
 
 

Abstract 
 

We recently proposed a new and efficient next-best-
view algorithm for 3D reconstruction of indoor scenes 
using active range sensing. We overcome the computation 
difficulty of evaluating the view metric function by using 
an adaptive hierarchical approach to exploit the various 
spatial coherences inherent in the acquisition constraints 
and quality requirements. The impressive speedups have 
allowed our NBV algorithm to become the first to be able 
to exhaustively evaluate a large set of 3D views with 
respect to a large set of surfaces, and to include many 
practical acquisition constraints and quality requirements. 
The success of the algorithm is greatly dependent on the 
implementation efficiency of the constraint and quality 
evaluations. In this paper, we describe the algorithmic 
details of the hierarchical view evaluation, and present 
efficient algorithms that evaluate sensing constraints and 
surface sampling densities between a view volume and a 
surface patch instead of simply between a single view 
point and a surface point. The presentation here provides 
examples for the design of efficient algorithms for new 
sensing constraints. 
 

1. Introduction 
With the advent of affordable active range sensing 

devices, reconstructing detailed 3D digital models of real-
world objects and environments has become more 

common. A typical reconstruction would require multiple 
range scans made from different scanning locations. The 
set of scanning locations must be chosen carefully so that 
each location satisfies a set of acquisition constraints and 
the reconstructed 3D digital model can meet a set of 
quality requirements. This task is known as view 
planning. For 3D reconstruction, a priori knowledge of the 
scene geometry is not available to the automatic view 
planner. The first scan is made from a view selected by a 
human operator, and for each subsequent scan, the planner 
must determine its best view based on the information 
collected from the previous scans. This is often called the 
next-best-view (NBV) problem.  

The NBV problem is inherently a local optimization 
problem since global geometric information is unknown. 
It is NP-hard, and since it can be reduced to the set-
covering problem, it is often solved approximately using a 
greedy approximation algorithm. A greedy NBV 
algorithm selects the view that maximizes a view metric as 
the best view for the next scan.  

The major challenge to a practical NBV solution is an 
efficient method to evaluate the view metric for a large set 
of views, using information provided by a partial model of 
the scene. Each evaluation can be computationally very 
expensive, since a large amount of information of the 
partial model may be involved, and visibility 
computations and other constraint evaluations are 
expensive. This apparent computation difficulty has 
limited many previous NBV algorithms to simple and 
small objects, incomplete search space, incomplete set of 
acquisition constraints and reconstruction quality 
requirements, and low-quality acquisition. Some early 
algorithms even ignore self-occlusion of the objects [2]. 
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Figure 1. (a) The eight 3D views in a computed view plan. The views may be at different height. (b)&(c) Two views of the polygonal 
model constructed from the eight range scans. 
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However, an efficient algorithm to evaluate the view 
metric is actually possible. Recently, we proposed a 
hierarchical approach [5] to adaptively exploit the various 
spatial coherences inherent in the acquisition constraints 
and quality requirements. Results show that the 
hierarchical approach can speed up view evaluation by 
one to two orders of magnitude over the straightforward 
method used in the previous NBV algorithms. These 
impressive speedups have allowed our NBV algorithm to 
become the first to be able to exhaustively evaluate a large 
set of 3D views with respect to a large set of surfaces, and 
to include many practical acquisition constraints and 
quality requirements. 

Our proposed hierarchical view evaluation algorithm 
was inspired by the hierarchical radiosity algorithm [4], 
which can be generalized to evaluate pair-wise 
interactions between extended objects. The success of the 
hierarchical view evaluation is due to the evaluation of the 
sensing constraints and surface sampling densities 
between a view volume and a surface patch, instead of 
between a single view point and a single surface point at a 
time. The straightforward, inefficient, single-view-point-
to-single-surface-point approach is used in almost every 
previous view planning algorithms [2, 3, 6, 7, 8]. The 
purpose of this paper is to describe the algorithmic details 
of the hierarchical approach, and present efficient 
algorithms that evaluate sensing constraints and surface 
sampling densities between a view volume and a surface 
patch. The presentation here provides examples for the 
design of efficient algorithms for new acquisition 
constraints.  

Section 2 presents a summary of the material in [5]. The 
reader is encouraged to refer to the paper for more details. 
In Section 3, we present the details of the hierarchical 
view evaluation algorithm, and the efficient 
implementation of the individual constraint and sampling 
density evaluation algorithms. Section 4 presents some 
results of our hierarchical view evaluation. We conclude 
the paper in Section 5. 

2. The Hierarchical NBV Algorithm 
For our NBV algorithm, we have formulated a view 

metric and used an adaptive hierarchical method to 
efficiently evaluate the view metric for a large set of 
views. The view metric incorporates the reconstruction 
quality requirements and acquisition constraints. 

Our view metric takes into account the following two 
reconstruction quality requirements. 

(1) Completeness. The NBV algorithm tries to 
maximize the amount of surface area acquired so that the 
reconstructed model can be more complete.  

(2) Surface sampling quality. Our algorithm tries to 
maximize the surface area that reaches a required surface 
sampling density. 

Several acquisition constraints must be observed when 
planning a view of the scanner. Each constraint can be 
classified as one of the following types. 

(1) Positioning constraints. The physical construction 
of the scanner and the capability of the positioning device 

can constrain the scanner’s physical position. A view that 
satisfies all the positioning constraints is called a feasible 
view. 

(2) Sensing constraints. These constraints determine 
whether a surface point in the scene can be measured from 
a view. For example, a surface point cannot be measured 
by the scanner if it is not visible from the range sensor. 

(3) Registration constraint. Due to positioning error of 
the scanner, each new scan has to be explicitly aligned to 
the previous scans. However, this registration is not 
guaranteed to be successful. Our view planning algorithm 
can ensure that the new scan to be acquired from the 
planned view can be successfully registered with the 
previous ones. However, we will not discuss the 
formulation and evaluation of the registration constraint in 
this paper. 

2.1. Partial Model 
The partial model consists of the acquired surfaces 

(called true surfaces) and three types of false surfaces: (1) 
occlusion surfaces, (2) hole-boundary surfaces, and (3) 
image-boundary surfaces. They are shown in Figure 2. 
These false surfaces are added to connect holes caused by 
occlusions, missing samples, and range image boundaries, 
respectively. These surfaces enclose a volume of known 
empty space. The false surfaces provide clues to how the 
unknown volumes can be resolved by subsequent scans.  

One partial model can be merged to another of the same 
environment by performing the union of their known 
empty volumes and the union of their true surfaces. 

In our implementation, the partial model is represented 
using an octree. All surface types and empty space are 
represented.  

2.2. View Metric 
Our view metric is shown in Eq. (1), where ( )vh  is the 

score of view v. 
 ( ) ( ) ( ) ( ) ( ) ( )dpp,vtpwp,vcvrvfvh

Sp
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⋅⋅⋅⋅=  (1) 

where  
• S is the set of all surface points in the current partial 

scene model; it includes all true and false surfaces; 
• ( )vf  is 1 if view v is a feasible view, otherwise ( )vf  

is 0; 
• ( )vr  is 1 if the registration constraint is satisfied at 

view v, otherwise ( )vr  is 0; 

Figure 2. Different types of surfaces in a partial model. (a) 
True surfaces. (b) Occlusion surfaces (red). (c) Hole-boundary 
surfaces (blue). (d) Image-boundary surfaces (green).  
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• ( )p,vc  is 1 if all the sensing constraints between 
view v and surface point p are satisfied, otherwise 
( )p,vc  is 0; 

• ( )pw  is the weight or importance value assigned to 
the surface type (false or true surface) of p;  

• ( )p,vt  is the improvement to the recorded sampling 
density at p if a scan is made from view v.  

We use the following definition for ( )p,vt . 

 ( ) ( )( ) ( )( )pqD,p,vs,p,vt −=   min  0max  (2) 

where 
• ( )p,vs  is the sampling density at p if it is scanned 

from view v; this is referred to as the new scan 
sampling density; 

• D is the sampling density requirement for all surfaces; 
• ( )pq  is the maximum sampling density at which p 

has been scanned previously; this is referred to as the 
recorded sampling density; if p is on a false surface, 
then ( )pq  is 0;  

2.3. Algorithm Overview 
Our strategy to evaluate ( )vh  for all the views is to 

evaluate Eq. (1) in pieces, from least to most expensive to 
compute. Figure 3 shows the major steps in the evaluation 
of ( )vh . We first evaluate ( )vf  for all views to eliminate 
the infeasible views. Next, we use our hierarchical view 
evaluation method to evaluate the integral part of Eq. (1) 
for all the feasible views. The feasible views are then 
ranked by their current scores. Starting from the highest-
score view, the registration constraint function, ( )vr , is 
evaluated. The first view found to satisfy the constraint is 
output as the next best view. 

To support the hierarchical view evaluation, surface 
voxels in the partial octree scene model are grouped into 
planar patches. The planar patches are then ranked in 
descending order of importance, so that the most 
important ones can be used to evaluate the views first.  

Computing feasible views. An octree is used to 
represent the feasible view volumes. This feasible view 
octree contains a subset of the empty space in the 
cumulative partial model, and it is “carved” out using the 
positioning constraints.  

Extracting planar patches. Surface voxels that have 
not reached the required sampling density are grouped into 
planar patches. Each patch has the following attributes: (1) 
a bounding rectangle, (2) an approximate surface area, (3) 
the average recorded sampling density, and (4) the 
sampling deficit. The sampling deficit is defined as the 
number of samples needed to make the average recorded 
sampling density equal to the sampling density 
requirement D. 

Ranking patches. The most important patch should 
have the greatest potential impact on the value of the view 
metric in Eq. (1). This leads to the following: the patch 
importance value of P = ( )Pw  × sampling deficit of P, 
where P is the patch, and ( )Pw  is the weight assigned to 
the surface type of P, which is the same as the weight 
( )pw  in Eq. (1). The patches are then sorted in 

descending order on their patch importance values. 

2.4. Hierarchical View Evaluation 
Let ( )vg  be the integral part in Eq. (1), i.e. 

 ( ) ( ) ( ) ( )dpp,vtpwp,vcvg
Sp
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The next step of the NBV algorithm is to evaluate ( )vg  
for all the feasible views. Due to the potentially large area 
of surfaces in the partial scene model, a brute-force 
approach would be impractical. However, the amount of 
computation can actually be reduced by exploiting the 
spatial coherences in the sensing constraints and the 
sampling quality function.  

The idea is that if a constraint is satisfied between a 
view v and a surface point p on the partial model, very 
likely the same constraint is also satisfied between another 
view v′ and p, provided v′ is near to v. The same constraint 
is also very likely to be satisfied between v and another 
surface point p′ that is near p. We exploit these spatial 
coherences using a hierarchical approach. Neighboring 
views are first grouped into view volumes, and 
neighboring surface points are grouped into surface 
patches. The constraint is evaluated between each view 
volume V and a patch P. If it is entirely satisfied or 
entirely not satisfied between V and P, then the constraint 
evaluation is considered completed between every view in 
V and every surface point in P. If the constraint is partially 
satisfied between V and P, then we subdivide either V or 
P, and continue the evaluation on the children. 

2.4.1. Formulation 

Suppose all the false surfaces and under-sampled true 
surfaces in the partial model have been partitioned into N 
patches { }N,,i|Pi K1= , then Eq. (3) can be rewritten as 

 ( ) ( )∑
=

=
N

i
iP,vgvg

1

 (4) 

where 
Figure 3. The major steps in the NBV algorithm. 
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Now, we will focus on evaluating views with respect to 
a patch P, instead of with all the surface area in the partial 
model. Suppose the values of ( )p,vc  and ( )p,vt  remain 
constant between a view volume V and a patch P, where 

Vv∈  and Pp∈ , then ( )P,vg  can be computed as 

 ( ) ( ) ( ) ( ) ( ) ( )PaP,VtPwP,VcP,VgP,vg ⋅⋅⋅==  (6) 

where  
 ( ) ( )( ) ( )( )PqD,P,Vs,P,Vt −=   min  0max  (7) 

and ( )P,Vc , ( )Pw  and ( )P,Vs  are similarly defined as 
( )p,vc , ( )pw  and ( )p,vs ; ( )Pa  is the patch area of P, 

and ( )Pq  is the average recorded sampling density of P. 
In actual fact, the value of ( )p,vs  does not stay 

constant between V and P. However, if every ( )p,vs  
between V and P is bounded within a small interval, then 
we consider it approximately constant. The value of 
( )p,vs  between V and P is considered approximately 

constant if 

 ( ) ( )
( ) sP,Vs

P,VsP,Vs
ε≤

−

max

minmax  (8) 

where ( )P,Vsmin  and ( )P,Vsmax  are the minimum and 
maximum ( )p,vs  between V and P, respectively. We have 
chosen to let ( ) =P,Vs ( )P,Vsmin , and compute ( )P,Vg  
using Eq. (6). If any sensing constraint is found entirely 
not satisfied between V and P, then ( )P,Vs  need not be 
computed and ( ) 0=P,Vg . 

If ( )p,vc  is not constant or ( )p,vs  is not approximately 
constant between V and P, then we cannot compute 
( )P,Vg  using Eq. (6). We can subdivide either V or P, 

and apply Eq. (6) on the sub-volumes or the sub-patches. 
If patch P is subdivided, then 

 ( ) ( ) ( )kP,VgP,VgP,Vg ++= L1  (9) 

where kP,,P K1  are the sub-patches of patch P. If view 
volume V is subdivided, then ( )P,Vg  is replaced with 
( ) ( )P,Vg,,P,Vg mK1 , where mV,,V K1  are the sub-

volumes of V. In this case, ( ) =P,vg ( )P,Vg i  if iVv∈ . 
The subdivision stops when ( )p,vc  is constant and 
( )p,vs  is approximately constant between the view 

volume and the patch. 

3. Hierarchical View Evaluation Algorithm 
The following describes the algorithmic details and 

implementation of the hierarchical view evaluation to 
evaluate the integral part of the view metric. 

It is assumed that the range sensor is monostatic, and all 
the samples in a range image are measured from a single 

center of projection or viewpoint. This assumption is true 
for many commercial mid-range and long-range laser 
scanners that use time-of-flight range sensing. Many of 
such scanners also have 360° horizontal FOV but limited 
vertical FOV. Since we assume that the scanner is always 
in the upright orientation, each view of the scanner is 
effectively only a 3D position. We use the feasible view 
octree to represent the 3D view volumes. 

In our implementation, ( )p,vc  consists of four separate 
sensing constraints: 
(1) The maximum-range constraint, represented by 

( )p,vc0 . If the distance between view v and surface 
point p is more than the maximum effective range of 
the range sensor, then ( ) 00 =p,vc , otherwise 
( ) 10 =p,vc . 

(2) The vertical-field-of-view constraint, represented by 
( )p,vc1 . If the surface point p is outside the vertical 

field of view of the scanner at view v, then 
( ) 01 =p,vc , otherwise ( ) 11 =p,vc . 

(3) The angle-of-incidence constraint, represented by 
( )p,vc2 . If the angle between the surface normal 

vector at p and the direction vector from p to v is 
greater than a threshold angle, then ( ) 02 =p,vc , 
otherwise ( ) 12 =p,vc . 

(4) The visibility constraint, represented by ( )p,vc3 . If 
the line of sight from v to p is occluded, then 
( ) 03 =p,vc , otherwise ( ) 13 =p,vc . 

Consequently, the binary function ( )p,vc  is defined as 
( ) =p,vc  ( )p,vc0  ( )p,vc1  ( )p,vc2  ( )p,vc3 . Similarly, 
( )P,Vc  is made up of ( )P,Vc0 , ( )P,Vc1 , ( )P,Vc2 , and 
( )P,Vc3 , where ( ) 1=P,Vci  if ( ) 1=p,vci  for all Vv∈  

and Pp∈ , or ( ) 0=P,Vci  if ( ) 0=p,vci  for all Vv∈  
and Pp∈ , otherwise ( )P,Vci  is undefined. Intuitively, 
when ( )P,Vci  is undefined, it means that the 
corresponding constraint is only partially satisfied 
between V and P. 

In Figure 4 is a simplified C-like procedure to 
evaluate ( )P,Vg . Here, input viewcell V is a feasible view 
volume. Each input Boolean element C_in[i] is true 
if ( )P,Vci  is already known to be 1, otherwise C_in[i] 
is false to indicate that ( )P,Vci  is unknown. The input 
Boolean argument S_const is true if the relative error 
of ( )P,Vs  is known to be bounded by sε . The input 
argument S is ( )P,Vs  if S_const is true. Initially, the 
procedure EvaluateView() is called with all 
C_in[i]=false and S_const=false. 

The function EvaluateConstraint(i,V,P) 
evaluates ( )P,Vci  and returns 0 or 1 to indicate 
( ) 0=P,Vci  or ( ) 1=P,Vci , respectively, or returns any 

other integer values to indicate ( )P,Vci  is undefined. The 
function EvaluateSamplingDensity(V,P, 



 
 

&SMin,&SMax) evaluates the minimum and maximum 
new scan sampling densities between V and P. The details 
of both functions are described in the subsections below. 

In our implementation, a viewcell is subdivided into 
eight equal sub-viewcells, whereas a patch is subdivided 
into four sub-patches by splitting its bounding rectangle 
into four equal parts. A viewcell is not subdivided if it has 
reached the minimum viewcell size. Similarly, a patch is 
not subdivided if it has reached the minimum patch size. 
When either a viewcell or a patch is to be subdivided, we 
subdivide the patch if its longer side is larger than the 
viewcell’s width, otherwise the viewcell is chosen. 

It is important to note that when ( ) 1=P,Vci , it is also 
true that ( ) 1=k

i P,Vc  and ( ) 1=P,Vc m
i  for all sub-patches 

kP  of P and all sub-viewcells mV  of V. Therefore, when 
( ) 1=P,Vci , and EvaluateView() is called with the 

sub-patches kP  or the sub-viewcells mV , there is no need 
to recompute ( )k

i P,Vc  and ( )P,Vc m
i . This is similar for 

( )P,Vs , when its relative error has been determined to be 
bounded by sε . This important observation can eliminate 
a large amount of computation since once a constraint is 
determined to be 0 or 1 for V and P, it needs not be 
evaluated anymore for their descendents. 

After all patches have been evaluated (or the allotted 
view evaluation time is up), a viewcell’s score is not yet 
propagated down to its children. Since each child viewcell 

contains part of the view volume of its parent viewcell, the 
scores in the children should include the parent’s score. 
Therefore, the score of each viewcell should be updated 
by adding to it the scores of its ancestors. The center point 
of each leaf node of the feasible view octree is a candidate 
view, to be ranked and tested for the registration 
constraint. The first candidate view that satisfies the 
registration constraint is chosen as the best view for the 
next scan. 

3.1. Constraint and Sampling Density Evaluations 
This section describes the implementation of 

EvaluateConstraint() and EvaluateSampling 
Density() to evaluate ( )P,Vci  and ( )P,Vs , 
respectively. The success of the hierarchical view 
evaluation depends on how efficiently they can be 
evaluated. 

In actual fact, EvaluateConstraint(i,V,P) 
need not evaluate ( )P,Vci  precisely, in the sense that 
when EvaluateConstraint(i,V,P) returns 1 or 0, 
it implies that ( ) 1=P,Vci  or ( ) 0=P,Vci , respectively, 
but the inverse implication need not be true. When 
( ) 1=P,Vci  or ( ) 0=P,Vci , EvaluateConstraint 

(i,V,P) may return undefined. This is preferred when it 
is expensive to precisely determine whether ( ) 1=P,Vci  
or ( ) 0=P,Vci . By returning undefined, the precise 
evaluation of the constraint is left to the sub-patches of P 
or the sub-viewcells of V, and because of their smaller 
sizes, they are more likely to belong to one of the easy 
cases. Of course, when ( )P,Vci  is undefined, Evaluate 
Constraint(i,V,P) must return undefined. 

For the same purpose, EvaluateSampling 
Density(V,P,&SMin,&SMax) need not return the 
precise minimum and maximum new scan sampling 
densities between V and P. It is allowed to underestimate 
the minimum new scan sampling density and overestimate 
the maximum new scan sampling density. 

The following sections describe the algorithms. There 
are certainly some other efficient ways to accomplish 
these operations, but these provide examples for the 
implementation of new constraints. When V is indivisible 
or P is indivisible, where they are treated as points, the 
algorithms are generally trivial, so they are not described 
here. 

3.1.1. Maximum-Range Constraint 

Let the maximum effective range of the range sensor be 
maxR . When ( ) 10 =P,Vc , the distance between any point 

in patch P and any view in V is equal to or less than maxR . 
To determine this, four imaginary spheres of radius maxR  
are centered at the four corners of the patch’s bounding 
rectangle. If the entire viewcell V is inside all the four 
spheres, then EvaluateConstraint(0,V,P) returns 
1. The viewcell can be approximated with a bounding 
sphere to speed up the computation. If the viewcell (or its Figure 4. A procedure to evaluate g(V, P). 

EvaluateView( Viewcell *V, Patch *P, 
              bool C_in[4], bool S_const, float S ) 
{ 
  bool C[4] = { C_in[0], C_in[1], C_in[2], C_in[3] }; 
 
  for ( int i = 0; i < 4; i++ ) 
    if ( !C[i] ) 
    { 
      int t = EvaluateConstraint( i, V, P ); 
      if ( t == 0 ) return; 
      if ( t == 1 ) C[i] = true; 
    } 
 
  if ( !S_const ) 
  { 
    float SMin, SMax; 
    EvaluateSamplingDensity( V, P, &SMin, &SMax ); 
 
    if ( ( SMax - SMin ) / SMax <= epsilon_S ) 
    { 
       S_const = true; 
       S = SMin; 
       if ( MIN( S, D ) - q(P) <= 0 ) return; 
    } 
  } 
 
  if ( C[0] && C[1] && C[2] && C[3] && S_const ) 
  { 
    V->score += w(P) * ( MIN( S, D ) - q(P) ) * a(P); 
  } 
  else if ( ToSubdividePatchFirst( V, P ) ) 
  { 
    SubdividePatch( P ); 
    for ( int k = 0; k < P->numChildren; k++ ) 
      EvaluateView( V, P->child[k], C, S_const, S ); 
  } 
  else 
  { 
    SubdivideViewcell( V ); 
    for ( int m = 0; m < V->numChildren; m++ ) 
      EvaluateView( V->child[m], P, C, S_const, S ); 
  } 
} 



 
 

bounding sphere) intersects or is inside some but not all 
the four spheres, undefined is returned. 

When ( ) 00 =P,Vc , the distance between any point in 
patch P and any view in V is greater than maxR . This can 
be determined as follows. Let C be the imaginary convex 
hull of the four spheres of radius maxR  that are centered at 
the four corners of the patch’s bounding rectangle. If the 
viewcell is entirely outside the convex hull C, then 
( ) 00 =P,Vc . By approximating the viewcell with a 

sphere, it is not hard to efficiently determine whether the 
sphere is outside the convex hull. When the viewcell (or 
its bounding sphere) has been determined to be outside the 
convex hull, EvaluateConstraint(0,V,P) returns 
0. For all other cases, EvaluateConstraint 
(0,V,P) returns undefined to indicate that the actual 
value of ( )P,Vc0  is still uncertain, or that the constraint is 
satisfied by only some, but not all, pairs of views and 
patch points. 

3.1.2. Vertical-Field-of-View Constraint 

The scanner is assumed to have a 360° horizontal FOV, 
but a limited vertical FOV, as shown in Figure 5. To 
determine whether a surface point is within the vertical 
FOV, we compute the angle between the y-axis (vertical 
axis) and the vector from the view position to the surface 
point. If the angle is less than θtop or more than 180°−θbot, 
then the surface point is outside the vertical FOV. 

When ( ) 01 =P,Vc , every point in patch P is outside the 
FOV of every view in V. Figure 6 illustrates a method to 
determine whether ( ) 01 =P,Vc . If the directions of all the 
four directed lines in Figure 6(a) are in the bottom outside 
region of the vertical FOV, then 
EvaluateConstraint(1,V,P) returns 0. Similarly, 
in Figure 6(b), if the directions of all the four directed 
lines are in the top outside region, 
EvaluateConstraint(1,V,P) also returns 0. If 
some of these directed lines are inside and some are 
outside the vertical FOV, then Evaluate 
Constraint(1,V,P) returns undefined.  

Figure 7 illustrate how to determine whether 
( ) 11 =P,Vc . If all the four corners of the patch’s 

bounding rectangle are on the positive sides of both planes 
A and B, then the patch is entirely inside the vertical FOV 
of every view in the viewcell and the value to be returned 

by EvaluateConstraint(1,V,P) is 1. Otherwise, 
EvaluateConstraint(1,V,P) returns undefined. 

3.1.3. Angle-of-Incidence Constraint 

The angle of incidence, φ, of a surface point p from a 
view position v is the angle between the surface normal 
vector at p and the direction vector from p to v. If this 
angle is greater than a threshold angle maxφ , then 

( ) 02 =p,vc , otherwise ( ) 12 =p,vc . 
To determine whether ( ) 12 =P,Vc , four open-ended 

cones are set up at the four corners of the patch’s 
bounding rectangle as shown in Figure 8. The base of each 
cone extends infinitely in the direction of the patch’s 
normal vector, and the half angle at the apex of each cone 
is maxφ . If the viewcell V (or its bounding sphere) is 
entirely inside all four cones, then ( ) 12 =P,Vc , and 
EvaluateConstraint(2,V,P) returns 1. If the 

Figure 5. The vertical field of view of the scanner. 
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Figure 7. Determining whether a patch is entirely inside the 
vertical FOV of every view in the viewcell. Planes A and B are 
both tangent to the bounding sphere of the viewcell. The 
planes’ normal vectors nA and nB are coplanar with the normal 
vector nP of the patch. If all the four corners of the patch’s 
bounding rectangle are on the positive side (the side where 
the normal vector is pointing) of both planes A and B, then 
the patch is entirely inside the vertical FOV of every view in 
the viewcell. 
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Figure 6. (a) The four directed lines are tangent to the sphere 
and point at the four corners of the patch’s bounding 
rectangle. Each directed line touches the sphere at the lowest 
point where it is still tangent to the sphere. If the angles 
between the y-axis and all the directed lines are larger than 
180°−θbot, then the patch is entirely in the bottom outside 
region of the vertical FOV of the viewcell. (b) Each of the four 
directed lines touches the sphere at the highest point where it 
is still tangent to the sphere. If the angles between the y-axis 
and all the directed lines are less than θtop, then the patch is 
entirely in the top outside region of the vertical FOV of the 
viewcell. 
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viewcell intersects or is inside some but not all four cones, 
then EvaluateConstraint(2,V,P) returns 
undefined.  

To determine whether ( ) 02 =P,Vc , the viewcell V (or 
its bounding sphere) must be entirely outside the open-
ended convex hull that encloses all the four cones in 
Figure 8. In this case, EvaluateConstraint 
(2,V,P) returns 0, otherwise it returns undefined. 

3.1.4. Visibility Constraint 

Here, we are testing the visibility between a viewcell 
and a rectangle-bounded patch. 

When ( ) 13 =P,Vc , it implies the viewcell and the patch 
are totally visible to each other. To determine that, one has 
to ensure that there is no occluder in the shaft between the 
viewcell and the patch, which is the 3D volume occupied 
by the line segments connecting every point in the 
viewcell to every point on the patch. To determine 
( ) 13 =P,Vc , bounding planes are constructed to enclose 

the shaft between the viewcell and the patch’s bounding 
rectangle. The non-empty-space voxels in the partial 
octree model are then tested, in a top-down traversal, 
against all the bounding planes to find out if any of the 
voxels intersects the volume bounded by the bounding 
planes. If not, EvaluateConstraint (3,V,P) 
returns 1. 

When ( ) 03 =P,Vc , the viewcell and the patch are 
totally invisible to, or totally occluded from, each other. 
Determining total invisibility or total occlusion between 
two extended objects is a difficult problem because the 
total occlusion may be caused by multiple occluders that 
are not connected to each other [1].  

In the absence of an efficient algorithm, we have chosen 
to use a probabilistic approach to estimate total occlusion. 
The method is illustrated in Figure 9. On the viewcell’s 
bounding sphere, the great circle parallel to the patch is 
first identified. Then, an equal number of random points is 
generated in each quadrant of the disc bounded by the 
great circle, and in each quadrant of the patch’s bounding 
rectangle. Rays are shot from the random points on the 
disc to the points on the patch’s bounding rectangle. 16 
random rays are generated in this way. If all the random 
rays are occluded, then it is estimated that the patch is 
totally occluded from the viewcell, and 
EvaluateConstraint(3,V,P) returns 0. 
Otherwise, it is assumed that the patch is partially visible 

from the viewcell, and EvaluateConstraint 
(3,V,P) returns undefined. The hierarchical structure of 
the partial octree model is exploited to accelerate the 
determination of whether a ray intersects any non-empty-
space voxels. 

There is no ill-effect when total occlusion is 
erroneously declared as partial visibility, except that it 
may cause an unnecessary subdivision of the viewcell or 
the patch. On the other hand, it may be undesirable when 
partial visibility is erroneously declared as total occlusion, 
since the patch will be disregarded. However, since the 
method is probabilistic, the “missed” patch might still be 
reconsidered in a later acquisition cycles. 

3.1.5. New Scan Sampling Density 

The function EvaluateSamplingDensity(V,P, 
&sMin,&sMax) outputs the minimum and the maximum 
new scan sampling densities between V and P. Let α be 
the angle interval between two successive samples 
acquired by the range scanner, and r be the distance from 
the view position v to the surface point p. The surface 
sampling density around point p is ( ) rdp,vs αφcos==  
where φ is the angle of incidence of the laser beam at 
surface point p.  

When the values of α and d are fixed, the locus of the 
view position is the surface of a sphere with radius 
1/(2αd), and the sphere is tangent to the surface at p. All 
points inside the sphere have sampling densities greater 
than d, and points outside have sampling densities less 
than d. We call it the sampling density sphere of p. 

Since the function EvaluateSamplingDensity() 
is allowed to under-estimate the minimum sampling 
density, it is sufficient to construct, for each corner of the 
patch’s bounding rectangle, the smallest sampling density 
sphere that encloses the viewcell, and let S be the largest 
of the four spheres. The minimum sampling density from 
the viewcell V to the patch P is estimated as 1/(2αR), 
where R is the radius of S. The viewcell may be 
approximated by a bounding sphere. 

The function EvaluateSamplingDensity() is 
allowed to over-estimate the maximum sampling density. 
Let p be the point on the patch’s bounding rectangle that is 
closest to the viewcell’s bounding sphere. Then, let S be 
the largest sampling density sphere of p that touches a 
point of the viewcell’s bounding sphere but does not 
enclose the bounding sphere. The maximum sampling 
density from the viewcell V to the patch P is estimated as 

Figure 8. The four open-ended cones set up at the four 
corners of the patch’s bounding rectangle. nP is the normal 
vector of the patch. 
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Figure 9. Generating random rays from the viewcell’s 
bounding sphere to the patch’s bounding rectangle to 
estimate total occlusion. 
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1/(2αR), where R is the radius of S. 

4. Results 
Figure 10(a) shows the feasible view volumes 

computed for a partial model of a large living room. These 
feasible view volumes are then evaluated with a patch 
shown in magenta color in Figure 10(b). The resulting 
best 500 viewcells are shown. The minimum viewcell size 
used is 4×4×4 inch3, and the minimum patch size is 2×2 
inch2. A brute-force method took 259.6 seconds to 
evaluate the feasible views with the patch, while our 
hierarchical algorithm took just 11.9 seconds—a 
difference of more than 20 times. Typical speedups for 
indoor scenes are between 10 to 100 times. Generally, 
larger and simpler scenes, and smaller minimum viewcell 
and minimum patch sizes result in larger relative 
speedups. 

We have tested our NBV planning system in 
simulations and on real scenes. The scanners used in both 
cases have only 3D translational poses, and have full 
horizontal FOVs but limited vertical FOVs. The simulated 
scanner has pose errors, and produces range data with 
range errors, drop-outs and outliers. Figure 1(a) shows the 
computed view plan for acquiring scans of a synthetic 
living room. The acquisition was manually terminated 
after the eighth scans. Figure 1(b)&(c) show the polygonal 
models reconstructed from the eight range images. Every 
cycle, the hierarchical view evaluation was able to 
evaluate almost all the patches with all the feasible views 
within the allotted two minutes. 

Figure 11 shows the acquisition of a real building 
interior using a DeltaSphere-3000 laser scanner. The 
acquisition process was manually terminated after the fifth 
scan. Figure 11(a) shows the view plan. Every cycle, more 
than 75% of the patch areas can be evaluated with all the 
feasible views. This experiment shows that our NBV 

planning system is robust for real-world applications. 

5. Conclusion 
Our hierarchical view evaluation method has made 

exhaustive 3D view evaluation for greedy NBV planning 
practical. This is mainly due to the evaluation of the 
sensing constraints and surface sampling densities 
between a view volume and a surface patch, unlike 
previous NBV algorithms, which simply evaluate between 
a single view point and a single surface point at a time. 
We have presented efficient algorithms to evaluate the 
individual sensing constraints and sampling quality 
between view volumes and surface patches. The 
descriptions also serve as examples for the design of 
efficient algorithms for new acquisition constraints.  
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Figure 11. (a) The view plan computed for a real scene. (b) The 
final partial model and the feasible view volume. 
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Figure 10. (a) The feasible view volumes to be evaluated. (b) 
The results of evaluating the patch (magenta) with the feasible 
view volumes. The best 500 viewcells are shown. 
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