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ABSTRACT
This paper presents an active distillation method for a local institu-
tion (e.g., hospital) to find the best queries within its given budget
to distill an on-server black-box model’s predictive knowledge into
a local surrogate with transparent parameterization. This allows
local institutions to understand better the predictive reasoning of
the black-box model in its own local context or to further customize
the distilled knowledge with its private dataset that cannot be cen-
tralized and fed into the server model. The proposed method thus
addresses several challenges of deploying machine learning (ML)
in many industrial settings (e.g., healthcare analytics) with strong
proprietary constraints. These include: (1) the opaqueness of the
server model’s architecture which prevents local users from under-
standing its predictive reasoning in their local data contexts; (2)
the increasing cost and risk of uploading local data on the cloud
for analysis; and (3) the need to customize the server model with
private onsite data. We evaluated the proposed method on both
benchmark and real-world healthcare data where significant im-
provements over existing local distillation methods were observed.
A theoretical analysis of the proposed method is also presented.
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1 INTRODUCTION
Leveraging and/or customizing pre-trained black-box models for
transparent predictive analysis in local data context has become
increasingly important for local institutions (e.g., hospitals) which
often do not have sufficient data for training accurate predictive
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models. In application domains such as healthcare, private mod-
els trained using massive proprietary data would be released as a
black-box service on the cloud due to the restrictions on sharing
proprietary information (e.g., the disease model and patient data
used in model training) [26]. For example, Google Health 1, Azure
for Healthcare Cloud 2 and IQVIA Human Data Science Cloud 3

provide such machine learning services. Local institutions/users
can subscribe to such service to analyze their local data. However,
to use such services, local institutions still need to upload their
private patient data to the service provider’s cloud which increases
both the risk of leaking sensitive information and the cost of pro-
tecting them from cyber attacks.

Furthermore, another concern of using such pre-trained service
is that there is often no transparency regarding its prediction
which prevents local institutions from understanding and inspect-
ing whether its reasoning mechanism has accounted for potential
biases (e.g., age, ethnicity and demographic regions) in their local
data. Depending on such assessment, further customization of the
pre-trained model might be necessary to gear it better towards
the local context. Unfortunately, this is not possible since both the
model and local data are proprietary and cannot be put together.

To sidestep these challenges, efforts have been made in both model
distillation and knowledge distillation. Model distillation methods
including [3–6, 17, 19, 20, 23–25, 27] aim to construct simple models
with human-understandable features to explain the prediction of a
sophisticated model for each data point locally. On the other hand,
knowledge distillation [10] and/or mimic learning [1, 11, 12] meth-
ods aim to distil the entire model [16, 18, 21, 28]. A more detailed
discussion is provided in Section 2. Here, we summarize their key
limitations in leveraging black-box models below.

(1) Inaccessible Black-Box Model: For model distillation, some
algorithms [6, 24, 25] require access to the architecture of the
black-box model, which are not realistic in many real-world
applications including healthcare. For knowledge distillation,
they also need data access which is infeasible in our setting.

1https://cloud.google.com/healthcare
2https://azure.microsoft.com/en-us/industries/healthcare/
3https://www.iqvia.com/solutions/human-data-science-cloud
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(2) High Query Cost: Existing models especially [2, 17, 19, 20]
require scoring many local samples (e.g., patient) with the black-
box model first in order to distill a local model for a local sample,
which is computationally intensive and incurs extra cost to pro-
tect the privacy.

(3) Lack of Multi-level Rationalization: The above works can
rationalize the black box’s prediction at each data point well
but do not aim to distill the black box in its entirety (e.g., to
distill the associated risk factors for the disease across the entire
patient population), despite that it is desirable especially for
model customization. For example, when clinicians inspect that
the model does not fit on a certain data demography (which
might be under-represented in the provider’s training data), they
might want to add their extra domain information (e.g., patient-
specific risks) into the existing model to improve its performance,
which is currently prohibited.

In this paper, we develop an ActIve Distillation Machine (AID)
framework to accurately and efficiently distill a black-box model’s
predictive knowledge into a local surrogate with multi-level ratio-
nalization. This is enabled by the following technical contributions.

(1) Active Sample Selection Strategy for Low Cost Learning.
Instead of sending all local data (e.g., sensitive patient records)
to the black box service, AID has a sequential selection strategy
that identifies the most informative data points as queries to the
black-box model (Section 3.2.2), which reduces the query cost
and the risk of leaking sensitive information.

(2) Theoretically Guaranteed Distillation without Accessing
Black-box Models. AID distills a black-box model’s predictive
knowledge into a local surrogate with transparent parameteriza-
tion (Section 3.2.1). We developed a formal theoretical analysis to
derive guarantees for AID’s distillation quality, which is defined
as the probability that the surrogate’s prediction agrees with the
black-box model’s (Section 4).

(3) Multi-level Knowledge Distillation. The surrogate model of
AID provides instance-wise relative importance of input features
as local rationales; and a set of universal rules as global ratio-
nales that identifies relevant features for each target disease
across the entire patient population (Section 3.2.1). This allows
the proposed surrogate model to provide both local rationales
which are patient-specific, and global rationales about a disease
population which generalizes to unseen patients accurately.

We evaluate AID on several datasets including one real-world EHR
dataset to demonstrate its effectiveness and efficiency (Section 5).
The reported results show that AID achieves up to 13.80% average
performance improvement over the best baseline and interpretabil-
ity metrics, and up to 4.75× speed-up over the fastest baseline.

2 RELATEDWORKS
Model distillation can be categorized into attention-based (white-
box) methods and black-box methods. First, attention-based meth-
ods often exploit the attention weights [5, 6, 27] to distil a local
model for each subject (e.g., patient). This, however, requires ac-
cess to the server model’s architecture, which is not possible in

most healthcare setting where such information is both propri-
etary and vulnerable against cyber attacks [8]. Then, on the other
hand, there are also black-box methods including [2, 17, 19, 20]
which were proposed to distill DL models without accessing their
architecture. However, these methods often map given inputs to
human-understandable vectors in local space, where each vector
comprises a set of interpretable features engineered by the do-
main experts (e.g., patches in images, or text phrases). Then, for an
input data point, an additive linear model is defined on the human-
interpretable space with the objective to match the prediction from
the black-box model on the same data point. The resulting additive
linear model can then be used as an explanation.

More recently, Chen et al. revisited model interpretation as an
instance-wise feature selection framework named L2X, that learns
a common function to generate local interpretation of the model’s
prediction at any data point. However, these methods still provide
only local distillation per data point and do not aim to distil the
black-box model in its entirety. Furthermore, they have also over-
looked the concerns of potential large query cost.

Knowledge distillation [10] or mimic learning [1] aim to trans-
fer the predictive power from a high-capacity but expensive DL
model to a simpler model such as shallow neural networks for ease
of deployment [16, 18, 21, 28]. However, assume that both mod-
els operate on the same domain and have access to the same data
or at least similar datasets. This is however infeasible in our setting.

Active learning refers to a series of models that have active learner
to ask queries in the form of unlabeled instances to be labeled by
an oracle (e.g., a human annotator) [13, 14, 22]. However, standard
active learning often have (hard) class labels as feedback, which
cannot encode multi-level rationalization. In this work, we take a
different approach to use (soft) class distribution as the feedback,
which contains multi-level rationalization distilled from the black-
box model, and is efficiently encoded into a local surrogate.

3 METHOD
3.1 Definitions and Notations
Definition 1 (Health Risk Prediction Task). Given a dataset
D ≜ {(xt , ct )}kt=1 where (xt , ct ) denote the medical record of pa-
tient t , the diagnosing task is to compute a disease prediction vector
c ≜ [c(1) . . . c(n)] for an unseen patient record x ≜ [x (1) . . . x (m)]

where the binary feature x (i) indicates whether the patient is ob-
served with medical code i 4. This is achieved by learning the
probabilities P(c(i) = 1|x) and P(c(i) = 0|x) that x has and does not
have this disease. All patients are indexed by the ICD-9 codes.

Definition 2 (Black-Box Model). A predictive model P(c|x) ≜∏n
i=1 P(c

(i) |x) takes patient data x as input and outputs a set of
probability scores o ≜ {P(c(i) |x) | c(i) ∈ {0, 1}}ni=1. These scores

4The inputs are introduced as binary vectors only to be consistent with the binary
data derived from MIMIC-III dataset. Our AID framework below only needs access
to probabilistic outputs of the black box (regardless of the format of its input). Both
AID and its theoretical analysis do not require the inputs to be binary. Our synthetic
experiments in Section 4 and the appendices were performed on non-binary data.
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Figure 1: The AID frameworks helps local institution to leverage DLmodel trained on large proprietary health data without the
need for accessing both the proprietary data and model, as well as generate multi-level distilled rationales. This is enabled by
the followingmodules. Given a black-boxmodel trained on private EHRdata, AID (I) learns a surrogatemodel that incorporates
global and local interpretable representations; and (II) takes an active strategy to sequentially query the black-box model for
labeled data to distill its knowledge into these representations. The queried feedback is then used to update the representation
parameters and the search focus of the active component.

indicate the likelihood that the patient has a particular disease
i ∈ {1 . . .n} but does not explain why.

Definition 3 (Global Rationale). For disease i , a global rationale
is a vector bi ≜ [b

(1)
i . . .b

(m)

i ] that indicates whether a medical code
ι is relevant to disease i: relevant if b(ι)i = 1. Otherwise, b(ι)i = 0. To
avoid trivial explanations, e.g., b(ι)i = 1 ∀ (i, ι), we restrict ∥bi ∥0 ≤ ℓ

where ℓ is the maximum size of an explanation, as defined by a
domain practitioner.

Definition 4 (Local Rationale). A local rationale for a patient
record (x, c) is a vector function e(x) ≜ [e(1)(x) . . . e(m)(x)] where
e(i)(x) ∈ R indicates how strong the influence of feature i is on the
model’s prediction c of all target diseases for patient x. Intuitively,
it would assign large weights to medical codes that have strong
influence on at least one target disease i of patient x.

A local rationale is therefore patient-specific and in the below spec-
ification, it is further parameterized via an explanation function
ew(x) ≜ [e

(1)
w (x) . . . e(m)

w (x)] characterizes the importance weights
e
(i)
w (x) of each feature x (i) and is parameterized by w. For ex-
ample, e(i)w (x) = exp(p(i))/

∑m
t=1 exp(p(t )) where the logit vector

p = [p(1) . . .p(m)] ≜ wx where w ∈ Rm×m .

Finally, the dot product ⟨bi ◦ ew(x) ◦ x,α ⟩ combines the effect of
all components to produce the probability of c(i) = 1. In this formu-
lation, the weight vector α is learnable to combine the weighted
features into the logit signal appropriately.

3.2 The AID Framework
The AID frameworks helps local institution to leverage a DL model
trained on large proprietary health data without the need for access-
ing both the proprietary data and model, as well as generate multi-
level rationales. This is enabled by the following modules. Given
a model trained on private EHR data, AID (I) learns a surrogate
model that incorporates global and local distilled representations;
and (II) takes an active strategy to sequentially query the black-box

model for labeled data to distill its knowledge into these represen-
tations. The queried feedback is used to update the representation
parameters and the search focus of the active component.

3.2.1 Module I. Surrogate Model Parameterization. The sur-
rogate mimics the behavior of the black box and provides global
and local rationales, which is formally defined below:

Pα

(
c|B, ew(x)

)
≜

n∏
i=1
Pα

(
c(i) |bi , ew(x)

)
(1)

where B ≜ [b1 . . . bn ] denotes the collection of global explanations
(one explanation vector per disease for n target diseases) and α
denote the parameter of the surrogate as detailed next. In particular,
the factor surrogates for individual diseases are parameterized as

Pα

(
c(i) = 1|bi , ew(x)

)
≜ Φ(r (i)) and

Pα

(
c(i) = 0|bi , ew(x)

)
≜ 1 − Φ(r (i)) , (2)

with r (i) ≜ hα (bi ◦ ew(x) ◦ x) and Φ(r (i)) ≜ 1/(1 + exp(−r (i)))
denote the response function r (i) and the logistic function over r (i),
respectively. We define hα (p) ≜ ⟨α , p⟩ as the dot product between
two vectors and ◦ as the element-wise multiplication. Thus, α pa-
rameterizes the response function.

Intuitively, the surrogate incorporates a neural network ew(x) (with
softmax activator) parameterized byw, which are learned to extract
relevant instance-wise features for each data point, which provides
in extra a local probabilistic explanation on the influence of x’s
individual features on its prediction. Its output is used to weigh the
relevance of the features in x. A point-wise multiplication with bi
helps remove irrelevant features to increase its interpretability. The
results are fed into a logistic regression (LR) model parameterized
by α to predict whether the patient has a disease. This is chosen
due to the self-interpretability of LR.
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Distilling Black-BoxKnowledge.Given the surrogate and black-
box models, the distillation task can be framed as fitting the surro-
gate to match the black box via below5:

minimize
B,w,α

k∑
t=1

n∑
i=1

DKL
(
Pα (c

(i)
t |bi , ew(xt ))∥P(c

(i)
t |xt )

)
subject to ∥bi ∥0 ≤ ℓ . (3)

where bi ∈ {0, 1}m , xt represents the input features of patient
t = 1 . . .k and c(i)t denotes a binary random variable that indicates
if the patient is exposed to disease i .

In particular, Eq. (3) characterizes the divergence between the two
distributions Pα (ct |B, ew(xt )) and P(ct |xt ) and is derived from
their factorization in Section 3.1 and Eq. (1). This is with respect to
a set of feedback {xt , ot }kt=1:

∀(t , i) : ot ≜
{
P

(
c
(i)
t |x

)
| c(i) ∈ {0, 1}

}n
i=1

where {xt }kt=1 are drawn i.i.d. Then, let Φ−1 denotes the inverse
logistic function6. If we can find α ∗, w∗ and b∗i ∈ {0, 1}m so that:

∀(t , i) : r
(i)
t = Φ−1

(
P(c

(i)
t = 1|xt )

)
and hence, Pα

(
c
(i)
t = 1|bi , ew(xt )

)
= P

(
c
(i)
t = 1|xt

)
.

Then, the above KL divergence in Eq. (3) becomes zero and this
makes (α ∗,B∗,w∗) with B∗ ≜ {b∗i }

n
i=1 its optimizer. In practice,

however, the optimal tuple (α ∗,B∗,w∗) that makes the KL diver-
gence become zero might not exist.

Practical Optimization. It is thus more practical to search for
(α ∗,B∗,w∗) that instead minimizes the discrepancy between q(i)t ≜

Φ−1(P(c(i)t = 1|xt )) and r
(i)
t ≜ hα (ew(xt ) ◦ bi ◦ xt ), which is

a lower-bound (up to a constant) of the objective in Eq. (3) (via
Pinkser inequality). That is, we want to minimize G (B,w,α ) with
respect to (B,w,α ) subject to ∥bi ∥0 ≤ ℓ where

G (B,w,α ) ≜
k∑
t=1

n∑
i=1

(
q
(i)
t − hα (bi ◦ ew(xt ) ◦ xt )

)2
(4)

Eq. (4) can then be optimized numerically via alternating minimiza-
tion where we alternate between fixing B and optimizing (α ,w)

and vice versa. In particular, given B, Eq. (4) is continuous in (α ,w)

and can be optimized via gradient descent.

On the other hand, B = [b1 . . . bn ] needs to be sparse binary to
be interpretable. Otherwise, optimizing Eq. (4) could result in a
dense continuous vector which is not interpretable. To avoid this,
we optimized an unconstrained, continuous proxy zi ∈ [0, 1]m of
bi , which can be minimized via gradient descent. The optimized
unconstrained proxy zi can also be transformed back into a binary
vector bi via top-ℓ binarization.

5Optimizing this KL divergence in either forward or backward direction inspire the
same practical approximation in Eq.(4) below.
6Φ−1(a) = log(a/(1 − a)) for a ∈ (0, 1).

3.2.2 Module II. Active Knowledge Distillation. This section
develops an active learning algorithm that finds the best queries
to distill knowledge in the black-box model into an interpretable
surrogate. In active setting, this is constrained by a budget since
each query would incur (economical or computational) cost and
possibly leak of sensitive data. To achieve this, our intuition is
patient queries that yield the most information gain would often
fall in the disagreement region between the current surrogate and
black-box models. Formally, for a target disease i , we define the
disagreement region H(i)

k of the surrogate model as

H(i)
k ≜

{
x

��� DKL
(
Pkα ∗

(
c(i) |x

)
∥P

(
c(i) |x

))
> ζ

}
, (5)

where we use Pkα ∗ (c
(i) |x) as a short-hand notation for the surrogate

model Pα ∗ (c(i) |b∗i , ew∗ (x)) which is built using the first k queried
data points {(xt , ot )}kt=1 where ot is the (soft

7) class distribution
feedback (see Section 3.2.1). This region includes patient data that
induces divergence above a threshold ζ between the surrogate and
black-box models, which will likely result in their prediction dis-
agreement. Note that ζ can be set algorithmically in Section 4.2.

An efficient learning strategy therefore samples only data inside
the disagreement region, which requires an accurate identification
of such a region. Deciding whether a datum belongs to the disagree-
ment region however requires asking the black box’s prediction at
that datum, which raises a dilemma because we only want to query
patient datum that belongs to the disagreement region. To circum-
vent this dilemma, we represent this region as a latent function
д
(i)
k : X → {0, 1} that maps from patient data to a binary outcome
such that дik (x) = 1 implies x ∈ H(i)

k . Otherwise, дik (x) = 0. Learn-
ing дik (x) can then be made possible by leveraging the previously
queried data {(xt , ot )}k−1

t=1 as training examples since for each such
datum (xt , ot ), if

DKL
(
Pkα∗

(
c
(i)
t |xt

)
∥P

(
c
(i)
t |xt

))
> ζ , (6)

we know that xt ∈ H(i)
k . Otherwise, xt < H(i)

k . Using these in-
duced examples, one can use any of the existing off-the-shelf clas-
sifier to learn д(i)k (x). Note that (a) entropy-based and/or expected
model-change methods that sample patient based on criteria de-
rived from the surrogate’s predictive uncertainty are not applicable
since patients who cause high divergence (see Eq. (6)) between the
surrogate’s and black box’s cannot be identified accurately using
surrogate’s uncertainty alone; and (b) the disagreement at each
stage k changes due to new observations and we need to learn a
new classifier for each k .

4 THEORETICAL ANALYSIS
This section starts with a simple analysis of passive interpretation
with i.i.d. feedback (Section 4.1). The developed results are then
extended to active settings with non i.i.d. feedback (Section 4.2).

7Soft feedback contains more information than the (hard) class label feedback in
standard active learning.
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4.1 Passive Distillation Analysis
Minimizing the Kullback-Leibler (KL) divergence between black-
box model P(c|x) and its distilled surrogate Pα (c|B, ew(x)) can be
achieved by solving a surrogate optimization objective with respect
to a set of sampled data U = {xt , ot }kt=1. Note that U is different
from the proprietary dataset D (Section 3.1) with hard labels, which
was used to train the black-box model.

This raises two questions: (Q1) how well does the resulting surro-
gate model mimic the black-box model of the training data; and
(Q2) interestingly, how good is the surrogate model on unseen
data? To address these questions, we first put forward the following
definitions and assumptions:

Definition 1. Let P(x) denote the population distribution of unla-
beled data x. The interpretation quality I(B,w,α ) of Pα (c|B, ew(x))
is formally defined as:

I(B,w,α ) ≜ EP

[
DKL (Pα (c|B, ew(x))∥P(c|x))

]
(7)

where the expectation is over x ∼ P(x). This characterizes the aver-
age distributional divergence between the black box and surrogate.
Using the factorization form of the black-box and surrogate models
in Section 3.1 and Eq. (1) and the linearity of expectation, we have
I(B,w,α ) =

∑n
i=1 I(bi ,w,α ) where

I (bi ,w,α ) ≜ EP

[
DKL

(
Pα (c

(i) |bi , ew(x)∥P(c(i) |x)
)]
.

Then, let It (bi ,w,α ) ≜ DKL(P
(i)
α (xt )∥P(i)(xt )) denote the distil-

lation quality at xt ∼ P(x) where P(i)α (xt ) and P(i)(xt ) are short-
hands for Pα (c(i)t |bi , ew(xt )) and P(c(i)t |xt ). It follows that

I(bi ,w,α ) =
1
k
EP

[ k∑
t=1

It (bi ,w,α )

]
(8)

To address (Q1) above, we bound It (bi ,w,α ) in terms of the fol-
lowing quantities that characterize the noise of the black box and
the solution quality of the proposed algorithm (see Lemma 1 below).

Definition 2. Let the prediction uncertainty of the black-box model
be denoted by

ν ≜
n

min
i=1

k
min
t=1

min
(
P

(
c
(i)
t = 0|xt

)
,P

(
c
(i)
t = 1|xt

))
.

That is, its prediction confidence is always less than 1 − ν (see Ap-
pendix D for more discussion).

Definition 3. Let ϵ ≜ G(B∗,w∗,α ∗) denotes the quality of fitting
the surrogate to the black box in Section 3.2.1 where (B∗,w∗,α ∗)

is the solution found by optimizing Eq. (4).

Lemma 1. Let ϕ ≜ ϵ
(i)
t denote the individual error yielded by

(B∗,w∗,α ∗) at xt and c(i):

ϵ
(i)
t ≜

(
q
(i)
t − hα ∗ (b∗i ◦ ew∗ (xt ) ◦ xt )

)2
(9)

where q(i)t ≜ Φ−1(P(c(i)t = 1|xt )). Then, Appendix B shows that
It

(
b∗i ,w

∗,α ∗
)
≤ ϕ2/(8ν (1 − ϕ(1 − ν ))2) with ν in Definition 2. Us-

ing the result of Lemma 1, we are now ready to address Q2 via
Theorems 1 and 2 below:

Theorem 1. Letψ(ϵ,ν ) ≜ ϵ2/(8ν (1−ϵ(1−ν ))2)with ϵ in Definition
3 and δ ∈ (0, 1). Then, it can be shown that (Appendix C) with
probability at least 1 − δ ,

I
(
b∗i ,w

∗,α ∗
)

≤ ψ(ϵ,ν )

(
1 +

(
1

2k log
(

2
δ

)) 1
2
)
. (10)

Using Theorem 1, we can now bound the chance that the sur-
rogate misinterprets the black box over unseen samples, which
addresses Q2. Let E be the event that Pα ∗ (c(i) |b∗i , ew∗ (x)) disagrees
with Pi (c(i) |x)) on the most probable label (i.e., the prediction) for
a random input x ∼ P(x). A stronger version of Theorem 1 that
bounds the chance that E happens is derived below.

Definition 4. Let γ ≜ minx,i |P(0|x) − P(1|x)| denote the predic-
tion robustness of the black-box model. That is, if we subtract and
add γ ′ ≤ 0.5γ from P(0|x) to P(1|x), or vice versa, the label with
the highest probability score will not change, and as such, the pre-
diction will not change.

Theorem 2. Let k = 1
2γ 4 log 2

δ with 0 < δ < 1 where k denotes the
size of the sampled data and γ is defined in Definition 4. Appendix
E shows that with probability 1 − δ ,

P(E) ≤ ψ(ϵ,ν )

(
1
γ 2 + 1

)
, (11)

with ν and ϵ defined previously in Definitions 2 and 3.

Discussion. In our analysis (see Theorems 1 and 2), ν can be treated
as a hardness constant that characterizes how difficult an distilla-
tion task is. If the optimization error ϵ is sufficiently small such that
ϵ ≤ ν , thenψ(ϵ,ν ) ≤ νϵ/(8ν (1 − ϵ(1 − ν ))2) = ϵ/8(1 − ϵ + ϵν )2 ≤

ϵ/(8(ϵ2 − ϵ + 1)2) ≤ ϵ/(8((ϵ − 0.5)2 + 0.75)2) ≤ ϵ/(8 × 0.752) =
2ϵ/9 ≤ ϵ/3. This implies P(E) ≤ ϵ/3(1 + 1/γ 2), which means the
disagreement rate between the surrogate and black box no longer
depends on ν , thus overcoming it. On the other hand, ϵ > ν might
happen when the black-box is overfitted, which causes ν to be very
small, as discussed in Appendix E.

Note that, for the rest of this paper, we assume that the optimization
error is always smaller than ν , thus asserting the above simplified
bound on P(E).

4.2 Active Distillation Analysis
The results of Section 4.1 do not apply directly to the active scenario
here since the sequentially selected data points are no longer inde-
pendent, which is a key assumption of Theorems 1 and 2. To begin,
recall from Eq. (5) that H(i)

q denote the region of inputs that in-
duce high divergence between the surrogate (fitted using the first q
queried data points) and black box. It can be shown that when choos-
ing the divergence threshold ζ = γ 2 with γ defined in Definition 4,
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inputs in this high-divergence region will also induce prediction
disagreement between the surrogate and black-box model (see Ap-
pendix F). This is a key ingredient to establish the result in Theorem
3 below, which shows that by focusing on drawing only data from
the disagreement region, one can achieve the same disagreement
probability of the passive method in Section 4.1 with fewer samples.

To do this, we assume that at iteration q + 1, we can draw samples
from H(i)

q , which are distributed by Q(x) ≜ P(x)/P(x ∈ H(i)
q ) and

H(i)
q+1 ⊆ H(i)

q for all q.

Our key objective here is to show that there exists q∗ for which
P(x ∈ H(i)

q∗ ) ≤ (ϵ/3)(1/γ 2 + 1) and q∗ < k = 1
2γ 4 log 2

δ where
k is the sample complexity for the passive algorithm to achieve
the above misclassification rate (Theorem 2). This is achieved via
Theorem 3 below.

Theorem 3. For any target condition c(i), let q∗ = r
2γ 2 log 2r

δ with

r = log
(
ϵ

3γ 2

(
1 + γ 2

)) /
log

(
ϵ

3γ 2 (1 + γ )
)

= log
(
ϵ

3

(
1 + 1

γ 2

)) /
log

(
ϵ

3γ 2 (1 + γ )
)
.

Then, Appendix F shows that with probability at least 1−δ ,P(E(i)q∗ ) ≤

(ϵ/3)(1 + 1/γ 2). This achieves the same mis-distillation rate of
passive interpretation but requires fewer samples (i.e., q∗ < k =

1
2γ 4 log 2

δ – see Theorem 2), thus demonstrating active distillation’s
theoretical advantage.

5 EXPERIMENTS
5.1 Experimental Setting
Synthetic Datasets. These are the synthetic benchmark datasets
used in the recent work of [4] including: (1) theXOR dataset which
is a collection of data tuples (x, c)where c = 1 if 1/(1+exp(x1x2)) >
0.5 and c = 0 otherwise; (2) Nonlinear Additive dataset which
has c = 1 if 1/1 + (−100 sin 2x1 + 2|x2 | + x3 + exp(−x4)) > 0.5
and c = 0 otherwise; (3) Fusion Feature dataset, which is also a
dataset comprising of multiple (x, c) tuples for which c = [c1 c2] is
a 2-dimensional multi-hot encoding where c1, c2 are generated us-
ing x1, x2 from XOR and x3, x4, x5, x6 from Nonlinear Additive,
respectively. In each synthetic dataset, 10, 000 input x are randomly
generated from a 10-dimensional standard Gaussian.

MIMIC-IIIDataset. TheMIMIC-III dataset [15] comprises of 46, 433
in-hospital medical health records of different patients. Each health
record is a sequence of medical events. Each event is encoded as a
multi-hot, binary vector indexed by a set ofm = 1000 most frequent
medical codes (e.g., drugs, lab tests etc.) in healthcare. The input
vector indicates which medical codes appear in the patient’s record.
The corresponding output is a 11-dimensional binary vector that
indicates the mortality status (dead or alive) (DD) of the patient as
well as whether he/she has any of the following 10 diseases, which
include essential hypertension (EH), congestive heart failure (HF),
atrial fibrillation (AF), coronary atherosclerosis of native coronary

artery (CA), acute kidney failure (KF), diabetes (DI), hyperlipidemia
(HA), acute respiratory failure (RF), urinary tract infection (UR),
esophageal reflux (ER).

Baseline Methods We compare AID against the following base-
lines: L2X [4], SHAP [17], LIME [19] and ANCHOR [20].

Metrics. We follow [9] to use the metrics below.
• Fidelity:The distillation fidelitymeasureF = κ−1 ∑κ

t=1 I(A(xt ) =
B(xt )) of a method A is the percentage of test on which its ex-
planation model agrees with the prediction of the black box B.

• Accuracy: this is measured by the areas under the precision-
recall (PR-AUC) and receiver operating characteristic curves
(ROC-AUC) based on the method’s true and false positive rate.

• Efficiency: this is measured by the method’s incurred time to
predict and explain all test samples.

• Generalizability G(e) ≜ |N(x)|−1 ∑
x′ I(e(x′) = c ′(x′)) of a lo-

cal explanation e (generated to explain x) is the percentage of
data point x′ (labeled with c ′(x′)) in x’s pre-defined neighbor-
hood N(x) for which e can be applied on x′ to generate feature
weights that help the surrogate model predicts its label c ′(x′)
correctly (i.e., I(e(x′), c ′(x′)) = 1).

Implementation Details. For synthetic experiment, we first build
a target black-box model as a multi-layer perceptron (MLP) with 2
dense layers (with rectified linear unit (ReLU) activation) trained
on the entire training data with 100 hidden units each. We also
add dropout and L2 regularization on these dense layers to avoid
over-fitting. The interpretable models are then learned by randomly
sampling 500 samples from the training set and sending those to
the black-box for queried feedback.

For experiments with the MIMIC dataset, we build a black-box
model using a similar but larger neural network architecture, which
has 256 and 64 hidden units on its dense layers respectively. Again,
we let each interpretation method samples a subset of 2500 samples
from the training set and send those to the black-box for feedback.
Our code is publicly available at https://github.com/hsd1503/AID.

Evaluation Strategy. For each dataset, we partition it into train-
ing (80%), validation (10%) and test (10%) sets. For each experiment,
a state-of-the-art black-box model is constructed using the training
data. Each distillation method then samples a small fraction of train-
ing data to interpret the black-box. To evaluate their interpretation
qualities, we use the corresponding distillation model8 to make
predictions on an unseen test set.

5.2 Results
Exp 1. AID is more accurate and faster on
benchmark and real world data.
Wefirst compare AIDwith existingmodel distillationmethods based
on a budgeted data setting. Here, we set data budget of the tested
methods to be 500 samples. The distillation task thus becomes much
harder due to the limited amount of data. Results on all benchmark
8Surrogate or local model that explains the closest data point.
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Table 1: Performance Comparison

Performance (mean ± std) on Fusion Feature
Fidelity ROC-AUC PR-AUC Generalizability Time (sec)

L2X 0.531 ± 0.078 0.523 ± 0.060 0.521 ± 0.060 0.521 ± 0.062 000.328
LIME 0.495 ± 0.009 0.500 ± 0.002 0.500 ± 0.002 0.478 ± 0.038 536.396
SHAP 0.636 ± 0.077 0.584 ± 0.053 0.582 ± 0.053 0.617 ± 0.020 658.090
ANCHOR 0.727 ± 0.016 0.731 ± 0.022 0.728 ± 0.014 0.550 ± 0.026 202.010
AID 0.892 ± 0.030 0.809 ± 0.033 0.811 ± 0.033 0.662 ± 0.054 000.069

Black Box - 0.998 0.998 - -
Performance (mean ± std) on XOR

Fidelity ROC-AUC PR-AUC Generalizability Time (sec)
L2X 0.521 ± 0.036 0.537 ± 0.039 0.517 ± 0.026 0.508 ± 0.020 000.134
LIME 0.509 ± 0.047 0.508 ± 0.051 0.501 ± 0.023 0.501 ± 0.007 179.364
SHAP 0.601 ± 0.082 0.599 ± 0.063 0.577 ± 0.063 0.525 ± 0.011 268.835
ANCHOR 0.517 ± 0.032 0.515 ± 0.033 0.517 ± 0.032 0.500 ± 0.023 190.087
AID 0.658 ± 0.141 0.614 ± 0.095 0.616 ± 0.095 0.532 ± 0.032 000.050
Black Box - 0.956 0.960 - -

Performance (mean ± std) on Nonlinear Additive
Fidelity ROC-AUC PR-AUC Generalizability Time (sec)

L2X 0.627 ± 0.153 0.596 ± 0.116 0.594 ± 0.119 0.587 ± 0.118 000.263
LIME 0.487 ± 0.024 0.495 ± 0.021 0.497 ± 0.018 0.477 ± 0.039 179.976
SHAP 0.707 ± 0.100 0.644 ± 0.090 0.639 ± 0.085 0.634 ± 0.018 397.069
ANCHOR 0.706 ± 0.022 0.717 ± 0.023 0.707 ± 0.023 0.570 ± 0.038 052.956
AID 0.851 ± 0.109 0.732 ± 0.151 0.730 ± 0.150 0.702 ± 0.171 000.062

Black Box - 0.997 0.997 - -
Performance (mean ± std) onMIMIC-III

Fidelity ROC-AUC PR-AUC Generalizability Time (sec)
L2X 0.926 ± 0.007 0.601 ± 0.006 0.260 ± 0.005 0.801 ± 0.006 0000.387
LIME 0.554 ± 0.003 0.515 ± 0.008 0.203 ± 0.003 0.789 ± 0.008 3600.000
SHAP N.A N.A N.A N.A N.A
ANCHOR N.A N.A N.A N.A N.A
AID 0.929 ± 0.014 0.647 ± 0.016 0.297 ± 0.016 0.804 ± 0.001 0000.213

Black Box - 0.793 0.499 - -

datasets and the real world MIMIC-III data are shown in Table 1. We
also show the ROC curves for all methods on benchmark datasets
in Fig. 2 and on MIMIC-III dataset on Fig. 5.

In particular, Table 1 shows that AID achieves significantly better
performance than all baselines. For example, on Fusion Feature
dataset, AID achieves 22.70%, 11.40% and 7.29% improvement in
fidelity, accuracy (PR-AUC) and generalizability (hence, 13.80% im-
provement on average), respectively, over the best baseline. This is
expected since AID has a global understanding of each prediction
target, which allows it to decide if a local rationale can be applied
correctly to each test instance.

In contrast, existing baselines use a common instance-specific ra-
tionale function to explain all test points (L2X) or simply match
a test point with a nearest local rationale (LIME, SHAP and AN-
CHOR) and risk incurring inaccurate predictions. On real world
EHR data (MIMIC-III dataset), the reported results also show that
AID performs significantly better than baseline models in general,
and mildly worse than the black box that was trained using all data.

AID also runs significantly faster than the baselines as shown in the
reported efficiency in Table 1 and Fig. 3. Among all baselines, both
SHAP and ANCHOR are time-consuming strategies that generate
a new local model for each new data point. In contrast, AID con-
structs a surrogate model once and can rationalize test data without
generating new models for them, and is more efficient (e.g., 4.75×
faster than the fastest baseline on the Fusion Feature dataset).
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Figure 2: Receiver Operating Characteristic (ROC) perfor-
mance curves of tested methods on (a) XOR, (b) Nonlinear
Additive and (c,d) Fusion Feature datasets.
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Figure 3: The processing time incurred by AID and baselines
to explain 1000 samples in the test sets of XOR, Nonlinear
Additive and Fusion Feature datasets.

Exp 2. The advantage of active distillation in
budgeted data setting
To demonstrate the advantage of active distillation, we compare AID
with (a) its passive variant AID- across multiple datasets; and (b)
its oracle variant AID+ that is also passive but allowed to query the
entire dataset. In particular, AID- has the same budget as AID but
selects queries randomly instead of strategically like AID. On the
other hand, AID+ is allowed to query the entire dataset (instead of
up to 5000 data points like AID) and thus, achieves performance very
close to that of the black box. That is, AID+ represents the upper-
bound that AID seeks to approach via active distillation when there
is a budget on the amount of data that can be queried. The results
of these comparisons are plotted in Fig. 4 and Fig. 5, respectively.

First, from Fig. 4, we can see that AID performs better and much
more stable than AID- (on a wide variety of disease prediction
tasks) thanks to its ability to select data actively and strategically
to maximize the information gain. In contrast, AID- selects data
randomly and exhibits less stable performance. This corroborates
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Figure 4: Performance comparison between AID- (passive) and AID (active) in scenarios where both methods are allowed the
same data budget for interpretation.

our observations in the previous experiment and further demon-
strates the effectiveness of active distillation in data-limited settings.

Second, to demonstrate how effective active distillation (AID) is in
reducing the performance gap between its passive variant (AID-)
and the oracle upper-bound (AID+), we plot their ROC-AUC perfor-
mance curves against the amount of data AID and AID- are allowed
to query (up to 5000 points) in Fig. 5 below. The results show that
AID performs worse than AID+ as expected since its data budget is
much less than that of AID+. It can, however, be observed in the
same plot that its performance improves radically as we increase
its data budget, which showcases the practical efficiency of AID
in Section 3.2.2. In contrast, AID- has the same budget as AID. In
this case, we observe that AID quickly outperforms AID- as the
data budget increases. This is not surprising since AID- selects data
randomly while AID selects data strategically, which widens their
performance gap when the budget increases.
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Figure 5: Performance (ROC-AUC) comparison on MIMIC-
III dataset between AID and two passive variants: (a) AID+ is
allowed to query the entire dataset; and (b) AID- which has
the samebudget as AID. The black box is trained on the entire
dataset and serves as a performance upper-bound.

Exp 3. Case study of AID in patient subtyping.
To demonstrate potential uses of the AID’s multi-level distillation
onMIMIC-III dataset for patient subtyping, we extract its corre-
sponding global rationale bi for disease i (e.g., diabetes), which
selects ℓ = 20 codes from a pool ofm = 1000 to explain the disease.
Table 2 details the top 8 medical codes that best explain each target
disease and mortality. As confirmed by clinicians whom we con-
sulted with, these codes align with their domain knowledge.

AID’s local explanations can then be leveraged to help categorize
patients into sub-groups (i.e., subtyping) of the same disease to pro-
vide better personalized treatment. In particular, we extract AID’s
local explanation function ew(x) for the disease of interest (i.e., pre-
diction target), and apply it on a representative set of 100 patients
to generate their personalized weights for the above 20 medical
codes. This results in a 20 × 100 weight matrix that characterizes
the relevance of each medical code on each patient.

This is demonstrated via the heat-map plots in Fig. 6 below. In
each plot, the dark-colored pixel represents the strong influence of
a medical code on a patient’s disease outcome. The personalized
weight vector is projected onto a 2-dimensional space (using t-SNE)
and the projected vectors are clustered into sub-groups (see scat-
ter plots in Fig. 6) using Gaussian mixture model (GMM), which
associate them with different disease subtypes (see Appendix G.3
for more results). The subtypes of new patients can therefore be
identified by mapping their projected vectors to the nearest cluster.

This case study essentially demonstrates that AID’s multi-level
explanations can be used for patient subtyping in black-box setting.
This is not possible in previous works which, due to the lack of
global explanation, might mistake a feature relevant to disease A as
also relevant to disease B (though it is not) if A and B co-occur in
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Target Code 1 Code 2 Code 3 Code 4 Code 5 Code 6 Code 7 Code 8
EH Apnea Time Interval Inspiratory Time Mean Airway Pressure Hematocrit Insulin Creatine Kinase Glucose Metoprolol Tartrate
HF Phosphorous Abnormal Respiratory Pattern Exercise Tolerance Test Pantoprazole Sodium Low Insp. Pressure Warfarin Anti-Embolism Myositis Damage Index (MDI)
AF Phosphorous Total Bilirubin Pneumococcal Phenylephrine Waveform-Vent Respiratory Effort Peak Insp. Pressure Glucagon
CA 5% Dextrose Red Blood Cells Gastric Meds pCO2 Ectopy Frequency OxycoDONE Amylase Respiratory Rate
KF High Blood Pressure Ectopy Frequency pCO2 SaO2 Sputum [Color] High Resp. Rate Arterial Blood Pressure systolic Differential-Basos
DI 5% Dextrose SVR Leukocytes Heparin Creatine Kinase MB Isoenzyme Neosynephrine-k Insulin Activity Tolerance
HA 5% Dextrose Lorazepam MCHC Motor Response Polychromasia SpO2 Pantoprazole (Protonix) Respiratory Rate
RF Red Blood Cells Lorazepam Phosphorous Motor Response SVR Low O2 Saturation Heart rate Alarm - High Mean Airway Pressure
UR Urinary Tract Infections Red Blood Cells Lorazepam Fentanyl Citrate Flatus Ventilator Type Vancomycin Respiratory Rate
ER Nitroglycerin Lorazepam Propofol WBC (4-11000) Albuterol 0.083% Neb Soln Prothrombin time Lactate Dehydrogenase CT 1 Drainage
DD Allergy 1 CPK SVR WBC INV Line#2SiteAppear Ventilator Mode Vti High Urinal/Bedpan

Table 2: Examples of the top 8 medical codes that best explain each target disease and mortality.
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Figure 6: Heat-map (left) and scatter (right) plots of patients and their subtypes respectively for (upper plots) Diabetes (DI);
and (lower plots) Coronary Atherosclerosis (CA).

the same patient. This emphasizes on the necessity of having both
global and local rationales in model distillation.

6 CONCLUSION
This paper introduces a black-box interpretation framework that
optimizes a surrogate model to distill latent knowledge from a
black box into its local and global interpretable representations. We
develop an active interpretation algorithm (AID) to extract the most
informative data from the black box for model interpretation using
as few queries as permitted by a budget. AID is analyzed in both
theory and practice, which shows promising results.
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7 APPENDIX
7.1 Optimizing Eq. (4)
Optimizing (α ,w). Since hα (p) ≜ ⟨α , p⟩ is differentiable with
respect to α , we can solve for α straight-forwardly via gradient
descent if B = {bi }ni=1 is fixed. The gradient of α is given below:

∇αG = 2
n∑
i=1

k∑
t=1

(
q
(i)
t − hα (bi ◦ ew(xt ) ◦ xt )

)
×

(
bi ◦ ew(xt ) ◦ xt

)
. (12)

Likewise, we also have the gradient for w:

∇wG = 2
n∑
i=1

k∑
t=1

(
q
(i)
t − hα (bi ◦ ew(xt ) ◦ xt )

)
× ∇w

(
hα (bi ◦ ew(xt ) ◦ xt )

)
(13)

where ∇w (hα (p)) = ∇phα (p) × ∇wp = α × ∇wp with p = (bi ◦

ew(xt ) ◦ xt ). In particular, we parameterize ew(x)withw ∈ Rm×m

such that ew(x) ≜ [e
(1)
w (x) . . . e(m)

w (x)] and e(i)w (x) is defined in Sec-
tion 3.2.1.

Although the above derivation seems to assume that hα and ew
are specified in closed-form, this is not necessary. More broadly,
we can characterize hα (bi ◦ ew(xt ) ◦ xt ) using a neural network
parameterized with (w,α ) for high flexibility. The resulting func-
tion is no longer analytic but its derivative can still be computed
via back-propagation, which is sufficient to solve (12).

Optimizing B. To optimize the discrete variables B, we use zi ∈
[0, 1]m as a continuous proxy for bi ∈ {0, 1}m : bi is replaced by
zi in (4) and zi is optimized via gradient descent. The optimized
unconstrained proxy zi can then be transformed into a valid binary
vector bi via top-ℓ binarization: the corresponding entries in bi
to the ℓ largest components in zi are set to 1 while the rest is set

3577



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Trong Nghia Hoang, Shenda Hong, Cao Xiao, Bryan Low, and Jimeng Sun

to 0. Here zi can be viewed as a vector of scores that ranks the
impact of features on predictive outcome. In practice, zi can also be
parameterized as neural networks for efficient implementation [7].

7.2 Proof to Lemma 1
Lemma 1. Let ϕ ≜ ϵ

(i)
t denotes the individual error yielded by

(B∗,w∗,α ∗) at data point xt and target condition c(i). Then, we
have It

(
b∗i ,w

∗,α ∗
)
≤ ϕ2/(8ν (1 − ϕ(1 − ν ))2) where ν is the black-

box model’s fitting noise (Definition 2).

Proof. Since ϕ is the individual error made by a surrogate parame-
terized with (B∗,w∗,α ∗) at data point xt and target condition c(i),
we have

r
(i)
t ≤ Φ−1

(
P

(
c
(i)
t |xt

))
+ ϵ

(i)
t . (14)

Applying Φ on both sides of the inequality thus yields

Φ
(
r
(i)
t

)
≤ Φ

(
Φ−1

(
P

(
c
(i)
t |xt

))
+ ϵ

(i)
t

)
. (15)

To avoid cluttering the notations, let us use q and p as short-hand
notations for Φ(r (i)t ) and P(c(i)t |xt ) in the remaining of the proof.
The above can thus be rewritten concisely as q ≤ Φ(Φ−1(p) + ϕ).

Then, using the analytic forms of Φ(a) = 1/(1 + exp(−a)) and
Φ−1(a) = log(a/(1 − a)), we can equivalently rewrite the above
inequality q ≤ Φ(Φ−1(p) + ϕ) as q ≤ p/(p + exp(−ϕ)(1 − p)) ≤

p/(p + (1 − ϕ)(1 − p)) where the last inequality is due to the fact
that 1 − ϕ ≤ exp(−ϕ).

This implies q−p ≤ ϕp(1−p)/(1−ϕ(1−p)) ≤ ϕ/(4(1−ϕ(1−p))) ≤
ϕ/(4(1 − ϕ(1 − ν ))) where the second last and last inequalities fol-
low from the facts that (a) p(1 − p) ≤ (p + 1 − p)2/4 = 1/4 and
(b) 1−p ≤ 1−ν (which follows from the definition of ν ), respectively.

Taking square on both sides of q − p ≤ ϕ/(4(1 − ϕ(1 − ν ))) yields
(q − p)2 ≤ ϕ2/(16(1 − ϕ(1 − ν ))2). Multiplying both sides with 2/ν
yields 2(q − p)2/ν ≤ ϕ2/(8ν (1 − ϕ(1 − ν ))2). Finally, note that by
applying Pinsker inequality (the upper-bound version),

It (b∗i ,w
∗,α ∗) = DKL

(
Pα ∗

(
c
(i)
t |b∗i , ew∗ (xt )

)
∥P

(
c
(i)
t |xt

))
≤ 2(q − p)2/ν ≤ ϕ2/(8ν (1 − ϕ(1 − ν ))2) .

This completes our proof of Lemma 1.

7.3 Proof of Theorem 1
Let Î(b∗i ,w

∗,α ∗) ≜ (1/k)
∑k
t=1 It (b

∗
i ,w

∗,α ∗). Applying Lemma 1
independently for each pair of (i, t) yields

It (b∗i ,w
∗,α ∗) ≤ ϵ

(i)2
t /

(
8ν (1−ϵ (i)t (1−ν ))2) ≤ ϵ2/(8ν (1−ϵ(1−ν ))2

)
where ϵ is defined in Definition 3. This implies 0 ≤ Î(b∗i ,w

∗,α ∗) ≤

ϵ2/(8ν (1 − ϵ(1 − ν ))2). Then, to bound the difference between
I(b∗i ,w

∗,α ∗) (i.e., truemean) and Î(b∗i ,w
∗,α ∗) (i.e., empirical mean),

we exploit the following concentration inequality:

Lemma 2 [Hoeffding Inequality]. Let I1, I2, . . . , Ik be indepen-
dent samples drawn from an arbitrary distribution P such that

0 ≤ Ii ≤ ℓ. Let Î = k−1 ∑k
t=1 It and I = E[It ],

P

(
|I − Î| ≤ θ

)
≥ 1 − 2 exp

(
−

2kθ2

ℓ2

)
(16)

Proof. Omitted
.
Using Lemma 2 above we are now ready to establish the following
key result:

Theorem 1. Let ψ(ϵ,ν ) ≜ ϵ2/(8ν (1 − ϵ(1 − ν ))2) and δ ∈ (0, 1).
Then, with probability at least 1 − δ , we have:

I
(
b∗i ,w

∗,α ∗
)

≤ ψ(ϵ,ν )
©­«1 +

√
1

2k log
(

2
δ

)ª®¬ (17)

Proof. Let It = It (b∗i ,w
∗,α ∗), and Î = Î(b∗i ,w

∗,α ∗), I = I(b∗i ,w
∗,α ∗)

and ℓ =ψ(ϵ,ν ) ≜ ϵ2/(8ν (1 − ϵ(1 − ν ))2), Lemma 2 guarantees that
with probability at least 1 − 2 exp(−2kθ2/ψ2(ϵ,ν )),

|I(b∗i ,w
∗,α ∗) − Î(b∗i ,w

∗,α ∗)| ≤ θ (18)

which implies I(b∗i ,w
∗,α ∗) ≤ Î(b∗i ,w

∗,α ∗) + θ ≤ ψ(ϵ,ν ) + θ . Now,
setting δ = 2 exp(−2kθ2/ψ2(ϵ,ν )) and solving for θ yields

θ = ψ(ϵ,ν )

√
1

2k log
(

2
δ

)
. (19)

Plugging this into the previous inequality yields (17).

7.4 Proof of Theorem 2
To derive the key result in Theorem 2, we first establish the follow-
ing intermediate result:

Lemma 3. Let γ denote the prediction robustness of the black-box
as in Definition 4. If we have

DKL
(
Pα ∗

(
c(i) |b∗i , ew∗ (x)

)
∥P(c(i) |x)

)
≤ γ 2 , (20)

then Pα ∗

(
c(i) |b∗i , ew∗ (x)

)
and P

(
c(i) |x

)
yield the same prediction.

Proof. Let us denote Q(0) ≜ Pα ∗ (c(i) = 0|b∗i , ew∗ (x)) and Q(1) ≜
Pα ∗ (c(i) = 1|b∗i , ew∗ (x)). Likewise, let P(0) ≜ P(c(i) = 0|x) and
P(1) ≜ P(c(i) = 1|x). By Pinkser inequality (the lower-bound ver-
sion), we have

2
(
(P(0) − Q(0))2 + (P(1) − Q(1))2

)
≤ DKL(Q∥P)

≤ γ 2. (21)

Furthermore, note that (P(0) − Q(0))2 = (P(1) − Q(1))2 since 1 =
P(0)+P(1) = Q(0)+Q(1). Thus, the above inequality can be rewrit-
ten more concisely as(

P(0) − Q(0)
)2
=

(
P(1) − Q(1)

)2
≤

γ 2

4 . (22)

This implies P(0) − γ/2 ≤ Q(0) ≤ P(0) + γ/2 and P(1) − γ/2 ≤

Q(1) ≤ P(1) + γ/2. Now, let c∗ be the prediction made by P, e.g.,
P(c∗) > P(1 − c∗) + γ (by Definition 4). Thus, we have Q(c∗) ≥

P(c∗)−γ/2 > P(1−c∗)+γ−γ/2 ≥ Q(1−c∗)−γ/2+γ−γ/2 = Q(1−c∗).
Hence, c∗ is also the prediction made by Q since Q(c∗) > Q(1− c∗).
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Using the result of Lemma 3 above and let the event that the model
Pα ∗ (c(i) |b∗i , ew∗ (x)) disagrees with P(c(i) |x)) on a random input
x ∼ P(x) be denoted by E, we can then derive a stronger version
of Theorem 1 that explicitly bounds the chance that E happens (i.e.,
the chance surrogate mis-distil the black-box) via Theorem 2.

Theorem 2. Let k = (1/(2γ 4)) log(2/δ ) with 0 < δ < 1 where k
denotes the size of the sampled data and γ is defined in Definition
4. Then, with probability at least 1 − δ ,

P(E) ≤ ψ(ϵ,ν )

(
1
γ 2 + 1

)
, (23)

with ν and ϵ defined previously in Definitions 2 and 3.

Proof. Applying the result of Theorem 1, it follows that with prob-
ability at least 1 − δ ,

I(b∗i ,w
∗,α ∗) ≤ ψ(ϵ,ν )

(
1 +

(
1

2k

) 1
2

log
(

2
δ

) 1
2
)

= ψ(ϵ,ν )
(
γ 2 + 1

)
(24)

where the second step follows by plugging ink = (1/(2γ 4)) log(2/δ ).
Then, by Markov inequality,

P

(
DKL

(
Pα ∗

(
c(i) |b∗i , ew∗ (x)

)
∥P

(
c(i) |x

))
> γ 2

)
≤ I(b∗i ,w

∗,α ∗)γ−2 ≤ ψ(ϵ,ν )

(
1 + 1

γ 2

)
(25)

Note that the Markov inequality P(r > a) ≤ E(r)/a applies to the
above because I(b∗i ,w

∗,α ∗) is defined to be the expectation over x
of the above DKL term (see Section 4 above).

On the other hand, let Ē denote the event that the surrogate inter-
prets the black-box model correctly. By Lemma 3,

DKL
(
Pα ∗

(
c(i) |b∗i , ew∗ (x)

)
∥P

(
c(i) |x

))
≤ γ 2 (26)

implies Ē. As a result, we have 1 − P(E) = P(Ē) ≥

P

(
DKL

(
Pα ∗

(
c(i) |b∗i , ew∗ (x)

)
∥P

(
c(i) |x

))
≤ γ 2

)
=

1 − P

(
DKL

(
Pα ∗

(
c(i) |b∗i , ew∗ (x)

)
∥P

(
c(i) |x

))
> γ 2

)
(27)

This essentially implies P(E) is bounded above by

P

(
DKL

(
Pα ∗

(
c(i) |b∗i , ew∗ (x)

)
∥P

(
c(i) |x

))
> γ 2

)
≤ ψ(ϵ,ν )

(
1 + 1

γ 2

)
≤

ϵ

3

(
1 + 1

γ 2

)
(28)

which yields Eq. (23) and completes our proof.

7.5 Proof of Theorem 3
To derive the key result in Theorem 3, we establish first the follow-
ing intermediate result:
Lemma 4. For any λ ∈ N∗, let H(i)

q+λ and H(i)
q denote, respectively,

the disagreement regions between the surrogate and black-box

models at iterations q + λ and q. Then, with probability at least
1 − δ , we have

P

(
H(i)
q+λ

)
≤ P

(
H(i)
q

) ϵ

3γ 2
©­«1 +

√
1

2λ log
(

2
δ

)ª®¬ (29)

Proof. First, let’s recall that

H(i)
ℓ

≜
{
x

��� DKL
(
Pℓα ∗

(
c(i) |x

)
∥P

(
c(i) |x

))
> γ 2

}
(30)

denote the disagreement region between the surrogate and black-
box after ℓ iterations of active interpretation. Again, we use Pℓα ∗ (c

(i) |x)
as a short-hand notation for Pℓα ∗ (c

(i) |b∗i , ew∗ (x)). The superscript ℓ
indicates that the surrogate has been fitted using the first ℓ queried
data points.

In the scope of this lemma, we are interested in the cases where
ℓ = q and ℓ = q + λ. For ℓ = q + λ, the probability of x ∈ H(i)

q+λ can
be expressed as

P

(
H(i)
q+λ

)
=

©­­«
∫
x∈H(i )

q+λ

P(x)

P

(
H(i)
q

) dx
ª®®¬P

(
H(i)
q

)

≤
©­­«
∫
x∈H(i )

q

P(x)

P

(
H(i)
q

) dx
ª®®¬P

(
H(i)
q

)
= P

(
x ∈ H(i)

q+λ |x ∈ H(i)
q

)
P

(
H(i)
q

)
(31)

where the first inequality follows from our assumption earlier that
H(i)
q+λ ⊆ H(i)

q . Note that the first factor in the RHS of the last equality
above is essentially the probability that

DKL
(
Pα ∗

(
c(i) |b∗i , ew∗ (x)

)
∥P

(
c(i) |x

))
> γ 2 (32)

if the surrogate is fitted using λ input samples drawn independently
fromH(i)

q via an augmented data distribution Q(x) = P(x)/P(H(i)
q ).

As such, we can define a new interpretation quality I′(b∗i ,w
∗,α ∗),

which is the same as I(b∗i ,w
∗,α ∗), except that the data distribu-

tion is Q(x) instead of P(x). We can reuse Theorem 1 to bound
I′(b∗i ,w

∗,α ∗) with probability at least 1 − δ :

I′
(
b∗i ,w

∗,α ∗
)

≤ ψ(ϵ,ν )
©­«1 +

√
1

2λ log
(

2
δ

)ª®¬
≤

ϵ

3
©­«1 +

√
1

2λ log
(

2
δ

)ª®¬ (33)

where the second inequality follows from our assumption that ϵ ≤ ν ,
which in turns impliesψ (ϵ,ν ) ≤ ϵ/3. Then, since I′(b∗i ,w

∗,α ∗) is
effectively the expectation of the KL term in (32), it can be exploited
to bound the probability that the KL term exceeds a threshold of
γ 2 via Markov inequality as detailed below:

P

(
DKL

(
Pα ∗

(
c(i) |b∗i , ew∗ (x)

)
∥P

(
c(i) |x

))
> γ 2

)
≤ I′(b∗i ,w

∗,α ∗)γ−2 ≤
ϵ

3γ 2
©­«1 +

√
1

2λ log
(

2
δ

)ª®¬ (34)
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where the last inequality follows from Eq. (33) above. Lastly, by
definition of the data distribution Q(x), the LHS of the above equa-
tion is effectively the probability that x ∈ H(i)

q+λ given that x ∈ H(i)
q .

Thus, the above inequality can be rewritten as:

P

(
x ∈ H(i)

q+λ |x ∈ H(i)
q

)
≤

ϵ

3γ 2
©­«1 +

√
1

2λ log
(

2
δ

)ª®¬
Plugging this into Eq. (31) above completes our proof. Using this
result, we are now ready to prove Theorem 3.

Theorem 3. For any target c(i), let q∗ = (r/(2γ 2)) log(2r/δ ) with

r =
log

(
ϵ

3γ 2
(
1 + γ 2) )

log
(

ϵ
3γ 2 (1 + γ )

) = log
(
ϵ
3

(
1 + 1

γ 2

))
log

(
ϵ

3γ 2 (1 + γ )
) , (35)

and let E(i)q∗ denote the event that the surrogate fitted on q∗ queried
data points disagrees with the black-box on a random data sample
x. Then, with probability at least 1 − δ , P(E(i)q∗ ) ≤ (ϵ/3)(1 + 1/γ 2),
which achieves the same mis-distillation rate of its passive version
while requiring fewer samples, i.e. q∗ < k = (1/(2γ 4)) log(2/δ ).

Proof. Choose q = 0 and apply Lemma 4 independently for ℓ + uλ
with u ∈ {0, . . . , r − 1} and δ/r , we have

P

(
H(i)
(u+1)λ

)
≤ P

(
H(i)
uλ

) ϵ

3γ 2
©­«1 +

√
1

2λ log
(

2r
δ

)ª®¬
held independently for eachu with probability at least 1−δ/r . Thus,
by the union bound, the probability the above holds simultaneously
for u ∈ {0, . . . , r − 1} is at least 1 − r × (δ/r ) = 1 − δ . When that
happens, we can chain those inequalities together to yield

P

(
H(i)
rλ

)
≤ P

(
H(i)

0

) (
ϵ

3γ 2

)r ©­«1 +

√
1

2λ log
(

2r
δ

)ª®¬
r

≤

(
ϵ

3γ 2

)r ©­«1 +

√
1

2λ log
(

2r
δ

)ª®¬
r

(36)

where the last inequality simply follows from the fact thatP(H(i)
0 ) ≤

1. To guarantee that the active interpretation algorithm achieves
the same mis-interpretation rate as its passive version, we set
the RHS of the above inequality to ϵ/3(1 + 1/γ 2) and solve for
r and λ. In particular, to reduce the order of sample complex-
ity, we can set γ =

√
1

2λ log 2r
δ and solve for λ, which yields

λ = (1/(2γ 2)) log(2r/δ ). Plugging this into(
ϵ

3γ 2

)r ©­«1 +

√
1

2λ log
(

2r
δ

)ª®¬
r

=
ϵ

3

(
1 + 1

γ 2

)
(37)

and solving for r yields

r =
log

(
ϵ

3γ 2
(
1 + γ 2) )

log
(

ϵ
3γ 2 (1 + γ )

) = log
(
ϵ
3

(
1 + 1

γ 2

))
log

(
ϵ

3γ 2 (1 + γ )
) . (38)

Thus, choosing λ = (1/(2γ 2)) log(2r/δ ) and r as above yields

P

(
E(i)rλ

)
≤ P

(
H(i)
rλ

)
≤

ϵ

3

(
1 + 1

γ 2

)
, (39)

where the first inequality follows because by Lemma 3, we have
¬H(i)

rλ implies ¬E(i)rλ which means P(¬H(i)
rλ) ≤ P(¬E(i)rλ) and conse-

quently,P(H(i)
rλ) ≥ P(E(i)rλ). Finally, chooseq

∗ = rλ yieldsP(E(i)q∗ ) ≤

(ϵ/3)(1 + 1/γ 2).
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