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1 INTRODUCTION 
In many virtual reality (VR) and augmented reality (AR) 
applications, view-dependent images of the virtual worlds are 
often displayed for the users. These images can be displayed on 
computer monitors, head-mounted displays, or projected by 
projectors onto some surfaces. In order to produce perspective-
correct images as viewed by a user, the positions of the user’s 
eyes must be known when generating the images. A way to get 
the positions of the eyes (viewpoints) is to use a tracking device.  

A tracking system typically consists of a tracker and one or more 
tracker targets. The tracker is installed in a fixed location in the 
physical space, and defines a tracker coordinate frame. For the 
purpose of measuring the positions of the eyes, a tracker target is 
usually rigidly attached to the user’s head (see Figure 1). When 
the tracker target moves together with the user’s head, the 
tracking system constantly keeps track of the target’s pose 
(position and orientation)† with respect to the tracker coordinate 
frame. Each pose tells how the target’s local coordinate frame 
(target coordinate frame) is positioned relative to the tracker 
coordinate frame. Note that the eyes’ positions are always 
constant with respect to the target coordinate frame, therefore, to 
determine the eyes’ positions in the tracker coordinate frame, we 
can first determine the constant positions of the eyes with respect 

                                                             
† A 6-DOF (degrees of freedom) tracking system provides both position 
and orientation of the target, while a 3-DOF tracking system usually 
provides only the position. 

to the target coordinate frame. Then, we can always use the 
target’s current pose in the tracker coordinate frame to express the 
eyes’ positions with respect to the tracker coordinate frame. 

This article explains a method to calibrate the viewpoints with 
respect to a tracker—to find the eyes’ positions in the target 
coordinate frame. 

2 VIEWPOINT CALIBRATION 
The calibration of each viewpoint consists of two steps. The first 
step involves some physical procedures to collect the necessary 
data from the tracking system. These data represent at least two 
lines in the target coordinate frame, and these lines are supposed 
to intersect at the viewpoint. They are then fed to the second step 
to compute an estimate of the viewpoint’s position. 

Since the calibration steps are exactly the same for both eyes, 
from here onwards, we will describe the calibration of only the 
right eye.  

2.1 Data Collection 
We want to collect data of at least two lines in the target 
coordinate frame that are supposed to intersect at the right eye. 
We begin by physically marking two points in the space within 
the tracking range of the tracker. Let these two points be P and Q 
(see Figure 1), and they are preferably more than 6 feet apart. One 
of the two points, say P, should be at about eye level, and there 
should be a clear line of sight from P to Q. 

Next, we measure the positions of P and Q with respect to the 
tracker coordinate frame. This usually can be done by using a 
pointing device that is attached with a tracker target. Let pT and qT 
be the positions of P and Q with respect to the tracker coordinate 
frame. 

Next, we attach a tracker target firmly to the user’s head. The user 
then positions his right eye near point P (preferably within a foot) 
and tries to line-up points P and Q, as shown in Figure 1. When P 
and Q are lined-up, the pose of the target with respect to the 
tracker coordinate frame is recorded. At this very moment, P and 
Q actually form a line that passes through the right viewpoint. 
Since we already know pT and qT (the positions of P and Q with 
respect to the tracker coordinate frame), and we also know the 
pose of the target at that moment, we can now express the 
positions of P and Q in the target coordinate frame, as p1 and q1, 
respectively. More specifically, we use the target’s pose to 
transform pT and qT to get p1 and q1, respectively. Even though, a 
moment later, the user might move his right eye away from the 
line formed by P and Q, p1 and q1 still remain the same and still 
form a line that passes through the right eye in the target 
coordinate frame. You can imagine that the line passing through 
p1 and q1 has become rigidly “attached” to the target coordinate 

Figure 1: A tracker target is rigidly mounted on a user’s head. 
Our objective is to find the positions of the user’s eyes with 
respect to the target coordinate frame. P and Q are two fixed 
points in the physical space and their positions with respect to the 
tracker coordinate frame are known. This diagram is not drawn to 
scale. 
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frame,�and�will�always�pass� through�the�right�eye�no�matter�how�
the�user�moves.�Up�to�here,�we�say�we�have�captured�the�first�line�
of�sight�passing�through�p1�and�q1.�

In� order� to� find� the� position� of� the� right� eye� in� the� target�
coordinate�frame,�we�need�to�capture�at�least�another�line�of�sight,�
so� that�its�intersection�with�the�first�can�be�used�to�determine�the�
viewpoint’ s�position.�To�do�this,�the�user�is�asked�to�line-up�P�and�
Q�again,�but�with�a�different�head�orientation�from�the�first� time.�
This�requires�the�user�to�roll�his�right�eyeball�to�another�direction‡.�
The�new�pose�of�the�tracker�target�at�that�moment�is�recorded�and�
used�to�transformed�pT�and�qT�into�the�target�coordinate�frame,�as�
p2� and� q2,� respectively.� p2� and� q2� represent� the� second� line� of�
sight.�

We�can�repeat�the�above�procedure�to�capture�additional� lines�of�
sight.� In�practice,�because�of�measurement�errors,� these� captured�
lines� of� sight� might� not� pass� through� the� viewpoint� exactly,� and�
they�might�not�intersect�one�another�at�all.�Additional�lines�help�to�
improve�the�accuracy�of�the�estimate�of�the�viewpoint’ s�position.�

2.2� Solution�Computation�
In� this� section,� we� will� look� at� two� ways� to� estimate� the�
viewpoint’ s�position�in�the�target�coordinate�frame.�The�first�way�
considers� only� two� lines� of� sight,� and� the� second� way� can�
accommodate�the�more�general�case�of�two�or�more�lines�of�sight.�

2.2.1 Two Lines of Sight 

When�only�two�lines�of�sight�are�captured,� the�basic� idea�to�find�
the�viewpoint’ s�position�is�to�solve�for�the�intersection�of�the�two�
lines.� However,� measurement� errors� can� produce� two� lines� of�
sight� that�do�not� intersect�with� each�other� at� all.� In� this� case,�we�
can�look�for�the�points�on�the�lines�of�sight�at�which�the�two�lines�
are� closest.� Two� lines� of� sight,� l1� and� l2,� are� shown� in� Figure� 2.�
The�two�lines�are�closest�to�each�other�at�points�r1�and�r2�on�l1�and�
l2,�respectively.�We�will�use�the�midpoint,�m,�between�r1�and�r2�as�
an�estimate�for�the�viewpoint�position.�

To�find�m,�we�have�to�first�find�r1�and�r2.�We�start�by�letting�u1�be�
the�vector�from�q1�to�p1,�and�u2�be�the�vector�from�q2�to�p2:�

�������������������������������������������������������������
‡�We�are�assuming�that�the�position�of�the�center�of�projection�of�the�eye�
does�not�change�significantly�when�the�eyeball�rolls.�
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Let�t1�and�t2�be�two�scalars.�We�can�express�r1�and�r2�as�follows:�
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Our�objective�is� to�solve�for� t1�and�t2,�so� that�we�can�compute�r1�
and� r2.� Observing� that� the� line� passing� through� r1� and� r2� is�
perpendicular�to�both�l1�and�l2,�we�can�construct�the�following�two�
constraints:�
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where�• �is�the�dot�product�operator.�

By�substituting�(2)�into�(3),�we�get�the�following�equations:�
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After�solving�the�simultaneous�linear�equations�in�(4)�for�t1�and�t2,�
we�can�compute�r1� and�r2� in�(2).�The�midpoint�between�them� is�
just�

)( 212
1 rrm += .� (5)

Therefore,�the�position�m�is� the�estimate�of� the�right�viewpoint’ s�
position�in�the�target�coordinate�frame.�

2.2.2 n Lines of Sight 

In� this�case,�we�will�compute�the�point� that�has�the�shortest�total�
distance� to� all� the� n� lines� of� sight.� First,� let� li� be� the� ith� line� of�
sight,� passing� through� the� points� pi� and� qi,� where� 1�≤�i�≤�n.� We�
further� let� pi�=�(pix,�piy,�piz)

T,� qi�=�(qix,�qiy,�qiz)
T,� and� ui�=�

(uix,�uiy,�uiz)
T�=�pi�–�qi.�Let�m�=�(mx,�my,�mz)

T� be� the�point� that�has�
the�shortest�total�distance�to�all�the�n�lines�of�sight.�

Suppose� all� the� lines� of� sight� intersect� exactly� at� the� common�
point�m,�then�the�following�is�true�for�all�1�≤�i�≤�n:��

iiit qum =+ � (6)

where�each�ti�is�some�scalar�whose�value�is�yet�to�be�determined.�

By�combining�(6)�for�all�1�≤�i�≤�n,�we�can�write�them�in�the�form�
of�Ax�=�b�as�
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Figure 2:� Estimating� the� intersection� of� two� lines� of� sight.� The�
two� lines�of� sight�do�not�actually� intersect,� so�we� find� the�points�
on� the� lines� at� which� the� two� lines� are� closest,� and� use� the�
midpoint� between� these� two� points� as� an� estimate� of� the�
viewpoint’ s�position.�This�diagram�is�not�drawn�to�scale.��
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where�A� is� the�3n�×� (n�+�3)�matrix,�x� is� the� (n�+�3)�×� 1� column�
vector,�and�b�is�the�3n�×�1�column�vector.�

In� practice,� because� of� errors� in� the� measurements,� Ax� =� b� is�
almost�always�an�inconsistent�system,�i.e.�b�is�not�in�the�range�of�
A.�Generally,�the�columns�of�A�are�independent,�therefore�A�has�a�
rank�of�n�+�3.�So,�the�least�squares�solution�of�Ax�=�b�is�just��

( ) bAAAx T1T −
= .�

ATA�is�invertible�because�it�is�a�(n�+�3)�×�(n�+�3)�matrix�and�it�has�
the� same� rank� as� A.� For� more� information� about� linear� least�
squares�solution,�see�[1].�

The� last� step� of� the� calibration� is� just� to� extract� mx,� my,� and� mz�
from� x .�m�=�(mx,�my,�mz)

T�is�the�estimate�of�the�right�viewpoint’ s�
position�with�respect�to�the�target�coordinate�frame.�

Using� MATLAB� [2],� the� least� squares� solution� x �can� be�
computed�as�follows:�

x = A \ b 

provided�A�and�b�have�already�been�set�up�as�in�(7).�
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