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ABSTRACT

This paper presents a method to compute a view frustum for a 3D object
viewed from a given viewpoint, such that the object is completely enclosed in
the frustum and the object’s image area is also near-maximal in the given 2D
rectangular viewing region. This optimization can be used to improve the
resolution of shadow maps and texture maps for projective texture mapping.
Instead of doing the optimization in 3D space to find a good view frustum, our
method uses a 2D approach. The basic idea of our approach is as follows.
First, from the given viewpoint, a conveniently-computed view frustum is used
to project the 3D vertices of the object to their corresponding 2D image points.
A tight 2D bounding quadrilateral is then computed to enclose these 2D image
points. Next, considering the projective warp between the bounding
quadrilateral and the rectangular viewing region, our method applies a
technique of camera calibration to compute a new view frustum that generates
an image that covers the viewing region as much as possible.

1 INTRODUCTION

In interactive computer graphics rendering, we often need to compute a view
frustum from a given viewpoint such that a selected 3D object or a group of
3D objects is totally inside the rendered 2D rectangular image. This kind of
view-frustum computation is usually needed when generating shadow maps
[Williams78] from light sources, and images for projective texture mapping
[Segal92, Hoft98].

The easiest way to compute such a view frustum is to pre-compute a simple
3D bounding volume, such as a bounding sphere, around the 3D object, and
create a symmetric perspective view frustum that encloses the object’s
bounding volume. However, very often, this view frustum is not enclosing the
3D object tightly enough to produce an image of the object that covers the 2D
rectangular viewing region as much as possible. We will refer to the 2D



rectangular viewing region as the viewport, and the projection of the 3D object
in the viewport as the object’s image. If the object’s image is too small, we are
not efficiently utilizing the available viewport area to produce a shadow map
or projective texture map that could have higher-resolution due to a larger
image of the object. A small image region of the object in a shadow map
usually results in blocky shadow edges, and similarly, a low-resolution image
region in a texture map can also result in a blocky rendered image.

Other methods increase the object’s image area in the viewport by using a
tighter 3D bounding volume, such as the 3D convex hull of the object
[Berg97]. However, this is computationally expensive, and there is still a lot of
room for improvement by manipulating the shape of the view frustum and the
orientation of the image plane. Figure 1 shows an example.
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Figure 1: (a) The symmetric perspective view frustum cannot enclose the 3D
object tightly enough, therefore, the object’s image does not utilize efficiently
the viewport area. (b) By manipulating the view frustum such that the image
plane becomes parallel to the larger face of the 3D wall, we can improve the
object’s image to cover almost the whole viewport.

This paper presents a method to compute a view frustum for a 3D object
viewed from a given viewpoint, such that the object’s image is entirely inside
the viewport and its area is also near-maximal. For computational efficiency,



our method does not seek to compute the optimal view frustum, but to
compromise for one that is near-optimal. Instead of doing the optimization in
3D space to find a good view frustum, our method uses a 2D approach. This
makes the method more efficient and simpler to implement.

2 OVERVIEW OF METHOD

Without loss of generality, we will describe our method in the context of the
OpenGL API [W0099]. In OpenGL, defining a view frustum from an arbitrary
viewpoint requires the definition of two transformations: the view
transformation, which transforms points in the world coordinate system into
the eye coordinate system; and the projection transformation, which
transforms points in the eye coordinate system into the normalized device
coordinate (NDC) system.

Given a viewpoint, a 3D object in the world coordinate system, and the
viewport’s width and height, our objective is to compute a valid view frustum
(i.e. a view transformation and a projection transformation) that maximizes the
area of the object’s image in the viewport. We provide an overview of our
method below and the key steps are described in more detail in Sections 3 and
4.

Start with an initial frustum

We start with a conveniently-computed view frustum by bounding the object
with a sphere and then creating a symmetric perspective view frustum that
encloses the sphere. The view transformation and the projection
transformation that represent this frustum can be readily obtained using the
OpenGL commands glGetDoublev (GL _MODELVIEW MATRIX, m) and
glGetDoublev (GL_PROJECTION MATRIX, p), respectively.

We use the two transformations and the viewport settings to explicitly
transform all the 3D vertices of the object from the world coordinates to their
corresponding 2D image points.

Compute tight bounding quadrilateral (Section 3)

We compute a tight bounding quadrilateral of the 2D image points. The basic
idea, illustrated in Figure 2, is to start by computing a 2D convex hull of the
image points, and then incrementally removing the edges of the convex hull
until a bounding quadrilateral remains.
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Figure 2: The 3D vertices of the object are first projected onto their
corresponding 2D image points. A 2D convex hull is computed for these
image points, and it is then incrementally reduced to a quadrilateral. The
bounding quadrilateral is related to the viewport’s rectangle by a projective
warp. This warping effect can be achieved by rotating and moving the image
plane.

Compute optimized view frustum (Section 4)

The most important idea of our method lies in the observation that the
bounding quadrilateral and the rectangular viewport are related only by a
projective warp or 2D collineation (see Chapter 2 of [Faugeras93]). Equally
important to know is that this projective warp from the bounding quadrilateral
to a rectangle can be achieved by merely rotating and moving the image plane.

3 COMPUTING TIGHT BOUNDING QUADRILATERAL

We start by computing the 2D convex hull of the 2D image points, using
methods such as Graham’s algorithm [O’Rourke98]. The time complexity of
this step is O(m log m), where is m is the number of image points.

Aggarwal et al. presented a general technique to compute the smallest convex
k-sided polygon to enclose a given convex n-sided polygon [Aggarwal85].
Their method runs in O(n* log n log k) time, however, and can be difficult to
implement.

Here, we describe an alternative algorithm to compute a convex bounding
quadrilateral. Our algorithm produces only near-optimal results, but is simple
to implement and has time complexity O(n log n).

Our algorithm obtains the convex bounding quadrilateral by iteratively
removing edges from the convex hull using a greedy approach until only four



edges remain. To remove an edge i, we need to first make sure that the sum of
the interior angles it makes with the two adjacent edges is more than 180°.
Then, we extend the two adjacent edges towards each other to intersect at a
point (see Figure 3).
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Figure 3: Removing edge i.

For a convex hull with n edges, we iterate n — 4 times, removing one edge
each time to yield a quadrilateral. At each iteration, we choose to remove the
edge whose removal would add the smallest area to the resulting polygon. For
example, in Figure 3, removing edge i adds the gray-shaded area to the
resulting polygon. We use a heap to find the edge to remove in constant time.
After the edge is removed, we must update the area values of its two adjacent
edges. Since initially building the heap requires O(n log n) time, and each
iteration has two O(log n) heap updates, the time complexity of our algorithm
is O(n log n).

It can be easily proved that for any convex polygon of five or more sides, there
always exists at least one edge that can be removed. Since the resulting
polygon is also a convex polygon, by induction, we can always reduce the
initial input convex hull to a convex quadrilateral.

Of course, if the initial convex hull is already a quadrilateral, we do not need
to do anything. If the initial convex hull is a triangle, we just create a bounding
parallelogram whose diagonal corresponds to the longest edge of the triangle,
and three of its corners coincide with the three corners of the triangle. This
ensures that the object’s image occupies half the viewport, which is the
optimal area in this case.



4 COMPUTING OPTIMIZED VIEW FRUSTUM

After we have found a tight bounding quadrilateral, we want to compute a
view frustum that warps the quadrilateral to the viewport’s rectangle as
illustrated in Figure 2.

First, we need to decide to which corner of the viewport’s rectangle each
quadrilateral corner is to be warped. We have chosen to match the longest
edge and its opposite edge of the quadrilateral with the longer edges of the
viewport’s rectangle.

Using the view transformation and the projection transformation of the
conveniently-computed view frustum, we inverse-project each corner of the
bounding quadrilateral back into the 3D world coordinate system as a ray
originating from the viewpoint. Taking the world coordinates of any 3D point
on the ray and pairing it with the 2D pixel coordinates of the corresponding
corner of the viewport’s rectangle, we get a pair-correspondence. With four
pair-correspondences, one for each corner, we are able to use a camera
calibration technique to solve for the desired view frustum.

4.1 A Camera Calibration Technique

For a pinhole camera, which is the camera model used in OpenGL, the effect
of transforming a 3D point in the world coordinate system into a 2D image
point in the viewport can be described by the following expression:
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where

e a, b, ¢, and ¢, are collectively called the intrinsic parameters of the
camera,

e r; and ¢ respectively define the rotation and translation of the view
transformation, and they are called the extrinsic parameters of the camera,

e (X, VY, Z, 1) are the homogeneous coordinates of a point in the world
coordinate system, and

e the pixel coordinates of the 2D image point are



X u; / Wi

Vi vi/w;
P is a 3 x4 projection matrix. Note that this is not the same as OpenGL’s
projection transformation: P maps a 3D point in the world coordinate system
to 2D pixel coordinates, whereas OpenGL’s projection transformation maps a

3D point in the eye coordinate system to a 3D point in the NDC. (Later on we
will describe how to construct OpenGL’s projection matrix from P.)

Since the viewpoint’s position is known, we can first apply a translation to the
world coordinate system such that the viewpoint is now located at the origin.
We will refer to this as the shifted world coordinate system, and with it, we
can simplify (1) to
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where P is now a 3 x 3 matrix, and (X;, Y; Z,~)T are the 3D coordinates of a
point in the shifted world coordinate system.

To solve for the intrinsic and extrinsic camera parameters, we will first solve
for the matrix P, and then decompose P into the individual camera parameters.

4.1.1 Solving for the Projection Matrix

If we write P as

Pu P P13
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then the pixel coordinates of the ith 2D image point can be written as

v =M PuXi+ Pt + pisZ;
Cow puX Y+ pysZ, 5)
v = Vi _ PuX; +puYi+pyZ; _
Wi X+ puY + piZ;

We can rearrange (5) to get



pPuX; + oY, + pisZ; = x, (P31 X; + pyY; + pysZ) =0

(6)
PnX; + pnY; + piZ; — yi(pyX; + pY; + py3Z;) =0.

Because of the divisions u,; /w; and v, /w; in (5), P is defined up to an arbitrary

scale factor, and has only eight independent entries. Therefore, the four pair-
correspondences we have previously obtained are sufficient to solve for P.
Note that because of the removal of the translation in (3), the 3D point in each
pair-correspondence must now be translated into the shifted world coordinate
system. Note that by construction, our bounding quadrilateral is strictly
convex, so no three corners will be collinear and we do not need to worry
about degeneracy.

With the four pair-correspondences, we can form a homogeneous linear
system
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For the homogeneous system A-p =0, the vector p can be computed using
SVD (singular value decomposition) related techniques as the eigenvector
corresponding to the only zero eigenvalue of A'A. In other words, if the SVD
of A is UDV', then p is the column of V corresponding to the only zero
singular value of A. For more details about camera calibration, see [Trucco98],
and for a comprehensive introduction to linear algebra and SVD, see
[Strang88]. An implementation of SVD can be found in [Press93].



4.1.2 Computing Camera Parameters

From the computed projection matrix P, we want to express the intrinsic and
extrinsic parameters as closed-form functions of the matrix entries. Recall that
the computed matrix is defined only up to an arbitrary scale factor, therefore,
to use the relationship
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we must first properly normalize P. We observe that the last row in the matrix
above correspond to the last row of the rotation matrix, which must be of unit

length. So we normalize P by dividing it by +./p3 + pi, + p3, , with the
choice of sign still arbitrary.

We can now extract the camera parameters. For clarity, we write the three
rows of P as the following column vectors:

Py = (P PP
P2 = (Pors Pos D) (1)
P: = (P> P )
The values of the parameters can be computed as follows:
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The sign of the normalization affects only the values of r; It can be
determined as follows. First, we use the rotation matrix [r;] computed in the
above procedure to transform the 4 shifted world points in the pair-
correspondences. Since these 3D points are all in front of the camera, their



transformed z-coordinates should be negative, because the camera is looking
in the —z direction in the eye coordinate system. If it is not the case, we correct
the r; by changing their signs.

4.1.3 Conversion to OpenGL Matrices

From the camera parameters obtained above, the OpenGL view transformation
matrix is

o Ty I3 (_rllvx _r12vy _rl3vz)
Py Py Ty (S Ve — v, — V) ,
T S A G —Ipv, —7r3v.)

0 0 0 1

M (13)

MODELVIEW —

where (vy, v, v.)' is the position of the viewpoint in the world coordinate
system.

The OpenGL projection matrix is

— 2
2a 0 - c, 0
w w
_ 2c,
) 2 __r 0 s
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where W and H are the width and height of the viewport in pixels,
respectively, and n and f are the distances of the near and far plane from the
viewpoint, respectively. If n and f cannot be known beforehand, a simple and
efficient way to compute good values for n and fis to transform the bounding
sphere of the 3D object into the eye coordinate system and compute

n=-o,-r,

(15)

f=-o,+r,

where o, is the z-coordinate of the center of the sphere in the eye coordinate
system, and r is the radius of the sphere.
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5 EXAMPLES

In Figure 4, we show three example results. The images in the leftmost column
were generated using symmetric perspective view frusta enclosing the
bounding spheres of the respective objects. The middle column shows the
bounding quadrilaterals computed using our algorithm described in Section 3.
The rightmost column shows the images generated using the new frusta
computed using our method. Note that each object is always viewed from the
same viewpoint for both the unoptimized and optimized view frusta.

Figure 4: Example results.

6 DISCUSSION

If the viewpoint is dynamic, a new view frustum has to be computed for every
rendered frame. In the computation of the 2D convex hull and the bounding
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quadrilateral, if the number of 2D image points is too large, it may be difficult
to render at interactive rates. For a non-deformable 3D object, we can first pre-
compute its 3D convex hull, and project only the 3D vertices of the convex
hull onto the viewport as 2D image points. This will reduce the number of 2D
points that our algorithm needs to work with. If the 3D convex hull is still too
complex, we can simplify it by reducing its number of faces and vertices. Note
that the simplified hull should totally contain the original convex hull. The 3D
convex hull and its simplified version would be computed in a pre-processing
step.

Besides the advantage of increasing the resolution of the object’s image, our
method can also improve the temporal consistency of the object’s image
resolution from frame to frame. If the 3D object has a predominantly large
face (or a predominant silhouette), the image plane of the computed view
frustum will tend to be oriented with it for many viewpoints. This results in a
more stable image plane, and therefore more consistent object’s image
resolution. This benefit is important to projector-based displays in which
projective texture mapping is used to produce perspective-correct imagery for
the tracked users [Raskar98]. In this application, texture maps are generated
from the user’s viewpoint, and are then texture-mapped onto the display
surfaces using projective texture mapping. Excessive changes in texture map
resolution when the viewpoint moves can cause undesired effects in the
projected imagery.

Something we wish we had done is to prove how much worse our
approximated smallest enclosing quadrilaterals are, compared to the truly
optimal ones. Such a proof would most likely be nontrivial. Since we also did
not have an implementation of the algorithm described in [Aggarwal85]
available to us, we could not do any empirical comparisons between our
approximations and the true minimum areas. However, from manual
inspection of our results, our algorithm always produced results that are within
our expectation of being good approximations of the smallest possible
quadrilaterals. Note that even if the quadrilateral is the smallest possible, it still
cannot guarantee that the object’s image area will be the largest possible. This
is because the projective warp does not “scale” every part of the quadrilateral
uniformly.

Raskar described a method to append a matrix that represents a 2D
collineation to an OpenGL projection matrix to achieve the desired projective
warp of the original image [Raskar99]. Though such a 2D projective warp
preserves collinearity in the 2D image plane, it does not preserve collinearity
in the 3D NDC. This results in incorrect depth interpolation, and therefore,

12



incorrect interpolation of surface attributes. Our method can also be used for
oblique projector rendering on planar surfaces. In this case, we need to
compute the view frustum that warps the rectangular viewport to a smaller
quadrilateral inside the viewport. The results from our method do not have the
incorrect depth interpolation problem.
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