
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Automatic Paper Sliceform Design
from 3D Solid Models

Tuong-Vu Le-Nguyen, Kok-Lim Low, Conrado Ruiz Jr., and Sang N. Le

Abstract—A paper sliceform or lattice-style pop-up is a form of papercraft that uses two sets of parallel paper patches slotted
together to make a foldable structure. The structure can be folded flat, as well as fully opened (popped-up) to make the two sets
of patches orthogonal to each other. Automatic design of paper sliceforms is still not supported by existing computational models
and remains a challenge. We propose novel geometric formulations of valid paper sliceform designs that consider the stability,
flat-foldability and physical realizability of the designs. Based on a set of sufficient construction conditions, we also present an
automatic algorithm for generating valid sliceform designs that closely depict the given 3D solid models. By approximating the
input models using a set of generalized cylinders, our method significantly reduces the search space for stable and flat-foldable
sliceforms. To ensure the physical realizability of the designs, the algorithm automatically generates slots or slits on the patches
such that no two cycles embedded in two different patches are interlocking each other. This guarantees local pairwise assembility
between patches, which is empirically shown to lead to global assembility. Our method has been demonstrated on a number of
example models, and the output designs have been successfully made into real paper sliceforms.

Index Terms—paper sliceform, lattice pop-up, paper scaffold, papercraft, computer art, shape abstraction.

F

1 INTRODUCTION

PAPER SLICEFORMS, also known as lattice-style pa-
per pop-ups, is a popular and frequently used

techniques in paper pop-ups books and cards. A
paper sliceform is a 3D structure consisting of mul-
tiple planar patches of paper. These patches usually
depict the cross-sections of a solid object, taken along
two orthogonal directions. Thin straight slots or slits
are cut on these patches along their intersections
such that the patches can be slotted together, and
the intersections act as hinges that allow the paper
sliceform to be opened (popped-up) or folded flat (no
folding of patches actually takes place since every
pair of intersecting patches rotate with respect to each
other about their intersection). From these sets of
orthogonal patches very intricate sliceforms can be
made. Examples of sliceforms are shown in Fig. 2.

Software tools such as Autodesk 123D Make and
SliceModeler for Google Sketchup have been available
for people to generate paper sliceform designs from
solid models [1], [2]. However, our experience with
these systems has found that making a valid sliceform
design can be difficult and often impossible. A com-
mon limitation of these systems is that they do not
guarantee that the final design is stable and it can be
physically assembled without the need to break some
patches, such as the unstable and interlocking rings
example shown in Fig. 3.

• T.-V. Le-Nguyen, K.-L. Low, C. Ruiz Jr. and S. N. Le are with the
Dept. of Comp. Science, National University of Singapore, Singapore
E-mail: tuongvu@gmail.com, {lowkl,conrado,lnsang}@comp.nus.edu.sg

(a) (b)

(c) (d)

Fig. 1. (a) An input 3D model (b) One of the 2D layout
pages generated by our algorithm (c) Rendering of the
synthetic paper sliceform (d) A real hand-made paper
sliceform assembled from the 2D layout.

We have developed an automatic algorithm that
generates paper sliceform designs from 3D solid mod-
els. The designs are guaranteed to be stable and em-
pirically validated to be physically realizable. Given
an input 3D solid model (represented as polygon
meshes), a sliceform design is generated by our sys-
tem as a set of 2D patches printed on one or more
pages. Each patch is indicated by its outlines, and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Fig. 2. Some examples of real paper sliceforms.

straight line segments are drawn to indicate slots.
Each patch is labeled with a unique number, and each
slot line is labeled with the ID of the patch that should
go into the slot. The user can print the design on real
paper, cut out the patches and slots, and assemble the
sliceform according to the labels. An example result
from our system is shown in Fig. 1.

Compared to the other variants of paper pop-ups,
such as v-style and origamic architecture pop-ups, pa-
per sliceform design poses a greater challenge in en-
suring physical realizability, since real paper patches
cannot intersect each other and there is the possibility
of interlocking cycles that prevent assembility.

Contributions Our objective is to automate the
design of realizable paper sliceforms. In achieving
this, we have made the following contributions:

• We present geometric formulations for feasibil-
ity and physical realization of sliceform designs,
which guarantee the stability, foldability as well
as the local pairwise assembility of the resulting
sliceforms.

• We describe a set of sufficient conditions that can
be used to construct stable sliceform designs.

• We have developed an efficient algorithm to
construct stable and flat-foldable sliceforms that
approximate the given 3D solid models.

• We demonstrate a computational method to pro-
duce physically realizable sliceform designs. The
algorithm guarantees local and pairwise assem-
bility between any two patches, which is em-
pirically shown to be equivalent to the global
assembility.

• We present a novel 3D shape abstrac-
tion/simplification method using a generalized
cylinder approximation and Reeb graph edge-
merging.

2 RELATED WORK

Recent studies in computational paper pop-ups have
been inspired by phenomenal paper pop-up books
created by paper engineers [3], [4]. While other forms
of papercraft, such as origami [5], have been ex-
tensively studied in the mathematical and computa-
tional setting, studies specifically on paper pop-ups
are scarce. Paper pop-ups however differ significantly
from origami, since its construction allows cutting
and the use of multiple sheets of paper that leads to

Fig. 3. Sample Autodesk 123D Make models. (Left)
Unstable patches—some patches of the bunny’s ears
are not connected. (Right) Unrealizable—the two inter-
locking rings cannot be physically assembled.

more complicated structures. On the other hand, the
types of folding in pop-ups are much more restricted;
as such, formulations for origami cannot be easily
ported.

Pop-up books use a variety of mechanisms. These
mechanisms are usually simply categorized into those
that consist of a single connected piece or multiple
pieces of paper [6]. The book by Sharp [7] is among
the few devoted specifically to sliceform pop-ups.

Computational Paper Pop-ups Early works in
computational paper pop-ups mostly focus on ex-
plaining the geometric properties and on the simu-
lation of specific pop-up mechanisms, such as v-style
folding mechanism [8], [9], [10]. More recently, a gen-
eral class of v-style pop-ups has been formulated by
Li et al. [11]. Origamic architecture pop-ups have also
been studied recently [12], [13]. In [8], [9], [11], [13],
mathematical formulations have been made to allow
computer aided design of pop-ups, in which users are
offered a set of primitive structures to build virtual
v-style or origamic architecture pop-ups. Feedback
on the validity and simulation of folding/closing of
the pop-up designs are often provided in real-time,
such as in the interactive systems developed by Iizuka
et al. [14] and Hendrix and Eisenberg [15]. Another
interesting system has also been demonstrated by
Hoiem et al. [16] that takes a photo and converts it
into a simple paper pop-up.

Except for the work by Mitani and Suzuki [17],
there has been very little research devoted to the study
of paper sliceforms. Although sharing similar fold-
ability problem with v-style and origamic architecture
pop-ups, sliceforms require additional treatment for
the physical realizability of the designs. Algorithms
for automatic design of v-style and origamic architec-
ture pop-ups have already been proposed [11], [12].
However, to the best of our knowledge, works in
automatic design of paper sliceforms have not been
reported. As shown in our later discussion, due to
the property that they only contain interlocking cross-
sections of the models, paper sliceforms are signifi-
cantly more difficult to design automatically. Existing
commercial CAD software tools for sliceform design
[1], [2] are still far from automatic and are even unable
to check for the validity of the designs.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

3D Solid

Model

�

�
�

�

�

�

�

�

�

�

�

�

� �

�

� �

�

Feasible Sca!old

Generalized Cylinder

Approximation
Paper Layout

Paper Realization

Generalized Cylinder

Feasible Sca!old!!

Sliceform Arragement

Fig. 4. The main steps in our algorithm.

Shape Simplification and Abstraction By reduc-
ing an input 3D model to a structure consisting
of a small set of patches, sliceform pop-up design
can be considered a form of model simplification or
abstraction. Many existing works provide techniques
to simplify a model by approximating its surface
with simpler representations [18], [19]. A similar ap-
proach that can abstract human-made models has
been proposed by Mehra et al. [20]. However, these
approaches cannot be directly adapted to our problem
as sliceforms are much more limited in depicting the
surfaces of the models, unlike papercraft toys [21].
Simplification can also be done by fitting the model’s
volume with a small set of simple solid primitives
[22]. This is closely related to our approach since
we approximate the model using generalized cylinders.
An interesting work has recently been reported by
McCrae et al. that helps explain how human visual
perception abstracts a 3D model to a set of planar
cross-sections [23]. Although their approach is not
used in our work, it may be useful in the future for
enhancing our sliceform abstraction quality.

There have been studies on fabricating 3D abstrac-
tions into real physical models that use planar cut-
outs made out of wood, plastic or cardboard. The
resulting models can be designed in a semi-automatic
[24] or automatic manner [25]. Similar to sliceforms,
such models are also made of intersecting planar
patches. However, sliceforms require more complex
stability conditions, since intersecting patches can ro-
tate freely with respect to each other. Sliceforms also
have to be flat-foldable. Specifically in [25], the sim-
pler stability condition (i.e. the structure is stable as
long as every patch intersects with at least one other
patch) allows the algorithm to split patches without
the need to re-evaluate and correct instability. The
splitting of patches also allows their method to avoid
the interlocking-ring configuration, which our method
has to explicitly handle without splitting patches.

3 OVERVIEW AND FORMULATIONS

Our method generates a paper sliceform design from
a 3D solid model by performing the following steps:

1) Sliceform Arrangement. It finds the 2D shape
and arrangement of the patches as well as their
intersections such that the resulting paper slice-
form is a good approximation of the input solid
model, is stable and can be completely folded
flat by moving any two non-coplanar patches.

2) Paper Realization. It determines how slots (or
slits) along the intersections of the patches
should be cut out so that they can be physically
assembled to the target arrangement.

The overview of our algorithm is shown in Fig. 4. In
this section, we describe the geometric conditions for
a valid paper sliceform design. The algorithm details
of each step are presented in Sections 4 and 5.

Inspired by the work of [11], we formulate a slice-
form, or a patch arrangement, as a scaffold.

Definition 1. A scaffold is a set of planar polygonal
patches in 3D. These patches may have holes and intersect
each other. Each line segment in the intersection of two
patches is a hinge.

If all the patches of a scaffold are parallel to only
two directions, we call it a sliceform scaffold.

3.1 Feasible Scaffold

A proper patch arrangement must satisfy two impor-
tant properties—it can be folded flat and the flattening
does not require any extra forces besides moving
any two of its non-coplanar patches. We call such
arrangement a feasible scaffold. Assuming paper is rigid
and has zero thickness, let the scaffold domain be S,
we define

Definition 2. A folding motion from a scaffold S to
another scaffold S′ is a continuous mapping g : [0, 1]→ S
such that

• g(0) = S and g(1) = S′.
• g maintains the rigidity of the patches of S, for any

t ∈ [0, 1].
• g maintains the positions of the hinges on the patches

of S, for any t ∈ [0, 1].
If such a folding motion exists, S′ is said to be foldable
from S.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

Definition 3. A scaffold S is said to be stable if
• At least two patches of S intersect each other.
• For every two non-coplanar patches p1, p2 ∈ S, there

is no other scaffold S′ ̸= S foldable from S while p1,
p2 are kept stationary.

A feasible scaffold is one that is both stable and
foldable to a “flat” scaffold. Formally,

Definition 4. A scaffold S is said to be feasible if
• There exists a scaffold S′ foldable from S, such that the

acute angle θ between every two intersecting patches
of S′ satisfies 0 < θ < ϵ, with ϵ arbitrarily small.
The respective folding motion is called flat-folding or
flattening and S is said to be flat-foldable.

• For every t ∈ [0, 1], the intermediate scaffold g(t)
during the deformation of S to S′ is stable.

Technically, our feasible scaffold formulation allows
a wide set of patch arrangements. However, in this
work, we are interested in the class of sliceform
scaffolds, for which we are able to prove that

Proposition 1. If a sliceform scaffold is stable, it is feasible.

Proof: First, we show that a stable sliceform scaf-
fold S is flat-foldable. Let p1, p2 be two arbitrary
intersecting patches of S, and the angle between them
be θ. We consider a cross-section of S on a plane L
perpendicular to both p1 and p2. On L, each hinge
of S is projected to a point. Let O be the intersection
between L, p1 and p2. We choose e⃗1, e⃗2 as two unit
vectors on L parallel to p1 and p2 respectively.

As the scaffold is a sliceform, every patch is par-
allel to p1 or p2. Furthermore, to satisfy the scaffold
stability, no patch is“floating” or “dangling”. In other
words, each patch must intersect another and form an
acute angle θ. By transforming all the angles from θ
to ϵ, we are able to fold the scaffold flat. It can also be
easily shown that no patch is obstructed during this
folding motion. We represent each point of S in the
(O, e⃗1, e⃗2) coordinate system as (t1, t2) = t1e⃗1 + t2e⃗2.
As all the patches remain parallel to p1 and p2 while
they are folded, the coordinate of every point remains
unchanged, and hence no collision occurs.

Besides, during the folding motion, each intermedi-
ate scaffold S′ is stable. We prove it by contradiction.
Assume there are two different scaffolds at angle θ′

that share the same set of patches and hinge positions
along each patch. There exists a hinge that can be
represented by two coordinates (t1, t2) ̸= (t′1, t

′
2). By

transforming the acute angles from θ′ back to θ, the
hinge can also be represented by both (t1, t2) and
(t′1, t

′
2) in S, which violates its stability.

As a result, it suffices to find a stable sliceform
scaffold to guarantee a feasible patch arrangement.

3.2 Scaffold Realization
In practice, it is physically impossible to have paper
patches intersecting each other as in a scaffold, hence,

Fig. 5. A patch is bent to go through a hole of another
patch.

slots or slits are cut on these patches along their
intersections such that the patches can be slotted
together to physically realize the intersections. Let a
slot be a straight-line cut having width ϵ > 0, we
define

Definition 5. A realization of a scaffold S is another
scaffold S′ that satisfies

• S and S′ have the same number of patches.
• Every patch p′i ∈ S′ is a sub-patch of patch pi ∈ S,

formed by cutting out slots along the hinges of pi.
• All the patches of S′ do not intersect each other.

The first condition maintains that each patch of
S is not split by the cuts since we do not discard
any patches from S′. The third condition prevents
the realized patches from colliding once they are in
position.

Besides avoiding collision between any two patches
in a realization, we must also ensure that their assem-
bly process exists. Intuitively, we consider an assem-
bly process as a collision-free motion in which two
patches, originally placed very far away from each
other, are brought towards their target states.

Up to this point, we still inherit the assumption
that paper has zero thickness. However, its rigidity
may forbid assembility. We therefore assume that
paper can be bent during assembly. This assumption
is common in computational origami [5]. By bending
a patch, for example, we are able to squeeze it through
a hole of another patch during assembly. The process
is shown in Fig. 5.

Formally, we define

Definition 6. An assembly motion of patches p1 and p2
of a realization S is a continuous deformation of p1 and
p2, denoted g(p1, t) and g(p2, t), such that

• g(p1, t) (and g(p2, t)) preserves the geodesic distance
between any two points on the surface of p1 (and p2),
for any t ∈ [0, 1].

• g(p1, 1) = p1 and g(p2, 1) = p2.
• ||g(p1, 0)−g(p2, 0)||min, the minimum Euclidean dis-

tance between any two points on p1 and p2 respec-
tively, is greater than any arbitrarily large distance
d.

• g(p1, t) does not intersect g(p2, t), for any t ∈ [0, 1].

Finally,

Definition 7. A realization is said to be valid if there
exists an assembly motion between any two of its patches.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Note that, given a feasible scaffold, all its realiza-
tions are physically flat-foldable. From our observa-
tions, there always exist trivial assembly sequences
in which the patches do not block one another. For
example, we can assemble the patches according to
their order in the slicing direction. Consequently, the
existence of an assembly motion for every pair of
patches is empirically proven to produce valid real-
ization.

The above formulation defines a valid paper slice-
form. To produce such a sliceform, our algorithm first
computes a set of generalized cylinders to approximate
the input model. Then it uses these cylinders to find
a stable sliceform scaffold. By Proposition 1, this
sliceform scaffold is automatically feasible. Then, slots
are created along the hinges of the patches such that
every pair of the resulting patches has an assembly
motion. The resulting paper sliceform is guaranteed
to have local pairwise assembility, which we believe
is equivalent to the global assembility of the structure.

4 SLICEFORM ARRANGEMENT

In this work, we approximate the input model using
a sliceform whose patches are perpendicular to each
other. We call such an arrangement an orthogonal
sliceform scaffold.

Finding an orthogonal sliceform scaffold that is
feasible and closely resembles the input model is
particularly challenging. Computing the smallest set
of patches that satisfies the feasibility condition and
meets a certain approximation quality threshold is
inherently intractable. Even obvious non-optimal-
solution approaches, such as incremental patch addi-
tion, incremental patch removal, and fixing, are com-
putationally intractable. In the incremental addition
approach, one or more patches are added to the scaf-
fold in each step, always ensuring scaffold stability,
and greedily minimizing the number of patches and
maximizing the approximation quality. However, due
to the potentially large number of combinations of
patches to be considered for addition in each step,
this approach is intractable. The incremental removal
approach also has similar intractability. In the fixing
approach, we start with a scaffold that meets the ap-
proximation requirement, yet may not be stable, and
“repair” it by incrementally adding more supporting
patches until its feasibility is satisfied. However, this
is exactly the same intractability in the incremental
approach.

Our algorithm is grounded on the idea of using a
small set of primitives to represent the patches, such
that the feasibility of a scaffold can be verified by
considering only these primitives. This enables us to
drastically reduce the search space for the feasible
scaffold and makes the problem much more tractable.

More specifically, we first generate a dense set of
patches that captures the model’s geometric features.

S
li

c
e

 S
e

t
G

C
A

Fig. 6. Generalized cylinder approximation (GCA).

These patches are extracted from the model’s cross-
sections taken at small uniform-width interval along
two orthogonal slicing directions chosen by the user.
We call the collection of cross-sections in each slicing
direction a slice set. Similar and consecutive patches in
each slice set are grouped to form a generalized cylinder
that approximates the model’s volume occupied by
the patches. Each of these cylinders takes the union of
patches in the group as the shape of its cross-section,
and the slicing direction as its axis. We call this
step generalized cylinder approximation, as illustrated in
Fig. 6.

Then, the target feasible scaffold is computed by
using each cylinder’s cross-section to create a set of
patches within the cylinder, such that the patches
from all the cylinders form a stable scaffold. Our
algorithm can efficiently achieve this by checking for
stability conditions only between parts of cylinders
that overlap each other.

To facilitate our next discussion, let p and p′ be two
parallel patches, we denote p⊕p′ as the patch created
from the union of p and the projection of p′ along its
slicing axis direction onto the plane of p. Note that
p ⊕ p′ ̸= p′ ⊕ p . Moreover, if P is a set of patches
pi parallel to p, then p ⊕ P =

∪
pi∈P (p ⊕ pi). We also

denote
• z(p) as the position of patch p along its slicing

axis.
• area(p) as the area of patch p.
• ∆s as the slicing interval to produce the slice sets.

4.1 Generalized Cylinder Approximation
4.1.1 Approximation Fundamentals
We consider the simple case of partitioning a set of
parallel patches P = {p1, . . . , pN}, in which z(pi) <
z(pi+1). If a sub-set Pij = {pi, pi+1, . . . , pj} of P is put
into the same group, we construct the corresponding

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

generalized cylinder by taking ui = pi ⊕ Pij and
uj = pj ⊕ Pij as its end caps. The error of cylinder-
approximating Pij can be measured by the volume
disparity between its cylinder and the model’s part
occupied by the group, which is specified by

err(i, j) = ∆s

j∑
k=i

| area(pk)− area(ui)|. (1)

Note that err(i, j) does not only measure the vol-
ume difference, but also the shape difference between
the generalized cylinder and the group of patches
being approximated. This is because these patches are
completely inside the cylinder.

We seek to find the minimal number of groups that
partition P , such that the total approximation error
does not exceed a certain threshold τA. Let Dn,i,j

be the minimum error by approximating patches pi
to pj by n groups. The search can be efficiently
done by solving the following dynamic programming
problem:

Dn,i,j =

err(i, j) , for n = 1,
min(err(i, k) +Dn−1,k+1,j) , for n > 1,

i ≤ k < j.
(2)

The algorithm stops when n > N or there is an
n = n0 such that Dn0,1,N < τA. We also keep track of
the value of k where Dn,i,j reaches its minimum and
finally trace back in order to construct the respective
optimal partition, as well as the cylinders.

4.1.2 Topology Simplification
Note that each slice set is also the model’s level set
with respect to its slicing direction. Hence the model’s
topology along each direction can be captured by
computing the Reeb graph from the respective slice
set [26]. Based on this observation, we first construct
the Reeb graphs for both directions, then separately
partition the patches on each edge of these graphs
using the generalized cylinder approximation method
described above.

However, due to the geometric details on the model,
each Reeb graph can have intricate topology, where
many edges may contain only a few small patches.
Directly partitioning on this graph is not efficient
due to the large number of cylinders. Hence, prior
to partitioning, we simplify the topology using a few
Reeb graph edge-merging operations. Our approach
is similar to [27], but we use the relative volume
difference between two neighboring parts to decide
whether to absorb the smaller part into the larger part.

Let e and e′ be two edges in a Reeb graph, which
correspond to the sets of patches P (e) = {p1, . . . , pn}
and P (e′) = {p′1, . . . , p′m} respectively, where z(pi) <
z(pi+1) and z(p′i) < z(p′i+1). We say that

• e′ is left-merged to e if patch p1 is replaced by pM =
p1 ⊕ P (e′) and e′ is removed from the graph.

v

e e

v1 v2

e

v1 v2v

e
e

v2

v1

v

e

v2v1

Fig. 7. Reeb graph edge-merging operations, where e′

is merged to e.

Fig. 8. (Left) Original slice set. (Right) Slice set after
topology simplification.

• e′ is right-merged to e if patch pn is replaced by
pM = pn⊕P (e′) and e′ is removed from the graph.

Let the weight w(e) of each edge e be the sum of ar-
eas of all its patches and τM be a predefined threshold.
We define the following edge-merging operations:

• If v is a vertex having only one outgoing edge
(incoming edge) e and more than one incoming
edge (outgoing edge), then any incoming edge
(outgoing edge) e′ of v having w(e′)/w(e) < τM
is left-merged (right-merge) to e.

• If v is a vertex having only one incoming edge
e and only one outgoing edge e′, then e and e′

are merged by removing e′ and replacing p(e) by
pM (e) = {p1, . . . , pn, p′1, . . . , p′m}.

We illustrate the edge-merging operations in Fig. 7.
Note that the case where v has multiple incoming and
multiple outgoing edges cannot happen unless the
input solid model is almost degenerate or the slicing
interval is not small enough.

The topology simplification stops when no more
edges can be merged. The objective of the simplifi-
cation is to absorb very small parts into larger parts,
independently in each slicing direction, so that the
small parts are removed but their silhouettes (when
viewed in the slicing direction) can still be preserved
on the larger parts. This effect can be seen in Fig. 8,
where the horns’ silhouette is preserved in the slicing
direction.

4.2 Finding Feasible Scaffold
4.2.1 Fundamentals
The input model is now approximated as a set of gen-
eralized cylinders. The orthogonal sliceform scaffold
is to be made of patches that are cross-sections of these
cylinders.

Let the span a cylinder c covers (on its axis) be
denoted by span(c). We define

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

Definition 8. A frame f of a cylinder c is a tuple (sf , nf),
in which sf is a sub-span in span(c), and nf ∈ N+ is the
minimum number of patches required in the span sf .

A cylinder may have zero or more frames, indicat-
ing where and how many of its cross-sections are used
in a scaffold. If there are at least nf patches taken from
c in the span of a frame f , we say that f is satisfied.
Formally,

Definition 9. A set of frames F is said to be satisfied by
a scaffold S, or S satisfies F , if

• Every patch of S is taken from at least one frame of
F .

• Every frame of F is satisfied.

Definition 10. A frame set F is said to be stable if every
scaffold S satisfying F is stable.

A frame set actually represents a class of possibly-
many scaffolds. If the frame set is stable, Proposition 1
says that the scaffold class it represents is indeed
feasible. This is an important result since it enables us
to indirectly find a feasible scaffold by constructing
a stable frame set. In the followings, we describe a
sufficient condition that makes a frame set stable.
Our algorithm uses this condition to compute a stable
frame set.

Definition 11. Two frames f and f ′ of different slicing
directions are said to intersect one another if every cross-
section within f intersects every cross-section within f ′.

Claim 1. Let F = {f1, f2, f3, f4} be a set of frames, in
which no cross-section within a frame is coplanar to any
cross-section within any other frames. If f1 and f2 intersect
both f3 and f4, then F is stable.

Claim 2. Let F = {f1, f2, f3} be a set of frames, where
f3 = (s3, n3), and in which no cross-section within a frame
is coplanar to any cross-section within any other frames. If
f1 and f2 intersect f3 and n3 ≥ 2, then F is stable.

The proof of the above two claims is trivial, as the
patches derived from F form a parallelogram and
holding any two patches stationary will keep the rest
from moving.

Definition 12. Let F be a set of frames. A frame f1 ∈ F
is said to be semi-stable with respect to another frame
f2 ∈ F if either

• there exists a stable frame set F ′ ⊂ F that contains
both f1 and f2, or

• there exists a frame f3 ∈ F such that f1 is semi-
stable with respect to f3 in F and f3 is semi-stable
with respect to f2 in F .

Definition 13. Let F be a set of frames. F ′ ⊂ F is said to
be semi-stable in F if all its frames are semi-stable with
respect to one another in F .

Proposition 2. Let F = FU ∪FV be a frame set in which
FU and FV are the sets of frames from the two slicing

directions respectively. If FU and FV are semi-stable in F ,
then F is stable.

Proof: When FU is semi-stable in F , all the patches
satisfying FU may undergo different translational
moves but must always remain parallel to each other.
The same condition applies to FV when it is semi-
stable in F . As FU and FV are both semi-stable in
F , every patch must intersect at least two patches
from the other slicing direction. In this case, if we
keep two non-coplanar patches p1 and p2 in FU (or
FV) stationary, no patches in FV (or FU) can move,
otherwise p1 or p2 has to move too. Similarly, if we
keep one patch from FU and one from FV stationary,
then all the patches from F are also stationary. Hence,
the entire scaffold remains rigid if two arbitrary non-
coplanar patches are held stationary. Thus, it is stable.

Note that Proposition 2 allows the user to hold any
two non-coplanar patches to keep the structure stable.
This is different from Proposition 2 of [12], where the
user must hold the two outer patches.

4.2.2 Algorithm Overview
The problem to produce a stable frame set is made
easier by Proposition 2, where now we can just
separately make FU and FV semi-stable in F . Our
algorithm is also guided by the following common
schemes that we observe in the making of sliceforms:

• Construction for a dominant direction. For a
model whose distinctive features primarily ap-
pear in one particular direction, e.g. side-view of
an animal model, the patches from this direction
often are better at conveying the characteristics
of the model, while the patches on the other
direction are only used to support them.

• Construction for both directions. On the other
hand, for a model whose characteristic features
cannot be primarily viewed from a single direc-
tion, e.g. architectural models, patches from both
directions are equally important for rendering
and supporting the pop-up.

We let the user choose the desired scheme. For the
following description, we denote the set of cylinders
as C = CU ∪ CV , where CU and CV are the cylinder
sets from the two slicing directions U and V respec-
tively. Accordingly, we denote the set of frames in C
as F = FU ∪ FV .

We call the cylinder stabilizing operation on two
cylinders c1, c2 ∈ C as the search for a frame set
F = {f1, f2, f3, f4} or F = {f1, f2, f3} of C, sat-
isfying either Claim 1 or 2, such that f1, f2 are
from c1, c2 respectively. This operation is denoted by
F ←STABILIZE(C, c1, c2).

4.2.3 Construction For a Dominant Direction
Let us assume that the dominant direction is U . Our
algorithm can be summarized in two steps. In the first

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

step, we find a set of frames F = FU ∪ FV such that
all the cylinders CU have at least one frame in FU , and
FU is semi-stable. In the second step, we make FV

semi-stable. We illustrate the algorithm in Fig. 9 and
discuss the two steps in details below.

Algorithm 1: FU STABILIZATION

Data: Cylinder set C.
Result: A frame set F , in which FU is semi-stable.

1 F ← ∅; P ← {c0}, c0 ∈ CU ;
2 while P ̸= CU do
3 find c1 ∈ P and c2 ∈ CU \ P , such that

F ′ ←STABILIZE(C, c1, c2) is not empty;
4 P ← P ∪ {c2}; F ← F ∪ F ′;
5 end
6 foreach c ∈ P , c has more than one frame do
7 sort the frames of c by their spans;
8 foreach pair of consecutive frames fi, fj of c do
9 find an α-support H for fi, fj ;

10 F ← F ∪H ;
11 end
12 end

The pseudocode for the first step of our algorithm
is given in Alg. 1. It iteratively adds frames of CU

cylinders into F , until all of them have at least one
frame in F .

Stabilizing using α-support. If a cylinder c ∈ CU

is chosen more than once in the previous stabilization
step, it has more than one frame. This set of frames
has to be stabilized in order to make FU semi-stable,
which is done by building an α-support for each pair
of consecutive frames. For two consecutive frames fi
and fj of c, an α-support between them is a frame set
H = {h1, h2, . . . , h2n+1}, where

• h1 = fi and h2n+1 = fj .
• h2k is a frame of a cylinder in CV , such that h2k

requires at least 2 patches.
• h2k+1 is a frame of c.
• The frame set {h2k−1, h2k, h2k+1} is stable for all

k ≤ n.
Additional new frames may need to be added in

cylinder c, between fi and fj , to construct an α-
support. Clearly, if all frames of c have an α-support
between them, they are semi-stable with respect to
each other.

Note that an α-support always exists between fi
and fj . If there is no cylinder in CV that intersects
both fi and fj , it is always possible to find a chain
of adjacent cylinders in CV where they all intersect c,
the first one intersects fi and the last one intersects
fj . In this case, a new frame is created in cylinder c
to “connect” and support the two frames from each
pair of consecutive cylinders in the chain.

In the second step of the scaffold construction,
we make frame set FV semi-stable. However, if α-
supports are used, additional frames will be added to

Algorithm 2: FV STABILIZATION

Data: A frame set F , where FU is semi-stable.
Result: F , having both FU and FV semi-stable.

1 Q← {f0}, f0 ∈ FV ;
2 while Q ̸= FV do
3 find f1 ∈ Q and f2 ∈ FV \Q, such that f1 is

semi-stable with respect to f2 in F ;
4 if found then
5 Q← Q ∪ {f2};
6 else
7 foreach f3 ∈ FU do
8 if f3 intersects f1 ∈ Q and f2 /∈ Q then
9 nf3 ← 2; Q← Q ∪ {f2};

10 end
11 end
12 end
13 end

FU , which then have to be made semi-stable again.
Fortunately, each frame of FU up to this point must
intersect at least two frames of FV and vice versa.
Therefore, making FV semi-stable can be achieved
simply by using the condition in Claim 2, where
it is sufficient to increase the minimum number of
required patches of a few frames in FU to 2. The
algorithm of the second step is described in Alg. 2.

Note that in Alg. 1, before the computation of α-
supports, it is always possible to have every cylinder
in CU contribute at least a frame to F . This is because
for any two adjacent cylinders in CU , there always
exists another cylinder from the other direction that
intersects both cylinders, and thus can provide a
frame that stabilizes the frames of the two cylinders.

4.2.4 Construction For Both Directions

The algorithm is similar to that of the previous
scheme. However, we require all the cylinders to have
at least one frame in F after the first step. Again, it
is important that we only use α-supports to stabilize
the frames of one direction, while those of the other
direction are stabilized by the method in Alg. 2.

4.2.5 Generating Scaffold

We finally generate the feasible scaffold S from F . For
each frame f , we create nf patches from the respective
cylinder of f , and uniformly place them in sf .

Each cylinder may have multiple frames whose
spans may overlap. Separately generating patches
from each of these frames may produce unnecessarily
many patches. We avoid it by applying a simple
frame-reduction scheme prior to computing the scaf-
fold. If f1 and f2 are two overlapping frames in
the same cylinder, we substitute them by f3, where
sf3 = (sf1 ∩ sf2) and nf3 = max(nf1 , nf2).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

CU cylinder CV cylinder

α -support

FU Stabilization FV Stabilization

FV frameFU frame

Fig. 9. (Left) Cylinders in CU are ensured to have at least one frame. (Middle) α-supports are used to make FU

semi-stable. (Right) FV is made semi-stable by modifying some frames of FU .

Fig. 10. Four types of slots. (Left) White: up, orange:
down. (Right) Orange: cut-through, white: none.

5 PAPER REALIZATION

Given two patches p1 and p2, their intersection may
contain multiple segments, each of which corresponds
to a hinge. At each hinge, one slot must be cut out
from each respective patch in order for them to be
assembled at the hinge. We define four types of slot
as illustrated in Fig. 10: up, down, cut-through and
none. If a slot is up or down, it is cut upwards or
downwards respectively along the hinge’s direction,
starting at the mid-point of the hinge and ending at
the patch’s boundary or the mid-point of the next
hinge on the patch, whichever comes first. If a slot is a
cut-through, the hinge on the patch is fully cut. If the
type is none, the patch remains intact at the hinge. At
a hinge of two patches p1 and p2, the only possible
combinations of their slots are: (up, down), (down,
up), (cut-through, none) and (none, cut-through).

By making slots this way, the patches will not
collide with each other along their hinges. However,
collision-free hinges still do not ensure assembility of
the patches, since depending on the slot combination,
two patches may interlock each other and prevent
them from being assembled, similar to the result of
Autodesk 123D Make in Fig. 3. We show that

Proposition 3. There exists an assembly motion g for
two patches p1 and p2 if no cycle in the Reeb graph of
p1 interlocks any cycle in the Reeb graph of p2.

Proof: We prove that given two patches that have
no interlocking cycles at the target sliceform state,
one of them can be detached from the other without
collision, hence the reversed motion is an assembly
motion.

Let a and b be two cycles in patches A and B
respectively. Let H be the intersection line between
the two planes that contain A and B. If a does not
interlock b, it must satisfy the condition that the
number of intersections of a and H that are inside
and outside b must both be even. Furthermore, we
say that a is completely inside (or completely outside) b if
all its intersections with H are all inside (or outside)
of b.

We call a group of cycles a dependent group if each
of its cycles shares a common edge with at least
one other cycle in the group. A Reeb graph can be
partitioned into disjoint dependent groups.

Consider two patches A and B, in which every
cycle has at most two intersections with H . It can
be observed that if all the cycles of A and B do not
interlock, any dependent group s of A must be either
completely inside or outside any cycle b ∈ B and
vice versa. Otherwise, we can always find a cycle
a ∈ s that has exactly two intersections with H ,
of which one is inside and one is outside b (odd
number of intersections), which does not satisfy the
non-interlocking condition.

With the assumption that paper has zero thickness,
such a dependent group s ∈ A can be packed to
as small as needed by folding it locally, to avoid
collision with B. Clearly, this folding is independent
of other groups s′ ∈ A, and is also independent of B.
Therefore, A can be “untangled” from B by packing
every dependent group in A.

Given non-interlocking cycles in patches A and B,
each can be made to intersect with H at at most two
points by locally folding the patch as illustrated in
Fig. 11. Therefore, by combining local folding motion
and dependent group packing motion, it is possible
to “untangle” the two patches. Hence, the reversed
motion is the assembly motion.

A valid realization of two patches p1, p2 is therefore
a combination of their slots such that p1 and p2 do not
contain any interlocking pair of cycles. It is obvious
that checking all pairs of cycles on the Reeb graph of
p1 and p2 for this condition is impractical. Fortunately,
we need to consider only those containing a patch

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

Fig. 11. Local patch folding.

hole and also intersecting one of the hinges, since they
are the cycles that can potentially interlock with one
from the other patch. Let G1 and G2 respectively be
the Reeb graphs of p1 and p2. It can be seen that the
cycles in G1 and G2 that intersect the hinges neces-
sarily represent all the holes of interest. We say that a
slot combination satisfies a pair of cycles if the cycles
do not interlock with respect to the combination.

Any cycle in a graph can be constructed from a
small set of cycles which forms the graph’s cycle basis
[28]. Furthermore, if every cycle in a cycle basis of a
Reeb graph does not interlock any cycle in a cycle
basis of another Reeb graph, all their derived cycles
do not interlock either. Consequently, a valid slot
combination between two patches is the combination
that satisfies all cycle pairs from their cycle bases.

In addition, a combination that satisfies a cycle pair
may not satisfy the other. We call this situation a
conflict. If there is no slot combination that can resolve
the conflict, we have to break a cycle of the cycle basis
of one of the patches by a cut-through slot.

Our algorithm works by rejecting conflict combina-
tions as illustrated in Fig. 12. Given two patches p1, p2,
we construct their Reeb graphs G1 and G2 and a set
T of the satisfactory slot combinations. For each cycle
pair from the cycle bases of G1 and G2, we reject the
combinations in T that conflict with the current pair.
If T is empty after this step, which means there was
an unresolvable conflict, we break one of these cycles,
update the respective patch’s cycle basis and restart
the algorithm. On the other hand, if T is not empty,
we add to T the new combinations that satisfy the
pair. The algorithm stops when all pairs are satisfied,
and one of the combinations in T is chosen as the slot
combination. Finally, the patches and their slots are
laid out on a plane for printing. We summarize our
realization algorithm in Alg. 3.

In practice, for two intersecting patches, the number
of common hinges are rarely more than a few and the
cycle bases are usually small. Furthermore, once a slot
is determined as none or cut-through, it does not con-
tribute to the interlocking of the patch anymore, and
we need to consider only the up and down slots for
the slot combinations. Therefore, for a pair of cycles,
the number of tested combinations is also restricted to
a few. Additionally, the more hinges and cycles in the
patches’ cycle bases, the higher the chance conflicts

v1

v2

v
2

v
1

v1

v2

v
2

v
1

v1

v2

v
2

v
1

v1

v2

v
2

v
1

Combination table

v1 v2

v
2

v
1

Fig. 12. (Left) Two patches and their Reeb graphs.
(Middle) Slot combinations are checked and rejected
from combination table. (Right) A valid combination is
chosen as the realization of the two patches.

Algorithm 3: REALIZATION

Data: Patches p1 and p2.
Result: Valid slot combination.

1 G1 ←REEBGRAPH(p1), G2 ←REEBGRAPH(p2);
2 T ← ∅;
3 repeat
4 resolvable←true; first pair ←true;
5 foreach cycle pair (b1, b2) of G1, G2’s cycle bases

do
6 T ′ ← all slot combinations of (b1, b2) that do

not interlock;
7 if first pair = true then
8 T ← T ′; first pair ←false;
9 end

10 reject combinations in T conflicting with T ′;
11 if T = ∅ then
12 break b1 and update G1;
13 resolvable←false;
14 break;
15 else
16 add compatible combinations in T ′ to T ;
17 end
18 end
19 until resolvable;

occur, which eventually reduces the number of cycles
in the cycle bases. Therefore, the algorithm, though
theoretically having exponential time complexity with
respect to the number of hinges, is practical.

Note that even though we use cut-through slots,
no patch will be split (into two or more subpatches).
This is because a cut-through slot is normally applied
to only one hinge of a cycle where conflict happens.
Once cut through, the cycle c is no longer a cycle and
will not be cut again. However, if it becomes part of
a larger cycle, it is still fine to cut c again because
the larger cycle will still connect the two pieces of
c together. The same reasoning applies to the large

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

cycle and so on. Also note that the generation of
slots does not affect the stability between any two
intersecting patches, since they always have at least
one (up, down) slot combination connecting them.

6 IMPLEMENTATION

Our automatic sliceform design application takes a
water-tight 3D model in Wavefront OBJ format as
input and produces a 2D layout of the generated slice-
form in Adobe PDF format. The user first specifies
the input 3D model as well as the slicing directions
and thresholds (τA and τM). Afterwards, the system
generates a feasible scaffold, its valid realization and
finally a 2D layout that can be printed, cut and
assembled into a physical sliceform. The layout shows
the outline of the patches as well as where to cut the
slots on each patch. Every patch and slot is labeled
accordingly for easy construction.

To obtain the cross-sectional slices of the input
3D model, we use a method similar to the shadow
volume technique. At each slicing position, we use
the in-out parity of an image ray parallel to the slicing
direction to determine if a point on the slicing plane is
inside or outside the model. We then use connected-
component labeling to identify contiguous regions
that become the model’s patches.

The slices are represented as 2D billboards for both
the visualization and computation. The image on each
billboard is a binary image, where the non-zero pixels
represent the regions that belong to the patches. The
union of a set of patches can be computed simply by
taking the union of their binary images.

In the generalized cylinder approximation, naive
implementation of the dynamic programming prob-
lem in (2) will have O(M2N2) time complexity for
each iteration, where M is the image size (M×M) and
N is the number of slices in the slicing direction. This
complexity is dominated by the computation of the
union of the patch images. We also observe that the
union of a set of 2k images p = ∪2ki=1pi is also equiva-
lent to p = ∪ki=1p

′
i, where p′i = p2i−1 ∪ p2i, therefore a

binary tree data structure is used to solve (2), and it
reduces the time complexity to O(M2 logN).

After generating a realizable scaffold, the system
produces a 2D design layout by printing the binary
images of the patches (with their slots and labels) on
a page in a left-to-right and top-to-bottom manner.
Multiple pages of layout may be produced.

7 RESULTS

Our experiments were run on a PC with Intel Core
i5 CPU and 4GB of RAM. We set the image size
to 512 × 512 for each slice and used 128 slices on
each direction to generate the slice sets for the input
model. The program used up to 500MB of memory
and takes 4–7 minutes of running time for each model
we tested. The most time-consuming computation

Fig. 13. Cow sliceforms using different values of τA
and number of dominant slicing directions: (left) 0.05
and 1, (middle) 0.05 and 2, and (right) 0.015 and 1.

Fig. 14. Comparison of results generated by (left) our
algorithm, (middle) Autodesk 123D Make, and (right)
crdbrd [25].

was the generalized cylinder approximation, which
accounts for up to 90% of the running time due to
the large number of pixel operations.

The input models we used can be categorized into
two groups: organic models (Bunny, Kitten, Cow, Bird,
Dinosaur, Mother and Child Statue, and Armadillo),
and architectural models (Capitol Building, Machine
Part, Hollow Cube, Hollow Sphere and Torus). We
chose one dominant direction for the organic models,
and two dominant directions for the architectural
ones. The topology simplification error threshold τM
ranged from 0.02 to 0.05, while the approximation
threshold τA was kept at 0.1.

In Fig. 13, we show the effect of the approximation
threshold τA and the number of dominant directions.
Our other results are shown in Fig. 1 and Fig. 18,
where we chose the parameter values that produced
the best sliceform for each input 3D model.

We have observed that all the sliceform scaffolds
produced by our algorithm are feasible, and the
overall shapes mostly have good resemblance to the
input models. Using the Reeb graph edge-merging
operations, our algorithm is able to disregard smaller
geometric details in the more complex organic models
while still retaining good level of abstractions when
the sliceforms are viewed in the dominant slicing
direction. For example, the silhouettes of the horns
of the Cow, and the ears of the Bunny and Kitten
are all preserved in the final sliceforms. We have also
observed that our algorithm does not produce many
unnecessary patches. In most parts of the models, the
algorithm generates only those patches mandatory to
maintain the stability of the structures.

Fig.14 compares the result from our algorithm with
that of Autodesk 123D Make and crdbrd [25]. Here
we observe that the sliceform generated by our algo-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

rithm is stable unlike the output of Autodesk 123D
Make. The result of crdbrd seems to have better
approximation of the original 3D model, probably
because it is not restricted to only two sets of parallel
patches as flat-foldability is not required. Besides, our
sliceform scaffolds have stability requirement that is
more stringent than that of crdbrd.

We demonstrate the ability of our algorithm in
guaranteeing assembility by making real paper slice-
forms from the designs produced by our algorithm.
These real sliceforms are shown in Fig. 15. It took
30 minutes (the Cow) to 3 hours (the Bunny) to cut
and assemble each model. Other than the Cow model,
all the models have complex patch topologies, e.g.
the windows in the Capitol Building and the interior
hole in the Hollow Sphere. Our algorithm avoids
interlocking cycles on the patches in such cases.

Fig. 15. Real paper sliceforms made from the designs
produced by our algorithm.

However, we notice that for some models, e.g. the
Capitol Building and the Mother and Child Statue,
some patches are slotted very near to their boundaries
as illustrated in Fig. 16(a). This results in weak points
where patches can easily be torn off during assembly.
These patches also form weak hinges that affect the
overall strength of the sliceform structure. A better
algorithm will need to constrain the minimum dis-
tance between slots and patches’ boundaries during
the scaffold generation. Another possible solution is
to dilate the patches to increase the slot-to-boundary
distance.

Since we only generate enough patches that satisfy
the set of frames, long cylinders may contain only a
few patches, which makes the resulting sliceform look
sparse as shown in Fig. 16(b). More uniformly and
densely distributed patches can be added by applying
a global optimization in the scaffold generation step
to find a valid scaffold that is constrained by the
minimum and maximum distances between its adja-
cent parallel patches. Some input models may also
be difficult to model with only two sets of parallel
patches, as some important features of the models
may not be oriented in the two dominant directions.

Fig. 16. (a) Slots are too close to patches’ boundaries.
(b) Patches are too sparsely distributed in long cylin-
ders. (c) Unsuitable slicing directions.

 v-style base (one side)

patch

hard cover

crease lineb

a

Fig. 17. Making a sliceform pop-up.

Such is the case of the head of the kitten model shown
in Fig. 16(c), which is tilted slightly from its body
and therefore no one patch can capture both ears of
the head, which provide one of the most important
visual cues for this model. The bird example in the
same figure also demonstrates the undesired effect of
using unsuitable slicing directions. For the bird model,
however, a good sliceform can still be obtained with
suitable slicing directions (see Fig. 18).

Pop-up Book Construction Sliceforms are also
known as lattice-type folds, which is a popular fold-
ing mechanism employed in pop-up books. Fig. 17
illustrates how we can turn any paper sliceform into
a paper pop-up, by attaching it to a hard cover using
a v-fold. This v-fold has flaps that can be glued to
two non-parallel patches of the sliceform and also
two other big flaps that can be glued to the cover.
The crease line of the v-fold is collinear with the
intersection line of the two sliceform patches that it
attaches to. When the hard cover is fully opened, the
v-fold is opened at 90-degree angle. To avoid collision
during folding, the height a of the v-fold is required
to be at least the width b of the part not on the v-fold.
This can be proven by considering a special case of
the v-fold [11]. We have used this technique to make

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

Fig. 18. Input models and sliceforms (from left to right, top to bottom): Capitol Building, Cow, Bird, Dinosaur,
Mother and Child Statue, Armadillo, Hollow Sphere and Torus.

Fig. 19. A paper sliceform pop-up being flat-folded.

a paper sliceform pop-up of the Capitol Building. The
pop-up and its ability to be folded flat is demonstrated
by Fig. 19.

8 CONCLUSION AND DISCUSSION

We have presented a theoretical framework and a
computational model for the automatic design of
paper sliceforms from 3D solid models. In spite of the
challenges in finding feasible scaffolds, we have made
the problem tractable by the use of the generalized
cylinder approximation and the frame set formula-
tion. Another important notion in our approach is the
avoidance of interlocking cycles in the paper realiza-
tion problem. Experiment results have demonstrated
the ability and robustness of our algorithm to generate
feasible paper sliceform designs that can be physically
assembled for a variety of input 3D solid models.
Nevertheless, the global assembility of our sliceform
designs has only been empirically validated, and
formally proving it remains one of the outstanding
challenges.

Our work may also open up interesting possibilities
for future research in paper sliceforms. For example,
given a class of feasible scaffolds, one may explore
how to choose the best scaffold that maximizes the
similarity between the sliceform and the input model.
This will require the development of an effective and
objective quality measurement metric. In addition,
one can also investigate how the slots on a scaffold
can be realized to ensure adequate strength, while still
offering enough simplicity to the user to assemble the
output sliceform.

Our algorithm constructs a scaffold using the base
structures defined by Claim 1 and Claim 2. Although
we have not encountered any models that cannot
be approximated by these structures, some complex
models may require other forms of scaffolds to best
represent them. Therefore, from a theoretical perspec-
tive, it is interesting to consider extending these con-
ditions in order to include larger and more complex
structures to construct the sliceforms.

Our formulation assumes that paper can be freely
bent during the assembly process. However, in prac-
tice, paper is bendable only to a certain degree, es-
pecially when part of a patch is already assembled
and locked with other patches. This can make the
assembly process difficult. Accurate modeling of this
paper limitation will be helpful to producing designs
that can be more easily assembled.

In addition, due to this assumption, the realization
algorithm cannot be applied to thick or rigid material,
such as wood or carton paper. Finding a realization
method that can be used for these kinds of rigid
material is another interesting direction for future
research.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

ACKNOWLEDGMENT

This work is supported by the Singapore MOE Aca-
demic Research Fund (Project No. T1-251RES1104).

REFERENCES

[1] Autodesk, “123D Make,” 2012. [Online]. Available: http:
//www.123dapp.com/

[2] P. A. International, “SketchUp SliceModeler Plugin,” 2009.
[Online]. Available: http://www.public-art-international.
com/catalog/product info.php/products id/200

[3] R. Sabuda and L. Carroll, Alice’s Adventures in Wonderland, ser.
New York Times Best Illustrated Books. Little Simon, 2003.

[4] M. Chatani, Paper Magic: Pop-up Paper Craft : Origamic Archi-
tecture, ser. The world of paper magic. Ondorisha Pub., 1988.

[5] E. D. Demaine and J. O’Rourke, Geometric Folding Algorithms:
Linkages, Origami, Polyhedra. New York, NY, USA: Cambridge
University Press, 2007.

[6] P. Jackson and P. Forrester, The Pop-Up Book: Step-By-Step
Instructions for Creating Over 100 Original Paper Projects, ser.
An Owl book. Henry Holt and Company, 1994.

[7] J. Sharp, Surfaces: Explorations With Sliceforms. Tarquin, QED
Books, 2004.

[8] A. Glassner, “Interactive Pop-up Card Design. 1,” Computer
Graphics and Applications, IEEE, vol. 22, no. 1, pp. 79 –86,
jan/feb 2002.

[9] ——, “Interactive Pop-up Card Design. 2,” Computer Graphics
and Applications, IEEE, vol. 22, no. 2, pp. 74 –85, mar/apr 2002.

[10] Y. T. Lee, S. B. Tor, and E. L. Soo, “Mathematical Modelling and
Simulation of Pop-up Books,” Computers & Graphics, vol. 20,
no. 1, pp. 21 – 31, 1996, computer Graphics in Singapore.

[11] X.-Y. Li, T. Ju, Y. Gu, and S.-M. Hu, “A Geometric Study of V-
style Pop-ups: Theories and Algorithms,” in ACM SIGGRAPH
2011. New York, NY, USA: ACM, 2011, pp. 98:1–98:10.

[12] X.-Y. Li, C.-H. Shen, S.-S. Huang, T. Ju, and S.-M. Hu, “Popup:
Automatic Paper Architectures from 3D Models,” in ACM
SIGGRAPH 2010. NY, USA: ACM, 2010, pp. 111:1–111:9.

[13] J. Mitani and H. Suzuki, “Computer aided Design for
Origamic Architecture Models with Polygonal representa-
tion,” in Proc. of the Computer Graphics International. Wash-
ington, DC, USA: IEEE Computer Society, 2004, pp. 93–99.

[14] S. Iizuka, Y. Endo, J. Mitani, Y. Kanamori, and Y. Fukui, “An
Interactive Design System for Pop-up cards with a Physical
Simulation,” Vis. Comp., vol. 27, no. 6-8, pp. 605–612, Jun. 2011.

[15] S. Hendrix and M. Eisenberg, “Computer-assisted Pop-up
Design for Children: Computationally Enriched paper Engi-
neering,” Adv. Tech. Learn., vol. 3, no. 2, pp. 119–127, Apr. 2006.

[16] D. Hoiem, A. A. Efros, and M. Hebert, “Automatic Photo Pop-
up,” in ACM SIGGRAPH 2005. New York, NY, USA: ACM,
2005, pp. 577–584.

[17] J. Mitani and H. Suzuki, “Computer aided Design for 180-
degree Flat Fold Origamic Architecture with Lattice-type cross
sections.” J. Graphic Science of Japan, vol. 37, no. 3, pp. 3–8, Sep
2003.

[18] D. Cohen-Steiner, P. Alliez, and M. Desbrun, “Variational
Shape Approximation,” in ACM SIGGRAPH 2004. New York,
NY, USA: ACM, 2004, pp. 905–914.

[19] A. Sheffer, “Model Simplification for Meshing using Face
Clustering,” Comp.-Aided Design, vol. 33, no. 13, pp. 925–934,
2001.

[20] R. Mehra, Q. Zhou, J. Long, A. Sheffer, A. Gooch, and N. J. Mi-
tra, “Abstraction of Man-made Shapes,” in ACM SIGGRAPH
Asia 2009. New York, NY, USA: ACM, 2009, pp. 137:1–137:10.

[21] J. Mitani and H. Suzuki, “Making Papercraft Toys from
Meshes using Strip-based Approximate Unfolding,” ACM
Trans. Graph., vol. 23, pp. 259–263, August 2004.

[22] J.-M. Lien and N. M. Amato, “Approximate Convex Decom-
position of Polyhedra,” in Proc. of the 2007 ACM symposium on
Solid and physical modeling. New York, NY, USA: ACM, 2007,
pp. 121–131.

[23] J. McCrae, K. Singh, and N. J. Mitra, “Slices: a Shape-proxy
based on Planar Sections,” in Proc. of the 2011 SIGGRAPH Asia
Conference. NY, USA: ACM, 2011, pp. 168:1–168:12.

[24] Y. Schwartzburg and M. Pauly, “Design and optimization
of orthogonally intersecting planar surfaces,” Computational
Design Modelling, pp. 191–199, 2012.

[25] K. Hildebrand, B. Bickel, and M. Alexa, “crdbrd: Shape fabrica-
tion by sliding planar slices,” Comp. Graph. Forum (Eurographics
2012), vol. 31, no. 2, pp. 583–592, May 2012.

[26] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan,
and V. Pascucci, “Loops in reeb graphs of 2-manifolds,” Dis-
crete Comput. Geom., vol. 32, no. 2, pp. 231–244, Jul. 2004.

[27] H. Carr, J. Snoeyink, and M. van de Panne, “Simplifying
flexible isosurfaces using local geometric measures,” in Proc.
of the conference on Visualization ’04, ser. VIS ’04. Washington,
DC, USA: IEEE Computer Society, 2004, pp. 497–504. [Online].
Available: http://dx.doi.org/10.1109/VISUAL.2004.96

[28] D. Hartvigsen and E. Zemel, “Is every cycle basis fundamen-
tal?” Journal of Graph Theory, vol. 13, no. 1, pp. 117–137, 1989.

Tuong-Vu Le-Nguyen received his B.Sc.
degree from Vietnam National University in
2005. In 2012, he obtained his M.Sc. de-
gree in Computer Science from the National
University of Singapore. He has worked in a
number of projects in the areas of computer
graphics and computer vision. He is currently
running a start-up company that provides
cloud-based software solutions.

Kok-Lim Low is an Assistant Professor at
the Department of Computer Science of
the National University of Singapore (NUS).
He holds a Ph.D. degree in Computer Sci-
ence from the University of North Carolina
at Chapel Hill, and received his M.Sc. and
B.Sc. (Honours) degrees in Computer Sci-
ence from NUS. His research interests in-
clude computational art, real-time rendering,
and computational photography.

Conrado Ruiz Jr. is a Ph.D. candidate at the
School of Computing of the National Univer-
sity of Singapore (NUS). He also obtained
his M.Sc. degree from NUS and received his
B.Sc. degree in Computer Science from De
La Salle University (DLSU) - Manila. He is
currently on leave from his faculty position
at DLSU. He has co-authored papers in the
areas of computer graphics and multimedia
retrieval.

Sang N. Le is a Ph.D. candidate and a teach-
ing staff at the School of Computing of the
National University of Singapore (NUS). He
obtained his B.Sc. in Computer Science, with
a minor in Mathematics, from NUS in 2006.
He has worked in a number of research ar-
eas, ranging from biomechanics and human
motion synthesis to 3D reconstruction. His
current focus is on automatic design of paper
pop-ups.

