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ABSTRACT 
The Iterative Closest Point (ICP) algorithm that uses the point-to-
plane error metric has been shown to converge much faster than 
one that uses the point-to-point error metric. At each iteration of 
the ICP algorithm, the change of relative pose that gives the 
minimal point-to-plane error is usually solved using standard 
nonlinear least-squares methods, which are often very slow. 
Fortunately, when the relative orientation between the two input 
surfaces is small, we can approximate the nonlinear optimization 
problem with a linear least-squares one that can be solved more 
efficiently. We detail the derivation of a linear system whose 
least-squares solution is a good approximation to that obtained 
from a nonlinear optimization.  

1 INTRODUCTION 
3D shape alignment is an important part of many applications. It 
is used for object recognition in which newly acquired shapes in 
the environment are fitted to model shapes in the database. For 
reverse engineering and building real-world models for virtual 
reality, it is used to align multiple partial range scans to form 
models that are more complete. For autonomous range 
acquisition, 3D registration is used to accurately localize the range 
scanner, and to align data from multiple scans for view-planning 
computation. 

Since its introduction by Besl and McKay [Besl92], the ICP 
(Iterative Closest Point) algorithm has become the most widely 
used method for aligning three-dimensional shapes (a similar 
algorithm was also introduced by Chen and Medioni [Chen92]). 
Rusinkiewicz and Levoy [Rusinkiewicz01] provide a recent 
survey of the many ICP variants based on the original ICP 
concept. 

In the ICP algorithm described by Besl and McKay [Besl92], each 
point in one data set is paired with the closest point in the other 
data set to form correspondence pairs. Then a point-to-point error 
metric is used in which the sum of the squared distance between 
points in each correspondence pair is minimized. The process is 
iterated until the error becomes smaller than a threshold or it stops 
changing. On the other hand, Chen and Medioni [Chen92] used a 
point-to-plane error metric in which the object of minimization is 
the sum of the squared distance between a point and the tangent 
plane at its correspondence point. Unlike the point-to-point 
metric, which has a closed-form solution, the point-to-plane 
metric is usually solved using standard nonlinear least squares 
methods, such as the Levenberg-Marquardt method [Press92]. 
Although each iteration of the point-to-plane ICP algorithm is 
generally slower than the point-to-point version, researchers have 
observed significantly better convergence rates in the former 
[Rusinkiewicz01]. A more theoretical explanation of the 
convergence of the point-to-plane metric is described by Pottmann 
et al [Pottmann02]. 

In [Rusinkiewicz01], it was suggested that when the relative 
orientation (rotation) between the two input surfaces is small, one 
can approximate the nonlinear least-squares optimization problem 
with a linear one, so as to speed up the computation. This 
approximation is simply done by replacing sin θ by θ and cos θ by 
1 in the rotation matrix. 

In this technical report, we describe in detail the derivation of a 
system of linear equations to approximate the original nonlinear 
system, and demonstrate how the least-squares solution to the 
linear system can be obtained using SVD (singular value 
decomposition). A 3D rigid-body transformation matrix is then 
constructed from the linear least-squares solution. 

2 POINT-TO-PLANE ICP ALGORITHM 
Given a source surface and a destination surface, each iteration of 
the ICP algorithm first establishes a set of pair-correspondences 
between points in the source surface and points in the destination 
surfaces. For example, for each point on the source surface, the 
nearest point on the destination surface is chosen as its 
correspondence [Besl92] (see [Rusinkiewicz01] for other 
approaches to find point correspondences). The output of an ICP 
iteration is a 3D rigid-body transformation M that transforms the 
source points such that the total error between the corresponding 
points, under a certain chosen error metric, is minimal. 

When the point-to-plane error metric is used, the object of 
minimization is the sum of the squared distance between each 
source point and the tangent plane at its corresponding destination 
point (see Figure 1). More specifically, if si = (six, siy, siz, 1)T is a 
source point, di = (dix, diy, diz, 1)T is the corresponding destination 
point, and ni = (nix, niy, niz, 0)T is the unit normal vector at di, then 
the goal of each ICP iteration is to find Mopt such that 

( )( )∑ •−⋅=
i

iii
2

opt minarg ndsMM M
 

(1)

where M and Mopt are 4×4 3D rigid-body transformation matrices. 

 

 

 

 

 

 

 

 

 

 Figure 1: Point-to-plane error between two surfaces. 
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A 3D rigid-body transformation M is composed of a rotation 
matrix R(α, β, γ) and a translation matrix T(tx, ty, tz), i.e. 

),,(),,( γβαRTM ⋅= zyx ttt  (2)

where  
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Rx(α), Ry(β) and Rz(γ) are rotations of α, β, and γ radians about 
the x-axis, y-axis and z-axis, respectively. 

Equation (1) is essentially a least-squares optimization problem, 
and solving it requires the determination of only the values of the 
six parameters α, β, γ, tx, ty, and tz. However, since α, β, and γ are 
arguments of nonlinear trigonometric functions in the rotation 
matrix R, efficient linear least-squares techniques cannot be 
applied to obtain the solution. In the next section, we present how 
this nonlinear least-squares problem can be approximated by a 
linear one, so that a linear least-squares technique can be applied. 

3 LINEAR APPROXIMATION 
When an angle θ ≈ 0, we can use the approximations sin θ ≈ θ and 
cos θ ≈ 1. Therefore, when α, β, γ ≈ 0,  
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Then, M is approximated by 
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We can now rewrite Equation (1) as 

( )( )∑ •−⋅=
i

iii .ˆminargˆ 2
ˆopt ndsMM M

 
(7)

Each ( ) iii ndsM •−⋅ˆ  in (7) can be written as a linear expression 
of the six parameters α, β, γ, tx, ty, and tz: 
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Given N pairs of point correspondences, we can arrange all 
( ) iii ndsM •−⋅ˆ , 1 ≤ i ≤ N, into a matrix expression 

bAx −  

where 
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( )Tzyx tttγβα=x  (9)

and 
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with 
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Note that  
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Therefore, we can obtain optM̂ by first solving for 

2
opt   minarg bAxx x −= , (12)
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which is a standard linear least-squares problem, and can be 
solved using SVD (singular value decomposition) [Press92]. Let 
A = UΣΣΣΣVT be the SVD of A. The pseudo-inverse of A is defined 
as the matrix A+ = VΣΣΣΣ+UT, where ΣΣΣΣ+ is the matrix formed by 
taking the inverse of the non-zero elements of ΣΣΣΣ (and leaving the 
zero elements unchanged). Then, the solution to the least-squares 
problem (12) is 

xopt = A+b. (13)

Suppose the solution xopt = (αopt, βopt, γopt, txopt,  tyopt,  tzopt). Note 
that since ),,(̂ optoptopt γβαR  may not be a valid rotation matrix, 

we should not use the result ),,(̂),,( optoptoptoptoptopt γβαRT ⋅zyx ttt . 

Instead, we should use ),,(),,( optoptoptoptoptopt γβαRT ⋅zyx ttt , even 

though it is not equal to optM̂  as defined in (7). 

4 DISCUSSION 
In practice, the linear approximation method can be used even 
when the relative orientation between the two input surfaces is 
quite large, sometimes as large as 30°, which we have observed. 
However, this is very dependent on the geometry and the amount 
of overlap between the two input surfaces. As the relative 
orientation decreases after each ICP iteration, the linear 
approximation becomes more accurate in the next. 

To improve the numerical stability of the computation, it is 
important to use a unit of distance that is comparable in 
magnitude with the rotation angles. The simplest way is to rescale 
and move the two input surfaces so that they are bounded within a 
unit sphere or cube centered at the origin. 
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