
Noname manuscript No.
(will be inserted by the editor)

Efficient Screen-Space Approach
to High-Quality Multi-Scale
Ambient Occlusion

Thai-Duong Hoang ·
Kok-Lim Low

the date of receipt and acceptance should be inserted later

Abstract We present a new screen-space ambient occlu-
sion (SSAO) algorithm that improves on the state-of-the-
art SSAO methods in both performance and quality. Our
method computes ambient occlusion (AO) values at multi-
ple image resolutions and combines them to obtain the final,
high-resolution AO value for each image pixel. It produces
high-quality AO that includes both high-frequency shadows
due to nearby, occluding geometry and low-frequency shad-
ows due to distant geometry. Our approach only needs to
use very small sampling kernels at every resolution, thereby
achieving high performance without resorting to random sam-
pling. As a consequence, our results do not suffer from noise
and excessive blur, which are common of other SSAO meth-
ods. Therefore, our method also avoid the expensive, final
blur pass commonly used in other SSAO methods. The use
of multiple resolutions also helps reduce errors that are caused
by SSAO’s inherent lack of visibility checking. Temporal in-
coherence caused by using coarse resolutions is solved with
an optional temporal filtering pass. Our method produces re-
sults that are closer to ray-traced solutions than those of any
existing SSAO method’s, while running at similar or higher
frame rates than the fastest ones.

Keywords ambient occlusion · multi-resolution · screen-
space · bilateral upsampling · global illumination

Thai-Duong Hoang
Department of Computer Science
National University of Singapore
E-mail: duong@comp.nus.edu.sg

Kok-Lim Low
Department of Computer Science
National University of Singapore
E-mail: lowkl@comp.nus.edu.sg

1 Introduction

Ambient occlusion (AO) is the shadowing effect under the
direct illumination of a uniform diffuse spherical light source
surrounding the scene. Due to the occlusion of the incom-
ing radiance from this light source, concave areas such as
creases or holes will appear darker than exposed areas. AO is
not a real-world phenomenon since in reality, incoming light
is rarely equal in all directions and light inter-reflections oc-
cur between surfaces. Despite being artificial, AO can add
a significant degree of realism to a rendered image. It gives
a sense of shape and depth in an otherwise “flat-looking”
scene (see Fig. 1). That is why AO is often used as a cheap
alternative to more expensive global illumination solutions
which also take into account light inter-reflections. In fact,
AO is a standard technique used in CG movies and TV pro-
ductions, which rely on it to make the rendered images more
realistic. In computer games, real-time AO is also becom-
ing more popular as commodity graphics hardware becomes
more powerful.

Several methods to compute AO exist and they differ in
the extent to which accuracy is traded for speed. The most
accurate methods often use Monte Carlo ray tracing (see,
for example, [15]), which means they are slow and are only
suitable for offline pre-computations. AO results from such
methods can be used for either offline or real-time rendering.
However, using pre-computed AO results for real-time ren-
dering imposes the limitation that the scene geometry must
be static. Real-time AO computation, which often imposes
fewer restrictions on the scene, has just recently become
possible, mainly due to the advancement in programmable
graphics hardware. It is useful for realistic real-time ren-
dering of fully dynamic scenes, where AO cannot be pre-
computed. A class of real-time methods, collectively known
as screen-space ambient occlusion (SSAO), trades AO ac-
curacy for significant increase in performance. Compared
to other existing AO methods, SSAO works on all types of
scenes, is significantly faster, and simpler to implement and
integrate into existing rendering systems. In return, SSAO
is far from accurate and also suffers from various quality
issues. Due to its speed and simplicity, SSAO has become
increasingly popular in 3D games and other interactive ap-
plications that favor speed over accuracy and quality. SSAO
implementations often share the same core idea but differ in
details, and their results can be vastly different from one an-
other’s. Current SSAO methods have no difficulties in pro-
ducing local AO effects, such as darkening of small creases,
but are facing great performance challenges in producing
more global AO effects, which are crucial for scene realism.
The main reason is that SSAO relies on screen-space sam-
ples to compute AO. To produce global AO, a large number
of samples must be taken in real-time, which quickly de-
grades performance. Most SSAO methods try to get around

2 Thai-Duong Hoang, Kok-Lim Low

Fig. 1 (Left) Two scenes rendered without AO. (Right) The same
scenes rendered with AO produced by our method.

the problem by using random sampling, but the results ei-
ther are noisy or look blurry when low-pass filters are used
to reduce the noise.

The contribution of this paper is a new SSAO algorithm,
which we call Multi-Resolution Screen-Space Ambient Oc-
clusion (MSSAO), that computes AO by combining partial
AO values at multiple image resolutions. Our method can
capture both sharp shadows from local occluders and smooth
shadows from distant ones. It is based on the principle that
AO due to faraway occluders are low-frequency, thus can be
computed at coarser resolutions, whereas AO due to nearby
occluders are high-frequency, and thus must be computed
at finer resolutions. With this observation, we can use very
small sampling kernels at each resolution and achieve high
performance without random sampling. Moreover, by re-
taining the maximum AO value across all resolutions, we
could compensate for the lack of visibility checking to some
extent, and thus our results are more accurate than most
other SSAO methods. In this paper, it is compared with three
state-of-the-art SSAO methods, and is shown to produce much
higher-quality results, while achieving performance compa-
rable to the fastest one.

2 Ambient Occlusion Theory

This section discusses the theoretical basis of AO. We as-
sume the reader is familiar with fundamental radiometry con-
cepts such as solid angles, radiance, and irradiance. For a
quick review of radiometry, we refer the reader to [5]. The
definition of AO requires that the scene is being lit by only

a uniformly diffuse, spherical light source surrounding it.
In such a lighting environment, incoming radiance directly
from the light source is constant for all incoming directions.
For simplicity, we also assume all the surfaces are Lamber-
tian, that is, they reflect incoming light equally in all direc-
tions. With all these assumptions, the equation for surface
irradiance at a point p with normal n is

E(p,n) = LA

∫
Ω

v(p,ω)cosθdω, (1)

where LA is the incoming ambient radiance; Ω is a hemi-
sphere above point p in the direction of n, representing all
possible incoming directions; v(p,ω) is a binary visibility
function that equals 0 if a ray cast from p in direction ω is
blocked, and equals 1 otherwise; θ is the angle between ω

and n; dω is an infinitesimal solid angle along direction ω .
Equation 1 can also be written as

E(p,n) = LAπkA(p,n), (2)

where

kA(p,n) =
1
π

∫
Ω

v(p,ω)cosθdω. (3)

kA is defined to be the ambient occlusion value of point p,
and its value ranges from 0 to 1. When kA is 0, p is totally
blocked from light; when it is 1, p is totally exposed. Al-
though kA is called “ambient occlusion”, it actually corre-
sponds to how much of the hemisphere above p is visible, or
its “accessibility”. To avoid confusion, in this paper, we use
the term AO to actually mean 1− kA, so a higher AO value
means a lower intensity (or darker color).

The above definition of AO is not useful for enclosed
scenes, where everything would be totally dark, since v(p,ω)
equals 0 everywhere. That is why in practice, the binary vis-
ibility function v(p,ω) is often replaced by an attenuation
(or falloff) function ρ(p,d) which varies smoothly from 1
to 0 as d increases [39]. With ρ , we can rewrite kA as

kA(p,n) = 1− 1
π

∫
Ω

ρ(p,d)cosθdω. (4)

ρ(p,d) is a continuous function that depends on the dis-
tance d between p and the point where a ray cast from p
in direction ω intersects some nearby geometry. As d in-
creases from 0 to some preset value dmax, ρ(p,d) decreases
monotonically from 1 to 0. Although the use of ρ is em-
pirical, it is more useful than a binary visibility function. In
our method, Equation 4 with a quadratic falloff function are
used as the basis for all AO computations. Technically, the
definition of AO that uses a falloff function is called Ambi-
ent obscurance [39] to differentiate it from the old model of
AO, but since the terms are used interchangeably in previ-
ous work, we use AO (which is the more established term)
to mean ambient obscurance in this paper.

Efficient Screen-Space Approach to High-Quality Multi-Scale Ambient Occlusion 3

3 Related Work

Here we briefly discuss existing AO methods that are tar-
geted for real-time or interactive rendering of dynamic scenes,
with a focus on SSAO.

3.1 Object-Space Methods

Bunnell [3] approximates a scene’s objects by a hierarchy of
disks. AO is calculated using approximated form factors be-
tween all pairs of disks. Further improvements have been
achieved by [9] (less artifacts) and [4] (better accuracy).
These methods require highly tessellated geometry, and can-
not scale beyond simple scenes without sacrificing a lot of
performance.

Reinbothe et al. [27] compute AO by ray-tracing in a
voxelized representation of the scene instead of the original
triangle mesh. Ray-tracing is slow for real-time applications,
even when working with near-field voxels instead of trian-
gles.

Ren et al. [28] and Sloan et al. [33] approximate occlud-
ers with spheres, and use spherical harmonics to analytically
compute and store AO values. AO due to multiple spheres
are accumulated by efficiently combining the corresponding
spherical harmonics coefficients. Shanmugam et al. [31] use
a similar approach with spheres and image-space splatting,
but without spherical harmonics. These methods require a
pre-processing step, and do not work for scenes with com-
plex objects that cannot be approximated by spheres.

Kontkanen et al. [12] and Malmer et al. [17] compute an
occlusion field around each occluder and store it in a cube
map. During rendering, occlusion due to multiple objects
is approximated by looking up and blending pre-computed
values from different cube maps. Zhou et al. [38] propose a
similar technique that uses either Haar wavelets or spheri-
cal harmonics instead of cube maps. AO fields require large
memory storage and only work for semi-dynamic scenes
composing of rigid objects. Self-occlusion and high-frequency
occlusion are also ignored.

McGuire [19] analytically computes, for each screen pixel,
occlusion caused by every triangle mesh in a scene. This
method suffers from over-occlusion artifacts. Laine et al.
[14] solve this problem by considering occlusion contribu-
tions from occluders coming from the same hemispherical
direction only once. This idea is similar to hemispherical
rasterization by [10], but the latter only works for self shad-
owing objects. Analytical methods are slow, especially for
big scenes with many triangles. These methods are thus not
yet suitable for real-time applications.

3.2 Screen-Space Methods

Screen-space methods use empirical models that darken a
pixel by treating its nearby pixels as potential occluders.
Mittring [21] introduces one of the first known SSAO meth-
ods. This method samples 3D points inside a sphere centered
at a shaded pixel, and determines how many of them are be-
low the scene surface (as seen from the eye) by projecting
the point samples into screen space. AO is defined as the
ratio between the number of occluding samples and the to-
tal number of samples. Methods that improve on this idea
are [6] (attenuation function, no self-occlusion), [29] (di-
rectional occlusion, one-bounce indirect illumination), [16]
(fast, low-variant sampling method called line sampling),
and [36] (similar to [16]). McGuire et al. [20] uses a sam-
pling technique similar to [16] but with a more robust AO
formula to avoid black halos; their method also allows for
more artistic control.

Shanmugam et al. [31] and Fox et al. [7] sample directly
in image space instead of projecting 3D point samples. For
a shaded pixel, neighboring pixels are randomly sampled
and their corresponding object-space points are treated as
micro-spheres occluders. Compared to the approach of pro-
jecting eye-space samples, sampling directly in screen space
produce results that are less noisy, but also more biased, as
screen-space directions do not necessarily correspond to 3D
directions. Our method uses screen-space sampling since we
have found that the trade-off is worth taking, knowing that
SSAO’s results in general are already quite biased (com-
pared to ray-traced results, for example), and the real prob-
lem with it is the noise.

Bavoil et al. [2] compute AO by finding the horizon an-
gle along each 2D direction from a shaded pixel. A hori-
zon angle along a direction indicates how much the shaded
pixel is occluded in that direction. AO is averaged from hori-
zon angles in multiple screen-space directions. HBAO pro-
duces higher-quality results compared to other SSAO meth-
ods since it is more analytical, but it is also much slower due
to the use of ray marching to step along each direction ray.

Screen-space methods differ mostly in their reformula-
tions of the AO equation (Equation 4), and as a result, their
sampling methods. Samples can be taken in a two-dimensional
or three-dimensional space. Some methods take samples in
three-dimensional spaces, resulting in high-variance approx-
imations and noise [6, 21, 29]. Other methods take samples
in two-dimensional spaces, whether that space is the screen-
space itself [2, 7, 31], or some 2D subspace of the object
space [16,20,36]. Fig. 2 show the various sampling schemes
used in SSAO. Generally, the trend is shifting towards 2D
sampling, because doing so produces low-noise results. One
drawback is that 2D sampling patterns are more biased, but
given that occlusion checking based on only the depth buffer
is already inaccurate, biased sampling is not too big a prob-

4 Thai-Duong Hoang, Kok-Lim Low

Fig. 2 (Upper-left) The sampling scheme used in [6]. (Upper-right)
The sampling scheme used in [31] and our method. (Lower-left) The
sampling scheme used in [16]. (Lower-right) The sampling scheme
used in [36].

lem as it may seem. Our method uses a sampling scheme
similar to that of [31], but the actual patterns are more in-
volved since we use multiple resolutions.

In general, screen-space methods are fast, but suffer from
numerous visual artifacts. Some of them are over-occlusion
(since visibility is ignored), under-occlusion (since occlud-
ers’ projections are either too small or missing on screen),
noisy results (due to random sampling), blurry results (due
to noise-reduction filters), and very local occlusion (due to
small sampling kernels). Our method is able to overcome the
noise, blur, and local occlusion problems by using multiple
resolutions. It can also crudely approximate visibility in a
cheap way. For the other problems, there are some proposed
solutions, such as depth peeling [29], multiple cameras [1],
and enlarged camera’s field of view [1]. Those fixes can ben-
efit any SSAO method, albeit at considerable performance
costs. As such, this paper focuses only on the core ideas of
SSAO and includes none of those extensions.

3.3 Multi-Resolution Techniques

Observing that AO is mostly low-frequency, Sloan et al. [33]
compute AO in a coarser resolution and upsample it using
joint bilateral upsampling [13]. Bavoil et al. [1] use a sim-
ilar technique, but also compute full-resolution AO to re-
fine small details. However, as we have found, using only a
single coarser resolution is insufficient to capture scene AO
that often occurs at multiple different scales (Fig. 3 shows
that there are AO frequencies not captured using just two
resolutions). Multi-resolution techniques are also proposed
in [23–25] and [35], but for the purpose of computing one-
bounce indirect illumination without visibility checking.

As capturing AO at different frequencies using differ-
ent resolutions is natural, MSSAO can achieve better ren-
dering speed and yet retain the quality of the results. As far
as our knowledge extends, MSSAO is the first truly multi-
resolution technique (more than two resolutions) that ad-
dresses the real-time AO problem concerning both perfor-
mance and quality improvements.

Fig. 3 (Left) Result produced by using only two consecutive lev-
els of resolution: 512x512 and 256x256 pixels. (Middle) Result pro-
duced by using only two very different levels of resolution: 64x64 and
512x512 pixels. (Right) Result obtained by using four levels of resolu-
tion: 64x64, 128x128, 256x256, and 512x512 pixels. The blocky arti-
facts in the middle image is not a major problem as it could be reduced
with enough filtering. The most important thing to notice in this figure
is that the left and the middle images both miss some of the shadow
frequencies by using only two resolutions.

3.4 Temporal Coherence Methods

Methods that exploit temporal coherence are ones that reuse
shading information from a previous frame and combine it
with that of the current frame to either reduce temporal alias-
ing, improve image quality, or improve performance of a
shading algorithm. The main idea behind these methods is
that between consecutive frames, the shading information
changes very little, so a large portion of it can be reused.
A particular temporal coherence approach is image-space,
real-time reverse reprojection [22, 30], in which a buffer is
used to store previous frame’s data, and current-frame’s pix-
els are projected into that buffer to retrieve old data. That
buffer is often called real-time the reprojection cache, or the
history buffer. In the context of SSAO, reverse reprojection
has been used in [18] for quality improvement purpose and
in [34] for temporal aliasing reduction purpose. In our case,
reverse projection is used as a filtering method to reduce
flickering between consecutive frames.

4 Multi-Resolution SSAO Algorithm

Given an AO radius of influence dmax, we can define a hemi-
sphere with radius dmax centering at each shaded point p.
This hemisphere is on the tangent plane defined by p’s nor-
mal, n. At this point, it is important to be reminded that
the discussions in this paper often refer to a shaded pixel
as p and its corresponding eye-space “point” as p. Concep-
tually, our algorithm partitions the hemisphere with radius
dmax above p into a set of nested hemispheres. Each hemi-
sphere is contained inside an outer, bigger hemisphere (Fig.
4). For each hemisphere, we compute an occlusion value for
p due to occluders inside that hemisphere. We combine oc-
clusion values using the maximum value across all hemi-
spheres. The intuition here is that the combined AO value
should obviously be more than or equal to the maximum
partial AO value in some particular hemisphere. Keeping the

Efficient Screen-Space Approach to High-Quality Multi-Scale Ambient Occlusion 5

Fig. 4 The hemisphere
above a shaded point
p is partitioned into
several nested hemi-
spheres. q0,q1,q2 rep-
resents occluders inside
different hemispheres.

maximum value also serves as a crude visibility checking
mechanism, as it prevents the lack of faraway occluders to
dilute the occlusion due to nearby ones.

To speed up the computation, we notice that occlusion
caused by occluders faraway from p need not be computed
at the finest resolution. Thus, we relate each hemisphere to a
resolution where bigger hemispheres correspond to coarser
resolutions. For each hemisphere, we compute a partial AO
value at its corresponding resolution. When computing AO
for a hemisphere, samples must be taken inside the whole
hemisphere, not just in the “difference” between two adja-
cent hemispheres. Computing AO for bigger hemispheres at
coarser resolutions, however, introduces errors as pixels too
close to p can be grouped together with p itself at coarser
resolutions, causing the low-resolution AO values to miss
contributions from nearby occluders. Therefore, besides re-
taining the maximum partial AO value, we also modulate it
using the average AO value, avoiding the under-occlusion
problem.

Our method is conceptually different from another idea
that may seem similar at first, that is to distribute samples
so that faraway occluders are sampled in coarser resolu-
tions, effectively using fewer samples as the distance from
the shaded point p increases. The latter approach has a ma-
jor drawback, that is the AO values contributed by faraway
occluders needed to be scaled (weighted) more, resulting in
blocky artifacts. That problem can be solved with excessive
low-pass filters, making the final results blurry. This is the
approach used by [35] to compute screen-space, one-bounce
color bleeding, and it is evident in their results that the in-
direct illumination is unusually low-frequency and the ren-
dered images look too blurry.

Our algorithm uses a deferred shading framework with
a typical g-buffer that stores eye-space positions and nor-
mals for each pixel. We refer the reader to [32] for a review
of the deferred shading technique using g-buffer. For each
shaded pixel p, we treat the eye-space points corresponding
to its nearby pixels as occluders that may block light from
reaching p. Those occluders are sampled directly from the
g-buffer. For occluders further away from p, we can sam-
ple them at a coarser resolution than for occluders nearer
to p. We assume that pixels close to p in screen space corre-
spond to nearby geometry in object space. This is not always

Fig. 5 (Left) Noise artifacts by Blizzard’s method, (middle) blurry re-
sult by NVIDIA’s HBAO, (right) result from our method. Our method
produces no noise and preserves sharp edges and fine details better.

true (the converse is always true though), but is very likely.
Consequently, we use a low-resolution g-buffer to compute
occlusion caused by faraway pixels and a high-resolution
one for nearby pixels. In fact, we use multiple resolutions
of g-buffer to capture AO at multiple scales. By using very
small sampling kernels at each resolution, we are in effect
sampling a large neighborhood around p. We do not need to
resort to sparse random sampling in order to maintain high
frame rates, and therefore our results are free of common
SSAO artifacts such as noise and blur (see comparison in
Fig. 5).

4.1 Overview

Our algorithm first renders the scene’s geometry to a g-buffer
at the finest resolution. The g-buffer stores per-pixel, eye-
space coordinates and (normalized) normals. It is then down-
sampled multiple times, similar to creating a mipmap. Then,
we compute an AO value for each pixel at each resolution,
by sampling other pixels in its small 2D neighborhood. Fi-
nally, for each pixel at the finest resolution, its final AO value
is computed by combining corresponding AO values across
the resolutions. A naı̈ve implementation that follows the idea
above exactly would produce blocky artifacts, since adjacent
pixels at a resolution are grouped together at coarser reso-
lutions, thus sharing the same coarse AO values. To achieve
smooth results, in our implementation, AO is calculated from
the coarsest resolution to the finest one using multiple ren-
dering passes. In each pass, the AO value calculated by sam-
pling for each pixel is combined with an AO value upsam-
pled from the previous, coarser resolution. We use bilateral
upsampling [13] to avoid upsampling across large depth and
normal differences. Also, to achieve cleaner results, we ap-
ply a low-pass bilateral filter to the coarser AO values right
before the upsampling step. The overall algorithm is de-
scribed in Table 4.1.

6 Thai-Duong Hoang, Kok-Lim Low

Render the scene into a g-buffer at (the finest) resolution Res1;
for i = 2 to n do

Downsample the g-buffer from Resi−1 to Resi;
end for
for i = n to 1 do

for all pixel p at resolution Resi do
Sample p’s neighborhood to compute an AO value
AOnear;
if i = n then

AOcombined ← AOnear;
Output AOcombined as input to the next iteration;

else
Filter the result (AOcombined) from Resi+1;
Upsample filtered result to get AO f ar;
Combine AOnear and AO f ar to obtain AOcombined ;
if i > 1 then

Output AOcombined as input to the next iteration;
else

Output AOcombined as the final result;
end if

end if
end for

end for
Table 1 The overall algorithm.

Note that AOnear, AO f ar, and AOcombined are per-pixel,
per-resolution values. In our algorithm, AOnear represents
AO caused by neighboring pixels and AO f ar represents up-
sampled AO caused by farther-away pixels. They are com-
bined in every rendering pass (except the first) to obtain
AOcombined . For example, suppose p is some pixel in some
current resolution during the algorithm. In the next render-
ing pass (at a finer resolution), the previously computed value
AOcombined of p will be upsampled and treated as AO f ar for
the higher-resolution pixels near p (see the details in Sec-
tion 4.5). Note that each AOnear value is computed inde-
pendently for all resolutions by sampling in a small screen-
space neighborhood of the shaded pixel. The whole process
ends when the finest resolution is reached, at which point
AOcombined is the final AO value for the shaded pixel.

4.2 Downsampling

The downsampling process starts from the finest-resolution
g-buffer, and produces a coarser-resolution one with each
rendering pass. In each pass, every pixel will combine the
eye-space coordinates and normals of its four corresponding
sub-pixels at the previous, finer resolution. The total number
of resolutions depends on how “global” we want the AO to
be, which is often specified by a real number called the AO
radius of influence. In practice we have found that using four
or five resolutions balances between achieving a fairly far-
reaching AO and avoiding artifacts caused by the lack of res-
olution in coarse buffers. Using more levels also gives few
benefits since AO becomes more and more low-frequency
and low-contrast at coarser resolutions.

for i = 2 to n do
for all pixel p at resolution Resi do

Obtain four corresponding sub-pixels from Resi−1;
Sort them so that pz

0 < pz
1 < pz

2 < pz
3;

if pz
3−pz

0 ≤ dthreshold then
p← (p1 +p2)/2;
n← (n1 +n2)/2;

else
p← p1;
n← n1;

end if
end for

end for
Table 2 The downsampling algorithm.

The most common way of combining high-resolution
values is to average them. We have decided to use a more
stable method, that is to keep the median value instead of
the mean. We sort the four sub-pixels according to their eye-
space depth values, pick the two pixels whose depth values
are in the middle, and take the average of their eye-space co-
ordinates. It is well known that median is more stable than
mean, that is, on average, the median of a set of numbers
fluctuates less than the mean when the numbers themselves
vary. Therefore, using the median helps our method achieve
better temporal coherence. However, we have found that us-
ing only the median has a significant drawback, as it does
not preserve relative distances among eye-space points. As
a result, points that are further away at finer resolutions be-
come closer at coarser resolutions. That results in artifacts
when occluders sometimes cast shadows on receivers out-
side their AO radius of influence. To avoid this situation,
instead of the median, we keep one of the four sub-pixels’
eye-space coordinates, but only when the maximum distance
among the four sub-pixels’ eye-space coordinates is large
enough (larger than some preset value dthreshold). We sort
the four corresponding z-values and pick the sub-pixel with
the second smallest absolute z-value. The reason this down-
sampling scheme is not used in every case is that it is not as
stable as keeping the median, and would create heavy shim-
mering or flickering artifacts during animations or camera
movements.

Pixels’ normals are downsampled similarly to eye-space
coordinates. It is important to note that at the finest resolu-
tion, we use true polygons’ normals, not interpolated vertex
normals, as the latter would cause self-occlusion artifacts
with sparsely-tessellated scene models. The downsampling
algorithm is summarized in Table 2, where we use pz

i to de-
note the eye-space depth value of point pi.

4.3 Occluder Sampling

To compute AOnear for a shaded pixel p at each resolution,
we sample a small screen-space neighborhood around p.

Efficient Screen-Space Approach to High-Quality Multi-Scale Ambient Occlusion 7

The sampling kernel size is decided as follows. First, we
set an AO radius of influence in eye space, dmax, denoting
the distance to the shaded point beyond which an occluder
contributes no occlusion at all. This distance is then pro-
jected into screen space at the finest resolution Res1 so that
we have a kernel radius r1(p) (in terms of number of pixels)
for each pixel p. The maximum kernel radius for p at the
next coarser resolution should naturally be r2(p) = r1(p)/2,
and the next should be r3(p) = r1(p)/4, and so on. Note that
the kernel size depends on the depth of each individual pixel
because of perspective fore-shortening, which cause pixels
nearer to the camera to have larger kernel sizes in screen
space. Since finer resolutions corresponds to smaller hemi-
spheres, we do not use ri(p) directly as the kernel radius at
resolution Resi. Instead, we cap the radius to rmax pixels at
any resolution. Another reason for capping the kernel size is
because the values ri(p) can be quite large when p becomes
closer to the camera (when the scene is zoomed in). In such
situations, performance can drop drastically if we do not cap
the kernels to some fixed size. A typical value of rmax used
in our implementation is 5, which corresponds to a 11x11-
pixel kernel. In short, for each shaded pixel p at resolution
Resi, the sampling kernel Ri(p) is calculated using the fol-
lowing formulas

r0(p) = sdmax
2z tan(α/2)

ri(p) = r0(p)/2i

Ri(p) = min(rmax,ri(p))
(5)

where s is the viewport’s dimension at the finest resolution
(assuming we have a square viewport), α is the camera’s
field-of-view angle, and z is the eye-space depth value of
pixel p.

Not every pixel in a 11x11-pixel kernel is sampled; in-
stead we only sample every other pixel, effectively reduc-
ing the number of texel fetches from 121 to 36 per frag-
ment (Fig. 6). This sampling pattern is similar to interleaved
sampling [11], but without the randomness; it can take ad-
vantage of the followed-up blur pass that combines AO val-
ues in a 3x3-pixel neighborhood. Sometimes, when a more
“global” AO is desired resulting in large kernel radii, sam-
pling every other pixel can be slow. In that case, one can fix
the number of samples and use a low-variant random sam-
pling pattern such as Poisson disks. In fact, we sample using
a 16-point Poisson disk for pixels at the finest resolution.
No final blur pass is needed at this resolution since the ker-
nel size is small. Finally, it is worth to note that Equation 5
implies that a kernel radius can be smaller than 1. In other
words, for some pixels at a particular resolution, we need
not take any samples if the corresponding kernel radius is
smaller than the width of a pixel at that resolution.

Fig. 6 (Left) At all resolutions except the finest, we sample using an in-
terleaved pattern that works well with a 3x3 low-pass filter afterwards.
(Right) The 16-point Poisson disk pattern used at the finest resolution.

4.4 Computing Ambient Occlusion

For each pixel p at a particular resolution, the next step after
gathering N samples is to use them to compute AOnear. We
use the following formula

AOnear(p) =
1
N

N

∑
i=1

ρ(p,di)n · q̂i−p, (6)

where di is the eye-space distance between the ith occluder
(qi) and p, and θi is the angle between the p’s normal and
the vector joining p and qi. The bar over the cosine term
means its value is clamped to [0,1]. ρ(p,di) is a falloff func-
tion that smoothly attenuates an occluder’s contribution as it
goes further away from p. The falloff function ρ(p,di) must
smoothly decreases from 1 to 0 as the distance di increases
from 0 to some constant dmax. We use the following simple
formula to compute ρ:

ρ(p,di) = 1−min(1,(
di

dmax
)2). (7)

We choose this quadratic falloff function because each oc-
cluder can be considered a very small sphere, and the solid
angle subtended by that sphere varies inversely to its squared
distance from p.

If nearby pixels correspond to uniform directions in the
tangent hemisphere above p, Equation 6 comes close to a
Monte Carlo approximation of Equation 3. This is rarely
true in practice, so our AO results are often biased compared
to, for example, ray-traced AO. However, the AO computed
by our formula has low variance, and thus we need fewer
samples to produce noise-free results compared to, for ex-
ample, Crytek’s [21] or Blizzard’s [6] formulas (see Fig. 7).
The main reason is that in those methods, the distribution of
sample points takes into account both direction (θi) and dis-
tance (di), so sampling is done in three-dimensional spaces.
Whereas in our method, sample points are only distributed
in a two-dimensional space (screen space), and the distance
from a sample to the shaded point is part of the sample it-
self. Other recent SSAO methods have also exploited this

8 Thai-Duong Hoang, Kok-Lim Low

Fig. 7 (Top) Crytek’s method gives unstable occlusion value (from 4/8
to 3/8) with just a slight change in geometry. (Bottom) our cosine func-
tion varies smoothly as the geometry changes. As a result, we need very
few samples for each shaded pixel. In this example, with 4 samples we
are able to evaluate AO more accurately than Crytek’s 8 samples. On
the left, Crytek’s method will give an occlusion value of 4/8 or 1/2
which corresponds (wrongly) to a totally flat surface according to their
interpretation of AO.

for i = n to 1 do
for all pixel p at resolution Resi do

Calculate kernel size Ri(p) using Equation 5;
if i 6= 1 then

Sample the neighborhood using Fig. 6 (left);
else

Sample the neighborhood using a Fig. 6 (right);
end if
Calculate AOnear(p) using Equation 6;

end for
end for

Table 3 The sampling and computing AO algorithm.

idea of dimension-reduction to avoid noise [2,16,36]. Com-
pare to those methods, our formula is cheaper to compute.
An important thing to note is that we do not disregard non-
blocking samples, such as those below the shaded point’s
hemisphere, since it is well-known that rejection sampling
gives high-variance results [8]. Finally, Table 3 summarizes
both the sampling and computing AO steps, since they are
closely related.

4.5 Combining Occlusion Values

Now that we have computed AOnear, it must be combined
with AO f ar, which is the AO upsampled from a previous,
coarser resolution. To compute AO f ar, we use a bilateral up-
sampling algorithm which can avoid blurring across large
depth and normal discontinuities. The upsampling blends
AO values from the four low-resolution pixels that are clos-
est to the current-resolution pixel p (see Fig. 9). The weight
used by the bilateral upsampling algorithm is a product of
bilinear, depth, and normal differences. More specifically,
with regards to pixel p (with depth z and normal n), the nor-

Fig. 8 (Left) Nearest neighbor upsampling, which is blocky, (middle)
bilinear upsampling, which leaks occlusion, (right) bilateral upsam-
pling, which is free of visible artifacts.

Fig. 9 In the upsampling
step, each current-resolution
pixel p will blend occlusion
values from its four nearest
lower-resolution pixels p1,
p2, p3, and p4. The bilinear
weights wb for p1, p2, p3,
and p4 are 9

16 , 3
16 , 3

16 , and 1
16

respectively.

mal weight and depth weight of a low-resolution pixel pi
(with depth zi and normal ni) are, respectively,

wi,n = (
n ·ni +1

2
)tn , (8)

and

wi,z = (
1

1+ |zi− z|
)tz . (9)

The powers tn and tz are to be interpreted as “tolerance” lev-
els, and are dependent on the scene’s size. If the scene is
small, nearby pixels correspond to nearby eye-space “points”,
thus large depth differences must be tolerated less by using
a larger power value. The aim is to balance between smooth
interpolation of AO values and preservation of sharp details.
We use tn = 8 and tz = 16 for all the example scenes shown
in this paper. Fig. 8 clearly demonstrates the superior quality
of bilateral upsampling over the other upsampling methods.

After upsampling, we have the “distant” AO value AO f ar.
Now it must be combined with the “nearby” AO value AOnear.
Since both the maximum AO and the average AO values
across the resolutions are needed, we must combine AO f ar
and AOnear in different ways. Up until this point, AOnear,
AO f ar, and AOcombined each is viewed as a single value. In
fact, AOnear is a tuple of two values, while AO f ar and AOcombined

each is a tuple of three values. Let us use AO[j]
near to mean the

jth element of AOnear. We define AO[1]
near to be the value com-

puted using Equation 6, AO[2]
near is N, the number of samples,

also from the same Equation. For AOcombined , its element are
computed using:

AO[1]
combined = max(AO[1]

near/AO[2]
near,AO[1]

f ar),

AO[2]
combined = AO[1]

near +AO[2]
f ar,

AO[3]
combined = AO[2]

near +AO[3]
f ar.

(10)

Efficient Screen-Space Approach to High-Quality Multi-Scale Ambient Occlusion 9

As for AO f ar, it is just an element-wise upsampled from
AOcombine. The first element of AO f ar keeps track of the cur-
rent maximum AO value, the second stores the unnormal-
ized sum of all AO values, and the last keeps track of the
total number of samples across all resolutions processed so
far. We need to store the unnormalized sum and the total
number of samples separately instead of just dividing the
former by the latter and store one normalized AO value. The
reason is that there maybe no samples at some particular res-
olutions, making it impossible to recover the correct average
AO value by the time we reach the finest resolution if only
the normalized value was kept. At the finest resolution, we
combine both the maximum and average values using the
formulas

AOmax = max(AO[1]
near/AO[2]

near,AO[1]
f ar),

AOaverage = (AO[2]
f ar +AO[1]

near)/(AO[3]
f ar +AO[2]

near),

AO f inal = 1− (1−AOmax)(1−AOaverage),

(11)

and just output 1−AO f inal as the “accessibility” value for
the shaded pixel. This value can be used directly to shade the
pixel (like what is done in almost all examples shown in this
paper), or used to modulate the pixel’s ambient or diffuse
intensity calculated using traditional shading methods such
as Phong’s.

In general, the use of the maximum operator to combine
AO values from multiple resolutions prevents inner occlud-
ers from being multiply-counted, and it also allows occlu-
sion missed at any resolution to be picked up at other res-
olutions. In comparison, in most other SSAO methods, as
the AO radius of influence increases, the final AO values
become more incorrect. This is because, without visibility
checking, further-away samples often incorrectly dilute oc-
clusion caused by nearby ones. By retaining the maximum
occlusion value across the resolutions, we can alleviate that
ill-effect to some extent. Using only AOmax, however, is not
enough, as a shaded point is often blocked by occluders in
more than one resolution, thus the final AO value often is
often bigger than AOmax. To account for this effect, we use
the average AO value to modulate the maximum value in
a way that ensures 0≤ AOmax ≤ AO f inal ≤ 1 (Equation 11).
Fig. 10 illustrates the process of combining occlusion values
across multiple resolutions. One can see that the bilateral up-
sampling has prevented much of the shadow leakage in the
coarser resolutions.

Since we retain the maximum AO value in each render-
ing pass, the final output may not look “clean”. That is be-
cause neighboring pixels may have different maximum AO
values computed at different resolutions. That problem can
be solved by adding a low-pass filter just before the upsam-
pling. This blur is also needed to properly “combined” the
AO values computed by sampling using an interleaved pat-
tern. It allows us to sample sparsely at coarse resolutions and
at the same time smooth out the final result. We use bilateral

Fig. 10 Combining AO values across multiple resolutions to get the fi-
nal AO value. The first 5 images are AO values computed at 5 different
resolutions, from the finest to the coarsest. The last image (bottom-
rightmost) is the final result. Note that the images shown here are out-
puts after blurring and upsampling.

for i = n−1 to 1 do
for all pixel q with coordinate t at resolution Resi+1 do

for all pixel q j with coordinate t j in a 3x3 neighborhood
around q do

Compute screen-space distances dx j = |tx − tx
j| and

dy j = |ty− ty
j|;

Compute a Gaussian weight using w j,g = 1/((dx j +
1)(dy j +1));

end for
Sum the weighted AO values using AOcombined(q) ←
∑

9
j=1 w j,gAOcombined(q j);

end for
for all pixel p at resolution Resi do

Get the four pixels nearest to p at resolution Resi+1;
for all low-resolution pixel p j(1≤ j ≤ 4) do

Obtain a bilinear weight w j,b using Fig. 9;
Compute a depth weight w j,z using Equation 9;
Compute a normal weight w j,n using Equation 8;
Compute a bilateral weight using w j = w j,bw j,zw j,n;

end for
Blend the four low-resolution AO values using
AO f ar(p) = ∑

4
j=1 w jAOcombined(q j)

end for
end for

Table 4 The filtering and upsampling algorithms

filtering [26] which is similar to the bilateral upsampling al-
gorithm, but with the bilinear weight replaced by a Gaussian
one. The other differences are that it is done at the same reso-
lution (instead of cross-resolution), and uses a slightly larger
kernel (3x3 pixels instead of 2x2 pixels). The bilateral blur-
ring and upsampling steps are summarized together in Table
4.

4.6 Temporal Filtering

The use of low-resolution g-buffers has an inherent limita-
tion: their contents are much less coherent between consecu-

10 Thai-Duong Hoang, Kok-Lim Low

tive frames. When the camera moves, high-resolution pixels
can be “snapped” to different low-resolution pixels, creating
sharp changes in low-resolution g-buffers. The results are
shimmering, or flickering artifacts happening during anima-
tions or camera movements. Because of the way our down-
sampling algorithm works, these effects happen mostly at
the scene objects’ edges. For most scenes, the flickering is
not too noticeable. Nevertheless, we can use a final render-
ing pass to eliminate all remaining temporal artifacts. To
enhance the temporal coherence of MSSAO, we employ a
technique called temporal reprojection, similar to what has
been done in [22, 30]. For each pixel in the current frame,
we reproject it into the screen space of the previous frame
using two sets of view and projection matrices as follows

p = V−1
currP−1

currtcurr,

tprev = PprevVprevp. (12)

tprev and tcurr are the screen-space coordinates of the same
eye-space “point” p in both the current and previous frames.
P and V are the projection and view matrices accordingly.
This equation is only applicable for static scenes where the
geometry does not change. For dynamic scenes, one can
store the optical flow pcurr − pprev in the frame buffer and
use it to find the correct past-frame position of p before ap-
plying the view (Vprev) and projection (Pprev) transforma-
tions [18]. One difficulty arises when the point p is occluded
from view by some other geometry, or outside the view frus-
tum in the last frame. To check for occlusion, we sample the
old frame buffer using tprev to get the last-frame linear depth
value (zprev) at that screen-space position. If zprev and pz are
close enough, that is if

|1−
zprev

pz |< ε, (13)

then p is visible to the camera in the last frame. In that
case, we sample the last-frame’s AO buffer using tprev to
obtain the current pixel’s old AO value AOprev. Let AO be
the AO value computed using Equation 11, we combine it
with AOprev using linear interpolation to obtain the final AO
value for the current frame AOcurr as follows

AOcurr = kAOprev +(1− k)AO. (14)

k is a preset weight between 0 and 1. A higher k means a
more stable AO; in practice, that often results in a motion
blur effect when the camera moves. A good value for k will
eliminate temporal aliasing, while at the same time mini-
mizes motion-blurring. In our implementation, k = 0.5 is
typically used. The temporal filtering algorithm is described
by the pseudo-code in Table 5.

for all current-frame pixel p with screen-space coordinate tcurr
do

Compute the corresponding eye-space point p using Equa-
tion 12;
Project p to the previous frame’s screen space (to obtain tprev)
using Equation 12;
if tprev is outside the previous frame’s g-buffer then

AOcurr ← AO;
else

Obtain a linear depth value zprev at position tprev in the
previous frame’s g-buffer;
if the condition at (13) is true then

k← 0.5;
else

k← 0.0;
end if
AOcurr ← kAOprev +(1− k)AO;

end if
end for

Table 5 The temporal filtering algorithm.

5 Evaluations and Comparisons

We compare our method (MSSAO) with Blizzard’s SSAO
[6], NVIDIA’s HBAO [2], and Volumetric AO (VAO) [36]
in both performance and visual quality. These methods are
chosen because among existing SSAO methods, Blizzard’s
SSAO is one of the fastest, while HBAO produces the best
looking images. VAO is somewhere in between the two.
Ray-traced images produced by the Blender software are
also available as ground-truth references. Tests are run on
two machines with different graphics card, one with an NVIDIA
GeForce 8600M GT, and the other with a more powerful
NVIDIA GeForce 460M GTX. All programs are configured
to render at the final resolution of 512x512 pixels. Three
test scenes are used: Sibenik Cathedral, Conference Room,
and Sponza Atrium. These scenes are three of the standard
benchmarking scenes used to evaluate global illumination
algorithms. They feature geometry that is usually difficult
for SSAO methods such as sharp edges, holes, pillars, thin
chair legs, small staircases, etc. The maximum AO radius of
influence (dmax) is set to 2 units in all scenes and all meth-
ods. In all three scenes, our method uses four resolutions,
with the maximum screen-space kernel radius (rmax) set to 5
in all resolutions. The threshold dthreshold used in the down-
sampling step is set to 1. The contrast and falloff parameters
in the HBAO method have been carefully adjusted to best
match the ground-truth results. It uses 16 screen-space di-
rections and 8 ray-marching steps per direction. Blizzard’s
SSAO and Volumetric AO each uses 32 samples per pixel.

5.1 Qualitative Evaluations

Fig. 11, presents comparisons of visual quality among the
four SSAO methods and the ground-truth references pro-

Efficient Screen-Space Approach to High-Quality Multi-Scale Ambient Occlusion 11

Blizzard AO HBAO VAO MSSAO
Sibenik 67.34% 78.04% 78.09% 85.62%
Conference 78.82% 82.23% 80.77% 86.66%
Sponza 74.96% 82.10% 79.61% 89.04%

Table 6 SSIM indices of the results from the four SSAO methods
against the reference images. Each SSIM number is shown as the per-
centage of similarity between two images. Larger numbers are better.

duced by Blender (images in the electronic version of this
paper can be zoomed in for more details)1. Results show
that our method produces cleaner and sharper images that
are closer to the ray-traced images. In all scenes, our method
achieves a more natural attenuation of AO. Also, high-frequency
geometric details such as sharp edges are preserved because
no blur pass is used at the finest resolution. Blizzard’s results
are noisy while NVIDIA’s are blurry and suffer from heavy
over-occlusion artifacts (see, for example, the contact shad-
ows between the chairs and the ground in the Conference
Room scene). Results produced by Volumetric AO are free
of noise but also heavily biased as lots of details are lost. In
all methods except MSSAO, geometric details are not well-
preserved (see the staircase in the Sibenik Cathedral scene,
or the details on the chairs in the Conference Room scene,
for example).

In Table 6, we also provide numerical comparison be-
tween the results using the Structural SIMilarity (SSIM) in-
dex [37], which is a perceptual image comparison metric.
According to SSIM, results from our method have the high-
est similarities to the ground-truth images.

Fig. 12 demonstrates another advantage of MSSAO over
most existing SSAO methods. Since SSAO methods lack a
mechanism to check for visibility (or ray-geometry inter-
sections), when the AO radius of influence is increased, the
(lack of) occlusion caused by distant occluders often wrong-
fully affects that caused by nearby occluders. The most com-
mon consequence is that with a large AO radius of influence,
small, sharp details that can otherwise be captured using a
smaller radius of influence, are gone. Our method does not
suffer from this problem, as we capture and retain shadow
frequencies at multiple scales, and use a better way to com-
bine them.

Finally, Fig. 13 shows additional results from our method
for different kinds of scene models, demonstrating that our
algorithm is suitable for a wide range of scenes with various
kinds of object. All of the images are rendered at 512x512
pixels at near 40 fps on a NVIDIA GeForce 8600M GT.
They can be zoomed in for more details.

1 A bug in Blender has caused small dark spots in the rendered im-
age of the Sibenik Cathedral model. These artifacts, however, do not
affect the comparison.

Fig. 12 (Left) Result from a single-resolution SSAO method and a
short AO radius of influence. (Middle) Result from a single-resolution
SSAO method and a large AO radius of influence. (Right) Result from
MSSAO with a large AO radius of influence. The left image lacks AO
caused by distant occluders, the middle image lacks details such as the
dragon’s scales on its body, or the parts near its ear and its tail. The
right image captures both nearby and distant AO.

Step Time taken
Geometry 1.7 ms
Downsampling 1.3 ms
Bilateral Filtering 0.9 ms
Sampling 4.0 ms
Temporal Filtering 0.2 ms

Table 7 Break-down runtime performance of different steps in our
method. Smaller numbers are better.

5.2 Performance Evaluations

In Table 7, we give detailed timings for each of the steps in
our algorithm when rendering the Conference Room scene
at 512x512 pixels on a GeForce 460M GTX graphics card.
Note that the Geometry pass is independent of the method
being use, although it is included to give the reader a more
complete picture (e.g. from the table, one can deduce that the
scene is rendered at about 123 fps). As expected, the sam-
pling (and computing AO) step dominates the other steps in
terms of time taken. As mentioned in Section 4.3, a faster
sampling scheme such as a 16-point Poisson-disk pattern
can be used if the AO radius of influence is large. In our
case, dmax is only 2 (and rmax is 5) and using the interleaved
pattern gives us the best quality without sacrificing perfor-
mance.

Table 8 shows the running times of all three SSAO meth-
ods for rendering a frame of each of the three test scenes. We
measure the actual timings of the AO algorithms, so the ge-
ometry passes are ignored in all methods.

As polygon counts do not affect the complexity of SSAO
algorithms, the differences in rendering speeds come mostly
from the amount of computations and texture fetches per
fragment. HBAO is the slowest method due to the fact that
ray marching is done per pixel in many directions in screen
space. On the 8600M GT, our method can achieve better per-
formance since our kernel sizes are small and the sampling
pattern is more cache-friendly. On the newer graphics card,
Blizzard’s SSAO and Volumetric AO outperform ours by a
very small margin. That is probably because of the GPU’s
bigger texture cache, so random sampling patterns and big

12 Thai-Duong Hoang, Kok-Lim Low

Fig. 11 Comparison of AO results (without any other shading) produced by five methods for the three scenes. Blender’s result is the reference
solution.

Efficient Screen-Space Approach to High-Quality Multi-Scale Ambient Occlusion 13

Fig. 13 Additional results from our method.

14 Thai-Duong Hoang, Kok-Lim Low

GeForce 8600M GT
MSSAO Blizzard HBAO VAO

Sibenik 24.8 24.9 92.8 38.0
Conference 24.4 22.2 90.4 34.9
Sponza 24.1 30.6 92.9 39.5

GeForce 460M GTX
Sibenik 6.6 5.2 11.1 6.0
Conference 6.4 5.1 11.3 5.8
Sponza 6.5 5.1 11.2 6.0

Table 8 Runtime performance of the four SSAO methods at 512x512
pixels, measured in millisecond (ms). Smaller numbers are better. Note
that the running times of MSSAO are measured with the inclusion of
temporal filtering.

GeForce 460M GTX
MSSAO Blizzard HBAO VAO

Sibenik 21.9 25.7 50.1 22.9
Conference 24.0 24.9 49.5 24.8
Sponza 22.2 28.9 54.3 24.0

Table 9 Runtime performance of the four SSAO methods at
1024x1024 pixels, measured in millisecond (ms). Smaller numbers are
better.

kernel sizes do not hurt performance as much. However, as
we increase the resolution to 1024x1024 pixels, MSSAO
outperforms the other methods again on the GeForce 460M
GTX (see Table 9). One possible reason could be that our
method does not perform an expensive final blur pass at the
finest resolution like the others.

In general, we believe our method has achieved the high
performance of Blizzard’s SSAO and Volumetric AO, while
attaining better image quality than that of all existing SSAO
methods’.

5.3 Limitations

One of the limitations of our method is that it consumes
more memory than existing SSAO methods. Each level of
resolution (except the finest) makes use of four buffers, namely
the positions, normals, AO, and filtered AO buffers. At the
finest resolution we uses three buffers – positions, normals,
and AO. A typical SSAO method uses only the three buffers
(positions, normals, AO) at the finest resolution. Further-
more, each of our AO buffers contains three channels instead
of one in order to “propagate” appropriate values up the
levels of resolution. Assuming we use 4 resolutions, from
1024x1024 to 128x128, our method consumes 1.85 times as
much memory as a typical SSAO method. In the context of
this paper, where only AO is evaluated, this is not a problem
with any decent graphics card. However, the effects of this
increase in memory consumption may be noticeable when
the method is used in a more realistic context, such as in a
computer game, where memory is shared with other lighting
and shading passes. We would like to mention that should

memory bandwith become the bottleneck, further optimiza-
tions, such as reusing buffers, could be applied.

Our method also suffers from errors due to the use of
coarse resolutions, even though the use of bilateral upsam-
pling has reduced this effect greatly. This issue can be found
in screen-space regions where there are lots of depth discon-
tinuities. Such regions are often slightly over-occluded. The
same problem also results in poor temporal coherence on
thin geometry such as chair legs and tree leaves. However, it
is worth to note that all these artifacts happen rarely and are
not too noticeable.

6 Discussion and Conclusion

Being a screen-space method, our method inherits the fun-
damental limitations of SSAO. The AO computed by our
method is only a coarse approximation of true AO. It is in-
correct in places where occluders are hidden from the view-
point — either outside the view frustum or behind the first
layer of depth. There are workarounds such as using vari-
ous heuristics to “guess” the hidden occluders, but they do
not solve the problem completely, and in many cases cre-
ate other artifacts. Depth peeling, multiple cameras, and en-
larged field-of-view are some of the solutions already pro-
posed. These extensions can improve accuracy to some ex-
tent, but they do not fundamentally change the core idea of
SSAO. As long as insufficient data is given as input (e.g.
only a g-buffer), artifacts are unavoidable.

Despite having some inherent limitations of SSAO and
some other minor drawbacks such as high memory usage
and errors due to the lack of resolution, our method has im-
proved on the state-of-the-art SSAO methods in a number of
ways. Current SSAO methods are limited by the number and
coherency of texture fetches, thus are limited to local oc-
clusion. By sampling from multiple resolutions with small
kernels in each, we can leverage the GPU’s texture caching
to make the algorithm much faster. That enables us to sam-
ple further without sacrificing much performance, thus cap-
turing more global AO effects. Together with a robust AO
formula, our results are free of noise/blur even with a small
number of samples. Bilateral filtering and upsampling are
used repeatedly in coarser resolutions to smoothly blend and
interpolate occlusion values to avoid artifacts from the use
of multiple resolutions. The use of the maximum operator to
combine occlusion values across multiple resolutions also
helps counter the ill effects resulting from the lack of visi-
bility checking in SSAO. As a result, our method captures
multiple AO scales, which is not possible in other methods.
Finally, our multi-resolution approach is general and can be
applied on top of other lower-level AO formulas besides the
one described in this paper.

Efficient Screen-Space Approach to High-Quality Multi-Scale Ambient Occlusion 15

Acknowledgements We thank the anonymous reviewers of CGI 2011
for their helpful comments and suggestions.

The scene models used in this paper are from the following sources:
Marko Dabrovic (Sibenik Cathedral and Sponza Atrium), Anat Gryn-
berg (Conference Room), ompf.org’s Scene Vault (DWC-51 Truck,
Jagdpanther Tank, and Kitchen), The Stanford 3D Scanning Repository
(Dragon), Google 3D Warehouse (City by Scott, House Merlyn and
Zona Residence by rubicundo, Residence by rubicundo2, and Menger
Sponge by Duv), and 3dRender.com’s Lighting Challenges (Natural
History, The Shop Girls, The King’s Treasure, Science Fiction, Christ-
mas, The Local Train, Neon and Chrome, and Film Noir).

References

1. Bavoil, L., Sainz, M.: Multi-layer dual-resolution screen-space
ambient occlusion. In: ACM SIGGRAPH 2009 Talks (2009)

2. Bavoil, L., Sainz, M., Dimitrov, R.: Image-space horizon-based
ambient occlusion. In: ACM SIGGRAPH 2008 Talks (2008)

3. Bunnell, M.: Dynamic ambient occlusion and indirect lighting. In:
GPU Gems 2, pp. 223–233. Addison-Wesley Professional (2005)

4. Christensen, P.: Point-based approximate color bleeding. Pixar
Technical Memo #08-01 (2008)

5. Dutre, P., Bekaert, P., Bala, K.: Advanced Global Illumination, 2nd
edn. A K Peters/CRC Press (2005)

6. Filion, D., McNaughton, R.: Effects & techniques. In: ACM SIG-
GRAPH 2008 Courses, pp. 133–164 (2008)

7. Fox, M., Compton, S.: Ambient occlusive crease shading. Game
Developer Magazine (March 2008) (2008)

8. Glassner, A.S.: Principles of Digital Image Synthesis. Morgan
Kaufmann (1995)

9. Hoberock, J., Jia, Y.: High-quality ambient occlusion. In: GPU
Gems 3, pp. 257–274. Addison-Wesley Professional (2007)

10. Kautz, J., Lehtinen, J., Aila, T.: Hemispherical rasterization for
self-shadowing of dynamic objects. In: Proceedings of the Euro-
graphics Symposium on Rendering 2004, pp. 179–184 (2004)

11. Keller, A., Heidrich, W.: Interleaved sampling. In: Rendering
Techniques, pp. 269–276 (2001)

12. Kontkanen, J., Laine, S.: Ambient occlusion fields. In: Proceed-
ings of the 2005 Symposium on Interactive 3D Graphics and
Games, pp. 41–48 (2005)

13. Kopf, J., Cohen, M.F., Lischinski, D., Uyttendaele, M.: Joint bi-
lateral upsampling. In: Proceedings of ACM SIGGRAPH 2007
(2007)

14. Laine, S., Karras, T.: Two methods for fast ray-cast ambient oc-
clusion. Computer Graphics Forum 29(4), 1325–1333 (2010)

15. Landis, H.: Production-ready global illumination. In: ACM SIG-
GRAPH 2002 Courses, pp. 331–338 (2002)

16. Loos, B.J., Sloan, P.P.: Volumetric obscurance. In: Proceedings of
the 2010 Symposium on Interactive 3D Graphics and Games, pp.
151–156 (2010)

17. Malmer, M., Malmer, F., Assarsson, U., Holzschuch, N.: Fast pre-
computed ambient occlusion for proximity shadows. Journal of
Graphics Tools 12(2), 59–71 (2007)

18. Mattausch, O., Scherzer, D., Wimmer, M.: High-quality screen-
space ambient occlusion using temporal coherence. Computer
Graphics Forum 29(8), 2492–2503 (2010)

19. McGuire, M.: Ambient occlusion volumes. In: Proceedings of the
Conference on High Performance Graphics, pp. 47–56 (2010)

20. McGuire, M., Osman, B., Bukowski, M., Hennessy, P.: The
alchemy screen-space ambient obscurance algorithm. In: High-
Performance Graphics 2011 (2011)

21. Mittring, M.: Finding next gen: Cryengine 2. In: ACM SIG-
GRAPH 2007 Courses, pp. 97–121 (2007)

22. Nehab, D., Sander, P.V., Lawrence, J., Tatarchuk, N., Isidoro, J.R.:
Accelerating real-time shading with reverse reprojection caching.
In: Graphics Hardware (2007)

23. Nichols, G., Shopf, J., Wyman, C., Lensch, H.P.A., Sloan, P.P.:
Hierarchical image-space radiosity for interactive global illumina-
tion. Computer Graphics Forum 28(4), 1141–1149 (2009)

24. Nichols, G., Wyman, C.: Multiresolution splatting for indirect illu-
mination. In: Proceedings of the 2009 Symposium on Interactive
3D Graphics and Games, pp. 83–90 (2009)

25. Nichols, G., Wyman, C.: Interactive indirect illumination using
adaptive multiresolution splatting. IEEE Transactions on Visu-
alization and Computer Graphics 16, 729–741 (2010)

26. Paris, S., Kornprobst, P., Tumblin, J., Durand, F.: Bilateral filter-
ing: Theory and applications. Foundations and Trends in Com-
puter Graphics and Vision 4(1), 1–73 (2009)

27. Reinbothe, C., Boubekeur, T., Alexa, M.: Hybrid ambient occlu-
sion. In: Eurographics 2009 Areas Papers (2009)

28. Ren, Z., Wang, R., Snyder, J., Zhou, K., Liu, X., Sun, B., Sloan,
P.P., Bao, H., Peng, Q., Guo, B.: Real-time soft shadows in dy-
namic scenes using spherical harmonic exponentiation. In: Pro-
ceedings of ACM SIGGRAPH 2006, pp. 977–986 (2006)

29. Ritschel, T., Grosch, T., Seidel, H.P.: Approximating dynamic
global illumination in image space. In: Proceedings of the 2009
Symposium on Interactive 3D Graphics and Games, pp. 75–82
(2009)

30. Scherzer, D., Jeschke, S., Wimmer, M.: Pixel-correct shadow
maps with temporal reprojection and shadow test confidence”. In:
Rendering Techniques 2007 (Proceedings Eurographics Sympo-
sium on Rendering), pp. 45–50 (2007)

31. Shanmugam, P., Arikan, O.: Hardware accelerated ambient occlu-
sion techniques on gpus. In: Proceedings of the 2007 Symposium
on Interactive 3D Graphics and Games, pp. 73–80 (2007)

32. Shishkovtsov, O.: Deferred Shading in S.T.A.L.K.E.R., pp. 143–
166. Addison-Wesley Professional (2005)

33. Sloan, P.P., Govindaraju, N.K., Nowrouzezahrai, D., Snyder, J.:
Image-based proxy accumulation for real-time soft global illumi-
nation. In: Proceedings of the 15th Pacific Conference on Com-
puter Graphics and Applications, pp. 97–105 (2007)

34. Smedberg, N., Wright, D.: Rendering techniques in gears of war
2. In: Game Developer Conference (2009)

35. Soler, C., Hoel, O., Rochet, F.: A deferred shading algorithm for
real-time indirect illumination. In: ACM SIGGRAPH 2010 Talks,
p. 18 (2010)

36. Szirmay-Kalos, L., Umenhoffer, T., Tóth, B., Szécsi, L., Sbert, M.:
Volumetric ambient occlusion for real-time rendering and games.
IEEE Computer Graphics and Applications 30(1), 70–79 (2010)

37. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image
quality assessment: From error visibility to structural similarity.
IEEE Transactions on Image Processing 13(4), 600–612 (2004)

38. Zhou, K., Hu, Y., Lin, S., Guo, B., Shum, H.Y.: Precomputed
shadow fields for dynamic scenes. In: Proceedings of ACM SIG-
GRAPH 2005, pp. 1196–1201 (2005)

39. Zhukov, S., Inoes, A., Kronin, G.: An ambient light illumination
model. In: Rendering Techniques ’98, pp. 45–56 (1998)

