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Abstract

We present an approach to automatically register a large set of
color images to a 3D geometric model. The problem arises from
the modeling of real-world environments, where surface geometry
is acquired using range scanners whereas the color information is
separately acquired using untracked and uncalibrated cameras. Our
approach constructs a sparse 3D model from the color images using
a multiview geometry technique. We project special light patterns
onto the scene surfaces to increase the robustness of the multiview
geometry reconstruction. The sparse model is then approximately
aligned with the detailed model. Planes found in the detailed model
are exploited to refine the registration. Finally, the registered color
images are mapped to the detailed model using weighted blending,
with careful consideration of occlusion and the preservation of im-
age details.

CR Categories: 1.4.1 [Image Processing and Computer Vision]:
Digitization and Image Capture—Imaging geometry, Scanning;
1.4.8 [Image Processing and Computer Vision]: Scene Analysis
Range data, Sensor fusion

Keywords: Image-to-geometry registration 2D-to-3D registration
range scanning multiview geometry SIFT image blending

1 Introduction

Active range sensing has been used to reconstruct high-quality 3D
digital models of complex real-world objects and environments,
and has found many practical applications in areas ranging from
manufacturing to cultural heritage modeling [Levoy et al. 2000]
[Stumpfel et al. 2003] and urban scene modeling [Liu and Stamos
2005].

Besides the geometric information, photometric properties of the
object or environment surfaces have to be acquired as well in or-
der to reconstruct a visually-realistic digital model. Some range
scanners is capable of acquiring color information together with
the range data, while some lack the capability. Nevertheless, for
realistic display of a 3D digital model, view-dependent surface re-
flection must be captured. This requires the color of each surface
point to be sampled from many directions, and therefore many more
color images are usually needed than range images. In other appli-
cations, very often, the geometric model is to be mapped with very
detailed color images much higher in resolution than that of the
range images. In this case, even if the range scanner can capture
color, the color may not have the required resolution. Many close-
up or zoomed-in pictures have to be acquired in order to achieve the
surface coverage as well as the required resolution.
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Our current work focuses on the modeling of indoor environments.
To allow greater maneuverability and flexibility, we use an ordinary
digital color camera that is untracked and uncalibrated to take pho-
tographs of the indoor scene. Each color image is acquired with
an unknown camera pose and unknown camera intrinsic parame-
ters. These images must then be registered with the geometry of
the 3D model constructed from the range images. Current registra-
tion methods require human users to manually identify correspond-
ing points on each image with those on the range images or the
3D model. This approach is error-prone and becomes extremely
tedious when there is a large number of images to register. There
are automated registration methods [Liu and Stamos 2005] [Sta-
mos and Allen 2001], but these methods are designed to exploit
specific features unique to outdoor urban environments. Some ap-
proaches avoid, or partially avoid, the registration problem by us-
ing tracked calibrated camera or by co-locating the camera and the
scanner [Williams et al. 2004].

We present a novel and practical approach to registering a large set
of color images to their corresponding 3D geometric model. The
approach is almost automatic and requires very little manual input.
The approach is more general than previous methods, in that it can
be applied not only to most indoor environments, but to other envi-
ronments and objects.

Instead of trying to find corresponding features between color im-
ages and the 3D model, our method takes the approach of establish-
ing correspondences among the color images using a robust image
feature detection technique, and uses a multiview geometry tech-
nique to construct a sparse 3D model from the color images. To
improve the robustness of the multiview geometry reconstruction
for scenes with large surfaces that lack features, we use light pro-
jectors to project special light patterns onto the scene surfaces to
artificially introduce image features. The sparse model is then ap-
proximately aligned to the 3D detailed model using only a few pairs
of corresponding points between one of the color images and the
3D detailed model. Our method then extracts planes in the detailed
model and exploits these to improve the sparse model and refine the
registration.

1.1 Contributions

The main contribution of our work is the idea of taking the approach
of establishing correspondences among the color images instead
of directly finding corresponding features between the 2D and 3D
spaces [Liu and Stamos 2005] [Stamos and Allen 2001]. The latter
approach works well only for higher-level features, such as parallel
straight lines, and this imposes assumptions and restrictions on the
types of scenes the method can handle. For most indoor environ-
ments, these higher-level features usually exist, but they are often
too few or do not appear in most of the color images due to small
field of view and short shooting distance. Our approach works for
more types of scenes and even for objects.

The main problem of feature correspondence is the lack of features
on large uniform surfaces. This occurs a lot in indoor environ-
ments where large plain walls, ceiling and floor are common. We
get around this problem by using light projectors to project special
light patterns onto the scene surfaces to artificially introduce image
features.



Our method requires the user to manually input only six pairs
of correspondences between one of the color images and the 3D
model. This allows the sparse model to be approximately aligned
with the detailed model. We detect planes in the detailed model,
and by minimizing the distances between some of the points in the
sparse model and these planes, we are able to refine the multiview
geometry and the registration as a whole using sparse bundle adjust-
ment (SBA) [Lourakis and Argyros 2004]. This approach is able to
achieve better registration accuracy in the face of non-uniform spa-
tial distortion in the geometric model.

Our goal here is not to render the completed model with view-
dependent reflection. Instead, we assign each point on the surface
of the 3D model a single color by carefully blending colors from
multiple overlapping color images. Our method takes into consid-
eration the different exposures of the color images and the occlu-
sion of surfaces in the 3D model. It produces a colored model with
very smooth color transitions and yet preserves fine details. Even
though we did not demonstrate it, our method of registering a large
set of color images to the geometric model naturally applies to cre-
ating models with view-dependent reflection [Chen et al. 2002] and
models with very high-resolution texture maps.

In the next section, we review related work for similar registration
problems, and also related work in multiview geometry. Section 3
gives a detailed description of the main steps in our method. We
discuss our experiment results in Section 4 and then conclude the
paper with discussion of some future work in the next section.

2 Related Work

We first review previous work on automatic registration of color
images to 3D geometric model or range images. Since multiview
geometry is central to the working of our method, we therefore re-
view work related to it, with emphasis on the particular technique
used in the Photo Tourism work [Snavely et al. 2006], which is very
similar to our implementation.

2.1 Automatic Image-to-Geometry Registration

There are two major classes of algorithms for automatic registra-
tion of color images to 3D geometric model or range images —
feature based and statistics based. Feature-based methods attempt
to match corresponding features found in both the color images and
the 3D model. For the modeling of buildings and urban scenes,
Stamos and Allen [Stamos and Allen 2001], and Liu and Stamos
[Liu and Stamos 2005] detect and match line features between the
images and the 3D models. The latter method further exploits line
parallelism and orthogonality that naturally exist in urban scenes.
These constraints can greatly improve the reliability of their auto-
matic registration. Zhao et al. [Zhao et al. 2005] constructs dense
point-cloud model from video, and uses the ICP (iterative closest
point) algorithm [Besl and Mckay 1992] to align the point-cloud
model to a detailed geometric model obtained using range scan-
ning. The registration is then used to texture map the video frames
onto the geometric model.

Statistics-based algorithms exploit the statistical dependence be-
tween color images and 3D models. Some range sensors are ca-
pable of recording the intensity of the reflected sensing light at
each range sample, and to reduce noise, the sensing light is often
not in the visible light spectrum. Williams et al. [Williams et al.
2004] and Hantak and Lastra [Hantak and Lastra 2006] use the de-
pendence between color and the infra-red intensity at each range
sample, and several similarity measures, such as mutual informa-
tion and chi-square statistics, are used to search for the best match.
For this approach, good camera pose initialization is crucial to de-

rive the correct camera pose. The registration results of different
information-theoretic metrics are compared in [Hantak and Lastra
2006]. Also, Pong and Cham [Pong and Cham 2006] have explored
mutual information between image intensity and object surface nor-
mals for the alignment of 3D objects to their 2D images.

2.2 Multiview Geometry

The success of a multiview geometry reconstruction relies on the
robustness of the detected image features. The Scale Invariant Fea-
ture Transform (SIFT) [Lowe 2004], or variants of it, has become
popular in applications that require robust image features, such as
in panorama reconstruction [Brown and Lowe 2007] and in Photo
Tourism [Snavely et al. 2006]. SIFT keypoints and descriptors are
invariant to scale and rotational transformations, and to other affine
transformations and perspective transformations to a certain extent.
A recent study [Szeliski 2006] shows that SIFT generally provides
the most robust features for most applications.

The Photo Tourism system [Snavely et al. 2006] uses a multiview
geometry technique to reconstruct sparse 3D point-cloud models
of tourist locations from a large collection of photographs obtained
from the Internet or from personal photo collections. The system al-
lows users to explore the location and browse the photo collection
in 3D. The system builds the sparse model by first detecting and
matching SIFT features in the images. Given the feature correspon-
dences and the approximate initial camera parameters stored in the
EXIF tags of the images, the multiview geometry, which consists of
the sparse 3D point-cloud model and the intrinsic and extrinsic pa-
rameters of each view, is computed using a structure-from-motion
(SfM) technique [Hartley and Zisserman 2004]. The multiview ge-
ometry computation repeatedly applies a two-view geometry algo-
rithm. The geometry expands by adding new views incrementally.
To guarantee correctness, after each view is added, sparse bundle
adjustment (SBA) [Lourakis and Argyros 2004] is applied to refine
the overall structure.

3 Proposed Method

The following subsections describe our approach in details. The
major steps are

1. data acquisition,
2. multiview geometry reconstruction,

3. approximate registration of the sparse model to the detailed
model,

4. registration refinement, and

5. mapping color to the model surfaces.

3.1 Data Acquisition

During data acquisition, range images are captured using a range
scanner, and color images are captured using an untracked and un-
calibrated ordinary digital camera. The zoom setting of the camera
is not fixed, and auto-focus and auto-exposure are enabled. If the
exposure time is too long, we mount the camera on a lightweight
tripod.

Very often in indoor environment, there are some large surfaces,
such as walls and ceiling, that have very few image features re-
quired for the multiview geometry reconstruction. For these sur-
faces, we use light projectors to project a static light pattern on
them (see Figure 1). For views that can see this light pattern, we



mount the camera on the tripod, lock the focus and the zoom set-
ting (but not the exposure), and take one image with and another
without the projected light pattern. We use aperture-priority auto-
exposure to ensure that the depth of field does not change. Of each
of these image pairs, only the one with light pattern is used in the
multiview geometry reconstruction, and the other one is used for
applying color to the 3D model.

Figure 1: Plain surfaces in the scene are projected with special
static light pattern to improve feature detection.

The light pattern actually comes from an ordinary high-resolution
image. We converted it to a grayscale image, tuned its contrast,
uniformly subdivided it into 16 pixels-by-16 pixels blocks, and ran-
domly shuffled the blocks to get the final image. The random shuf-
fling of the blocks introduces additional high-frequency structures
at the block boundaries, and at the same time increases the unique-
ness of the low-frequency structures at each point. We were careful
to choose an original image that has very few large uniform regions
(for copyrights reason, we are unable to show the original image
here). Our experiments have shown that the light pattern can greatly
increase the number of correctly-matched SIFT keypoints.

3.2 Multiview Geometry Reconstruction

We run the SIFT algorithm [Lowe 2004] to detect SIFT keypoints
in the color images. For efficiency, we use the approximate nearest
neighbors kd-tree algorithm (ANN) [Arya et al. 1998] to match the
descriptors of the keypoints for every pair of images. Similar to the
Photo Tourism system [Snavely et al. 2006], we remove incorrect
matches (outliers) using the following steps. First, for each im-
age pair, we use an RANSAC approach [Fischler and Bolles 1981]
to compute a fundamental matrix [Hartley 1995]. Those matches
that cannot satisfy the fundamental matrix equation are removed.
Next, the geometric consistency of each keypoint is checked across
all images. Matches are connected across multiple images to form
tracks. A track is inconsistent if it contains two different keypoints
from any single image. Matches that form inconsistent tracks are
removed.

The multiview geometry computation starts with the two-view ge-
ometry of the image pair that contains the largest number of con-
sistent matches. Degenerate cases, where (1) the two images were
taken from the same location, or (2) the matches in the two im-
ages are all on a single plane, are detected by first computing a
homography transformation between the matched keypoints in the
two images using the RANSAC approach. If more than 95% of
the matched keypoints satisfy the homography transformation, we
consider it a degenerate case. We discard the image pair and use
another pair that contains the next largest number of consistent

matches. Otherwise, we just proceed normally to estimate the es-
sential matrix and extract the relative camera pose from the essen-
tial matrix. The approximate intrinsic parameters used in the es-
sential matrix computation are obtained from the image EXIF tags.
There are four possible relative poses, but we choose the one that
makes the associated reconstructed 3D points appear in front of the
two cameras. We then apply bundle adjustment to refine the camera
parameters and the 3D point locations.

We add a new view that has the largest number of matches with
the existing 3D points. Using the correspondences between the 2D
keypoints and the associated 3D points, we use a simple linear op-
timization method to initialize the camera parameters of the new
view, and then use a nonlinear optimization to refine them. New 3D
points are generated from the new matches between the new view
and the existing views. The new view, together with the newly gen-
erated 3D points, are added into the multiview geometry, and sparse
bundle adjustment [Lourakis and Argyros 2004] is applied to refine
the whole structure. The process stops when no more view can be
added. Figure 2 shows a multiview geometry reconstruction of the
office scene shown in Figure 1. One can easily see the relatively
denser point clouds on the plain walls projected with the special
light pattern.

Figure 2: A multiview geometry reconstruction of an office scene.
Each red pyramid represents a camera pose.

3.3 Approximate Registration

The sparse model constructed by the multiview geometry is up to a
very approximate projective transformation, and has unknown scale
and pose relative to the detailed model created from the range im-
ages. In this step, we get some inputs from the user to register the
multiview system to the detailed model.

The user first chooses one of the color images in the multiview
system and then selects six or more correspondence points on this
image and on the 3D detailed model. Using the correspondences
between the 2D and 3D points on the detailed model, we use a sim-
ple linear optimization method to initialize the camera parameters
of the selected view, and then use a nonlinear optimization to refine
them. The estimated intrinsic and extrinsic parameters, with respect
to the detailed model, of the selected view are then propagated to
the other views in the multiview system to update their intrinsic and
extrinsic parameters accordingly and to also update the locations of
the 3D points in the sparse model.

This is the only part of our method that requires manual inputs.
However, the amount of inputs is very small when compared to
many existing methods where the user has to input many more point
correspondences for every color image. At this stage, the registra-
tion is still not accurate enough due to the error in the point corre-



spondences input by the user. The next step describes one approach
to refine the registration.

In our implementation, our system actually lets the user select the
correspondence points between one of the color images and one of
the range images of the scene. These range images are assumed
to have been registered with each other (using technique such as
[Pulli 1999]). Therefore, the approximate registration of the sparse
model with one range image can be automatically propagated to all
other range images. In the registration refinement step, our method
makes use of data in all the range images.

3.4 Registration Refinement

There is a need to further refine the registration. One source of
error is from the point correspondences input by the user, another
source is the non-uniform spatial distortion in the detailed model,
which is mainly caused by calibration errors in the range scanners.
We would like to allow the multiview system to be aligned with the
detailed model in a non-rigid manner. For this, we make a small
addition to our sparse bundle adjustment of the multiview system.

We first detect planes in the detailed model using the PCA method
[Pearson 1901]. Next, for each plane, we identify 3D points in the
multiview system that are close to it within a threshold and associate
these points to the plane. The sum of the squared distances between
the 3D points and their associated planes is added as a new term
to the error function of the original sparse bundle adjustment. A
constant coefficient is multiplied to the new term so that it would
not dominate the error function. We then run the sparse bundle
adjustment on the new system.

Our registration refinement approach is more appropriate than us-
ing the ICP algorithm [Besl and Mckay 1992]. The ICP algorithm
treats the two models as rigid shapes, so it is not able to adjust the
registration to adapt to the distortion in the detailed model. More-
over, the intrinsic and extrinsic parameters of the views still need
to be further tuned, which cannot be achieved using the ICP algo-
rithm. The bundle adjustment approach we are taking is powerful
enough to address all these issues.

Certainly, this approach works well only if planes exist in the scene.
Our method can be extended to deal with scenes that have very
little planar surfaces. The idea is very similar to the ICP algorithm,
in which we associate each point in the multiview system with its
nearest point in the detailed model, and use the distance between
them as part of the error metric in the bundle adjustment. However,
this approach requires more changes to the original sparse bundle
adjustment implementation, unlike in the planar case, in which each
plane can be set up as a “view” and the distances between it and the
associated 3D points can be treated as pixel errors in the “view”.

Figures 3 and 4 show an example office scene and a laboratory
scene, respectively, where their geometric models have been par-
tially mapped with the color images registered using our method.
Figure 5 shows the result of our registration refinement. One can
see that the registration errors among the multiple images and the
geometric model have been greatly reduced by the registration re-
finement.

3.5 Mapping Color to Model

When the views are well-registered to the 3D model, the color
information extracted from the images at each point on the 3D
model surface can be used to construct a representation for view-
dependent rendering using surface light field techniques [Chen et al.
2002]. However, as rendering is not the main focus of this work,
we just want to simply assign each point on the surface of the 3D

Figure 3: A geometric model of an office scene, partially mapped
with the color images registered using our method.

Figure 4: A geometric model of a laboratory scene, partially
mapped with the color images registered using our method.

model a single color. At each surface point, we carefully blend
colors from multiple overlapping color images so that the colored
model has smooth color and intensity transitions and yet preserves
fine details. To achieve that, there are a few issues that we need to
consider:

1. The color images were taken using different exposures. To
make the exposure consistent, we use the method by Deve-
bec and Malik [Debevec and Malik 1997] to find the transfer
function of our camera, and we use that to set all the images
to the same exposure.

2. Some of the rays emanating from the views actually intersect
more than one surface in the detailed model. If this is not
handled correctly, the surface that is occluded from a view
may still get color contribution from it.

3. The effect of inaccurate registration is often magnified near
large depth discontinuities, where the color “spills” over to
the wrong side of the depth boundaries.

4. Even when the images have been adjusted to the same expo-
sure, their brightness at overlapping regions are often quite
different, due to vignetting and view-dependent reflection.

5. Slight mis-registration of the views can easily cause loss of
fine details in the image after blending.

To deal with Issue 2, we first render a depth map of the detailed
model from each view. Then, to check whether a surface point
should get contribution from a color image, we project it to the
corresponding view of the color image and compare its depth value
with the value in the view’s pre-rendered depth map. If the former
is greater (by a threshold), then it is considered occluded from the
view.

To deal with Issue 3, we use an edge detection algorithm to detect
large depth boundaries in the depth maps. We then create a depth
boundary mask image (DBMI) by dilating the edge image so that
pixels near to or on the depth boundaries have value of 1, and the
rest of the pixels have value 0. Figure 6 shows a depth map and its
corresponding DBMI. The DBMIs are used in the blending process
where we also handle Issue 4.



Figure 5: Registration results before registration refinement (top)
and after registration refinement (bottom).

Figure 6: (Left) A depth map of the detailed model rendered from
a view. (Right) Its corresponding depth boundary mask image.

We deal with Issue 4 by using weighted blending where we assign
higher weight to the center of the image and decrease the weight
towards the edges of the image. For a surface point on the de-
tailed model, the color contribution from the images is defined by
the weight function

Wi(X,Y,Z)=(1- )+ (1 = Bi(z,y))

where W;(X,Y,Z) is the weight of image 7 at surface point
(X,Y,Z), x and y are the projection of (X,Y, Z) in image i, w
and h are half the image width and height, and B; (z, y) is the depth
boundary mask image of image .

Given that M;(z, y) is the color of pixel (x, y) of image i, the color
assigned to the surface point (X,Y, Z) is

L WiX,Y, Z2)M(z, y)
M y.2) = i Wi(X.Y. Z)

=1

where n is the number of views that can see the surface point
(X,Y, Z). Figure 7 shows the results with and without applying
the weighted blending. One can easily see the “seams” at the image
boundaries.

Figure 7: Results without weighted blending (top) and with
weighted blending (bottom).

However, the weighted blending still does not very well preserve
fine details (Issue 5). For this problem, we first extract details from
the color images and add the details to the weighted blending re-
sult. More specifically, for each surface point (X,Y, Z), we find
the image that has the highest weight at the surface point:

I(X,Y,Z) = argmax W;i(X,Y, Z)

where I(X,Y, Z) is the index of the image. Then the image detail
at (X, Y, Z) is computed as follows:

H(X,Y,Z) = Myx,y,z)(%,y) — M{(%y 2 (2,y)

where M}’é“X’:Y, z)(z,y) is obtained by blurring the image
Mr(x,v,z) (z,y) with a Gaussian filter. The final color value as-
signed to surface point (X, Y, Z) is therefore

M(X,Y,Z)+ H(X,Y,2).

Figure 8 shows a close-up view of a poster in the office scene. With
our method, the improvement in details is very evident.

Figure 8: Results of weighted blending without preservation of de-
tails (left) and with preservation of details (right).

4 Implementation and Experiment Results
We have tested our method on several indoor scenes. We used a

DeltaSphere-3000 laser scanner to make panoramic scans of the
room. The range accuracy of the scanner is about 1 centimeter, and



the range image resolution is 10 samples per degree. In the case that
there are not enough features, we also used projectors to project the
special light pattern on the plain walls in the office.

For the office scene shown in Figure 3, we use 30 color images
and 7 of them contain projected pattern. The feature detection and
multiview geometry reconstruction takes about 10 minutes to com-
pute. The user input for the approximate registration typically takes
about one minute. The registration refinement takes about two min-
utes and the final color mapping about one minute.

For the laboratory scene shown in Figure 4, we use 47 color images.
Projected pattern is not required. The feature detection and multi-
view geometry reconstruction takes about 55 minutes to compute.
The registration refinement takes about three minutes and the final
color mapping about two minutes.

In all our results, we can achieve accuracies within three pixels ev-
erywhere on each image when the geometric model is projected into
the respective camera view. These accuracies are similar to those
achieved by manual registration, in which the user clicks about
a dozen correspondence points on each image and the geometric
model.

Figure 9: 3D renderings of the final colored model.

5 Conclusion and Future Work

We have presented a practical and effective approach to register a
large set of color images to a 3D geometric model. Our approach
does not rely on the existence of any high-level feature between
the images and the geometric model, therefore it is more general
than previous methods. In the case where there is very little image
features in the scene, our approach allows the use of projectors
to project special light patterns onto the scene surfaces to greatly
increase the number of usable image features. To refine the
registration, we use planes (or any surfaces) in the geometric model
to constrain the sparse bundle adjustment. This approach is able
to achieve better registration accuracy in the face of non-uniform
spatial distortion in the geometric model. We have also described
a way to blend images on the geometric model surface so that
we obtain a colored model with very smooth color and intensity
transitions and the fine details are preserved.

In our current implementation, the feature detection and multiview
geometry reconstruction take the longest processing time. A large
part of this can be implemented in GPU. Our future implementa-
tion will also demonstrate the use of our registration method for the
creation of a view-dependent reflection model. For this application,
our weighted blending step will not be required.
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