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Objective. Modeling and predicting 
spatiotemporal traffic phenomena is 
important to the goal of achieving 
smooth-flowing, congestion-free traffic. 

Practical applications. Route planning, 
detecting & forecasting congestion 
hotspots, road pricing, etc.

Sensor deployment is cost-constrained.

Drawbacks of using static sensors 
& passive mobile probes
•Sparse road network coverage
•Expensive installation & maintenance
•Abundant redundant data
• Inconsistent driving behaviors & privacy 
(mobile)
•No repositioning (static)

Motivation

Deploy active mobile probes
•Since late 1920s
•Cover any segments of road network to 
collect data that matters! 
•Consistent driving behavior
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Research problem
How do mobile probes actively explore 
the road network to gather & assimilate 
the most informative data for modeling & 
predicting a traffic phenomenon?

Challenges/Issues
Model for predicting traffic phenomena
• Exploit spatiotemporal correlation structure to predict 

traffic phenomenon
• Exploit road segment features and network topology 

to model correlation  

Data fusion
• Large data gathered “distributedly” by probes
• Real-time, efficient, scalable prediction and data fusion 

by decentralizing, parallelizing, and distributing in 
Google-like MapReduce paradigm

Active sensing
• Scale with large observations & probes

Research Problem & Challenges

Traffic speeds (km/h) over urban 
road network of 775 segments 

in Tampines, SG during evening 
peak hours on April 20, 2011.

Mobility demand (pickups) 
pattern of CBD, SG
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Gaussian Process (GP) Regression Model
Probabilistic regression model
A Gaussian process (GP) is a set of random 
measurements, any finite subset of which 
has a joint Gaussian distribution.

Rich characterization of traffic 
phenomenon 
Spatiotemporal correlation structure is 
exploited to predict traffic measurements 
(posterior mean & variance) of any 
unobserved road segment at any time 
using limited data. 

Correlation of measurements 
between road segments
•Depend on road features (length, no. of 
lanes, speed limit) and network topology
•Graph-based kernel (UAI 2012)

Formal measures of predictive 
uncertainty 
Mobile probes can be directed to explore 
highly uncertain segments of road network. 
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Gaussian Process (GP) Regression Model

A Gaussian process is a set of random 
variables, any finite subset of which have 
a joint Gaussian distribution.

Formally characterizes an environmental 
field : its spatial correlation structure 
enables a continuous-valued map of the 
field to be learned using the point-based 
observations.

Provides formal measures of mapping & 
classification/labeling uncertainty : the 
robots can be directed to explore highly 
uncertain areas of the field.

In this case, the random variables represent the value of 
the function f(x) at location x.

Highway stretch: Define x as road segment or location & 
f(x) as corresponding speed measurement.



GP-Based Decentralized Data Fusion (GP-DDF)
Limitation of full GP
•Centralized: Cubic time in size of data 
•Cannot perform prediction in real time

GP-DDF
•Distribute computational load among  
mobile agents to achieve efficient and 
scalable approximate GP prediction 
• Idea. Each agent shares a local 
summary of its local data and 
assimilates them to form a globally 
consistent summary for prediction and 
active sensing

Traffic speeds 
(km/h) over 
urban road 

network of 775 
segments in 

Tampines, SG 
during evening 
peak hours on 
April 20, 2011.
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Theoretical Results
Performance guarantee. Predictive performance of GP-DDF is equivalent 
to that of a centralized sparse PITC approximation of full GP model (Quiñonero-

Candela and Rasmussen, 2005).
Implication. Computation of centralized model can be distributed among all mobile 
agents, thereby achieving efficient and scalable prediction.

Time complexity. GP-DDF scales better than centralized GP models in size 
of data when number of agents is large. 

Communication complexity. GP-DDF is more scalable since broadcasted 
local summary is independent of size of data. 
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Decentralized Active Sensing (DAS)
Maximum entropy sampling
•Select max-entropy joint walk
•Minimize posterior joint entropy at 
remaining unobserved road segments
•Centralized: Exponential time in number 
of agents

Partially DAS
•Coordination graph: Two agents are 
adjacent if correlation between some pair 
of their possible walks is high enough
•Partition agents into disjoint subsets: 
Each corresponds to a connected 
component
•Select max-entropy joint walk for each 
subset
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Adjacency matrix of coordination graph 
is used to determine its connected 
components.

Performance guarantee
Active sensing performance of DAS is near-
optimal under various practical 
environmental conditions.



Experimental Setup

Traffic speeds (km/h) over urban road network of 
775 segments in Tampines, SG during evening 
peak hours on April 20, 2011. Mean speed is 48.8 
km/h and standard deviation is 20.5 km/h.

• A network of 4, 6, 8, 10, 20, 30 
mobile agents is tasked to explore 
the road network to gather a total of 
up to 960 observations.

• Length of walk: 2

• Size of support set: 64

• Random initializations: 40
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Comparing Data Fusion & Active Sensing Algorithms
Performance of D2FAS (GP-DDF + DAS) is compared with that of two 
state-of-the-art centralized data fusion approaches to GP prediction 
coupled with centralized active sensing:

•Full GP (FGP): Full data is fused into GP model. 

•Subset of Data (SoD) Approximation: Online greedy active subset 
selection of full data is performed, after which only the selected subset is 
assimilated into GP model.
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Time Efficiency
D2FAS is significantly more time-efficient and scales better than centralized FGP and 
SoD with more data.

Predictive Accuracy
Predictive performance of D2FAS is close to that of the centralized FGP and SoD. 

Experimental Results: Performance of D2FAS
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Fully decentralized active sensing is used.

Time Efficiency
•With more agents, time incurred by D2FAS (FGP & SoD) decreases (increases)
•>=10 agents: D2FAS is at least 1 order of magnitude faster than FGP and SoD

Experimental Results: Scalability of GP-DDF
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Private automobiles: Unsustainable 
personal urban mobility solutions
•27.6% and 37% increase in private 
vehicles in HK & SG from 2003 to 2011 
•Only 10% expansion of their road 
networks

Mobility-on-Demand (MoD) systems 
•One-way vehicle sharing
•Racks and stacks of light electric vehicles
•Autonomous MoD vehicles cruise a road 
network to be hailed by users (like taxis)

Challenges (Mitchell, 2008)
•Real-time, fine-grained mobility demand 
sensing, modeling, and prediction
•Real-time active fleet management to 
balance supply and demand

Motivation
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Research Problem
How do the vacant MoD vehicles actively cruise the road network to gather and 
assimilate the most informative demand data for predicting a mobility demand pattern?
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Modeling & Predicting a Mobility Demand Pattern
•Gridding the service area into regions
•Pickup count (surrogate measure) of each region 
is tracked locally in a distributed manner (Jelasity et 
al., 2005)

•Stationary GP covariance structure violated by 
skewness & extremity → Problems: large 
hotspots predicted, small variances (Hohn, 1998)

•Model & predict log-demand using GP

•Model & predict original demand using log-GP

•Measure of predictive uncertainty: Log-Gaussian 
posterior entropy

Log-
scale

Original
scale
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GP-Based Decentralized Data Fusion (GP-DDF+)
GP-DDF
•Local data → Local summary
•Local summaries → Global summary
•Global summary → Prediction & active 
sensing                         

Limitations of GP-DDF
• Information loss due to summarizing data
•Sparse coverage of hotspots by support set

GP-DDF+

•Balances between predictive power of FGP 
and time efficiency of GP-DDF
• Idea. Exploit local data & summary 
information
•Global & local summaries + local data → 
Prediction & active sensing

Vehicle j

Vehicle k

Support set
Local
data k

Local
data j
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Performance guarantee
Predictive performance of GP-DDF+ is 
equivalent to that of a centralized sparse 
PIC approximation of full GP model 
(Snelson, 2007).

Time complexity. Same as GP-DDF.



Vehicle j

Vehicle k

Decentralized Active Sensing
Maximum entropy sampling
•Select max-entropy walk	

•Cruising behavior: Explore hotspots and 
sparsely sampled areas
•Dual effect of fleet rebalancing to service 
mobility demands. Redistribute vacant 
MoD vehicles to these areas with high 
likelihood of pickups
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Experimental Results: Performance of GP-DDF+ 
Experimental Setup
•200 passengers, 20 MoD vehicles
•Results averaged over 30 instances

Observations
•GP-DDF+ achieves KL divergence 
(between vehicle and demand 
distributions) closer to centralized FGP 
than GP-DDF
•GP-DDF+ achieves RMSE lower than GP-
DDF and comparable to FGP
•GP-DDF and GP-DDF+ are significantly 
more time-efficient than FGP
•GP-DDF+ achieves shorter cruising time, 
shorter waiting time, and more pickups 
than GP-DDF
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Experimental Results: Scalability of GP-DDF+

Experimental Setup
•600 passengers
•Results averaged over 30 instances

Observations
By scaling to more agents (102030), 
all three algorithms achieve
•Lower KL divergence;
•Lower RMSE;
•Shorter cruising time;
•Shorter waiting time; and 
•More pickups.
But, GP-DDF and GP-DDF+ become 
more time-efficient while FGP is less 
time-efficient.
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Parallel GP Regression: pPITC (MapReduce or MPI) (UAI 2013)
J. Chen, N. Cao, K. H. Low, R. Ouyang, C. K.-Y. Tan, & P. Jaillet (2013). Parallel Gaussian Process Regression with Low-Rank Covariance Matrix Approximations. In Proceedings of the 29th Conference on Uncertainty in Artificial Intelligence (UAI).
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Parallel GP Regression: Experimental Results
Time Efficiency
Parallelized GPs incur less time with larger number M of machines & 1-2 orders of 
magnitude less time than FGP. 
For |D|=32000, parallelized GPs (M=20) incur 1-2 minutes while FGP incurs >3.5 hours.

Predictive Accuracy
Predictive performance of parallelized GPs is comparable to that of FGP (RMSE diff. <0.05 km/h). 
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Active Sensing & Adaptive Sampling with GP & log-GP
Joint work with John Dolan (CMU), Pradeep Khosla (CMU>UCSD), Steve Chien (JPL), David Thompson (JPL)

• Develop efficient GP-driven active sensing algorithms with performance guarantees

• Study formally how the structure and properties of spatiotemporally varying 
environmental phenomena affect the performance between different classes of active 
sensing algorithms 
• Degree of spatial patchiness of hotspots (AAMAS 2008, ICAPS 2009, AAMAS 2012), non-stationary, anisotropic 

(AAMAS 2011, AAMAS 2013) fields

• Adaptive (AAMAS 2008, ICAPS 2009, AAMAS 2012) vs. non-adaptive (AAMAS 2011, AAMAS 2013), Markovian (AAMAS 2011, 

AAMAS 2013) vs. non-Markovian (AAMAS 2008, ICAPS 2009), greedy (AAMAS 2012) vs. non-myopic (AAMAS 2008, ICAPS 

2009, AAMAS 2011, AAMAS 2013), centralized vs. distributed (AAMAS 2012, UAI 2012, RSS 2013)
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Robotic informative path planning (AAMAS 2011, AAMAS 2013)

Robotic adaptive path planning 
(AAMAS 2008, ICAPS 2009)

Active sensing for labeling hotspots 
and tracking hotspot boundaries are 
two sides of the same coin! (AAMAS 
2012)


