

find optimal strategies for automatic data augmentation, neural archi-

tecture search or hyper-parameter optimization separately. However, in

practice, the final performance of real-world tasks are decided by these

three aspects jointly. These separately designed algorithms thus may

only be able to achieve a sub-optimal solution for the target task. Mean-

while, algorithms designed separately on automatic data augmentation,

neural architecture search or hyper-parameter optimization are hard to

be integrated together in practice especially when they are customized

over specific tasks. For example, the same data augmentation and hyper-

parameters are required in DARTS algorithm (Liu et al., 2019) in order

to compare the performance of candidate architectures. Consequently,

how to develop an algorithm to select optimal strategies for automatic data

augmentation, neural architecture search or hyper-parameter optimization

jointly will be important to make AutoML more applicable and also be

able to achieve better performance in practice.
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Appendix A

Appendix for Chapter 4

A.1 Experimental Setup

A.1.1 Data Pre-processing and Augmentation

Our experiments are conducted on CIFAR-10/100 (Krizhevsky et al.,

2009) and Tiny-ImageNet-200. CIFAR-10/100 contains 50,000 training

images and 10,000 test images of 32×32 pixels in 10 and 100 classes

respectively. Tiny-ImageNet-200 consists of 100,000 training images,

10,000 validation images and 10,000 test images1 in 200 classes. We

adopt the same data pre-processing and argumentation as described in

DARTS (Liu et al., 2019): zero padding the training images with 4 pixels

on each side and then randomly cropping them back to 32×32 on CIFAR-

10/100 and 64×64 on Tiny-ImageNet-200; randomly flipping training

images horizontally; normalizing training images with the means and

standard deviations along the channel dimension.

1Since no label is attached to Tiny-ImageNet-200 test dataset, we instead use its
validation dataset to get the generalization performance of various architectures. We
still name it as the test accuracy/error for brief.
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A.1.2 Sampling of Random Variants

For a N -node NAS cell, there are (N−2)!
(M−1)! possible connections with M input

nodes and one output node. There are therefore hundreds to thousands

of possible randomly connected variants for each popular NAS cell. The

random variants of operations consist of a similar or even higher amount

of architectures. Due to the prohibitive cost of comparing popular NAS

cells with all variants, we randomly sample some variants to understand

why the popular NAS cells are selected.

Given a NAS cell C, we fix the partial order of intermediate nodes

and their accompanying operations. We then replace the source node

of their associated operations by uniformly randomly sampling a node

from their proceeding nodes in the same cell to get their randomly con-

nected variants. Similarly, given a NAS cell C, we fix the partial order of

intermediate nodes and their connection topologies. We then replace the

operations couping each connection by uniformly randomly sampling

from candidate operations to get their random variants of operations.

A.1.3 Architectures and Training Details

For experiments on CIFAR-10/100 and Tiny-ImageNet-200, the neural

network architectures are constructed by stacking L = 20 cells. Feature

maps are down-sampled at the L/3-th and 2L/3-th cell of the entire

architecture with stride 2. For Tiny-ImageNet-200, the stride of the first

convolutional layer is adapted to 2 to reduce the input resolution from

64 × 64 to 32 × 32. A more detailed building scheme can be found in

DARTS (Liu et al., 2019).

In the default training setting, we apply stochastic gradient descent

(SGD) with learning rate 0.025, momentum 0.9, weight decay 3× 10−4
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and batch size 80 to train the models for 600 epochs on CIFAR10/100

and 300 epochs on Tiny-ImageNet-200 to ensure the convergence. The

learning rate is gradually annealed to zero following the standard cosine

annealing schedule. To compare the convergence under different learning

rates in Section 4.3.1, we change the initial learning rate from 0.025 to

0.25 and 0.0025 respectively.

A.1.4 Regularization

Since regularization mechanisms shall affect the convergence (Zhou et al.,

2015), architectures are trained without regularization for a neat em-

pirical study in Section 4.3. The regularization mechanisms are only

used in Section 4.4 to get the converged generalization performance

of the original and adapted NAS architectures on CIFAR-10/100 and

Tiny-ImageNet-200 as shown in Table 4.1.

There are three adopted regularization mechanisms on CIFAR-10/100

and Tiny-ImageNet-200 in this work: cutout (Devries and Taylor, 2017),

auxiliary tower (Szegedy et al., 2015b) and drop path (Larsson et al., 2017).

We apply standard cutout regularization with cutout length 16. Moreover,

the auxiliary tower is located at 2L/3-th cell of the entire architecture with

weight 0.4. We apply the same linearly-increased drop path schedule as

in NASNet (Zoph et al., 2018) with the maximum probability of 0.2.

A.2 Theoretical Analysis

A.2.1 Basics

We firstly compare the gradient of case I and case II shown in Figure 4.9.

For case I, since y(i) = W (i)x, the gradient to each weight matrix W (i) is
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denoted by

∂f

∂W (i)
=

∂f

∂y(i)
xT (A.1)

Similarly, since ŷ(i) =
∏i

k=1W
(k)x for the case II, the gradient to each

weight matrix W (i) is denoted by

∂f̂

∂W (i)
=

n∑
k=i

(
k∏

j=i+1

W (j))T
∂f̂

∂ŷ(k)
(
i−1∏
j=1

W (j)x)T (A.2)

=
n∑
k=i

(
k∏

j=i+1

W (j))T
∂f̂

∂ŷ(k)
xT (

i−1∏
j=1

W (j))T (A.3)

=
n∑
k=i

(
k∏

j=i+1

W (j))T
∂f

∂W (k)
(
i−1∏
j=1

W (j))T (A.4)

Exploring the fact that ∂f̂
∂ŷ(i) = ∂f

∂y(i) , we get (4) by inserting (1) into (3).

A.2.2 Proof of Theorem 4.3

Due to the complexity of comparing the standard Lipschitz constant

of the smoothness for these two cases, we instead investigate the block-

wise Lipschitz constant (Beck and Tetruashvili, 2013). In other words,

we evaluate the Lipschitz constant for each weight matrix W (i) while

fixing all other matrices. Formally, we assume the block-wise Lipschitz

smoothness of case I as

∥∥∥∥∥∥∥∥ ∂f

∂W
(i)
1

−
∂f

∂W
(i)
2

∥∥∥∥∥∥∥∥ ≤ L(i)
∥∥∥∥W (i)

1 −W
(i)
2

∥∥∥∥ ∀W (i)
1 ,W

(i)
2 (A.5)

The default matrix norm we adopted is 2-norm. And W
(i)
1 ,W

(i)
2 denote
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possible assignments for W (i).

Denoting that λ(i) =
∥∥∥W (i)

∥∥∥, which is the largest eigenvalue of matrix

W (i), we can get the smoothness of case II as

∥∥∥∥∥∥∥∥ ∂f̂

∂W
(i)
1

−
∂f̂

∂W
(i)
2

∥∥∥∥∥∥∥∥ =

∥∥∥∥∥∥∥∥
n∑
k=i

(
k∏

j=i+1

W (j))T (
∂f

∂W
(k)
1

−
∂f

∂W
(k)
2

)(
i−1∏
j=1

W (j))T

∥∥∥∥∥∥∥∥ (A.6)

≤
n∑
k=i

∥∥∥∥∥∥∥∥(
k∏

j=i+1

W (j))T (
∂f

∂W
(k)
1

−
∂f

∂W
(k)
2

)(
i−1∏
j=1

W (j))T

∥∥∥∥∥∥∥∥ (A.7)

≤
n∑
k=i

(
1
λ(i)

k∏
j=1

λ(j))L(k)
∥∥∥∥W (k)

1 −W
(k)
2

∥∥∥∥ (A.8)

≤ (
i−1∏
j=1

λ(j))L(i)
∥∥∥∥W (i)

1 −W
(i)
2

∥∥∥∥ (A.9)

We get the equality in (6) since j > i and W (j) keeps the same for

the computation of block-wise Lipschitz constant of W (i). Based on the

triangle inequality of norm, we get (7) from (6). We get (8) from (7)

based on the inequality ∥WV ∥ ≤ ∥W ∥∥V ∥ and the assumption of the

smoothness for case I in (5). Finally, since we are evaluating the block-

wise Lipschitz constant for W (i), W (k)
1 = W

(k)
2 while k , i, which leads to

the final inequality (9).

A.2.3 Proof of Theorem 4.4

Similarly, we assume the gradient variance of case I is bounded as

E
∥∥∥∥∥∥ ∂f

∂W (i)
−E

∂f

∂W (i)

∥∥∥∥∥∥2

≤ (σ (i))2 (A.10)

The gradient variance of case II is then bounded by
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E

∥∥∥∥∥∥∥ ∂f̂

∂W (i)
−E

∂f̂

∂W (i)

∥∥∥∥∥∥∥
2

= E

∥∥∥∥∥∥∥∥
n∑
k=i

(
k∏

j=i+1

W (j))T (
∂f

∂W (k)
−E

∂f

∂W (k)
)(

i−1∏
j=1

W (j))T

∥∥∥∥∥∥∥∥
2

(A.11)

≤ nE
n∑
k=i

∥∥∥∥∥∥∥∥(
k∏

j=i+1

W (j))T (
∂f

∂W (k)
−E

∂f

∂W (k)
)(

i−1∏
j=1

W (j))T

∥∥∥∥∥∥∥∥
2

(A.12)

≤ n
n∑
k=i

(
σ (k)

λ(i)

k∏
j=1

λ(j))2 (A.13)

We get (12) from (11) based on Cauchy-Schwarz inequality. Based on

the inequality ∥WV ∥ ≤ ∥W ∥∥V ∥ and the assumption of bounded gradient

variance for case I in (10), we get the final inequality.
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Appendix for Chapter 5

B.1 Proofs

Proposition. (Training fairness in supernet.) Let T and TA denote the

number of steps applied to train the supernet and candidate architecture

A in the search space of size N , by uniformly randomly sampling a single

architecture from this search space for the model training in each step, we have

Pr( lim
T→∞

TAi
/T = lim

T→∞
TAj

/T ) = 1 ∀i, j ∈ {1, · · · ,N } .

Proof. Let random variable Xt
i ∈ {0,1} denote the selection of candidate

architecture Ai at training step t under our sampling scheme in the

proposition above. For any t > 0 and i, j ∈ [N ], random variable Xt
i −X

t
j

can achieve following possible assignments and probabilities (denoted

by p):

Xt
i −X

t
j =


+1, p = 1/N

0, p = (N − 2)/N

−1, p = 1/N

. (B.1)

Consequently, E[Xt
i −X

t
j ] = 0. According to the strong law of large num-
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bers, we further have

Pr( lim
T→∞

T −1
T∑
t=1

Xt
i −X

t
j = 0) = 1 . (B.2)

Note that

T −1(TAi
− TAj

) = T −1
T∑
t=1

Xt
i −X

t
j . (B.3)

We thus can complete this proof by

Pr( lim
T→∞

T −1(TAi
− TAj

) = 0) = 1 . (B.4)

Proof of Proposition 5.1. As particles {xi}ni=1 of size n are applied to

approximate the density q in our SVGD-RD, the second term (i.e., the

controllable diversity term) in our (5.5) can then be approximated using

these particles as

nδEx,x′∼q
[
k(x,x′)

]
≈ δ/n

n∑
i=1

n∑
j=1

k(xi ,xj) ≜
n∑
i=1

h(xi) , (B.5)

where h(x) ≜ δ/n
∑n

j=1 k(x,xj). We take xj in k(x,xj) as a constant for the

approximation above. Consequently, we have

∇xk
n∑
i=1

h(xi) = ∇xkh(xk) . (B.6)

Let x+
i ≜ xi + ϵφ∗(xi) (∀i ∈ {1, · · · ,n}) denote the functional gradient

decent in the RKHS H to minimize the KL divergence term in our (5.5).

Based on (B.6) above, given proximal operator proxh(x+) = argminy h(y) +

1/2∥y −x+∥22, by using proximal gradient method Parikh and Boyd (2014),

our (5.5) can then be optimized via the following update to each particle
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xi :

xi ← proxh(x+
i ) = argmin

y
h(y) + 1/2∥y − x+

i ∥
2
2 . (B.7)

According to the Karush-Kuhn-Tucker (KKT) conditions, the local opti-

mum y∗ of this proximal operator satisfies

proxh(x+
i ) = y∗ = x+

i −∇y∗h(y∗) . (B.8)

When h(·) is convex, this local optimum is also a global optimum. As (16)

is intractable to solve given a complex h(·), we approximate h(y∗) with

its first-order Taylor expansion, i.e., h(y∗) ≈ h(xi) +∇xih(xi)(y∗ − xi) and

achieve following approximation:

proxh(x+
i ) ≈ x+

i −∇xih(x)

≈ xi + ϵφ∗(xi)−∇xih(xi)

≈ xi + ϵφ∗(xi)− δ/n
∑n

j ∇xik(xi ,xj) .

(B.9)

Given the approximation φ∗(xi) ≈ φ̂∗(xi) and the definition of φ̂∗(xi)

in (2.8), we complete our proof by

xi ← xi + 1/n
∑n

j=1 k(xj ,xi)∇xj logp(xj)

+∇xjk(xj ,xi)− δ∇xik(xj ,xi) .
(B.10)

Proof of Proposition 5.2. Notably, since k(x,x′) = c when x = x′, we will

achieve a constant k(x,x) for any particle x in the case of n = 1, which can

be ignored in our SVGD-RD for any δ ∈ R. In light of this, our SVGD-RD

in the case of n = 1 degenerates into standard SVGD. Consequently, to

prove Proposition 5.2, we only need to consider SVGD in the case of

n = 1.

Considering SVGD in the case of n = 1, we can frame the density q
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represented by a single particle x′ as

q(x) =


1 x = x′

0 x , x′
. (B.11)

The KL divergence between q(x) and the target density p(x) can then be

simplified as

KL(q∥p) = Eq(x)[log(q(x)/p(x))] = − logp(x′) . (B.12)

Finally, standard SVGD in the case of n = 1 obtain its optimal particle by

optimizing the following problem:

q∗ = argmin
q

KL(q∥p)

= argmin
x′
{− logp(x′)}

= argmax
x′

p(x′) ,

(B.13)

which finally concludes the proof.

Remark. In practice, this k(x,x) = c can be well satisfied, such as the

radial basis function (RBF) kernel we applied in our experiments.
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Appendix C

Appendix for Chapter 6

C.1 Theorems and Proofs

We firstly introduce the theorems proposed by Jacot et al. (2018); Lee

et al. (2019a), which reveal the capability of NTK in characterizing the

training dynamics of infinite-width DNNs. Note that the these theorems

follow the parameterization and initialization of DNNs in (Jacot et al.,

2018). Our analysis based on these theorems thus also needs to follow

such parameterization and initialization of DNNs.

C.1.1 Neural Tangent Kernel at Initialization

Jacot et al. (2018) have validated that the outputs of infinite-width DNNs

at initialization tends to Gaussian process (Theorem C.1) and have further

revealed the deterministic limit of NTK at initialization (Theorem C.2).

We denote InL as a nL ×nL matrix with all elements being 1.

Theorem C.1 (Jacot et al. (2018)). For a network of depth L at initialization,

with a Lipschitz nonlinearity σ , and in the limit as n1, · · · ,nL−1→∞ sequen-

tially, the output functions fθ,i for i = 1, · · · ,nL, tend (in law) to iid centered
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Gaussian processes of covariance Σ(L), where Σ(L) is defined recursively by

Σ(1)(x,x′) =
1
n0

x⊤x′ + β2 ,

Σ(L)(x,x′) = Eg∼N (0,Σ(L−1))

[
σ (g(x))σ (g(x′))

]
+ β2

such that the expectation is with respect to a centered Gaussian process f with

covariance Σ(L−1).

Theorem C.2 (Jacot et al. (2018)). For a network of depth L at initializa-

tion, with a Lipschitz nonlinearity σ , and in the limit as n1, · · · ,nL−1 →∞

sequentially, the NTK Θ(L) converges in probability to a deterministic limiting

kernel:

Θ(L)→Θ
(L)
∞ ⊗ InL .

Kernel Θ(L)
∞ : Rn0×n0 → R is defined recursively by

Θ
(1)
∞ (x,x′) = Σ(1)(x,x′) ,

Θ
(L)
∞ (x,x′) = Θ

(L−1)
∞ (x,x′)Σ̇(L)(x,x′) +Σ(L)(x,x′) ,

where

Σ̇(L)(x,x′) = Eg∼N (0,Σ(L−1))

[
σ̇ (g(x))σ̇ (g(x′))

]
such that the expectation is with respect to a centered Gaussian process f with

covariance Σ(L−1) and σ̇ denotes the derivative of σ .
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C.1.2 Training Dynamics of Infinite-Width Neural Net-

works

Given λmin(Θ) as the minimal eigenvalue of NTK Θ and define ηcritical ≜

2(λmin(Θ) +λmax(Θ))−1, Lee et al. (2019a) have characterized the training

dynamics of infinite-wide neural networks as below.

Theorem C.3 (Lee et al. (2019a)). Let n1 = · · · = nL−1 = k and assume

λmin(Θ) > 0. Applying gradient descent with learning rate η < ηcritical (or

gradient flow), for every x ∈ Rn0 with ∥x∥ ≤ 1, with probability arbitrarily

close to 1 over random initialization,

sup
t≥0

∥∥∥∥ft − f lin
t

∥∥∥∥
2

= O(k−
1
2 ) as k→∞ .

Remark. For the case of L = 2, Du et al. (2019) have revealed that

if any two input vectors of a dataset are not parallel, then λmin(Θ) > 0

holds, which fortunately can be well-satisfied for most real-world datasets.

Though the training dynamics of DNNs only tend to be governed by

their linearization at initialization when the infinite width is satisfied as

revealed in Theorem C.3, empirical results in (Lee et al., 2019a) suggest

that such linearization can also govern the training dynamics of practical

over-parameterized DNNs.

C.1.3 Proof of Proposition 6.1

With aforementioned theorems, especially Theorem C.3, our Proposi-

tion 6.1 can be proved as below with an introduced lemma (Lemma C.1).

Lemma C.1. Let loss function L
(
f (X ;θt),Y

)
, abbreviated to L(ft), be γ-

Lipschitz continuous within the domain V . Under the condition in Theo-
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rem C.3, there exists a constant c0 > 0 such that as k→∞,

∥∥∥∥L(ft)−L(f lin
t )

∥∥∥∥
2
≤
c0γ√
k

with probability arbitrarily close to 1.

Proof. Since L(ft) is γ-Lipschitz continuous, for any v,u ∈ V , we have

∥∥∥L(v)−L(u)
∥∥∥

2
≤ γ ∥v −u∥2 (C.1)

following the definition of Lipschitz continuity. Besides, under the condi-

tion in Theorem C.3, Theorem C.3 reveals that there exists a constant c0

such that as k→∞, ∥∥∥∥ft − f lin
t

∥∥∥∥
2
≤ c0√

k
(C.2)

with probability arbitrarily close to 1. Combining (C.1) and (C.2), we

hence can finish the proof by

∥∥∥∥L(ft)−L(f lin
t )

∥∥∥∥
2
≤ γ

∥∥∥∥ft − f lin
t

∥∥∥∥
2
≤
c0γ√
k

as k→∞ . (C.3)

Remark. The γ-Lipschitz continuity based on ∥ · ∥2 is commonly satisfied

for widely adopted loss functions. For example, given 1-dimensional

MSE L = m−1∑m
i (xi − yi)2, let xi , yi ∈ [0,1] denote the prediction and la-

bel respectively, the Lipschitz of MSE with respect to x ≜ (x1, · · · ,xm)⊤

is 2. Meanwhile, given the n-class Cross Entropy with Softmax L =

−m−1∑m
i
∑n

j yi,j log(pi,j) as the loss function, let pi,j ∈ (0,1) and yi,j ∈ {0,1}

denote the prediction and label correspondingly, with
∑

j yi,j = 1 and

pi,j ≜ exp(xi,j)/
∑

j exp(xi,j) for input xi,j ∈ R, the Lipschitz of Cross En-

tropy with Softmax with respect to x ≜ (x1,1, · · · ,xi,j , · · · ,xm,n)⊤ is then
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1.

Proof of Proposition 6.1. Note that the linearization f lin(x;θt) achieves

a constant NTK Θt = Θ0 because its gradient with respect to θt (i.e.,

∇θ0
f (x;θ0)) stays constant over time. Given MSE as the loss function, ac-

cording to the loss decomposition (2.12) in Sec. 2.4, the training dynamics

of f lin(x;θt) can then be analyzed in a closed form:

L(f lin
t ) =

1
m

mn∑
i=1

(1− ηλi)
2t(u⊤i Y )2 , (C.4)

where Θ0 =
∑mn

i=1λi(Θ0)uiu
⊤
i , and λi(Θ0) and ui denote the i-th largest

eigenvalue and the corresponding eigenvector of Θ0, respectively. With

η < λmax(Θ0)−1 and λmin(Θ0) > 0, ηλi(Θ0) is then under the constraint

that

0 < ηλi(Θ0) <
λmax(Θ0)
λmax(Θ0)

⇒ 0 < ηλi(Θ0) < 1 . (C.5)

Hence, for the case of t ≥ 0.5, with 0 < 1 − ηλi(Θ0) < 1 and λ(Θ0) ≜

(mn)−1∑mn
i=1λi(Θ0),

mn∑
i=1

(1− ηλi(Θ0))2t ≤
mn∑
i=1

(1− ηλi(Θ0))

= mn(1− ηλ(Θ0)) .

(C.6)

Further, given 0 ≤ t < 0.5, the scalar function y = x2t is concave for any

x ∈ R≥0. Following from the Jensen’s inequality on this concave function,

mn∑
i=1

(1− ηλi(Θ0))2t ≤mn

 1
mn

mn∑
i=1

(1− ηλi(Θ0))


2t

= mn(1− ηλ(Θ0))2t .

(C.7)
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With bounded labels Y ∈ [0,1]mn and the unit norm of eigenvectors

∥ui∥2 = 1,

(u⊤i Y )2 ≤ ∥ui∥22∥Y∥
2
2 ≤ ∥Y∥

2
2 ≤mn . (C.8)

By introducing (C.6), (C.7) and (C.8) into (C.4), the training loss

L(f lin
t ) can then be bounded by

L(f lin
t ) ≤ (mn) · 1

m

mn∑
i=1

(1−λi(Θ0))2t

≤mn2(1− ηλ(Θ0))q ,

(C.9)

where q is set to be 2t if 0 ≤ t < 0.5, and 1 otherwise.

Following from Theorem C.3, while applying gradient descent (or

gradient flow) with learning rate η < λ−1
max < ηcritical ≜ 2(λmin + λmax)−1,

for all x ∈ X with ∥x∥ ≤ 1, there exists a constant c0 such that as k→∞,

∥∥∥∥ft − f lin
t

∥∥∥∥
2
≤ c0√

k
(C.10)

with probability arbitrarily close to 1. Hence, f lin
t ∈

[
−c0
√

1/k,1 + c0
√

1/k
]mn

with ft ∈ [0,1]mn. Within the extended domain ft ∈
[
−c0
√

1/k,1 + c0
√

1/k
]mn

for the MSE loss function,

∥∥∥∇ftL∥∥∥2
=

2
m

∥∥∥Y − ft∥∥∥2

≤ 2
√
n/m

(
1 + c0

√
1/k

)
.

(C.11)

Hence, the MSE within this extended domain is 2
√
n/m

(
1 + c0

√
1/k

)
-

Lipschitz continuous.

Combining with Lemma C.1,

L(ft) ≤ L(f lin
t ) + 2c0

√
n/(mk)

(
1 + c0

√
1/k

)
≤mn2(1− ηλ)q + 2c0

√
n/(mk)

(
1 + c0

√
1/k

)
,

(C.12)
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which concludes the proof by denoting Lt ≜ L(ft).

Remark. ∥x∥2 ≤ 1 can be well-satisfied for the normalized dataset, which

is conventionally adopted as data pre-processing in practice.

C.1.4 Proof of Proposition 6.2

According to Theorem C.2, Θ0 ≜Θ(L) is determined by both Σ(L)(x,x) and

Σ̇(L)(x,x) of all x ∈ X . We hence introduce Lemma C.2 below regarding

Σ(L)(x,x) and Σ̇(L)(x,x) to ease the proof of Proposition 6.2. Particularly,

we set β = 0 for the β in Theorem C.1 and Theorem C.2 throughout our

analysis. Note that this condition is usually satisfied by training DNNs

without bias.

Lemma C.2. For a network of depth L at initialization, with the γ-Lipschitz

continuous nonlinearity σ satisfying |σ (x)| ≤ |x| for all x ∈ R, given the input

features x ∈ X ,

Σ(L)(x,x) ≤ n−1
0 x⊤x , Σ̇(L)(x,x) ≤ γ2 ,

where Σ(L)(x,x) and Σ̇(L)(x,x) are defined in Theorem C.1 and Theorem C.2,

respectively, and β = 0.

Proof. Following from the definition in Theorem C.1,

Σ(L)(x,x) = Eg∼N (0,Σ(L−1))

[
σ (g(x))σ (g(x))

]
(a)
≤ Eg∼N (0,Σ(L−1))

[
g2(x)

]
(b)
= Σ(L−1)(x,x) ,

(C.13)

in which (a) follows from |σ (x)| ≤ |x| and (b) results from the variance of
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g ∼N (0,Σ(L−1)). By following (C.13) from layer L to 1, we get

Σ(L)(x,x) ≤ Σ(1)(x,x)
(a)
= n−1

0 x⊤x , (C.14)

where (a) is defined in Theorem C.1.

Similarly, following from the definition in Theorem C.2,

Σ̇(L)(x,x) = Eg∼N (0,Σ(L−1))

[
σ̇ (g(x))σ̇ (g(x))

]
(a)
≤ Eg∼N (0,Σ(L−1))

[
γ2

]
(b)
= γ2 ,

(C.15)

in which (a) results from the γ-Lipschitz continuity of nonlinearity and

(b) follows from the expectation of a constant.

Proof of Proposition 6.2. Notably, Theorem C.2 reveals that in the

limit as n1, · · · ,nL−1→∞ sequentially, Θ(L)→Θ
(L)
∞ ⊗ InL with probability

arbitrarily close to 1 over random initializations. We therefore only need

to focus on this deterministic limiting kernel to simplify our analysis,

i.e., let Θ0 = Θ
(L)
∞ ⊗ InL . Particularly, given m input vectors x ∼ P (x) with

covariance matrix ΣP and a L-layer neural architecture of n-dimensional
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output, For γ , 1, we have

(mn)−1∥Θ0∥tr = (mn)−1∥Θ(L)
∞ ⊗ InL∥tr

(a)
= (mn)−1∥Θ(L)

∞ ∥tr∥InL∥tr
(b)
= m−1∥Θ(L)

∞ ∥tr
(c)
= Ex∼P (x)

[
Θ

(L)
∞ (x,x)

]
(d)
= Ex∼P (x)

[
Θ

(L−1)
∞ (x,x)Σ̇(L)(x,x) +Σ(L)(x,x)

]
(e)
≤ Ex∼P (x)

[
γ2Θ

(L−1)
∞ (x,x) +n−1

0 x⊤x
]

(f )
= Ex∼P (x)

[
γ2Θ

(L−1)
∞ (x,x)

]
+n−1

0 ∥ΣP ∥tr ,

(C.16)

in which (a) derives from the property of Kronecker product, (b) follows

from the notation nL = n and (c) results from the property of expectation

and trace norm. In addition, (d) follows from the definition of Θ(L)
∞ (x,x)

in Theorem C.2 and (e) is derived by introducing Lemma C.2 into (d).

Finally, (f) follows from the expectation and variance of P (x). By following

(c-f) from layer L to 1, we can get

(mn)−1∥Θ0∥tr ≤ γ2(L−1)Ex∼P (x)

[
Σ(1)(x,x)

]
+

n−1
0 ∥ΣP ∥tr

(
1−γ2(L−1)

)(
1−γ2

)−1

= n−1
0 ∥ΣP ∥tr

(
1−γ2L

)(
1−γ2

)−1
.

(C.17)

Notably, (C.17) is derived under the condition that γ , 1. For the case

of γ = 1, similarly, we can get

(mn)−1∥Θ0∥tr ≤ n−1
0 L∥ΣP ∥tr . (C.18)
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Note that with ∥x∥2 ≤ 1, we have

∥ΣP ∥tr = Ex∼P (x)

[
x⊤x

]
−Ex∼P (x) [x]⊤Ex∼P (x) [x]

≤ Ex∼P (x)

[
x⊤x

]
≤ 1 .

(C.19)

Given any two different distributions P (x) and Q(x), define Z =∫
∥P (x)−Q(x)∥dx,1 we can construct a special probability density func-

tion P̃ (x) = Z−1∥P (x) −Q(x)∥ to further employee the bounds in (C.17)

and (C.18). Specifically, for γ , 1, by combining (C.17) and (C.19), we

can get

(mn)−1
∣∣∣∣∥∥∥Θ0(P )∥tr − ∥Θ0(Q)

∥∥∥
tr

∣∣∣∣ (a)
=

∣∣∣∣∣∣∣Ex∼P (x)

[
Θ

(L)
∞ (x,x)

]
−Ex∼Q(x)

[
Θ

(L)
∞ (x,x)

] ∣∣∣∣∣∣∣
(b)
≤

∫
∥P (x)−Q(x)∥Θ(L)

∞ (x,x)dx

(c)
≤ n−1

0 Z∥ΣP ∥tr
(
1−γ2L

)(
1−γ2

)−1

(d)
≤ n−1

0 Z
(
1−γ2L

)(
1−γ2

)−1
,

(C.20)

in which (a) follows from (c) in (C.16), (b) results from Cauchy Schwarz

inequality and (c) is obtained by introducing inequality (C.17) and distri-

bution P̃ (x). Finally, (d) is based on (C.19).

Similarly, in the case of γ = 1, we can get

(mn)−1
∣∣∣∣∥∥∥Θ0(P )∥tr − ∥Θ0(Q)

∥∥∥
tr

∣∣∣∣ ≤ n−1
0 ZL , (C.21)

which concludes the proof.

Remark. Note that ReLU is widely adopted as the nonlinearity in neural

networks, which satisfies the Lipschitz continuity with γ = 1 and the

1We abuse this integration to ease notations.
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inequality |σ (x)| ≤ |x|. Notably, many other ReLU-type nonlinearities (e.g.,

Leaky ReLU (Maas et al., 2013) and PReLU (He et al., 2015b)) can also

satisfy these two conditions.
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Appendix D

Appendix for Chapter 7

D.1 Proofs

Throughout the proofs in this work, we use lower-case bold-faced symbols

to denote column vectors (e.g., x), and upper-case bold-faced symbols to

represent matrices (e.g., A).

D.1.1 Proof of Theorem 7.1

D.1.1.0.1 ConnectingMGrad withMTrace. Since we have assumed that

the loss function ℓ(·, ·) is β-Lipschitz continuous in the first argument, we
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have the following inequalities using the notations in Sec. 7.2:

MGrad =

∥∥∥∥∥∥∥∥ 1
m

m∑
i=1

∇θℓ(f (xi ,θ0), yi)

∥∥∥∥∥∥∥∥
2

≤ 1
m

m∑
i=1

∥∥∥∇θℓ(f (xi ,θ0), yi)
∥∥∥

2

≤ 1
m

m∑
i=1

∣∣∣∇f ℓ(f (xi ,θ0), yi)
∣∣∣∥∇θf (xi ,θ0)∥2

≤
β

m

m∑
i=1

∥∇θf (xi ,θ0)∥2

≤
β

m

√√
m

m∑
i=1

∥∇θf (xi ,θ0)∥22

= βMTrace

(D.1)

where we let ∇f ℓ(f (xi ,θ0), yi) be the gradient with respect to the output

of DNN model denoted by f . Note that the first inequality derives from

the Cauchy-Schwarz inequality. The third inequality results from the

definition of Lipschitz continuity and the fourth inequality also follows

from the Cauchy-Schwarz inequality. Finally, the last equality is based

on the definition of NTK matrix defined in Sec. 7.2.1, i.e.,

MTrace =

√
1
m
∥Θ0∥tr =

√√
1
m

m∑
i=1

∥∇θf (xi ,θ0)∥22 . (D.2)

Let C1 = β, with a high probability, we have

MGrad ≤ C1MTrace . (D.3)

D.1.1.0.2 Connecting MSNIP with MGrad. We firstly introduce the

following lemma.

Lemma D.1. If x1, · · · ,xk are independent standard normal random variables,
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for y =
∑k

i=1 x2
i and any ϵ,

P(y− k ≥ 2
√
kϵ+ 2ϵ) ≤ exp(−ϵ) .

Following that of (Jacot et al., 2018; Arora et al., 2019a), each element

of θ0 ∈ Rd follows from the standard normal distribution independently.

We therefore can bound ∥θ0∥22 using the lemma above. Specifically, let δ =

exp(−ϵ) ∈ (0,1), with probability at least 1− δ over random initialization,

we have:

∥θ0∥22 ≤ d + 2

√
d log

1
δ

+ 2log
1
δ
. (D.4)

Using the results above and following the definition ofMGrad, with

probability at least 1− δ over random initialization, we have

MSNIP =
1
m

m∑
i=1

∣∣∣θ⊤0 ∇θL(f (xi ,θ0), yi)
∣∣∣

≤ 1
m

m∑
i=1

∥θ0∥2∥∇θℓ(f (xi ,θ0), yi)∥2

≤

√
d + 2

√
d log

1
δ

+ 2log
1
δ
· 1
m

m∑
i=1

∥∥∥∇θℓ(f (xi ,θ0), yi)
∥∥∥

2

≤ β

√
d + 2

√
d log

1
δ

+ 2log
1
δ
MTrace

(D.5)

where the last inequality follows the same derivation in (D.1). Let C2 =

β

√
d + 2

√
d log 1

δ + 2log 1
δ , with a high probability, we finally have

MSNIP ≤ C2MTrace . (D.6)

D.1.1.0.3 Connecting MGraSP and MGrad. We firstly introduce the

following lemma adapted from (Lee et al., 2019a).

Lemma D.2 (Lemma 1 in (Lee et al., 2019a)). Let δ ∈ (0,1). There exist
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constant ρ1,ρ2 > 0 such that for any r > 0, θ,θ′ ∈ B(θ0, r/
√
n) and any input

x within the dataset, with probability at least 1−δ over random initialization,

we have ∥∥∥∇θf (x,θ)
∥∥∥

2
≤ ρ1∥∥∥∇θf (x,θ)−∇θ′f (x,θ′)

∥∥∥
2
≤ ρ2

∥∥∥θ −θ′∥∥∥
2

where B(θ0, r/
√
n) ≜ {θ : ∥θ −θ0∥ ≤ r/

√
n}.

To ease the notation, we use ∇f ℓ(f (xi ,θ0), yi) to denote the gradient

with respect to the output of DNN (i.e., f (xi ,θ0)). Following the definition

of Hessian matrix, Hi applied inMGraSP can be computed as

Hi = ∇2
θ0
ℓ(f (xi ,θ0), yi)

= ∇θ
[
∇f ℓ(f (xi ,θ0), yi)∇θf (xi ,θ0)

]
= ∇2

f ℓ(f (xi ,θ0), yi)∇θf (xi ,θ0)∇θf (xi ,θ0)⊤ +∇f ℓ(f (xi ,θ0), yi)∇2
θf (xi ,θ0) .

(D.7)

Since ℓ(·, ·) is assumed to be γ-Lipschitz smooth and β-Lipschitz con-

tinuous in the first argument, we can then bound the operator norm of

this hessian matrix Hi based on the input xi in the dataset by

∥Hi∥2 =
∥∥∥∥∇2

f ℓ(f (xi ,θ0), yi)∇θf (xi ,θ0)∇θf (xi ,θ0)⊤ +∇f ℓ(f (xi ,θ0), yi)∇2
θf (xi ,θ0)

∥∥∥∥
2

≤
∣∣∣∣∇2

f ℓ(f (xi ,θ0), yi)
∣∣∣∣∥∥∥∇θf (xi ,θ0)∇θf (xi ,θ0)⊤

∥∥∥
2

+
∣∣∣∇f ℓ(f (xi ,θ0), yi)

∣∣∣∥∥∥∇2
θf (xi ,θ0)

∥∥∥
2

≤ γ
∥∥∥∇θf (xi ,θ0)∇θf (xi ,θ0)⊤

∥∥∥
2

+ β
∥∥∥∇2

θf (xi ,θ0)
∥∥∥

2

≤ γ Tr(∇θf (xi ,θ0)∇θf (xi ,θ0)⊤) + β
∥∥∥∇2

θf (xi ,θ0)
∥∥∥

2

≤ γ
∥∥∥∇θf (xi ,θ0)

∥∥∥2
2

+ β
∥∥∥∇2

θf (xi ,θ0)
∥∥∥

2

≤ γρ2
1 + βρ2

(D.8)

where the last inequality results from Lemma D.2 and is satisfied with

probability at least 1− δ over random initialization.

Finally, based on the definition ofMGraSP, with probability at least
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1− 2δ over random initialization, we have.

MGraSP =
1
m

∣∣∣∣∣∣∣∣
m∑
i=1

θ⊤0 (Hi∇θL(f (xi ,θ0), yi))

∣∣∣∣∣∣∣∣
≤ 1
m
∥θ0∥2

m∑
i=1

∥∥∥Hi∇θL(f (xi ,θ0), yi)
∥∥∥

2

≤ 1
m
∥θ0∥2

m∑
i=1

∥Hi∥2∥∇θL(f (xi ,θ0), yi)∥2

≤ (γρ2
1 + βρ2)

√
d + 2

√
d log

2
δ

+ 2log
2
δ
· 1
m

m∑
i=1

∥∥∥∇θℓ(f (xi ,θ0), yi)
∥∥∥

2

≤ β(γρ2
1 + βρ2)

√
d + 2

√
d log

2
δ

+ 2log
2
δ
MTrace .

(D.9)

Similarly, let C3 = β(γρ2
1 + βρ2)

√
d + 2

√
d log 2

δ + 2log 2
δ , with a high

probability, we finally have

MGraSP ≤ C3MTrace , (D.10)

which concludes our proof.

Remark. Let the training-free metric applied in (Xu et al., 2021) be

defined as

MKNAS ≜

√√√√∣∣∣∣∣∣∣∣ 1
m2

m∑
i,j=1

∇θf (xi ,θ0)⊤∇θf (xj ,θ0)

∣∣∣∣∣∣∣∣ . (D.11)

Interestingly,MKNAS is also gradient-based according to Sec. 7.2.2. As a

result, we can also theoretically connectMKNAS withMTrace in a similar
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way:

M2
KNAS =

∣∣∣∣∣∣∣∣ 1
m2

m∑
i,j=1

∇θf (xi ,θ0)⊤∇θf (xj ,θ0)

∣∣∣∣∣∣∣∣
≤ 1
m2

√√√
m2

m∑
i,j=1

(
∇θf (xi ,θ0)⊤∇θf (xj ,θ0)

)2

=
1
m
∥Θ0∥F ≤

1
m
∥Θ0∥tr =M2

Trace

(D.12)

where the first inequality follows from the Cauchy-Schwarz inequality

and the second equality is based on the definition of Frobenius norm.

The last inequality derives from the matrix inequality ∥ · ∥F ≤ ∥ · ∥tr while

the last equality is obtained based on the definition ofMTrace. Therefore,

we have the following theoretical connection betweenMKNAS andMTrace,

which we validate empirically in Sec. 7.6.1.

MKNAS ≤MTrace . (D.13)

Remark. Note that our assumptions about the Lipschitz continuity and

the Lipschitz smoothness of loss function ℓ(·, ·) can be well-satisfied by

the commonly employed loss functions in practice, e.g., Cross Entropy

and Mean Square Error. For example, Shu et al. (2021) have justified that

these two commonly applied loss functions indeed satisfy the Lipschitz

continuous assumption. As for their Lipschitz smoothness, following a

similar analysis in (Shu et al., 2021), we can also easily verify that there

exists a constant c > 0 such that ∥∇2
f ℓ(f , ·)∥2 ≤ c for both Cross Entropy

and Mean Square Error.
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D.1.2 Proof of Theorem 7.2

D.1.2.1 Estimating the Rademacher Complexity of DNNs

We firstly the Rademacher complexity of a hypothesis G over dataset

S = {(xi , yi)}mi=1 of size m as

RS(G) = Eϵ∈{±1}m

sup
g∈G

1
m

m∑
i=1

ϵig(xi)

 , (D.14)

with ϵi ∈ {±1}. Let θ0 be the initialized parameters of DNN model f , we

then define the following hypothesises that will be used in our lemmas

and theorems:

F ≜ {x 7→ f (x,θt) : t > 0}, F lin ≜ {x 7→ f (x,θ0) +∇θ0
f (x,θ0)⊤(θt −θ0) : t > 0} ,

(D.15)

where ft ∈ F and f lin
t ∈ F lin denote the functions determined by the

DNN model f and its corresponding linearization at step t of their model

training, respectively. Note that the θt in ft and f lin
t are not the same

and are determined by the optimization of ft and f lin
t correspondingly.

Interestingly, ft can then be well characterized by f lin
t as proved in the

following lemma.

Lemma D.3 (Theorem H.1 (Lee et al., 2019a)). Let n1 = · · · = nL−1 = n

and assume λmin(Θ∞) > 0. There exist the constant c > 0 and N > 0 such

that for any n > N and any x ∈ Rn0 with ∥x∥2 ≤ 1, the following holds with

probability at least 1− δ over random initialization when applying gradient

descent with learning rate η < η0,

sup
t≥0

∥∥∥∥ft − f lin
t

∥∥∥∥
2
≤ c
√
n
.

Remark. As revealed in (Lee et al., 2019a), λmin(Θ∞) > 0 indeed holds
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especially when any input x from dataset S satisfies ∥x∥2 = 1. In practice,

∥x∥2 = 1 can be achieved by normalizing each input x from real-world

dataset using its norm ∥x∥2.

Moreover, we will show that the Rademacher complexity of DNN

model during model training (i.e., F ) can also be bounded using its

linearization model (i.e., F lin) based on the following lemmas.

Lemma D.4. Under the conditions in Lemma D.3, there exists a constant

c > 0 such that with probability at least 1− δ over random initialization, the

following holds

RS(F ) ≤RS(F lin) +
c
√
n
.

Proof. Based on Lemma D.3, given ϵi ∈ {±1}, with probability at least

1− δ, there exists a constant c > 0 such that

ϵift ≤ ϵif
lin
t +

c
√
n
. (D.16)

Following the definition of Rademacher complexity, we can bound

the complexity of F by

RS(F ) = Eϵ∈{±1}m

sup
f ∈F

1
m

m∑
i=1

ϵif (xi ,θ)


≤ Eϵ∈{±1}m

 sup
f lin∈F lin

1
m

m∑
i=1

(
ϵif

lin(xi) +
c
√
n

)
≤ Eϵ∈{±1}m

 sup
f lin∈F lin

1
m

m∑
i=1

ϵif
lin(xi)

+Eϵ∈{±1}m

[
c
√
n

]
≤RS(F lin) +

c
√
n
,

(D.17)

which completes the proof.

Lemma D.5. Let f (X,θ0) ≜ [f (x1,θ0) · · ·f (xm,θ0)]⊤ and y ≜ [y1 · · ·ym]⊤ be
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the predictions of DNN model f at initialization and the target labels of a

dataset S = {(xi , yi)}mi=1, respectively. Define empirical lossL≜
∑m

i=1 ∥f lin(xi ,θ)−

yi∥22/(2m) and NTK matrix at initialization Θ0 ≜ ∇θ0
f (X,θ0)∇θ0

f (X,θ0)⊤,

assume λmin(Θ0) > 0, for any t > 0, the following holds when applying gradi-

ent descent on f lin(x,θ) with learning rate η < m/λmax(Θ0)

∥θt −θ0∥2 ≤ ∥θ∞ −θ0∥2 =
√
ŷ⊤Θ−1

0 ŷ ,

where θt denotes the parameters of f lin at step t of its model training and

ŷ ≜ y − f (X,θ0). Besides, λmax(Θ0) and λmin(Θ0) denote the maximal and

minimal eigenvalue of matrix Θ0.

Proof. Following the update of gradient descent on MSE with learning

rate η < m/λmax(Θ0), we have

θt+1 = θt −
η

m
∇θ0

f (X,θ0)⊤
(
f lin(X,θt)− y

)
. (D.18)

By subtracting θ0, multiplying ∇θ0
f (X,θ0) and adding f (X,θ0) on

both sides of the equation above, we achieve

f (X,θ0) +∇θ0
f (X,θ0)(θt+1 −θ0) = f (X,θ0) +∇θ0

f (X,θ0)(θt −θ0)−
η

m
Θ0

(
f lin(X,θt)− y

)
,

(D.19)

which can be simplified as

f lin(X,θt+1) = f lin(X,θt)−
η

m
Θ0

[
f lin(X,θt)− y

]
=

(
I−

η

m
Θ0

)
f lin(X,θt) +

η

m
Θ0y .

(D.20)
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By recursively applying the equality above, we finally achieve

f lin(X,θt+1) =
(
I−

η

m
Θ0

)t+1
f lin(X,θ0) +

t∑
j=0

(
I−

η

m
Θ0

)j ( η
m
Θ0y

)
=

(
I−

η

m
Θ0

)t+1
f (X,θ0) +

[
I− (I−

η

m
Θ0)t+1

]( η
m
Θ0

)−1 η

m
Θ0y

=
(
I−

η

m
Θ0

)t+1 (
f (X,θ0)− y

)
+ y ,

(D.21)

where the last equality derives from the sum of matrix series with η <

m/λmax(Θ0). Note that this result can be integrated into (D.18) and

provide the following explicit form of θt+1 −θ0 after applying gradient

descent for t + 1 times:

θt+1 −θ0 =
t∑

k=0

θk+1 −θk

=
η

m
∇θ0

f (X,θ0)⊤
t∑

k=0

(
I−

η

m
Θ0

)k (
y − f (X,θ0)

)
=

η

m
∇θ0

f (X,θ0)⊤
t∑

k=0

(I−
η

m
Θ0)k ŷ

(D.22)

Since Θ0 is symmetric, we can also represent Θ0 as Θ0 = VΛV⊤ using

principal component analysis (PCA), where V and Λ denotes the matrix

of eigenvectors {vi}mi=1 and eigenvalues {λi}mi=1, respectively. Based on this
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representation, we have

∥θt+1 −θ0∥2 =
η

m

√
(θt+1 −θ0)⊤(θt+1 −θ0)

=
η

m

√√√
ŷ⊤

t∑
k=0

(I−
η

m
Θ0)k∇θ0

f (X,θ0)∇θ0
f (X,θ0)⊤

t∑
k′=0

(I−
η

m
Θ0)k′ ŷ

=
η

m

√√√
ŷ⊤

t∑
k=0

(I−
η

m
Θ0)kΘ0

t∑
k′=0

(I−
η

m
Θ0)k′ ŷ

=
η

m

√√√
ŷ⊤

t∑
k=0

(I−
η

m
VΛV⊤)kVΛV⊤

t∑
k′=0

(I−
η

m
VΛV⊤)k′ ŷ

=
η

m

√√√
ŷ⊤V

t∑
k=0

(I−
η

m
Λ)kV⊤VΛV⊤V

t∑
k′=0

(I−
η

m
Λ)k′V⊤ŷ

=
η

m

√√√
ŷ⊤V

t∑
k=0

(I−
η

m
Λ)kΛ

t∑
k′=0

(I−
η

m
Λ)k′V⊤ŷ

=
η

m

√√√√
m∑
i=1

λi

 t∑
k=0

(1−
η

m
λi)k


2

(v⊤i ŷ)2 .

(D.23)

Since η < m/λmax(Θ0) and λmin(Θ0) > 0, we have 0 < 1 − ηλi/m < 1

and hence

∥θt −θ0∥2 =
η

m

√√√√
m∑
i=1

λi

 t−1∑
k=0

(1−
η

m
λi)k


2

(v⊤i ŷ)2

≤
η

m

√√√√
m∑
i=1

λi

 t∑
k=0

(1−
η

m
λi)k


2

(v⊤i ŷ)2

= ∥θt+1 −θ0∥2

(D.24)
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We complete the proof by recursively applying the inequalities above

∥θt −θ0∥2 ≤ ∥θ∞ −θ0∥2

=
η

m

√√√√
m∑
i=1

λi

 ∞∑
k=0

(1−
η

m
λi)k


2

(v⊤i ŷ)2

=
η

m

√√
m∑
i=1

λi

[
1

ηλi/m

]2

(v⊤i ŷ)2

=

√√
m∑
i=1

λ−1
i (v⊤i ŷ)2

=
√
ŷ⊤Θ−1

0 ŷ

(D.25)

Lemma D.6 (Awasthi et al. (2020)). Let G ≜ {x 7→ wT x : ∥w∥2 ≤ R} be a

family of linear functions defined over Rd with bounded weight. Then the

empirical Rademacher complexity of G for m samples S ≜ (x1, · · · ,xm) admits

the following upper bounds:

RS(G) ≤ R
m
∥X⊤∥2,2 ,

where X is the d ×m-matrix with xis as columns: X ≜ [x1 · · ·xm].

Based on our Lemma D.4 and Lemma D.5, we can finally bound

the Rademacher complexity of a DNN model during its model training

(i.e., F ) using its linearization model (i.e., F lin). Specifically, under the

conditions in Theorem D.3 and Lemma D.5, there exist the constant c > 0

and N > 0 such that for any n > N , with probability at least 1 − δ over
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initialization, we have

RS(F ) ≤RS(F lin) +
c
√
n

= Eϵ∈{±1}m

sup
t≥0

1
m

m∑
i=1

ϵi
(
f (xi ,θ0) +∇θ0

f (xi ,θ0)⊤(θt −θ0)
)+

c
√
n

= Eϵ∈{±1}m

sup
t≥0

1
m

m∑
i=1

ϵi∇θ0
f (xi ,θ0)⊤(θt −θ0)

+
1
m

m∑
i=1

Eϵ∈{±1}m [ϵi]f (xi ,θ0) +
c
√
n

≤
∥θ∞ −θ0∥2∥∇θ0

f (X,θ0)∥2,2
m

+
c
√
n

≤
∥∇θ0

f (X,θ0)∥2,2
m

√
ŷ⊤Θ−1

0 ŷ +
c
√
n

≤
√
κλ0 ·

√
ŷ⊤Θ−1

0 ŷ

m
+

c
√
n
,

(D.26)

where the first inequality derives from Lemma D.6 and the last in-

equality derives from the following inequalities based on the definition

κ ≜ λmax(Θ0)/λmin(Θ0) and λ0 ≜ λmin(Θ0).

∥∇θ0
f (X,θ0)∥2,2 =

√√
m∑
i

∥∇θ0
f (xi ,θ0)∥22

=

√√
m∑
i=1

λi(Θ0)

≤
√
mκλ0 .

(D.27)

D.1.2.2 Deriving the Generalization Bound for Training-free Metrics

Define the generalization error on data distributionD asLD(g) ≜ E(x,y)∼Dℓ(g(x), y)

and the empirical error on dataset S = {(xi , yi)}mi=1 randomly sampled

from D as LS(g) ≜
∑m

i=1 ℓ(g(xi), yi). Given the loss function ℓ(·, ·) and the

Rademacher complexity of any hypothesis G, the generalization error

on hypothesis G can then be estimated by the empirical error using the

following lemma.
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Lemma D.7 (Mohri et al. (2012)). Suppose the loss function ℓ(·, ·) is bounded

in [0,1] and is β-Lipschitz continuous in the first argument. Then with

probability at least 1− δ over dataset S of size m:

sup
g∈G
{LD(g)−LS(g)} ≤ 2βRS(G) + 3

√
log(2/δ)/(2m) .

Lemma D.8. For symmetric matrix A ∈ Rm×m with eigenvalues {λi}mi=1 in an

ascending order, define κ ≜ λm/λ1, the following inequality holds if λ1 > 0,

∥A∥tr
∥∥∥A−1

∥∥∥
tr
≤m2κ .

Proof. Since eigenvalues {λi}mi=1 are in an ascending order, we have

λm

κ
≤ λi ≤ λ1κ . (D.28)

Based on the results above, we can connect the matrix norm ∥A∥tr and

∥A−1∥tr as below:

∥A∥tr
∥∥∥A−1

∥∥∥
tr

= (
m∑
i=1

λi) · (
m∑
i=1

λ−1
i ) ≤ (mλ1κ) · mκ

λm
=
m2κ
κ

= m2κ , (D.29)

which concludes the proof.

Now we are prepared to prove our Theorem 7.2 by combining the

results in Lemma D.7 and (D.26). Specifically, under the conditions in

Theorem D.3 and Lemma D.5, there exist constant c,N > 0 such that for

any ft ∈ F and any n > N , with probability at least 1− 2δ over random
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initialization, we have

LD(ft) ≤ LS(ft) + 2βRS(F ) + 3

√
log(2/δ)

2m

≤ LS(ft) + 2β
√
κλ0 ·

√
ŷ⊤Θ−1

0 ŷ

m
+

2βc
√
n

+ 3

√
log(2/δ)

2m
.

(D.30)

Assume f (x,θ0) and y is bounded in [0,1] for any pair (x, y) in the

dataset S, let {vi}mi=1 and {λi}mi=1 be the eigenvectors and eigenvalues of

Θ0, respectively, we have ŷ ∈ [−1,1]m and the following inequalities:

ŷ⊤Θ−1
0 ŷ =

m∑
i

(v⊤i ŷ)2

λi
≤

m∑
i

∥vi∥22∥ŷ∥
2
2

λi
≤

m∑
i

m
λi

. (D.31)

Based on the fact that ∥Θ0∥tr =
∑m

i=1λi and Lemma D.8, we finally

achieve

ŷ⊤Θ−1
0 ŷ ≤m

∥∥∥Θ−1
0

∥∥∥
tr
≤ m3κ
∥Θ0∥tr

=
m2κ

M2
Trace

. (D.32)

By introducing (D.32) into (D.30), with λ0 ≤ 1, we have

LD(ft) ≤ LS(ft) + 2β
√
κλ0 ·

√
ŷ⊤Θ−1

0 ŷ

m
+

2βc
√
n

+ 3

√
log(2/δ)

2m

≤ LS(ft) +
2βκ
√
m

MTrace
+

2βc
√
n

+ 3

√
log(2/δ)

2m
.

(D.33)

LetM be any metric introduced in Sec. 7.2.2, based on the results in

our Theorem 7.1 and the definition of O(·), the following inequality holds

with high probability using the result above,

LD(ft) ≤ LS(ft) +O(κ/M) , (D.34)

which concludes our proof of Theorem 7.2.

Remark. The underlying assumption in our Theorem 7.2 is that λmin(Θ∞) >
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0, which has been justified in the remark following Lemma D.3. As for

λmin(Θ0) > 0, it can be well-satisfied by introducing zero-mean noise into

the gradient of model parameters and our Theorem 7.2 will still hold

with high probability in this case. Though our conclusion is based on the

initialization using standard normal distribution and over-parameterized

DNNs, our empirical results in Sec. 7.6.5 show that this conclusion can

also work well when DNNs is initialized using other methods or DNN

width is relatively small.

D.1.3 Proof of Corollary 7.2

To prove our Corollary 7.2, we firstly consider the convergence of f lin
t

under the same conditions in Theorem 7.2. Specifically, following the

notations and results in Lemma D.5, let {vi}mi=1 and {λi}mi=1 be the eigen-

vectors and eigenvalues of Θ0, respectively, we have

LS(f lin
t ) =

1
2m

∥∥∥∥f lin(X,θt)− y
∥∥∥∥2

2

=
1

2m

∥∥∥∥∥∥(I−
η

m
Θ0

)t (
f (X,θ0)− y

)∥∥∥∥∥∥2

2

=
1

2m

∥∥∥∥∥∥(I−
η

m
Θ0

)t
ŷ

∥∥∥∥∥∥
2

=
1

2m

m∑
i=1

(
1−

η

m
λi

)2t (
v⊤i ŷ

)2

≤ 1
2m

m∑
i=1

(
1−

η

m
λi

)2t
∥vi∥22

∥∥∥ŷ∥∥∥2
2
,

(D.35)

where the fourth equality follows the same derivation in (D.23). Moreover,

under the assumption that ŷ ∈ [0,1]m and the fact that ∥vi∥2 = 1, for any
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t > 0 (i.e., t = 1,2, · · · ), we have

LS(f lin
t ) ≤ 1

2

m∑
i=1

(
1−

η

m
λi

)2t

≤ 1
2
m

 1
m

m∑
i=1

1−
η

m
λi


2t

=
1
2
m

(
1−

η

m2 ∥Θ0∥tr
)2t

=
1
2
m

(
1−

η

m
M2

Trace

)2t

≤ 1
2
m

(
1−

η

mc
M2

)2t

(D.36)

where the second inequality derives from the fact that 0 < 1− ηλi/m < 1

as η < m/λmax(Θ0) and λmin(Θ0) > 0 and the Jensen’s inequality. Besides,

the last inequality is based on the results in our Theorem 7.1: For any

training-free metricM introduced in Sec. 7.2.2, there exists a constants c

such that the following holds with high probability,

M2 ≤ cM2
Trace ⇒ 1−

η

mc
M2 ≥ 1−

η

m
M2

Trace . (D.37)

Based on Lemma D.3 and the fact that loss function ℓ(f ,y) = (f −y)2/2

is 1-Lipschitz continuous in the first argument, with high probability, we

have ∣∣∣∣LS(ft)−LS(f lin
t )

∣∣∣∣ ≤ ∣∣∣∣ft − f lin
t

∣∣∣∣ ≤ O(
1
√
n

) . (D.38)

By introducing the results above into our Theorem 7.2, we finally

achieve the following results with high probability,

LD(ft) ≤ LS(ft) +O(κ/M) ≤ LS(f lin
t ) +O(κ/M)

≤ 1
2
m

(
1−

η

mc
M2

)2t
+O(κ/M) ,

(D.39)

which thus concludes our proof.
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D.1.4 Proof of Theorem 7.3

We firstly introduce the following lemma, which is adapted from (Shu

et al., 2021).

Lemma D.9 (Shu et al., 2021). Suppose x ∈ Rn0 and ∥x∥2 ≤ 1 for all x

in a dataset of size m, a given L-layer DNN model f with scalar output is

randomly initialized, and the 1-Lipschitz continuous activation function σ

within f satisfies |σ (x)| ≤ |x|. Then, given any two empirical distributions

P ,P ′ on dataset S, let Θ0,Θ′0 be their corresponding NTKs, denote Z ≜∫
∥P (x)− P ′(x)∥dx, as n→∞,

1
m

∣∣∣∣∥∥∥Θ0∥tr − ∥Θ′0
∥∥∥

tr

∣∣∣∣ ≤ n−1
0 Z

with probability arbitrarily close to 1.

LetMTrace andM′Trace be evaluated on distribution P and P ′, respec-

tively. Denote Mmin ≜ min(MTrace,M′Trace), based on the definition of

MTrace, we have

∣∣∣MTrace −M′Trace

∣∣∣ =

∣∣∣∣∣∣∣M
2
Trace − (M′Trace)2

MTrace +M′Trace

∣∣∣∣∣∣∣
≤
m−1

∣∣∣∣∥∥∥Θ0∥tr − ∥Θ′0
∥∥∥

tr

∣∣∣∣
2Mmin

≤ (2n0Mmin)−1Z .

(D.40)

LetM andM′ be any metric from Sec. 7.2.2 that are evaluated on the

distribution P and P ′, respectively. Following our Theorem 7.1 and the

result above, there exists a constants α such that the following holds with

high probability,

M′ ≤ αM′Trace ≤ α
(
MTrace + (2n0Mmin)−1Z)

)
. (D.41)
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Assume thatM′ > α(2n0Mmin)−1Z), we further have

1
MTrace

≤ α

M′ −α(2n0Mmin)−1Z)
(D.42)

By introducing the result above into (D.33), we have

LD(ft) ≤ LS(ft) +
2βκ
√
mλ0

MTrace
+

2βc
√
n

+ 3

√
log(2/δ)

2m

≤ LS(ft) +
2βκ
√
mλ0/α

M′ −α(2n0Mmin)−1Z
+

2βc
√
n

+ 3

√
log(2/δ)

2m

≤ LS(ft) +O
(

κ

M′ −α(2n0Mmin)−1Z

)
,

(D.43)

where the last inequality is based on the definition of O(·). Our proof of

Theorem 7.3 hence is concluded.

D.1.5 Proof of Theorem 7.4

Let W(i)
j· denote the j-th row of matrix W(i), we can compute the gradient

of W(i)
j· (represented as a column vector) from function f and f ′ as below

based on the formulation of these two functions in Sec. 7.3.5.

∇
W(i)

j·
f (x) = x

∇
W(i)

j·
f ′(x) =

 i−1∏
k′=1

W(k′)x

1⊤
 L∏
k=i+1

W(k)


·j

,
(D.44)

where
(∏L

k=i+1 W(k)
)
·j

is defined as the j-th column of matrix
(∏L

k=i+1 W(k)
)
,

i.e.,  L∏
k=i+1

W(k)


·j

≜
(
W(i+1) · · ·W(L)

)
·j

= W(L)W(L−1) · · ·W(i+1)
·j , (D.45)

Consequently, the NTK matrix of initialized wide architecture can be
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represented as

Θ0(x,x′) =
L∑
i=1

n∑
j=1

(
∇

W(i)
j·
f (x)

)⊤
∇

W(i)
j·
f (x)

=
L∑
i=1

n∑
j=1

x⊤x′ = nL · x⊤x′ .

(D.46)

Meanwhile, the NTK matrix of initialized deep architecture can be

represented as

Θ′0(x,x′) =
L∑
i=1

n∑
j=1

(
∇

W(i)
j·
f ′(x)

)⊤
∇

W(i)
j·
f ′(x)

=
L∑
i=1

n∑
j=1


 i−1∏
k′=1

W(k′)x

1⊤
 L∏
k=i+1

W(k)


·j


⊤  i−1∏

k′=1

W(k′)x′

1⊤
 L∏
k=i+1

W(k)


·j

=
L∑
i=1

n∑
j=1

1⊤
 L∏
k=i+1

W(k)


·j


2

x⊤

 i−1∏
k′=1

W(k′)


⊤  i−1∏

k′=1

W(k′)

x′
= x⊤

L∑
i=1

n∑
j=1

1⊤
 L∏
k=i+1

W(k)


·j


2  i−1∏

k′=1

W(k′)


⊤  i−1∏

k′=1

W(k′)

x′ .
(D.47)

Since each element in W(i) is initialized using standard normal distri-

bution, we have following simplified expectation by exploring the fact
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that E
[
W(i)

]
= 00⊤ and E

[(
W(i)

)⊤
W(i)

]
= nI.

E


 i−1∏
k′=1

W(k′)


⊤ i−1∏
k′=1

W(k′)

 = E
[(

W(1)
)⊤
· · ·

(
W(i−1)

)⊤
W(i−1) · · ·W(1)

]
= E

(W(1)
)⊤

E
[
· · ·E

[(
W(i−1)

)⊤
W(i−1)

]
· · ·

]
W(1)


= E

(W(1)
)⊤

E
[
· · ·E

[(
W(i−2)

)⊤
(nI)W(i−2)

]
· · ·

]
W(1)


= ni−1I .

(D.48)

Similarly, we also have

E


1⊤

 L∏
k=i+1

W(k)


·j


2
 = 1⊤E


 L∏
k=i+1

W(k)


·j


 L∏
k=i+1

W(k)


·j


⊤1

= 1⊤E

W(L)E
· · ·E[

W(i+1)
·j

(
W(i+1)
·j

)⊤]
· · ·

(W(L)
)⊤1

= 1⊤E
W(L)E

[
· · ·E

[
W(i+2)I

(
W(i+2)

)⊤]
· · ·

](
W(L)

)⊤1

= 1⊤E
W(L)E

[
· · ·E

[
W(i+3)nI

(
W(i+3)

)⊤]
· · ·

](
W(L)

)⊤1

= nl−i−11⊤1

= nL−i .

(D.49)

Since W(i) in each layer is initialized independently, we achieve the

following result by introducing the equality above and expectation over
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model parameters into (D.44).

E
[
Θ′0(x,x′)

]
= x⊤E


L∑
i=1

n∑
j=1

1⊤
 L∏
k=i+1

W(k)


·j


2  i−1∏

k′=1

W(k′)


⊤  i−1∏

k′=1

W(k′)


x′

= x⊤


L∑
i=1

n∑
j=1

E


1⊤

 L∏
k=i+1

W(k)


·j


2
E


 i−1∏
k′=1

W(k′)


⊤ i−1∏
k′=1

W(k′)


x′

= x⊤


L∑
i=1

n∑
j=1

nL−i ·ni−1I

x′
= LnLx⊤x′ .

(D.50)

Since X⊤X = I with X ≜ [x1x2 · · ·xm], we finally conclude the proof by

Θ0(X,X) = Ln · I

E
[
Θ′0(X,X)

]
= LnL · I .

(D.51)
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