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Multi-Resolution Screen-Space Ambient Occlusion

Thai-Duong Hoang · Kok-Lim Low

Abstract We present a new screen-space ambient occlu-
sion (SSAO) algorithm that improves on the state-of-the-
art SSAO methods in both speed and image quality. Our
method computes ambient occlusion (AO) for multiple im-
age resolutions and combines them to obtain the final high-
resolution AO. It produces high-quality AO that includes
details from small local occluders to low-frequency occlu-
sions from large faraway occluders. This approach allows
us to use very small sampling kernels at every resolution,
and thereby achieve high performance without resorting to
random sampling, and therefore our results do not suffer
from noise and excessive blur, which are common of SSAO.
We use bilateral upsampling to interpolate lower-resolution
occlusion values to prevent blockiness and occlusion leaks.
Compared to existing SSAO methods, our method produces
results closer to ray-traced solutions, while running at com-
parable or higher frame rates than the fastest SSAO method.

Keywords ambient occlusion · multi-resolution · screen-
space · bilateral upsampling · global illumination

1 Introduction

Ambient occlusion (AO) is the lighting/shadowing effect un-
der the direct illumination by a diffuse spherical light source
surrounding the scene. The result is that concave areas such
as creases or holes appear darker than exposed areas. AO
is not a real-world phenomenon, since in reality, incoming
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Fig. 1 (Left) Two scenes rendered without AO. (Right) The same
scenes rendered with AO produced by our method (at more than 40
fps on NVIDIA GeForce 8600M GT at 512x512 pixels).

light is rarely equal in all directions and inter-reflections oc-
cur between surfaces. Despite these, AO can add a signifi-
cant degree of realism to a rendered image. It gives a sense
of shape and depth in an otherwise “flat-looking” scene (see
Fig. 1).

Several methods to compute AO exist. They differ in the
extent to which accuracy is traded for speed. The most ac-
curate methods often use Monte Carlo ray tracing in object
space, but they are slow and only suitable for offline pre-
computation. Real-time AO has recently become possible,
mainly due to the advancement in programmable graphics
hardware. A class of real-time methods, collectively known
as screen-space ambient occlusion (SSAO), trades AO ac-
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curacy for significant increase in performance. SSAO has
become increasingly popular in games and other interac-
tive applications that favor speed over accuracy. There ex-
ist many SSAO implementations that share the same core
idea but differ in details, and their results can be vastly dif-
ferent from one another’s. Current SSAO methods have no
difficulty in producing local AO effects, such as the darken-
ing of small creases, but are facing great performance chal-
lenges in producing more global AO effects caused by far-
away occluders. Some of them try to get around the problem
by random sampling, but the results are either noisy, or look
blurry when low-pass filters are used to reduce the noise.

The contribution of this paper is a new SSAO algorithm,
which we call Multi-Resolution Screen-Space Ambient Oc-
clusion (MSSAO), that computes AO for multiple image res-
olutions and combines them to obtain the final high-resolution
AO. Our method is able to produce high-quality AO that
includes contributions by small local occluders to those by
large faraway occluders. The approach is based on the prin-
ciple that AO due to faraway occluders are low-frequency,
thus can be computed in coarser resolutions; whereas AO
due to nearby occluders are high-frequency, and thus must
be computed in finer resolutions. This approach allows us
to use very small sampling kernels at every resolution, and
thereby achieve high performance without resorting to ran-
dom sampling. In this paper, our method is compared with
two state-of-the-art SSAO methods, and it is shown to pro-
duce results closer to ray-traced solutions, while running
at comparable or higher frame rates than the fastest SSAO
method.

2 Ambient Occlusion Theory

This section discusses the theoretical basis of AO. We as-
sume that the incoming radiance is constant for all incom-
ing directions. For simplicity, we also assume all surfaces
are Lambertian. The equation for surface irradiance at point
p with normal n is

E(p,n) = LA

∫
Ω

v(p,ω)cosθdω, (1)

where LA is the incoming ambient radiance; Ω is the hemi-
sphere above point p, representing all possible incoming di-
rections; v(p,ω) is a binary visibility function that equals
0 if a ray cast from point p in direction ω is blocked, and
equals 1 otherwise; θ is the angle between ω and n; dω is
an infinitesimal solid angle along direction ω . We can also
write Equation 1 as

E(p,n) = LAπkA(p,n), (2)

where

kA(p,n) =
1
π

∫
Ω

v(p,ω)cosθdω. (3)

kA is the AO and its value ranges from 0 to 1. When kA is 0,
the point p is totally blocked from light; when it is 1, p is to-
tally exposed. Although kA is called “ambient occlusion”, it
actually corresponds to how much of the hemisphere above
p is visible, or its “accessibility”.

The above definition of AO is not useful for enclosed
scenes, where it would be totally dark since v(p,ω) equals
0 everywhere. That is why in practice, the binary visibil-
ity function v(p,ω) is often replaced by an attenuation (or
falloff) function ρ(p,d) which varies smoothly from 1 to 0.
With ρ , we can rewrite kA as

kA(p,n) = 1− 1
π

∫
Ω

ρ(p,d)cosθdω. (4)

ρ(p,d) is a continuous function that depends on the distance
d between p and the point where a ray cast from p in direc-
tion ω intersects some nearby geometry. As d increases from
0 to some manually-set value dmax, ρ(p,d) decreases mono-
tonically from 1 to 0. The use of ρ is somewhat empirical,
but it is more useful than a binary visibility function.

3 Related Work

Here we briefly discuss existing AO methods that are tar-
geted for real-time interactive frame rates on dynamic scenes,
with a focus on SSAO.

3.1 Object-Space Methods

Bunnell [3] approximates a scene’s objects by a hierarchy of
disks. AO is calculated using approximated form factors be-
tween all pairs of disks. Further improvements have been
achieved by [7] (less artifacts) and [4] (better accuracy).
These methods require highly tessellated geometry, and can-
not scale beyond simple scenes without sacrificing a lot of
performance.

Reinbothe et al. [17] compute AO by ray-tracing in a
voxelized representation of the scene instead of the original
triangle mesh. Ray-tracing is slow for real-time applications,
even when working with near-field voxels instead of trian-
gles.

Ren et al. [18] and Sloan et al. [21] approximate occlud-
ers with spheres, and use spherical harmonics to analytically
compute and store AO values. AO due to multiple spheres
are accumulated by efficiently combining the corresponding
spherical harmonics coefficients. Shanmugam et al. [20] use
a similar approach with spheres and image-space splatting,
but without spherical harmonics. These methods require a
pre-processing step, and do not work for scenes with com-
plex objects that cannot be approximated by spheres.

Kontkanen et al. [9] and Malmer et al. [13] compute an
occlusion field around each occluder and store it in a cube
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map. During rendering, occlusion due to multiple objects
is approximated by looking up and blending pre-computed
values from different cube maps. Zhou et al. [25] propose a
similar technique that uses either Haar wavelets or spheri-
cal harmonics instead of cube maps. AO fields require large
memory storage and only work for semi-dynamic scenes
composing of rigid objects. Self-occlusion and high-frequency
occlusion are also ignored.

McGuire [14] analytically computes, for each screen pixel,
occlusion caused by every triangle mesh in a scene. This
method suffers from over-occlusion artifacts. Laine et al.
[11] solve this problem by considering occlusion contribu-
tions from occluders coming from the same hemispherical
direction only once. This idea is similar to hemispherical
rasterization by [8], but the latter only works for self-shadowing
objects. Analytical methods are slow, especially for big scenes
with many triangles. Thus these methods are not yet suitable
for real-time applications.

3.2 Screen-Space Methods

Screen-space methods use empirical models that darken a
pixel by using its nearby pixels as occluders. Mittring [15]
introduces one of the first known SSAO methods. This method
samples 3D points inside a sphere centered at a shaded pixel,
and determines how many of them are below the scene sur-
face as seen from the eye by projecting the point samples
into screen space. AO is defined as the ratio between the
number of occluding samples and the total number of sam-
ples. Methods that improve on this idea are [5] (attenua-
tion function, no self-occlusion), [19] (directional occlusion,
one-bounce indirect illumination), [12] (line sampling, which
is faster and more robust), and [23] (similar to the previous
work, interleaved sampling).

Shanmugam et al. [20] and Fox et al. [6] sample directly
in image-space instead of projecting 3D point samples. For a
shaded pixel, neighboring pixels are randomly sampled and
their corresponding object-space points are treated as micro-
spheres occluders.

Bavoil et al. [2] compute AO by finding the horizon an-
gle along each 2D direction from a shaded pixel. A horizon
angle along a direction indicates how much the shaded pixel
is occluded in that direction. AO is averaged from horizon
angles in multiple 2D directions. HBAO produces higher-
quality results compared to other SSAO methods since it is
more analytical, but it is also much slower due to the use of
ray marching to step along each direction ray.

Screen-space methods are fast, but suffer from some vi-
sual artifacts. Some of them are over-occlusion (since visi-
bility is ignored), under-occlusion (since occluders’ projec-
tions are either too small or missing on screen), noisy re-
sults (due to random sampling), blurry results (due to noise-

reduction filters), and very local occlusion (due to small sam-
pling kernels). Our method is able to overcome the noise,
blur and local occlusion problems by using multiple resolu-
tions. For the other problems, there are some proposed solu-
tions, such as depth peeling [19], multiple cameras [1], and
enlarged camera’s field of view [1]. Those fixes can benefit
any SSAO method, albeit at considerable performance costs.
As such, this paper focuses only on the core ideas of SSAO
and includes none of those extensions.

Observing that AO is mostly low-frequency, Sloan et
al. [21] compute AO in a coarser resolution and upsam-
ple it using joint bilateral upsampling [10]. Bavoil et al.
[1] use a similar technique, but also compute full-resolution
AO to refine small details. However, as we have found, us-
ing only a single coarser resolution is insufficient to cap-
ture scene AO that often occurs at multiple different scales.
Multi-resolution techniques are also proposed in [16] and
[22], but for the purpose of computing one-bounce indirect
illumination without visibility checking. Note that AO is not
a special case or a sub-problem of indirect illumination.

4 Multi-Resolution SSAO Algorithm

Our algorithm uses a deferred shading framework with a
typical g-buffer that stores eye-space positions and normals
for each pixel. For each shaded pixel p, we treat its nearby
pixels as occluders that may block light from reaching p. We
sample the occluders directly from the g-buffer. For occlud-
ers further away from p, we can sample them at a coarser
resolution than for occluders nearer to p. We assume that
pixels close to p in screen space are also close-by in ob-
ject space. This is not always true (the converse is always
true though), but is very likely. Consequently, we use a low-
resolution g-buffer to compute occlusion caused by faraway
pixels and a high-resolution one for nearby pixels. In fact,
we use multiple resolutions of g-buffer to capture AO at
multiple scales. By using very small sampling kernels at
each resolution, we are in effect sampling a large neighbor-
hood around p. We do not need to resort to sparse random
sampling in order to maintain high frame rates, and there-
fore our results are free of common SSAO artifacts such as
noise and blur (see comparison in Fig. 2).

4.1 Overview

Our algorithm works by first rendering a scene’s geometry to
a g-buffer at the finest resolution. The g-buffer is then down-
sampled multiple times, similar to creating a mipmap. Then,
an occlusion value is computed for every pixel in each reso-
lution, by sampling other pixels (occluders) in its small 2D
neighborhood. Finally, for each pixel in the finest resolution,
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Fig. 2 (Left) Noise artifacts by Blizzard’s method, (middle) blurry re-
sult by NVIDIA’s HBAO, (right) result from our method. Our method
produces no noise and preserves sharp edges and fine details better.

its AO value is computed by combining the corresponding
occlusion values across multiple resolutions.

A naı̈ve implementation that follows the basic idea above
exactly would produce blocky results, since adjacent pixels
in a resolution are grouped together in the next coarser res-
olution, thus sharing the same coarser-resolution occlusion
value. To achieve smooth results, we use bilateral upsam-
pling [10], which can avoid upsampling across large depth
and normal differences.

In our implementation, AO is calculated from the coars-
est resolution to the finest one using multiple rendering passes.
In each pass, the occlusion value calculated for each pixel is
combined with the occlusion value upsampled from the pre-
vious, lower resolution. The overall algorithm is described
below.

Render scene into g-buffer.

Downsample g-buffer multiple times.

Start with the coarsest resolution.

Repeat until the finest resolution ,

For each pixel p in current resolution ,

Calculate its occlusion value AO1.

If this is the coarsest resolution ,

Output AO1 (to be used in the next

iteration).

Else

Blur result from previous resolution.

Upsample blurred result to get AO2.

Combine AO1 and AO2 to get AO3.

Output AO3 (to be used in the next

iteration).

Output AO3 as the final occlusion value.

Note that AO1, AO2, and AO3 are per-pixel, per-resolution
values. In our algorithm, AO1 represents occlusion caused
by neighboring pixels and AO2 represents occlusion caused
by farther-away pixels. They are combined together in ev-
ery rendering pass (except the first) to get occlusion value
AO3. For example, suppose p is a pixel in some current
resolution during the algorithm. In the next rendering pass

(in a finer resolution), the previously computed value AO3
of p will be upsampled and treated as AO2 for the higher-
resolution pixels near p (see the details in Section 4.5). Note
that each AO1 value is computed independently for all res-
olutions by sampling in a small 2D neighborhood. The up-
sampling and combining process ends when the finest reso-
lution is reached, at which point AO3 is the final AO value
for the shaded pixel.

4.2 Downsampling

The downsampling process starts from the finest-resolution
g-buffer, and produces a lower-resolution one with each ren-
dering passes. In each pass, each pixel will combine the
eye-space positions and normals of its corresponding four
sub-pixels in the previous, finer resolution. Instead of us-
ing the typical mean value, we use the median in terms of
depths. It is important to note that the normals used here
are the polygons’ normals, not interpolated vertex normals,
as the latter would cause self-occlusion artifacts with low-
tessellation scene models. The total number of resolutions
depends on how “global” we want the AO to be. In practice
we often use 5 levels.

The median is used instead of the mean because the for-
mer is more robust. That is, when a few numbers out of a set
of numbers change sharply, the mean value generally fluctu-
ates more than the median value. Using median helps our
method achieve better temporal coherence. Consequently,
our results suffer very little (most of the time unnoticeable)
popping or shimmering artifacts between frames.

4.3 Occluder Sampling

To compute the occlusion value AO1 in each resolution, we
sample a small screen-space neighborhood around each shaded
pixel. We determine the sampling kernel size in each reso-
lution as follows. First, we set a maximum AO radius of
influence in 3D object space. Let it be dmax, and it is the
distance beyond which an occluder contributes no occlu-
sion at all. This distance is then projected into screen space
in the finest resolution (or the 0th resolution) so that we
have a kernel radius r0(p) (in terms of number of pixels)
for each pixel p. The kernel radius in the next coarser res-
olution should naturally be r1(p) = r0(p)/2, and the next
should be r2(p) = r1(p)/2 = r0(p)/4, and so on. For each
shaded pixel p, r0(p) is calculated using the formula r0(p)=
(sdmax)/(2z tan(α/2)), where s is the viewport’s dimension
in the finest resolution (assuming a square viewport), α is
the camera’s field-of-view angle, and z is the eye-space depth
value of pixel p.

Note that the kernel size depends on the depth of each
individual pixel because of perspective fore-shortening. To
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accurately reflect this, pixels nearer to the camera require
larger kernel sizes in screen space. In practice, the values
r0(p), r1(p), etc. can be large, thus we cap the radius to
rmax pixels in any resolution, otherwise performance can
drop very drastically when more pixels become closer to
the camera (when the scene is zoomed in). Therefore, the
final kernel radius at a pixel p at the ith level of resolution
is min(rmax,ri(p)). A typical value of rmax is 5 (a 11x11 ker-
nel), except in the finest resolution, where it is capped at
2, mainly for performance reason. In coarser resolutions, we
do not sample every pixel in a 11x11 kernel; instead we only
sample every other pixel, effectively reducing the number of
texel fetches from 81 to 25 per fragment. This is to take ad-
vantage of the blur pass that follows. Note that the kernel
radius can be smaller than 1. In other words, we need not
take any samples in some particular resolution if the kernel
radius is smaller than a pixel.

4.4 Computing Ambient Occlusion

For each pixel p in a resolution, the next step after gathering
N samples is to use them to compute the occlusion value
AO1. We use the following formula

AO1(p) =
1
N

N

∑
i=1

ρ(p,di)cosθi. (5)

di is the distance between the ith occluder and the shaded
point in object space, and θi is the angle between the shaded
point’s normal and the vector joining the shaded point and
the ith occluder. The bar over the cosine term means its
value is clamped to [0,1]. ρ(p,di) is a falloff function that
smoothly attenuates an occluder’s contribution as it goes fur-
ther away from the shaded point. If the nearby pixels cor-
respond to uniform directions in the hemisphere above the
shaded point, Equation 5 becomes a Monte Carlo approxi-
mation of Equation 3. Even though our formula is empiri-
cal, it is more robust than the original Crytek’s formula [15]
and those of the other methods based on it, such as Bliz-
zard’s [5]. That is, the AO computed by our formula has
lower variance, and thus we need fewer samples to produce
noise-free results.

The falloff function ρ(p,di) must smoothly decreases
from 1 to 0 as the distance di increases from 0 to some con-
stant dmax. We use the following simple formula to compute
ρ:

ρ(p,di) = 1−min(1,(
di

dmax
)2). (6)

We choose this quadratic falloff function because each oc-
cluder can be considered a very small sphere, and the solid
angle subtended by it varies inversely to its squared distance
from the 3D position of the shaded pixel.

4.5 Combining Occlusion Values

Now that we have computed AO1, we must combine it with
the occlusion values upsampled from the previous, coarser
resolution, AO2. To compute AO2, we use a bilateral upsam-
pling algorithm, which can avoid upsampling across large
depth and normal discontinuities. The upsampling blends
occlusion values from the four pixels in the previous res-
olution that are closest to the current-resolution pixel p (see
Fig. 3). Besides the usual bilinear interpolation weights, the
bilateral upsampling algorithm also uses both the depth and
normal differences as weights. More specifically, for pixel
p (with depth z and normal n), the normal weight and depth
weight of a low-resolution pixel pi (with depth zi and normal
ni) are, respectively,

wn = (n ·ni)
tn , (7)

and

wz = (
1

1+ |zi− z|
)tz . (8)

The powers tn and tz are to be interpreted as “tolerance” lev-
els, and are dependent on a scene’s size. If the scene is small,
nearby pixels correspond to nearby 3D points, thus large
depth differences must be tolerated less by using a larger
power value. The aim is to balance between smooth interpo-
lation of occlusion values and preservation of sharp details.
We use tn = 8 and tz = 16 for all the example scenes shown
in this paper. Fig. 4 clearly demonstrates the superior quality
of bilateral upsampling over the other methods.

Fig. 3 In the upsampling step, each current-resolution pixel p will
blend occlusion values from its four nearest lower-resolution pixels p1,
p2, p3, and p4.

Fig. 4 (Left) Nearest neighbor upsampling, which is blocky, (middle)
bilinear upsampling, which leaks occlusion, (right) bilateral upsam-
pling, which is free of visible artifacts.
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After upsampling, we have the faraway occlusion value
AO2. We must now combine it with the nearby occlusion
value AO1. We use a maximum function to combine them,
i.e. AO3 = max(AO1,AO2) (note that higher occlusion value
corresponds to darker shadow). In the implementation, we
store AO3 in a render target and use that as input texture in
the next rendering pass, except in the final resolution, where
we just output 1−AO3 as the “accessibility” value for the
shaded pixel.

The use of the maximum operator to combine occlu-
sion values from multiple resolutions is based on the fol-
lowing observation. The occlusion value at any particular
resolution is computed by considering all occluders within a
neighborhood around the shaded pixel. These same occlud-
ers (in lower-resolution representations) are also included as
a subset of occluders considered in the computation of oc-
clusion values at all the coarser resolutions. The use of the
maximum operator prevents the inner occluders from being
multiply-counted when deriving the final AO value for the
shaded pixel, and it also allows occlusion missed in any res-
olution to be picked up in other resolutions. In comparison,
in most other SSAO methods, as the AO radius of influ-
ence increases, the final AO values become more incorrect.
This is because, without visibility checking, further-away
samples often incorrectly dilute occlusion caused by nearby
ones. By retaining the maximum occlusion value across the
resolutions, we can alleviate that ill-effect to some extent.

Since we retain the maximum occlusion value in each
rendering pass, the final output may not look “clean”. That
is because neighboring pixels may have different maximum
occlusion values computed in different resolutions. That prob-
lem can be solved by adding a blur pass just before the up-
sampling. The blurring method is essentially identical to bi-
lateral upsampling. The only differences are that it is done
in the same resolution (instead of cross-resolution), and uses
a slightly larger kernel (3x3 pixels instead of 2x2 pixels).
Fig. 5 illustrates the process of combining occlusion values
across multiple resolutions. One can see that the bilateral
upsampling has prevented much of the shadow leakage in
the coarser resolutions.

5 Evaluations and Comparisons

We compare our method (MSSAO) with Blizzard’s SSAO
[5] and NVIDIA’s HBAO [2] in both performance and visual
quality. Blizzard’s method is an enhanced version of Cry-
tek’s and is one of the fastest SSAO methods. On the other
hand, NVIDIA’s HBAO produces the best looking images
among SSAO methods. Ray-traced images produced by the
Blender software are also available as ground-truth refer-
ences. In our experiments, we have also implemented and
evaluated another recent SSAO method, Volumetric Ambi-
ent Occlusion [23]. As this method produced lower-quality

Fig. 5 Combining AO values across multiple resolutions to get the fi-
nal AO value. The first 5 images are AO values computed at 5 different
resolutions, from the finest to the coarsest. The last image (bottom-
rightmost) is the final result. Note that the images shown here are out-
puts after blurring and upsampling.

results than HBAO and has poorer performance than Bliz-
zard’s SSAO, we decided to leave it out of the comparisons.

Tests are run on two machines, one with a NVIDIA GeForce
8600M GT, and the other with a more powerful NVIDIA
GeForce 8800 GTS graphics card. All programs are con-
figured to render at the final resolution of 512x512 pixels.
Three test scenes are used: Sibenik Cathedral, Conference
Room, and Sponza Atrium. These scenes are three of the
standard benchmarking scenes used to evaluate global illu-
mination algorithms. They feature geometry that is usually
difficult for SSAO methods, such as sharp edges, holes, pil-
lars, thin chair legs, small staircases, etc. The maximum AO
radius of influence (dmax) is set to 2 units in all scenes and all
methods. In all three scenes, our method uses 5 resolutions,
with the maximum screen-space kernel radius (rmax) set to
5 in coarser resolutions and 2 in the finest resolution. The
contrast and falloff parameters in the HBAO method have
been carefully adjusted to best match the ground-truth re-
sults. It uses 16 screen-space directions and 8 ray-marching
steps per direction. Blizzard’ SSAO uses 32 samples per
pixel. Blizzard’s falloff function depends not only on the dis-
tance between an occluder and a shaded point, but also on
the depth difference between an occluder and its projected
pixel.

5.1 Qualitative Evaluations

Fig. 6 presents a comparison of visual quality among the
three SSAO methods and the ground-truth references pro-
duced by Blender (images in the electronic version of this
paper can be zoomed in for more details)1. Results show

1 A bug in Blender has caused small dark spots in the rendered im-
age of the Sibenik Cathedral model. These artifacts, however, do not
affect the comparison.
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that our method produces cleaner and sharper images that
are closer to the ray-traced images. In all scenes, our method
achieves a more natural attenuation of AO. Also, high-frequency
geometric details such as sharp edges are preserved because
no blur pass in the finest resolution is used. Blizzard’s re-
sults are noisy while NVIDIA’s are blurry and suffer from
over-occlusion artifacts (see, for example, the contact shad-
ows between the chairs and the ground in the Conference
Room scene). In both methods, geometric details are not
well-preserved (see the staircase in the Sibenik Cathedral
scene, or the details on the chairs in the Conference Room
scene, for example).

In Table 1, we also provide numerical comparison be-
tween the results using SSIM [24], which is a perceptual
image comparison metric. Results from our method have the
highest similarities to the ground-truth images.

MSSAO Blizzard HBAO
Sibenik 85.43% 67.34% 78.04%
Conference 86.62% 78.82% 82.23%
Sponza 88.72% 74.96% 82.10%

Table 1 SSIM indices of the results from the three SSAO methods
against the reference images. Each SSIM number is shown as the per-
centage of similarity between two images. Larger numbers are better.

Fig. 7 shows additional results from our method for dif-
ferent kinds of models, to show that our algorithm is suit-
able for a wide range of scenes. The final important thing to
note is that our method generally does not have noticeable
flickering/shimmering artifacts when the camera is moving,
despite the use of multiple resolutions.

5.2 Performance

Table 2 shows the running times of all three SSAO methods
for rendering a frame of the three test scenes. We measure
the actual timings of the AO algorithms, so the geometry
passes are ignored in all methods.

GeForce 8600M GT
MSSAO Blizzard HBAO

Sibenik 19.2 24.9 92.8
Conference 19.5 22.2 90.4
Sponza 18.2 30.6 92.9

GeForce 8800 GTS
Sibenik 5.7 4.4 12.3
Conference 5.5 4.3 13.6
Sponza 5.8 4.9 14.0

Table 2 Runtime performance of the three SSAO methods, measured
in millisecond (ms). Smaller numbers are better.

As polygon counts do not affect the complexity of SSAO
algorithms, the differences in rendering speeds come mostly

GeForce 8800 GTS
MSSAO Blizzard HBAO

Sibenik 5.7 5.9 14.5
Conference 5.5 5.4 14.2
Sponza 5.8 6.4 15.2

Table 3 Runtime performance of the three SSAO methods with dmax
= 4, measured in millisecond (ms). Smaller numbers are better.

from the amount of computations and texture fetches per
fragment. HBAO is the slowest method due to the fact that
ray marching is done per pixel in many directions in screen
space. On average, taking into account the occluder sam-
pling, blurring, and upsampling, our algorithm fetches about
42 texels per fragment, while that number is 32 for Bliz-
zard’s method. For our method, we calculate the average
number of texel fetches per fragment by adding the num-
ber of texel fetches across all resolutions, then divide it by
the number of pixels in the highest resolution (512x512 in
this case). On the 8600M GT, our method can achieve better
performance since the kernel sizes are small and the sam-
pling pattern is more cache-friendly. On the newer graphics
card, Blizzard’s method outperforms ours by a small mar-
gin. That is probably because of the GPU’s bigger texture
cache, so random sampling patterns and big kernel sizes do
not hurt performance as much.

However, our method can scale better with larger AO
radius of influence (dmax). It is because doubling dmax in
our method only requires adding one more level of reso-
lution, while in the other methods it requires sampling in
a screen-space region four-times as large. This is reflected
in Table 3, when dmax is changed from 2 to 4. Our method
maintains the same performance while Blizzard’s SSAO and
HBAO’s performances degrade more. In general, we believe
our method has achieved the high performance of the Bliz-
zard’s method and attained better image quality than that of
NVIDIA’s HBAO.

6 Discussion and Conclusion

Being a screen-space method, our method inherits the fun-
damental limitations of SSAO. The AO computed by our
method is a coarse approximation of true AO. It is incorrect
in places where occluders are hidden from the viewpoint —
either outside the view frustum or behind the first layer of
depth. There are workarounds, such as using various heuris-
tics to “guess” the hidden occluders, but that does not solve
the problem completely, and in many cases creates other ar-
tifacts. Depth peeling, multiple cameras, and enlarged field-
of-view are some of the solutions already proposed. These
extensions can improve accuracy to some extent, but they do
not fundamentally change the core idea of SSAO. As long as
insufficient data is given as input (e.g. only a g-buffer), arti-
facts are unavoidable.
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Fig. 6 Comparisons of AO results (without any other shading) for three test scenes. Scenes: (first row) Conference Room, (second row) Sibenik
Cathedral, (third row) Sponza Atrium. Methods: (first column) Blizzard, (second column) HBAO, (third column) MSSAO, (fourth column)
Blender. Images in the fourth column are the reference solutions.

Despite having some inherent limitations of SSAO, our
method has improved on the current SSAO methods in a
number of ways. Current SSAO methods are limited by the
number and coherency of texture fetches, thus are limited
to local occlusion. By sampling from multiple resolutions
with small kernels in each, we can reduce the total number
of texture fetches, and at the same time leverage the GPU’s
texture caching to make the algorithm much faster. That en-
ables us to sample further without sacrificing much perfor-
mance, thus capture more global AO effects. Together with
a robust AO formula, our results are free of noise/blur even
with small number of samples. Bilateral filtering and upsam-
pling are used repeatedly in coarser resolutions to smoothly
blend and interpolate occlusion values, thus avoiding arti-
facts from the use of multiple resolutions. Our multi-resolution
approach is general and can be applied on top of other lower-
level AO formulas besides the one described in this paper.
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