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Surface- and Contour-Preserving
Origamic Architecture Paper Pop-Ups

Sang N. Le, Su-Jun Leow, Tuong-Vu Le-Nguyen, Conrado Ruiz Jr., and Kok-Lim Low

Abstract—Origamic architecture (OA) is a form of papercraft that involves cutting and folding a single sheet of paper to produce
a 3D pop-up, and is commonly used to depict architectural structures. Because of the strict geometric and physical constraints,
OA design requires considerable skill and effort. In this paper, we present a method to automatically generate an OA design that
closely depicts an input 3D model. Our algorithm is guided by a novel set of geometric conditions to guarantee the foldability
and stability of the generated pop-ups. The generality of the conditions allows our algorithm to generate valid pop-up structures
that are previously not accounted for by other algorithms. Our method takes a novel image-domain approach to convert the
input model to an OA design. It performs surface segmentation of the input model in the image domain, and carefully represents
each surface with a set of parallel patches. Patches are then modified to make the entire structure foldable and stable. Visual
and quantitative comparisons of results have shown our algorithm to be significantly better than the existing methods in the
preservation of contours, surfaces and volume. The designs have also been shown to more closely resemble those created by
real artists.

Index Terms—computer art, papercraft, paper architecture, surface segmentation, shape abstraction, pop-up foldability, pop-up
stability.
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1 INTRODUCTION

PAPER pop-up books have long fascinated people
of all ages. Historically, “movable books” had

been created for scientific and historical illustration.
Recently, pop-ups have employed creative mecha-
nisms to convey stories or even portray art. Some
notable works include Carter’s series of Dot books [1],
Alice’s Adventures in Wonderland [2], and ABC3D
[3]. In addition, pop-ups also have practical scientific
applications. In microelectromechanics, pop-up tech-
niques could be used to transform 2D patterns into
3D surfaces for fabricating microstructures [4], [5].

Origamic Architecture (OA) is an intriguing type of
paper pop-ups developed by Masahiro Chatani in
the early 1980s. Each OA pop-up uses only a single
piece of paper, and is constructed by only cutting
and folding without the need for gluing. These strict
geometric constraints make it highly challenging for
ones to manually design paper layouts for non-trivial
OA pop-ups. However, artists have been able to create
interesting and intricate 3D structures, such as the two
examples shown in the leftmost column of Fig. 2.

Essentially, a “valid” OA pop-up must be stable and
foldable. This means the structure must not only pop
up when opened, but also fold completely flat when
closed, and all this would require only holding and
moving the outermost area on each half of the paper.
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Fig. 1: Hand-made paper pop-ups (right) constructed
from the OA designs produced by our algorithm
given the input 3D models (left).

Unlike other types of papercraft, such as origami,
studies of the mathematical and computational as-
pects of OA pop-ups are relatively scarce. There is
considerable literature on how to manually design OA
pop-ups [8], [9], [10], [11], and there have also been
a number of works that developed computer-aided
tools to assist users in the design process [12], [13],
[14], [15]. Nonetheless, these tools require the user
to manually position the individual patches, which
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Fig. 2: (Left) OA pop-ups of the Colosseum and the Rialto Bridge designed by artists [6], (middle) by our
system, and (right) by the method of Li et al. [7].

can still be very labor-intensive and skill-demanding.
Recently, Li et al. [7] proposed a completely automatic
method for generating OA designs from 3D models.
However, the class of pop-up geometry allowed by
their algorithm is quite limited, which we have ob-
served to be clearly insufficient to approximate some
common shapes. Their algorithm also produces inac-
curate patch contours due to the voxel discretization.
Using a higher-resolution 3D grid may mitigate the
problem, but it incurs large memory requirement, and
often results in pop-ups with an excessive amount of
cuts and folds. This makes the OA designs impractical
for construction into real pop-ups.

In this paper, we present a method to automatically
generate an OA design that closely depicts an input
3D model. We propose a new set of geometric condi-
tions for the foldability and stability of OA designs.
The generality of the conditions allows valid pop-
up structures that are previously not accounted for
by other algorithms. This formulation serves as the
foundation of our automatic algorithm for produc-
ing valid OA pop-ups. Our algorithm takes a novel
image-domain approach to convert the input model to
an OA design. The result is a 2D layout (called an OA
plan) that is marked with lines and curves to indicate
where to cut and fold to construct the pop-up. The
steps of our algorithm are summarized in Fig. 3.

Some of our results are shown in Fig. 1 and Fig. 2
(middle column). In particular, in the OA plans in
Fig. 2, the red and green lines indicate folds, and black
lines indicate cuts. Also in Fig. 2, one can compare our
results with the designs from artists [6], and with the
results from the OA tool by Li et al. [7]. Note that all
results (including the artists’ designs) are based on

the same input 3D models shown in the left column
of Fig. 1. In general, our method is better than [7] in
preserving the contours, surfaces and volume of the
input models, and the resulting pop-ups often require
significantly fewer cuts and folds.

The main contributions of this work are as follows:
1) We present a set of more general geometric

conditions for the foldability and stability of OA
designs. These conditions cover a wide range of
pop-up geometry, allowing our automatic OA
design algorithm to closely approximate more
shapes than the existing methods.

2) We propose a novel algorithm for creating OA
designs using an image-domain approach that is
better in preserving the contours, surfaces and
volume of the input models.

3) We propose an effective algorithm for checking
and fixing the stability of any arbitrary foldable
OA. This stabilization algorithm can be easily
embedded in other OA design systems.

2 RELATED WORK
Besides paper pop-ups, other types of papercraft have
also been studied in the fields of mathematics and
computing. For example, kirigami, the Japanese art of
cutting and fastening pieces of paper, has been the
subject of a number of studies. Several interactive
methods for designing 3D objects from pieces of
paper have been proposed by [16], [17], [18]. Similarly,
algorithms for Chinese paper-cutting, an art-form that
is often used for designing decorative patterns and
figures, have been presented by [19], [20].

Origami, the Japanese art of folding, is another well-
studied papercraft technique. Notable recent books
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Fig. 3: Steps in our automatic OA design algorithm.

on the mathematical formulations of origami are [21]
and [22]. Recently, an interactive system for origami
design from polyhedral surfaces has been presented
in [23]. The formulations in origami and OA differ
significantly and cannot be easily ported to each
other. In particular, OA allows cutting and its folding
mechanisms are much more restricted than those in
origami.

On paper pop-ups, Glassner [13], [24] described
the use of simple geometry to create various pop-
up mechanisms. Hendrix and Eisenberg [14] designed
a computer application called “Popup Workshop” to
introduce children to the crafting and engineering
discipline of paper pop-ups. Iizuka et al. [25] pre-
sented an interactive system that detects collisions
and protrusions for v-folds and parallel folds. Lee
et al. [12] also developed a model for simulating the
opening and closing of parallel v-folds. Recently, Abel
et al. [26] proposed a polynomial-time algorithm that
creates pop-ups by subdividing a polygon into single-
degree-of-freedom linkage structures.

Only a few studies have focused on origamic archi-
tecture in particular. The pioneering work in OA came
from Mitani and Suzuki [15], who created a computer
application that allows users to construct OA models
by positioning and designing the horizontal and verti-
cal faces. Although it can check for the validity of the
pop-up designs in a number of cases, it does not work
with cases that have dangling parts. Other similar
systems include [27] and [28]. All these approaches
for OA design require heavy user interactions and the
users need to have adequate knowledge of the OA
geometric constraints.

The most notable recent work on OA was from Li et
al. [7]. They are the first to have an algorithm that fully
automates the design of OA pop-ups to resemble the
input 3D models. However, as mentioned previously
in this paper, their method has some major shortcom-
ings, which we aim to address in our current work.
In their later work [29], Li et al. extended the same
notion of validity to a more general class of v-style
pop-ups.

Our formulation of the new OA geometric con-

ditions is very much inspired by that of Li et al.
[7]. However, our algorithm is inspired by the work
of slice-based shape abstraction [30]. Perception and
vision research has strongly emphasized the impact
of contours created by slicing smooth surfaces in the
visualization of 3D models [31], [32]. These contours
have been shown to be effective in capturing the
important shape information of the objects [33], [34].
They may even appear more appealing than the orig-
inal models, which can be visually cluttered [35]. In
the same spirit, our algorithm explicitly slices each
smooth surface of the input model into a set of parallel
patches to capture the contours.

3 OA FORMULATION

An OA pop-up is created from a single rectangular
sheet of paper by cutting and folding. More specifi-
cally, the sheet of paper is divided into a number of
non-overlapping regions called patches, whose bound-
aries are marked with cut lines and straight fold lines.
Among these patches, the back patch pB and the floor
patch pF are two special outermost patches that share
a central fold line (see Fig. 4(a)). We call this paper
layout an OA plan.

To aid our subsequent presentation, we position the
OA pop-up in a right-handed orthogonal coordinate
system, as shown in Fig. 4(c, d), in which the x-axis
is parallel to the central fold line, and the z-axis is
perpendicular to the x-axis and parallel to the floor
patch. We also call the angle between pF and pB the
opening angle θ. When θ = 180◦, the OA is said to
be fully opened; when 180◦ > θ > ε for an arbitrary
small positive angle ε, the OA is in a pop-up state; and
when θ ≤ ε, the OA is said to be fully closed or folded
flat. Note that the opening angle cannot be exactly 0◦

because the patches are not allowed to overlap.
In this work, we focus only on the design of a

common type of OA called parallel OA, in which all
the fold lines must be parallel to the central fold line.
This is also the type of OA addressed by Li et al. in
[7].
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(a) (b)

(c) (d)

Fig. 4: (a) An OA plan with cuts (solid lines) and folds
(dashed lines), (c) which can pop up at any arbitrary
angle. (b) A non-foldable OA plan, (d) which is stuck
during folding.

3.1 OA Plans
To formally define an OA plan, we first define the
followings.

Definition 1. Two patches pa 6= pb are said to be adjacent
if and only if they share a common fold line.

Definition 2. Let P = {p0=pa, p1, . . . , pn−2, pn−1=pb}
be an ordered set of n distinct patches. If pi, pi+1 are
adjacent for all 0 ≤ i ≤ n − 2, we say that pa and pb
are connected and P is an n-path from pa to pb.

We now define an OA plan as

Definition 3. An OA plan is a set of patches where
1) All patches are co-planar and form a rectangular

domain with possible holes.
2) They are non-intersecting, except at their boundaries.
3) For every patch p, there exists a path from pB to pF

that contains p.

The first two properties are universal for general
origamic architecture layouts [7], [15]. However, such
general layouts may contain “floating” patches, which
are not adjacent to any other patch, or “dangling”
patches, which are not connected to pB and pF . Hence,
Property 3 is defined to keep all the patches connected
to both pB and pF .

3.2 Foldable OA Plans
For our OA formulation, we make the assumption
that the paper has zero thickness, and each patch is
rigid. A fold line between two adjacent patches acts
like a hinge that allows the patches to freely rotate
about each other.

An OA plan as defined above does not guarantee
that the OA can be folded from a fully-opened state
to a fully-closed state without violating the patch
rigidity assumption. Fig. 4(b, d) show such an OA
plan, which is stuck during its folding process. A

valid OA plan should be foldable from θ = 180◦

to θ = ε without bending the patches and affecting
the pairwise adjacency and non-intersection of the
patches. If so, we say the OA plan is foldable.

At each opening angle, a possible set of relative
positions of the patches, with respect to pF and pB ,
is called a configuration. When all the patches are
parallel to pF or pB , we have a parallel configuration.
By considering this special configuration, we have the
condition for a foldable OA plan as follows.

Proposition 1. An OA plan is foldable if and only if
this plan is the projection of a parallel configuration along
vector w onto the xz-plane, where w is perpendicular to
the x-axis and bisecting the corresponding opening angle.

The proof of the sufficiency of Proposition 1 can
follow that in [7]. Its necessity can be proved trivially:
as no patch is floating or dangling, the opening of an
OA from the considered parallel configuration to 180◦

is equivalent to projecting the patches along w onto
the OA plan.

Proposition 1 is used in our automatic OA design
algorithm to guarantee that when the representative
patches are modified, the resulting OA is foldable
(see Section 4.3). In addition, its necessity condition
provides an easy way to detect a non-foldable OA.

3.3 Stable OA Plans

In practice, an OA can be fully opened, popped up,
and fully closed simply by turning only the back and
floor patches, without the need to apply any external
forces to the other patches. If the back and floor
patches are held stationary, other patches must also
remain stationary. In other words, the OA needs to
be stable. In this section, we present a new stability
condition for parallel OAs. We first define the follow-
ings.

Definition 4. A fold line is said to be stable if it is not
movable at each opening angle of the OA. A patch is said
to be stable if at least two non-collinear fold lines on it are
stable. An OA plan is said to be stable if all of its patches
are stable.

Existing studies have only defined a narrow set of
conditions for the stability of parallel OA. Specifically,
a patch is considered stable if it is the back or floor
patch, or it lies in a 3-path or 4-path that connects
two stable patches [7], [26]. These conditions limit the
set of possible valid patch arrangements and could
seriously handicap the preservation of shapes and
volume, as demonstrated in Section 5.

To facilitate our discussion, we specifically define
the parallel configuration at θ = 90◦ the orthogonal
configuration, because every pair of adjacent patches
are orthogonal to each other. The orthogonal con-
figuration is significant because the input model is
approximated at this opening angle.
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We consider an OA plan initially constructed from
the projection of an orthogonal configuration in the
(0,−1,−1) direction onto the xz-plane. This OA plan
is foldable (by Proposition 1), and we further formu-
late the conditions that make it stable.

Let P = {p0=pB , p1, . . . , pn, pn+1=pF } be a path
connecting the back and floor patches. Along P, we
mark p2k as even and p2k+1 as odd patches, where
0≤k≤bn/2c. In a parallel configuration, the even and
odd patches are respectively parallel to pB and pF .
As a result, if a patch is even (odd) in one path, it is
also even (odd) in all other paths from pB to pF . We
further define two special sets of patches.

Definition 5. The B-set (F -set) is the set of patches that
are always parallel to pB (pF ) at any opening angle.

It is clear that if an even (odd) patch is stable, it will
be in the B-set (F -set). We aim to make every patch
belong to either of these two sets. To achieve that, we
define a new type of connection.

Definition 6. Two patches p1 and p2 are said to be
doubly-connected if there exist non-coplanar patches q1
and q2 such that pi and qj are adjacent for all i, j ∈ {1, 2}.
Patches q1 and q2 are also doubly-connected and the
structure {p1, q1, p2, q2} is called a double connection.

Fig. 5: (Left) An OA containing two double connec-
tions, and (right) its side view.

Corollary 1. Consider two doubly-connected patches p1
and p2. If p1 is in B-set (F -set), then p2 must also be in
the same set.

Proof: Recall that the OA is temporarily in a paral-
lel configuration. The double connection between p1
and p2 immediately makes them always parallel to
each other. Hence, both belong to B-set (F -set).

Corollary 2. In an n-path P from pB to pF , if
1) one of its even (odd) patches is in B-set (F -set), and
2) bn/2c pairs of even (odd) patches are doubly-

connected,
then all the even (odd) patches in P belong to B-set (F -set).
We call P a B-path (F -path).

Proof: Path P consists of patches alternately par-
allel to pB and pF . Thus, if it contains n patches,
the number of even patches and the number of odd

patches are both at most bn/2c + 1. From this obser-
vation and Corollary 1, it is clear that Corollary 2 is
also true.

The even (odd) patches in a B-path (F -path) are
always parallel to pB (pF ). We can easily “stabilize”
that path by making its odd (even) patches also
parallel to pF (pB). To do so, we utilize monotonic paths
and near-monotonic paths, which are defined as follows.

Definition 7. A B-path (F -path) is said to be monotonic
if the perpendicular distances from its even (odd) patches
to pB (pF ) form a monotonic sequence.

Fig. 6(a) illustrates an OA with a monotonic path,
which can be used to approximate staircase-like mod-
els.

(a) (b) (c)

Fig. 6: (Top) (a) An OA that contains a monotonic
path, and (b, c) the two cases of near-monotonic B-
paths. (Bottom) Side views of the OAs.

Definition 8. A B-path P = {p0, p1, . . . , p2k+1} is said
to be near-monotonic if d0, d2, . . . , d2k, the perpendicular
distances from its even patches to pB , satisfy

1) d0 < d2k < d2k−2 < . . . < d4 < d2, or
2) d0 > d2k > d2k−2 > . . . > d4 > d2.

Similarly, an F -path P = {p0, p1, . . . , p2k+1} is said to
be near-monotonic if d1, d3, . . . , d2k+1, the perpendicular
distances from its odd patches to pF , satisfy

1) d1 < d2k+1 < d2k−1 < . . . < d5 < d3, or
2) d1 > d2k+1 > d2k−1 > . . . > d5 > d3.

Fig. 6(b, c) illustrate respectively the first and
second cases of near-monotonic B-paths. Near-
monotonic paths are important for preserving concave
shapes in the input models.

We now present the conditions for stable patches.

Proposition 2. If a path connects two stable patches and
is monotonic or near-monotonic, then all of its patches are
stable.

Proof: Here we prove Proposition 2 for B-paths,
as F -paths can be proved similarly. Fig. 7 illustrates
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the (a) monotonic and (b) near-monotonic paths as
seen from the side view. In this view, the patches are
represented as line segments.

Consider a B-path P = {p0, p1, . . . , pn, pn+1} con-
necting stable patches p0 and pn+1. Without loss of
generality, we assume that the first and last even
patches in P are p0 and pn. At each opening angle,
there exists a parallel configuration of P, since the OA
plan is created from the (0,−1,−1) projection of the
orthogonal configuration. We show that this parallel
configuration is also the only possible configuration,
which leads to the conclusion that the patches are
stable.

Let lk be pk’s length and Ok be the fold between
pk and pk+1. We also denote u (v) as the unit vector
parallel to pn+1 (p0) and pointing away from On (O0).
In a general configuration, let u2i+1 be the unit vector
parallel to p2i+1, pointing away from O2i. As P is a
B-path, p2i are always parallel to v.

(a) (b)

Fig. 7: (a) Side views of a monotonic and (b) a near-
monotonic B-paths connecting stable patches p0 and
pn+1. At each opening angle, the parallel configura-
tion (above) is shown to be the only possible configu-
ration. The non-parallel ones (below) are impossible.

We consider the two types of paths.

Monotonic. If P is monotonic, then d0 < d2 < . . . <
dn (Fig. 7(a)). For the parallel configuration, we have

On = O0 +

bn/2c−1∑
i=0

(l2i+1u)−
bn/2c∑
i=1

(l2iv) .

For a general configuration, we have

On = O0 +

bn/2c−1∑
i=0

(l2i+1u2i+1)−
bn/2c∑
i=1

(l2iv) .

Equating the RHS of the above two equations leads
to

bn/2c−1∑
i=0

(l2i+1u2i+1) =

bn/2c−1∑
i=0

(l2i+1u) .

This equality occurs if and only if u2i+1 = u for
all 0 ≤ i ≤ bn/2c − 1, which means all the odd

patches are parallel to pn+1. As P forms a parallel
configuration and p0, pn+1 are stable, all its other
patches are also stable.

Near-Monotonic. If P is near-monotonic, without
loss of generality, we assume the case where d2 >
d4 > . . . > dn−2 > dn > d0 (Fig. 7(b)). For the parallel
configuration, we have

O1 = O0 + l1u

= On +

bn/2c−1∑
i=1

(l2i+1u) +

bn/2c∑
i=1

(l2iv) .
(1)

In addition,

l1 = l0n +

bn/2c−1∑
i=1

l2i+1 (2)

where l0n is the difference between O0 and On’s
coordinates along the u-axis.

Eqs. (1) and (2) lead to

O0 = On +

bn/2c∑
i=1

(l2iv)− l0nu. (3)

For a general configuration, we have

O1 = O0 + l1u1

= On +

bn/2c−1∑
i=1

(l2i+1u2k+1) +

bn/2c∑
i=1

(l2iv) .
(4)

Substituting Eqs. (2) and (3) into (4), we obtain

l0nu1+

bn/2c−1∑
i=1

(l2i+1u1) = l0nu+

bn/2c−1∑
i=1

(l2i+1u2k+1) .

This equality occurs if and only if u = u2k+1 = u1

for all 1 ≤ i ≤ bn/2c − 1, which means all the odd
patches, including p1, are parallel to pn+1. Similar to
the case of monotonic paths, this condition makes all
the patches on P stable.

Proposition 2 leads to an effective approach for
OA stabilization, as presented in Section 4.4. Unlike
[7], in which the OA is created to simultaneously
guarantee foldability and stability, we can take as
input an arbitrary foldable OA and make it stable. As
a result, our stabilization technique can be embedded
into other OA design systems and allows independent
improvements of other steps.

4 AUTOMATIC OA DESIGN

In this section, we present our algorithm for automatic
OA design. The input is a 3D model, represented as
a polygonal mesh, which is positioned by the user
between the two orthogonal planes (the xy and xz
planes). The output of our system is a foldable and



IEEE TRANSACTION ON VISUALIZATION AND COMPUTER GRAPHICS 7

(a) (b) (c)

Fig. 8: A house model is being converted to an OA.
(a) Its depth map D and normal map N, (b) OA plan,
and (c) cross section of the patches along the purple
line.

stable OA plan that can be popped up into the desired
structure at 90◦ opening angle.

We compute this OA plan by first constructing
the patches in the orthogonal configuration, and then
projecting them in the (0,−1,−1) direction onto the
xz-plane. Our method is carried out in four steps
(shown in Fig. 3).

1) Surface Segmentation. We divide the input
model into non-overlapping, smooth surface
segments. The surface segmentation facilitates
the creation of patches in the next step.

2) Generating representative patches. A set of
parallel patches is generated to estimate the
curvatures and details of each surface segment.

3) Constructing a foldable OA plan. We connect
the representative patches so that their projec-
tions along (0,−1,−1) onto the xz-plane is a
foldable OA plan, according to Proposition 1.

4) Stabilizing the OA plan. Utilizing Proposi-
tion 2, we check whether the patches are stable.
If they are not, we stabilize them by constructing
extra supporting patches.

Our algorithm operates on a depth map of the input
model instead of directly on the polygonal mesh.
To obtain the depth map, it sets up a 45◦ ortho-
graphic view, which looks at the central fold line along
the projection vector (0,−1,−1). The image plane is
placed perpendicular to this vector so that it intersects
with the xz- and xy-planes at (t, 0, 1) and (t, 1, 0)
lines, respectively (see Fig. 8(c)). We define i and j
as the orthonormal basis of this image plane, which
are parallel to (0, 1,−1) and (1, 0, 0) respectively. Our
OA plan can be computed completely in the 45◦

orthographic view (Fig. 8(a, b)).
From this view, we render the depth map D and

normal map N of the visible input surfaces enclosed
by the two orthogonal planes. The normal vectors in
N are all scaled to unit length. The depth values in D
are measured from the image plane and range from 0
(points on the image plane) to

√
2/2 (points on the

central fold line). The details of the four steps are
elaborated in the following subsections.

4.1 Surface Segmentation
In order to better preserve the curvatures and bound-
aries of the input surfaces, we hope each surface can
be represented by a separate set of parallel patches.
To extract the surfaces, some mesh segmentation algo-
rithms [36], [37] can be used, but our algorithm simply
uses image segmentation to partition the depth map
D into surface segments.

Essentially, the surface segmentation works by lo-
cally fitting a quadratic surface on the segmented
pixels in the neighborhood of a candidate pixel. The
candidate pixel is considered to be in the same seg-
ment if it is near this quadratic surface.

Our algorithm uses the depth map D and normal
map N to perform the segmentation. It determines
whether each candidate pixel x should remain in the
current segment by thresholding f(x)−q(x), where
f(x) is a vector consisting of the depth value and
the x-, y-, z-components of the normal vector at x,
and q(x) is the quadratic approximation from the
previously segmented pixel x0:

q(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)

2.

The derivatives of f are estimated from the neigh-
boring pixels in the current segment. We make pixel x
belong to a new segment if f(x)−q(x) exceeds the pre-
defined thresholds in D or N. Over-segmentation may
occur due to noise and small geometric features. It is,
however, tolerable because the slicing in Section 4.2
will produce patches in the same orientations if the
segments have similar gradients.

4.2 Representative Patches Generation
After the input model is divided into distinct smooth
segments, we want to generate a set of parallel rep-
resentative patches to preserve both overall curvature
and detailed contours of each segment.

To achieve that, we first determine whether the
patches should be horizontal or vertical, then create
them by “slicing” each segment using a number of
parallel planes in the selected orientation. Each patch
is the union of all the cross-sections of the surface seg-
ment between two consecutive slices, and is entirely
visible in the 45◦ orthographic view. The process of
generating the representative patches consists of three
main steps.

4.2.1 Determining the slicing orientation
We observe that a segment can be represented better
by vertical patches, which are parallel to the xy-plane,
if its gradient changes more significantly along the
y-axis than along the z-axis. Otherwise, it should be
represented by horizontal patches.

From this observation, we determine the slicing ori-
entation by comparing dz/di(x) and dy/di(x), the av-
erage z- and y-gradients along the i-axis (see Fig. 8(c))
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Fig. 9: (a) An input surface is to be represented by a set of vertical slices, which are (b) first positioned to
satisfy the minimum patch width threshold and constant gap-gradient ratio. (c) The slice positions are then
optimized to minimize the contour discontinuity, while maintaining the gap-gradient ratio. (d) Finally, the
contour of the original hole is projected onto the corresponding patch. The bottom row shows the side view
for each step.

of all pixels x in depth map D that belong to the
considered segment. We slice using vertical planes if
dz/di(x) > dy/di(x), and horizontal planes otherwise.

4.2.2 Positioning the slices
Having determined the orientation for the slices,
we proceed to find their positions along the y-axis
(horizontal slices) or z-axis (vertical slices). They are
computed according to three criteria.

Criterion 1: We aim to make the OA plan easy to
cut by preventing the patches bounded by two con-
secutive slices from being thinner than wmin, which
is a threshold proportional to the segment’s area. We
constrain the width of a patch in the 45◦ image space
using the dilation operation in morphological image
processing [38]. At each slicing position s, we estimate
the minimum gap gmin(s) such that the width of the
patch bounded by two slices at s and s+gmin(s) is at
least wmin (see Fig. 9(b)).

Criterion 2: Using only Criterion 1 may result in
too many slices, especially on steep surface. To control
this, each slicing gap is kept proportional to the square
root of the average surface gradient perpendicular to
the slice. We observe that maintaining a constant ratio
r = g(s)/

√
grad(s) over every slice s results in a

more pleasant approximation, where g(s) and grad(s)
are the slicing gap and the average surface gradient
perpendicular to s.

Criterion 3: We want to avoid slicing through holes
by minimizing the total discontinuity along the slice
contours. We measure contour discontinuity as the
maximum distance between two contour pixels that
are both adjacent to another surface segment. We
denote this as dis(s) for each slice s.

To achieve Criteria 1 and 2, we start from the posi-
tion s∗ where the surface gradient is greatest. We place
two slices at s∗ and s∗+gmin(s

∗), and compute the
desired gap-gradient ratio, r = gmin(s

∗)/
√
grad(s∗).

We then estimate the positions of other slices such
that the corresponding ratio at every slice is equal to r.

These initial positions guarantee that all the patches’
widths are not smaller than wmin, and a constant ratio
r is maintained over the segment (see Fig. 9(b)).

To optimize the slice positions for Criterion 3, we
use dynamic programming to minimize the disconti-
nuity on the slices. Let s1, s2, . . ., sn be the initial slice
positions that satisfy Criteria 1 and 2, and [s1], [s2],
. . ., [sn] be small ranges around them, which allow
flexibility in slicing. We define Dis(k, s) as the total
contour discontinuity up to slice k at position s ∈ [sk].

We compute the minimum total discontinuity as

Dis(k, s) = Dis(k−1, sprev(k, s)) + dis(s)

where sprev(k, s) is the position of slice k−1 that
produces the minimum discontinuity up to that slice:

sprev(k, s) = argmin
s′

(Dis(k−1, s′)).

To maintain the gap-gradient ratio, s′ can only lie
within the intersection [sk−1] ∩ [s− r·

√
grad(s)]. The

latter range is computed from [s] so that the slicing
gap satisfies the desired ratio r.

Eventually, after obtaining the minimum Dis(n, s),
we use sprev to find the optimal positions for all the
slices (see Fig. 9(c)).

In our slice positioning algorithm, the slices may
still cut through holes in the input surfaces if they are
big. In our system, the user can handle such case by
using an appropriate wmin and interactively adjusting
the affected slices based on their computed positions.

4.2.3 Projecting surface contours
After slicing the surface segment to create the repre-
sentative patches, we reconstruct the holes and sharp
corners by projecting their contours onto the patches
(see Fig. 9(d)). In the 45◦ orthographic view, we project
pixel (ix, jx) on the original surface to pixel (i′x, j′x) on
the corresponding patch p using the transformation{

i′x = ix + (−1)k(d(p)− d(x))/
√
2

j′x = jx
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Fig. 10: All possible relative positions of pa and pb. The first row shows connectable patches. Red segments
represent the parts on existing patches that need to be removed. Black and dashed blue segments represent the
remaining parts and the new connections to be added, respectively. The second row shows non-connectable
patches. The rightmost diagram illustrates the connecting result for Case (f) in the 45◦ view.

where d is the distance measured from the xy (xz)
plane and k = 1 (k = 0) if p is vertical (horizontal).
Note that we only need to reconstruct the parts that
are visible in the 45◦ orthographic view.

4.3 Foldable OA Plan Construction
The representative patches have been created as non-
overlapping continuous regions in the 45◦ view. Their
projections along the (0,−1,−1) direction onto the xz
plane satisfy Properties 1 and 2 of an OA plan. We
connect the patches to fulfill Property 3.

Consider pa and pb, two patches sharing a non-
vertical boundary in the 45◦ image space. Without loss
of generality, we assume that pa and pb lie respectively
above and below their shared boundary in this space.
These two patches are adjacent if they also touch each
other at their actual boundary in 3D space. If they are
not adjacent, we may need to connect them to form a
path from pB to pF . However, because all the patches
need to be visible in the 45◦ view, pa and pb are only
connectable if they satisfy{

m(y(pb)) + δ
√
2 ≤ m(y(pa))

m(z(pa)) + δ
√
2 ≤ m(z(pb))

where δ is the minimal width allowed for each patch
in the 45◦ view. If pb is vertical and pa is horizontal,
then m is the min function (Fig. 10(a, b)), otherwise
m is the max function (Fig. 10(c, d, e, f)).

If two connectable patches are not parallel, we
create a new connection by extending one of them in
the plane of the patch (Fig. 10(a, b, c, d)). If they are
both vertical (Fig. 10(f)), their orthogonal connecting
patch is created to replace the bottom portion of pa.
We make the connecting patch as wide as possible
such that the new fold line that replaces the top
boundary of pb is still a good approximation (within
a predefined gap threshold) of the original bound-
ary. The case when both pa and pb are horizontal
(Fig. 10(e)) are handled analogously.

We also define the connecting cost between pa and
pb as the total length of the parts added and removed
when connecting pa and pb. This cost is zero if they
are adjacent.

Given the connectability of patches, we keep con-
structing the least-cost paths from pB to pF until no
more patch can be added. Each path is evaluated
based on the total connecting cost. If a patch cannot
be added to any path from pB to pF , we merge it
into the nearest parallel patch that shares with it a
non-vertical boundary in the 45◦ view. If it cannot be
merged, we simply discard it.

Fig. 11: A 3D model is approximated by a set of
representative patches, which then go through the
connecting-merging process to form a foldable OA.

The connecting-merging process may not preserve
the input surfaces well. In Fig. 11, Patch 1 is merged
into Patch 2, which fills up the original alcove. How-
ever, the resulting patches now satisfy both Defini-
tion 3 and Proposition 1, hence, their projection along
(0,−1,−1) on the xz-plane forms a foldable OA plan.

4.4 OA Plan Stabilization
To make the OA plan stable, we repeatedly stabilize
the paths of patches in three steps: (1) sorting the
paths, (2) stabilizing the best one, and (3) updating
them. We divide the paths so that each of them starts
and ends with stable patches, but does not visit any
other stable ones.

4.4.1 Sorting the paths
First, we need to determine a metric for path com-
parison. If an n-path P contains nB pairs of doubly-
connected even patches that belong to the B-set,
we can make the other n∗B = bn/2c−nB even pairs
doubly-connected by adding n∗B odd patches to them.
According to Corollary 2, P will then become a B-
path. Similarly, we denote n∗F as the number of even
patches we can add to make P an F -path.
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These values give us n∗P = min(n∗B , n
∗
F ), a measure-

ment for path comparison. We say that path P1 is
better than path P2 if one of the following conditions
is true:

1) n∗P1 < n∗P2;
2) n∗P1 = n∗P2, and P1 is monotonic but not P2;
3) n∗P1 = n∗P2, neither P1 nor P2 is monotonic, and

P1 is near-monotonic but not P2;
4) n∗P1 = n∗P2, P1’s and P2’s monotonicity and near-

monotonicity are the same, but P1 visits more
patches than P2.

Based on these conditions, we sort the paths from
the best to the worst.

4.4.2 Stabilizing the best path
We stabilize the patches along the best path P by
making it monotonic or near-monotonic. First, we
need to ensure that P is a B-path or F -path. Assuming
n∗P = min(n∗B , n

∗
F ) = n∗B > 0, we consider n∗B pairs of

non-doubly-connected even patches with the smallest
pairwise distances. We add a new connection for each
pair to make it doubly-connected.

Suppose pa and pb are one of those pairs, in which
pb’s coordinate is greater. Let pc be their existing con-
nection and pd be the new one to be added. We choose
a set of potential positions for pd along pb’s upper
boundary where the gradients along the boundary are
the smallest, so that the horizontal fold line between
pb and pd does not alter pb’s boundary significantly.
From these positions, we pick the one farthest from
pc to avoid a degenerated double connection.

At the final position of pd, we maximize pd’s width
such that the horizontal fold line between pb and pd is
still a good approximation of pb’s boundary within a
given threshold. However, in staircase-like structures,
such as the one in Fig. 6(a), pa, pb and pc span the
same interval in the j-coordinate, within which pd is
also created. In such a case, we limit pd’s width to 1/6
of pc’s.

After the double connections are created to make P
a B-path, if it is monotonic or near-monotonic then all
of its patches are stable, according to Proposition 2.
Otherwise, we use merging to transform P into a
monotonic path, which we describe below.

Similar to the foldable OA construction, merging
of a patch p is done with the nearest patch p′ that
is parallel to p. When zp < zp′ , we have a forward
merging. Otherwise, the merging is backward.

In details, let P = {p0, p1, . . . , pn} be a B-path with
p2i in B-set. We assume that the last even patch has
greater z-coordinate than the first one. For each i
starting from 0, we find the first j > i such that
zp2j > zp2i . If i+1 < j ≤ bn/2c, along the sub-
path {p2i+2, . . . , p2j−2}, we repeatedly merge the even
patch having the smallest z-coordinate forward until
we reach p2i or a stable patch (see Fig. 12 (top row)). If
j cannot be found, along {p2, . . . , p2i}, we repeatedly

merge the even patch having the greatest z-coordinate
backward until we reach p2bn/2c or a stable patch (see
Fig. 12 (bottom row)). Note that the merging process
may involve patches not belonging to P.

As no patch in P is stable, except the first and the
last ones, and the merging stops when we reach a
stable patch, this process does not break any existing
stable paths while making P monotonic.

Fig. 12: Two B-paths (thick lines) are made monotonic
by merging forward (above) and backward (below).
The dotted arrows show the merging direction. Other
patches not in these paths (thin lines) may also be
involved in the merging process.

4.4.3 Updating the paths
After the best path P is stabilized, we remove it from
the list of sorted paths. For each remaining path that
contains any newly stabilized patch, we break it into
smaller paths, each starting and ending with stable
patches, but not visiting any other stable ones. If
no more unstable path is found, the algorithm ends.
Otherwise, we go back to the first step and sort the
remaining paths. As the number of patches is finite,
this process finally stabilizes the whole OA.

During our OA creation, the patches are created in
the 45◦ image plane, which results in a compression in
the image’s vertical direction. Therefore, we need to
scale the image space by

√
2 along its i-axis to obtain

the final OA plan.

5 RESULTS

We show a number of OA designs automatically
generated by our system and compare them with the
results from Li et al. [7], which is the only other
automatic OA design system. In their implementation,
an OA can be generated at several voxel grid resolu-
tions, from 8×8×8 to 256×256×256. For comparison,
we choose their results at 256×256×256, the most
detailed, and 64×64×64, the most balanced between
contour preservation and voxel size, and the best
match to our slicing resolution.

In Fig. 2, the designs from both systems are com-
pared with artists’ creations [6]. We observe that Li’s
method [7] is unable to preserve the small archways in
the Rialto Bridge model, unlike in our system where
we can preserve them automatically. Furthermore, Li’s
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Fig. 13: OAs of the Stanford bunny and a chapel model. (Left) Our results, (middle) Li’s [7] results using
64×64×64 grid, (right) Li’s results using 256×256×256 grid.

Fig. 14: (Blue) OAs designed by our method, and (green) by the method of Li et al. [7] using 64×64×64 grid
to match our slicing resolution.

method cannot produce a good approximation of the
Colosseum model. This may be due to their stability
formulation, which does not preserve large concave
regions.

Fig. 13–14 compare our results with Li’s for more
input models. We smooth the highly bumpy bunny
model as a pre-processing step for both systems. The

figures illustrate the ability of our algorithm in pre-
serving smooth surfaces (e.g. the bunny, the sphere,
the torus), as well as sharp contours (e.g. the cross
of the chapel) and important creases (e.g. the edge
between two faces of the triangular prism).

Our novel stabilization is best demonstrated on the
Capitol Building model. Its main staircase is stabilized
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Fig. 15: (Left) Our result for the Capitol Building
model, and (right) Li’s [7] results using 64×64×64
grid. The bottom row shows close-ups of the staircase
structures.

as a monotonic path, which minimizes the change in
volume and shape, as compared to the stabilization
technique used in Li’s method [7]. In our implemen-
tation, we construct double connections on both sides
of the staircase to maintain symmetry.

Monotonic paths are also used for the Stanford
bunny, the Rialto Bridge (Fig. 1) and the trefoil knot
(Fig. 14) models, while near-monotonic paths are used
for the gate (Fig. 6) and the elephant (Fig. 14) models.

Percentage
Difference (%)

Li et al. [7] Ours
32 64 128 256

Chapel 13.78 9.41 4.46 2.63 2.4
Colosseum 44.03 45.3 41.93 40.9 5.59
Quarter-Sphere 25.72 10.1 8.72 8.12 8.7
Rialto Bridge 52.88 23.59 15.64 14.57 12.27
Stanford Bunny 15.44 10.77 9.95 8.17 11.6
Torus 139.49 91.28 84.38 81.19 21.57
Triangular Prism 13.66 6.63 3.95 2.16 3.32
Capitol Building 26.85 14.28 9.65 5.9 4.93

TABLE 1: Deviations from the input surfaces. Smaller
value means better approximation. Li’s method [7] is
run with various grid resolutions.

Besides a qualitative visual comparison, we com-
pare our results quantitatively by using the volu-
metric percentage difference to measure the surface
deviation between an OA and the original input sur-
faces. This is computed by accumulating the depth
difference at each pixel, and the sum is then divided
by the total volume of the depth map of the original
surfaces. The percentage differences of the OAs de-
signed by Li’s method [7] and our method are shown
in Table 1. Even though we use considerably fewer
cuts and folds, our volumetric percentage differences
are comparable to Li’s at their highest resolution for
most models. Especially, our results are significantly

Model Time Model Time
Stanford Bunny 35 Torus 9
Rialto Bridge 36 Complete Sphere 24
Colosseum 35 Trefoil Knot 10
Chapel 10 Taj Mahal 29
Triangular Prism 14 Elephant 26

TABLE 2: Time (in mins) to physically construct the
OAs designed by our algorithm.

Model Li et a.l [7] Ours
Cuts Folds Cuts Folds

Chapel 19 35 13 23
Stanford Bunny 77 188 29 57
Triangular Prism 246 517 25 55
Quarter Sphere 223 496 22 44
Torus 93 202 9 18
Trefoil Knot 12 27 8 17
Taj Mahal 43 85 34 53
Elephant 29 33 14 19

TABLE 3: Number of cuts and folds in the OAs.

Fig. 16: OA of the chapel model rotated by 30◦ about
the y-axis.

better for models with big concave surfaces, since our
algorithm can preserve them well.

To demonstrate the practicality of the OAs designed
by our algorithm, we also measure the time required
to physically construct the real OAs from the 2D de-
signs. Table 2 shows the approximate time in minutes
for a novice to cut and fold the pop-ups. In addition to
construction time, we count the number of cuts and
folds as another measurement of the complexity of
the designs. Except the Rialto Bridge model (whose
archways are not reconstructed by [7]), the Colosseum
and the complete sphere models (whose shapes are
not preserved by [7]), other models show that our
OAs require significantly fewer cuts and folds than
the corresponding OAs from [7] (Table 3). All of
the results presented were generated in at most 15
seconds running on a PC with an Intel Pentium (R)
Dual-Core 2GHz CPU and 4GB RAM.

Fig. 16 reveals some of the weaknesses of our algo-
rithm. It shows the OA of the chapel model rotated by
30◦ about the y-axis. Note that the OA is foldable and
stable. The major flat surfaces of the model are now
not aligned with the patch orientations, resulting in
unpleasant fragmentation of the surfaces in the OA.
Even though our algorithm does try to avoid slicing
through holes, sometimes this is inevitable when the
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holes are large, as highlighted by the red ellipse
“1”. Moreover, the slicing can break small details,
such as the cross highlighted by the red ellipse “2”.
In addition, because we slice each segment locally,
the slices on adjacent segments may not align well.
This may cause undesirable result when two adjacent
segments have multiple slices in different orientations.
Such a case is highlighted in the red ellipse “3” in
Fig. 16.

6 CONCLUSION AND DISCUSSION

In this paper, we present a method for automatic OA
generation grounded on a more comprehensive ge-
ometric formulation. Sufficient and necessary condi-
tions for the foldability of parallel OAs are presented.
These support our novel image-domain approach for
creating 2D plans that can fully pop up into parallel
patches, whose positions and contours closely depict
the geometric shapes of the 3D input models.

We also formulate a set of conditions for stabiliz-
ing OA structures. Our stability conditions are more
general than those in recent studies [7], [15], [26],
and are able to include all the structures we have
seen used by pop-up artists [6], [10], [11]. Utilizing
our novel double connections, we can stabilize OAs
without significantly affecting their shapes.

Visual and quantitative analyses show the ability
of our approach to design foldable and stable OAs
that both approximate the desired structures well and
are practical for real construction. Since we carefully
compute the slice positions and contours, our designs
can preserve the input surfaces while creating sig-
nificantly fewer cuts and folds, as compared to the
automatic OA tool of Li et al. [7].

Limitations and Future Work Although our al-
gorithm produces visually pleasing designs, it may
not always resemble some of the designer’s artistic
choices. For instance, in the Rialto Bridge model
(Fig. 2), the sharp tip of the roof is depicted by the
artist, but not in our design, because it is projected to a
horizontal fold line. Similarly, in our implementation,
the slicing width thresholds computed automatically
may not be desirable for users. These choices are
subjective and require further user studies. A possible
solution is to wrap our algorithm in an interactive
system, in which users can interactively specify the
desired details and patch width thresholds. Our fold-
able patches construction and stabilization technique
can also be integrated into other OA design systems,
such as [13], [14], allowing the user to have more
control over the design while keeping the pop-ups
valid.

In addition, due to the OA’s constraint of a single
piece of paper, we are not always able to preserve
highly concave regions, as shown with the float-
ing cube, complete sphere and trefoil knot models
(Fig. 14).

Our work also offers interesting possibilities for
future research. While the foldability conditions are
proved to be sufficient and necessary, it is still un-
known whether necessary conditions for stability
checking are achievable. Besides, generalizing the cur-
rent conditions to non-parallel OA will allow more
flexibility in patch creation and shape approximation.

We can extend our work to allow other types of
input representations, such as drawings and pho-
tographs. An algorithm for OA design from such
inputs will be exciting and may require single-view
reconstruction techniques [39].

In our current geometric formulation, we do not
take into account the real physical characteristics
of paper. However, in practice, the thickness, mass,
strength and elasticity of paper are important consid-
erations for OA design. It will be useful to estimate the
strength of an OA. If it encounters physical weakness,
careful adjustments will be needed to strengthen the
structure, while maintaining its geometric foldability
and stability.
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