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Abstract  We present a generic framework for enhanced
active multi-sensing. We propose a coopetitive interaction
approach, which combines the salient features of coopera-
tion and competition with an aim to optimize the cooper-
ation among sensors to achieve best results at the system
level rather than redundantly implementing cooperation at
each stage. We also employ model predictive control based
forward state estimation method for counter-acting various
delays faced in multi-sensor environments. The results
obtained for two different visual surveillance adaptations
with different number of cameras and different surveillance
goals provide clear evidence for the improvements created
by adoption of the proposed enhancements.

Keywords Visual surveillance - Coopetition - Model
predictive control

1 Introduction

The benefits of active cooperative sensing as compared to
non-cooperative sensing have been well established in liter-
ature [5,4]. By active cooperative sensing, we mean that the
sensors in use not only react based on the sensed data, but
they also help each other by exchanging information among
them in order to better perform the designated task. However,
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such multi-sensor systems often face the following two key
problems:

1. Lackof sophisticated interaction mechanisms which can
optimize the cooperation among sensors to achieve best
results at the system level rather than redundantly imple-
menting cooperation at each stage.

2. The delay in exchange of information among sensors
and the delay in sensors reacting to the received instruc-
tions.

We justify the importance of the above two issues as fol-
lows. Let us consider a dual camera surveillance scenario
where the system goal is to obtain high resolution images of
an intruder entering an enclosed area. In this scenario, the
camera which is in a better position to capture the images of
intruder should be allowed to track him/her even if it means
competing against the peer camera in certain instances e.g.
based on the size of facial image obtained. Hence in this
case even though the cameras are ‘competing’ in a local con-
text (i.e. in capturing the images of intruder), they are still
‘cooperating’ toward a common goal in a global context by
working together to obtain the best high resolution images of
the intruder. Therefore, there is a need for employing a more
sophisticated interaction strategy which involves ‘competi-
tion” as well as ‘cooperation’ among the sensors instead of
having just redundant cooperation.

Also, there is always some delay encountered in informa-
tion exchange among sensors and there is inherent latency
in sensors reacting to any obtained information. This delay
significantly reduces the system’s speed and in turn the per-
formance. For instance, in camera-based systems, all track-
ing based applications face a single frame delay between
observing certain traits and reacting to it [21,22]. Also, all
multi-camera systems observe a significant delay if PTZ
(Pan, Tilt and Zoom) parameters are passed between cameras
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to undertake any specific task. Hence, there is a need for a
better control mechanism to counter the delay problem.

The above arguments clearly establish the need for an
effective framework which can create synergistic interac-
tions between sensors to achieve system level cooperation
and at the same time offset delays which occur frequently
in practical implementations of active sensing systems. In
this paper, we propose the use of ‘model predictive con-
trol (MPC)’ feedback mechanism coupled with a ‘coopeti-
tive’ interaction strategy to address these issues, and thereby
enhance the performance of various multi-sensor systems.

MPC is an effective control mechanism that allows sen-
sors to react not only based on past observations but also
estimated future events. In effect, this control method coun-
terbalances the delays by making explicit use of the process
model to predict the system control inputs and the outputs.
It has been widely used in robotics and chemical engineer-
ing fields [1,10] and has been clearly shown to give better
performance than non-estimation based control mechanisms
like PID (proportional integral differential)[10,19]. To cor-
relate MPC to a real-life example of chess; we play our next
move not only based on past opponent moves but also on
his/her anticipated future moves.

To enhance the performance of multi-sensor systems, we
also need to adopt the concept of coopetition among the
sensors. We define coopetition as a process in which the
sensors ‘compete’ as well as ‘cooperate’ with each other to
perform the designated task in the best possible manner. In
other words, we propose the use of cooperation based on an
explicit notion of worthiness or merit as decided by competi-
tion. To correlate it to a real-life example of a soccer match, a
mid-fielder would pass the ball to a striker of his team only if
the striker has a better ability to score a goal, else he would try
the shot himself. Hence, even though the two players would
be ‘competing’ to score a goal at a local instance, they are still
‘cooperating’ globally to optimize the overall task of scoring
as many goals for their team as possible.

We generalize the definition of cooperation to include the
concept of transfer of roles and sub-goals rather than just
parameters as often described in sensor literature. Also, such
passing of roles and parameters should be done only when
there is an explicit need to do so (‘interact on demand’) rather
than at each instant as there are significant overheads required
for such transfers. Thus we believe that sensors should not
only pass useful information (as in [25, 13] etc.) to each other
but also pass over their entire strategy and role to the other
sensor if it helps in achieving better overall performance.
Hence, we introduce the ideas of dynamic role exchange and
interact on demand between sensors for achieving global
optimization. Another real life example to clearly describe
our over-all coopetitive interaction strategy can be seen at the
popular card game of bridge in which partners try to outbid
each other in an attempt to obtain best possible results for
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their team. We also notice that partners do not just pass each
other parameters but rather give up their role (e.g. as a bidder)
if they realize that doing so will lead to over-all best results
for the team.

We have earlier described preliminary ideas of ‘coopeti-
tion’ interaction strategy and MPC for a dual camera surveil-
lance setup in [22]. This paper provides a detailed discussion
on how a generic framework with m sensors, n sub-goals and
any specific system goal can benefit from the use of MPC and
coopetition. We shall, also undertake a comprehensive dis-
cussion on how such a proposed framework can be scaled to
different surveillance systems with differing goals and num-
ber of sensors.

As stated, our proposed framework is generic and can
in-principle be applied to any number of sensors/cameras
and to any system goal. Hence, to demonstrate its versa-
tility, we describe two sets of experiments with differing
number of sensors as well as the system goals. Both the imple-
mentations have been chosen from the surveillance domain,
which is indeed an important area in multi-sensor research.
The first set of experiments demonstrates the application
of a dual camera system to capture high resolution images
of an intruder entering an enclosed single door rectangular
premises e.g. an ATM lobby or a museum sub-section.! The
second set of experiments demonstrates the use of a triple
camera system for the detecting any abandoned objects in any
well defined surveyed premises. Specifically, we are inter-
ested in capturing facial images of the person abandoning
the object, the object itself and the trajectory of the person.

The two sets of experiments allow us to obtain quantifi-
able measures of the performance of our proposed approach.
The results obtained are compared with the base case scenar-
ios like those of static sensors or non-coopetitive interactions
and also contrasted with those of other approaches described
in literature.

To summarize, our main contributions in this paper are:

1.  Adoption of coopetitive interaction approach between
sensors in order to achieve the overall system-level opti-
mization. We have established through experimental
results in a surveillance scenarios that this interaction
strategy helps us to assign the best-suited visual sensors
for the task at hand and achieve best possible overall
results.

2. Introduction of MPC (model predictive control) as a
novel means of handling feedback in active sensors. The
ability to react to the possible future scenarios gives us an
effective tool to offset transmission and reaction delays
which often affect the performance of multiple visual
sensor systems.

1 Results for some of the dual camera setup experiments were described
earlier in [22].
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The organization of the remainder of the paper is as fol-
lows. In Sect. 2, we describe the related work done by the
research community. Section 3 presents the detailed descrip-
tion of our framework and also provides a theoretical analysis
of the various tools and techniques used. Section 4 describes
the practical implementation details for the two scenarios
and in Sect. 5, we describe the results and perform a detailed
analysis. Section 6 summarizes the work done and the con-
tributions with a discussion on the future work.

2 Related work

As stated earlier, the main contributions of this paper are
regarding the mode of interaction (i.e. coopetition) among
sensors and introduction of MPC as a novel feedback mech-
anism. Hence we discuss the related work in these two areas
and also take a closer look at similar dual and multiple camera
surveillance frameworks.

From a multi-agent robotics perspective, Stentz [7]
describes cooperation and competition between robots in
order to fulfill assigned robotic tasks e.g. clearing toxic waste
etc. Bowyer [2] also gives a good description of different
types of cooperation between sensors from generic point of
view. The ideas described in these papers are very interest-
ing, however they are from a robotics/multi-agent perspective
with no correlation to visual surveillance or vision sensor
interactions. In our current work, we aim to describe the
effective use of a combination of cooperation and competi-
tion for obtaining best performance in vision-based systems.

Laurent [12] describes the use of an omni-view camera
combined with a laser sensor for object localization. This
work however does not deal with the interaction strategies
required for cooperation. Molinaetal. [8,3, 15] describe some
interesting strategies for coordination between cameras for
surveillance. They advocate prioritization between sensing
tasks and also touch on the concepts of conflict management
and hand-off. However, they do not propose the explicit use
of competition between sensors as we propose in our coopeti-
tive framework. Nor do they talk about the use of competition
and cooperation only when required as we propose. They also
do not deal with forward state-estimation which is an integral
part of our framework.

On the other hand, Barreto et al. [1] have done some work
on feedback control mechanisms for vision based systems.
They have highlighted the use of MPC mechanism to control
the motion of a camera placed in robot head. They also use a
Kalman filter for predicting the future positions of the tracked
object so as to handle system delays. Papanikolopoulos et al.
[18] also proposes the use of MPC and Kalman filter to track
objects for a camera placed in the robot head. Saedan et al.
[20], on the other hand describes the use of PID control for
visual tracking by robot head camera. However, these works

deal with single camera robotic systems and do not cover the
interaction between multiple cameras and the complexities
arising such as delay and the competition/cooperation issues.
We intend to create an integrated system which would have
an efficient feedback mechanism combined with the ability
to handle interactions across multiple cameras.

VSAM (visual surveillance and monitoring) project [4,5]
describes the concept of cooperation among multiple active
cameras for tracking objects. It also provides a very good
overview of the visual surveillance area. However it does not
deal with the specific issues such as coopetition and delay
counter-action which we are handling.

Recently, some interesting dual-camera frameworks have
been proposed. Collins et al.[25] describes a master-slave
approach to detect human beings at a distance. In this sys-
tem, the master camera takes wide panoramic images and
the slave camera zooms into the person to obtain his images.
Regazzoni et al.[14] also describe a similar dual camera set-
up for obtaining focused images of objects at a distance. Liu
et al. [13] also adopt a similar master-slave approach. Their
system has a wide-angle panoramic camera with a PTZ (Pan
Tilt Zoom) camera on top. Anastasio et al. [23] describe the
use of a wide-angle camera combined with an active camera
to obtain human images. The work by Greiffenhagen et al.
[9] uses an omni-view camera attached to a PTZ active cam-
era to obtain images of the monitored object. However, in
all these works, there is no movement of the master camera
and both cameras are placed facing the same direction hence
reducing the possibilities of obtaining good quality images
of the monitored object in all cases. For example, a change of
face direction by the human being will cause these systems
to lose out on his facial information.

As mentioned earlier, we have described the preliminary
ideas on coopetitive approach and the results with two inter-
acting cameras in [22]. In this paper we have generalized the
approach to a framework with m sensors, n sub-goals and any
specific system goal. We have also bolstered the experimen-
tation for dual camera scenarios and studied the adaptation to
a triple camera scenario in detail. Thus the aim of this paper
is to provide a generalized framework which employs coo-
petitive interaction and MPC feedback and describe detailed
experimentation results for the same.

A summary of related work has been shown in Table 1. It
clearly highlights the attributes of visual surveillance which
have already been adopted by the research community and
also those which have been proposed for the first time in this
paper.

As can be seen in Table 1, a significant amount of work
has already been done using multiple active cameras. Inter-
action between cameras is also commonly described, but the
coopetitive approach of interaction between cameras for
global optimization has been introduced for the first time
in our proposed framework. MPC has been described from
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Table 1 Summary of different attributes across various related work

Work Active cameras Multiple Interaction Model Dynamic Interact
cameras strategy predictive role on

control swapping demand

Stentz [7] - - Cooperation - - -
and competition

Molina [16,8,15] Yes Yes Coordination - Hand—off -
Barretto [1] Robot head movement - - Yes - -
Papanikolopoulos [18] Robot head movement - - Yes - -
Saedan [20] Robot head movement - - —(PID) - -
Collins[4,5] Yes Yes Cooperation - - -
Liu [13],Collins [25] Yes Dual camera Cooperation - - -
Regazzoni [14],
Anastasio [23],
Greiffenhagen [9]
Proposed framework Yes Yes Coopetition Yes Yes Yes

robotics perspective in a couple of works but its prowess
for visual surveillance has been highlighted for the first time
in on our works. While something similar has been hinted in
one work, the concept of ‘dynamic role exchanging’ has been
explicitly adopted for the first time in our proposed frame-
work. Lastly, the concept of ‘interact on demand’ has also
been highlighted for the first time in this paper.

3 Proposed framework

We propose a generic framework which can be employed for
accomplishing any well defined task with m sensors and n
sub-goals, followed by its adaptation for the two and three
camera surveillance scenarios. We also discuss on how the
proposed novel methods of coopetitive interaction and MPC
work and how they have been implemented in our systems.

3.1 Generalized framework

The algorithm for our proposed generic framework has been
shown in Fig. 1. The process of coopetitive interaction among
sensors is initiated based on a trigger event. This trigger event
can be ‘a person entering a room’ or ‘an object being aban-
doned’ or even ‘a traffic blockage occurring on the high-
way’. Upon triggering, the framework starts assigning each
of the n tasks or sub-goals to each of the m available sensors.
The most important and/or most restrictive task is assigned
its sensor first, followed by the second most important task
and so on. The assignment of each of these sensors needs
to be based on an explicit notion of suitability or worthiness
amongst its peers. This phase constitutes the ‘competition’
phase of over-all coopetitive strategy.
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Upon allocation of the appropriate tasks to the sensors,
any sensor which has information that may help other sen-
sors passes this information to the appropriate sensor(s). This
information could be the last known position of an intruder
in the room, or the position of an abandoned object, and so
on. This exchange of information would be especially useful
in subsequent iterations when the roles might be exchanged
among sensors. This phase constitutes the ‘cooperation’ com-
ponent of our coopetitive framework.

Once the roles are allocated and the useful information is
obtained, the sensors undertake their respective tasks. The
system keeps track of the performance each sensor, as the
sensors may not always be able to undertake the allocated
task well. For example, when the intruder might change his
facial direction, another sensor may be better equipped to
focus on his face. If the sensors are not able to achieve their
intended goal, we consider re-allocation of tasks. However,
this re-allocation is done only when it is appropriate to do
so, e.g. the re-allocation of tasks when the face is not found
for just one frame may not be optimal as it may be due to
incorrect face detection. Similarly, it may not make sense to
re-allocate tasks if some of the sensors have already started
working on their assigned task and are no longer in a position
to undertake any other roles. On the other hand, if the sen-
sors are able to undertake their allocated tasks correctly, they
continue working on their allocated tasks until all their tasks
or the sub-goals are completed.

In this framework, we make a basic assumption thatm > n
i.e. we have more sensors (m) than the tasks (), at any given
instance. This is important as it is usually not practical to
assign more than one task to a sensor at the same time. The
roles can however be exchanged among sensors as and when
required. Hence, even if we need all n tasks to be undertaken
from each sensor location, we do not need to employ n x m
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Fig. 1 Generic algorithm of the proposed framework

different sensors; but rather just allocate different roles to
the same sensor at different points of time. Another assump-
tion made is that the system designer can indeed prioritize
the constituent sub-goals for any particular adaptation of the
generic framework.

Having covered the generic algorithmic aspects of the
framework, we now take a closer look at how this frame-
work can be adapted to a specific dual camera and a triple
camera system, in the two subsequent subsections.

3.2 Dual camera system

For the dual camera adaptation, we consider a scenario of
monitoring the intruders entering into a single door enclosed
rectangular environment e.g. an ATM lobby or a museum

subsection. The system goal is to obtain high quality fron-
tal facial images of the intruder. These high quality frontal
images can be useful for further automated processing e.g.
face recognition etc.

One of the two cameras in the system undertakes the task
of observing the entire room in order to detect new intruders,
and the second camera focuses (i.e. tracks and zooms) onto
their faces.

The algorithmic approach for the proposed framework has
been illustrated in Fig. 2. The triggering event for the dual
camera system is the entry of a person into the room. In
the competition phase, both the cameras try to focus on to
the face, but only the more suitable camera is allowed to
undertake this task. This role allocation is done based on an
explicit notion of merit between cameras. The measure of
merit adopted is un-zoomed size of facial images (if any)
obtained by cameras.

Following this, a decision is made as to whether any coop-
eration or passing of roles and parameters is required. This
role-exchanging is not required in first cycle but shall be

~.
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& oo
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Sub goal2=  Panning to detect new
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Fig. 2 Algorithm for the dual camera surveillance adaptation
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required in later cycles when a camera loses facial image
as the person has turned in the other direction. This process
again requires an explicit measure of suitability to transfer
roles at that particular instant. For our case if the faceCam (i.e.
the camera focusing on the face) cannot find any faces even
after zooming out to increase field-of-view, then it assumes
that person has changed direction. The faceCam continues to
focus on person’s face until he exits the surveyed premises.

A more detailed explanation for this dual camera system
can be found in [22].

3.3 Triple camera system

For the triple camera adaptation of the framework, we con-
sider a surveillance scenario where we monitor a walk-way
for any abandoned objects. If the system detects any aban-
doned objects, it obtains the images of the person abandoning
the object, the object itself and the trajectory. Specifically, we
define our three system sub-goals as:

1. Obtaining three ‘good quality’ images of the intruder:
We define ‘good quality’ images as the frontal facial
images of the intruder with at least 100 by 100 pixel
resolution. Images at this resolution can be used auto-
mated face recognition procedures with an accuracy of
around 90% [24] and are thus useful for terrorist identi-
fication etc.

2. Obtaining three ‘good quality’ images of the object: The
good quality images for objects are the focused zoomed
images with at least 100 by 100 pixel resolution. This
allows the security personnel who might be receiving
these images to have a much better idea about the possi-
ble nature of this object before taking their next action.

3. Obtaining the trajectory of the person: This gives us a
better over-all picture of the scenario as well as pro-
vide further insight into the motives of the person who
abandoned the object.

The overview of the adapted algorithm has been shown in
Fig. 3. The triggering event for this surveillance scenario is
the abandonment event. We detect the event based on blob
detection using the splitting of one moving blob into one
moving and one static blob as the symptom of abandonment
event. All three cameras keep looking out for this event and
the camera which successfully detects the event keeps a log
of the object position for future reference.

The coopetitive framework starts with the assignment of
roles to all three sensors based on the three system sub-goals.
The camera which is best suited for face capturing is allocated
this task and is labeled as ‘faceCam’. We choose the face-
Cam before choosing other cameras because capturing the
face is the most restrictive task amongst the three sub-goals.
Only the camera towards which the person is facing shall be
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Fig. 3 Algorithm for the triple camera surveillance adaptation

able to this task effectively. The tasks of focusing on object
or watching for the trajectory on the hand be handled well by
more than one cameras. Hence, we iterate and choose the ‘ob-
jectCam’ to focus on the object and the ‘trajCam’ to observe
the trajectory in the second and third iterations respectively.
The measure of merit for the allocation of trajCam is the
distance between the person blob and the object blob as we
do not want the person to block the object images as we zoom
in to capture the object images. This merit-based task allo-
cation part constitutes the competition phase of the over-all
coopetitive interaction strategy.

Next phase is the cooperation in which the previously
recorded object position information is passed to the object-
Cam. This information is useful to objectCam as the ob-
jectCam may not always have the object in its field of view.
Furthermore, even if it can see the object or/and the person, it
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may not be able to independently differentiate between them
and decide which one is an object.

In this adaptation, since we want to obtain just three images
of the person, there is a reasonably high probability that the
allocated camera chosen based on the merit of un-zoomed
face size in its images can undertake the task efficiently. As
such we do not employ swapping of roles in this adaptation
since both the faceCam and objectCam would no longer be at
their initial position, and hence, the parameter transfer may
not be appropriate after they have started performing their
respective tasks. Also, the trajCam should not be moved as
it is the only camera which captures the over-all scenario
as well as the trajectory. Transferring this role halfway to
another camera is not appropriate. The cameras keep under-
taking their respective tasks until the three sub-goals have
been achieved.

The three cameras have been arranged in triangular place-
ment. An overview of the arrangement of the cameras has
been shown in Fig. 4.

Some of the assumptions which we have employed in this
implementation are as follows:

1. Similar to the dual camera experimentation, we consider
person’s face as an important region of interest. Hence,
we assume that the person is not wearing any mask etc
to hide his face.

2. We assume that the person’s frontal face is visible in at
least one of the camera.

3. We also assume the system sub-goals can be linearly
arranged in an order. This arrangement is used to assign
the cameras to the sub-goals. Of course, the first sub-goal
has the luxury of choosing the most appropriate sensor
from the m available sensors while the second sub-goal
can choose the best available from m — 1 sensors and
so on. For our implementation purpose, we have chosen
the most restrictive and important task of face detection
as the first priority sub-goal.

Fig. 4 Overview of the camera arrangement for three camera setup

3.4 Use of coopetitive interaction approach

We call our framework’s interaction approach as coopetitive
in the sense that the cameras both compete and cooperate
for efficient visual surveillance. However, it is important to
note that the competition we are dealing with is intra-team
i.e. the competing entities still share a common overall goal
(e.g. members of same team in a bridge card game trying to
outbid each other) as opposed to inter-team (e.g. members
of opposite team in a bridge card game) in which case the
entities may have opposing system goals. This type of coo-
petitive interaction takes place in both the dual-camera and
the triple camera surveillance scenarios.

In the dual-camera setup, initially the cameras compete
against each other to undertake the role of focusing on the
monitored object (here after called Mop;). In a single intruder
case, this competition is clearly won by the camera towards
which the intruder is facing. However, this competition
becomes more interesting in the multiple intruder scenario
where the winner of competition must be decided based on a
measure of merit. In fact, our aim is to just provide a generic
notion of ‘competition” which can support measures of merit
of all varieties. It can be a simple decision based on face size
in images or a complex function based on highest resolution
facial image of person obtained as yet, room parameters,
lighting conditions and so on. A measure of discrimina-
tion which gives higher priority to new intruder’s faces is
also plausible. However, for the purpose of the experiments
described in this paper, we use the size of un-zoomed face as
a measure of merit to discriminate between sensors.

Let us say, without the loss of generality, the camera C;
wins the initial competition and starts focusing on the OOI
(object of interest). Then the camera C, starts panning the
entire area searching for new OOIs. However, if at a later
point of time C can not obtain OOl images anymore e.g. due
to change of facial direction by intruder, it would cooperate
by passing over its role as well as the information regarding
possible location of the OOI to C». Hence our cameras both
compete and cooperate at different moments of time to allow
the best suited sensor to take over the task of obtaining OOI
images.

In the triple camera setup, the cameras initially compete
with each other to obtain the most important role as faceCam.
However, only the most deserving camera is allocated this
task. Once again, while our generic framework does not
necessitate any specific measure of merit, for implementa-
tion purposes we have chosen the size of un-zoomed facial
images obtained by different cameras as a measure of merit.
Similarly, for the second sub-goal we use the Euclidean dis-
tance between person and the object blobs as the measure of
merit.

Also, at the moment the triggering event of abandonment
is detected, the camera doing so keeps a record of the position
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information of the object blob. This information is passed
over at a later instant to the allocated objectCam to help
it in focusing on the object. Hence, we realize that while
the different sensors initially are ‘competing’ to obtain the
various tasks, they ‘cooperate’ later on to help improve the
over-all system performance. Hence we allow the best suited
cameras to undertake the tasks and still allow them to leverage
on to the available help from other sensors.

We also notice that the role-allocation is dynamic in both
the setups. The sensors employed are equally capable and
the roles can be exchanged or swapped as the situation may
need. For example, in the triple camera setup, initial task
of detecting the abandonment event can be accomplished by
any of the sensors. Even later on, the faceCam and the object-
Cam tasks can be allocated to any of the cameras. In fact, the
camera allocation can be totally different for the same per-
son entering the premises twice depending on his trajectory
chosen.

In the dual camera setup, we notice this trait even more
prominently. The roles between the equally capable PTZ
cameras can be swapped at any time, if doing so improves the
system’s over-all results. This provides better performance
results for face imaging tasks as compared to other dual cam-
era systems like [23,25,13], which employ two cameras to
detect faces in only one direction or would need four cameras
to obtain person data in both the directions.

3.5 Use of MPC

We have adopted the MPC feedback mechanism for both our
dual and triple camera systems. In dual camera system, the
use of MPC allows us to better estimate the position of the
walking person by the time the new faceCam is able to focus
onto it. It also helps us in tracking the person’s face as we
use MPC to predict the frame position of the face rather than
being lagged by one frame in each iteration. In triple camera
setup also, the use of MPC has allowed us to better track the
person’s face in order to focus on to it to obtain high quality
images. In this subsection, we describe the theoretical back-
ground and reasoning behind MPC, and also how it has been
implemented in our systems.

The working of the MPC has been illustrated in Fig. 5
adapted from [17]. At time ¢, based on the past and future
(estimated) values, the system tries to decide optimal values
of manipulated inputs u (t + k). However, only one input u(¢)
is actually fed into the system. The same process is repeated
at time (#+1) i.e. based on the input and output values till
time (z+1), future values of manipulated input and predicted
output are decided. Such a process is repeated at the end
of each time interval in the duration of interest i.e. till time

(t+ p).
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Fig. 5 Working of MPC

3.5.1 Our MPC framework

The MPC framework adopted by us for surveillance has been
divided into four parts as shown in Fig. 6. The input to the
system is the movement to be made by the camera in order to
try to bring the Moy; centroid to the center of the image plane.
The reference point for the signal is the center of the image
plane and the output of the system is the actual position of
the Moy, centroid obtained on the image plane.

The aim of our framework is to obtain the images with
the Moy, centroid placed at the center of the image plane.
In order to achieve this, the framework works as follows.
The system dynamics (Part A) is responsible for converting
the system input i.e. control signal in terms of image plane
[x, ¥] coordinates into pan and tilt movement parameters for
the camera. Based on this camera movement, we measure the
Moy centroid position as the output of the system. However,
in MPC, very often we try to predict the input and output data
for future instances in order to achieve global optimization.
Under such circumstances, we use a state estimation mecha-
nism (Part B) to estimate the future Moy; centroid positions.
We are using a Kalman filter approach to estimate the future
Mop; positions.

Part C refers to the reference point which is the center of
the image plane. After obtaining the actual/estimated Mop;
positions for the duration of interest and comparing it with

PartC:
Reference
Past Input & Output Output v
— Part A: System —,@
g Dynamics
Future Part B: State
Inputs Estimation
Part D: Future Errors
Optimizer

Fig. 6 The proposed MPC framework for visual surveillance
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the Reference value we are able to obtain the error values in
terms of [x, y] coordinates. This value is passed to the opti-
mizer (Part D), which decides on the optimal control signal to
be sent at the current instant so as to achieve an overall min-
imum value for the penalty function. The penalty function
is a weighted average of the estimated error and the control
effort required. The above mentioned process is repeated at
the end of each frame in an effort to bring the Mopj image
centroid to the center of the image plane.

Now let us look at each of the four parts of our MPC
framework mentioned above in more detail.

A: System dynamics

The system dynamics part includes the conversion of the
input control signal in term of [x, y] parameters into pan and
tilt angle values which are implemented on the camera. The
relation between [x, y] coordinate deviations and the corre-
sponding angles can be found using camera calibration. In
our particular framework using Canon VC-C4 cameras with
384 by 288 pixel resolution frames, we found the pixel to
angle ratio to be 16 pixels/degree in both horizontal and ver-
tical directions.

B: State estimation

The process of state estimation is required when we need
to estimate the Moy, positions for future instants of time.
We have adopted the widely used [5,1,11] Kalman filter
approach for the purpose of state estimation. We have
assumed a constant velocity model to undertake state esti-
mation and modeled system noise as the difference between
measured and predicted values at current time (¢).

Our overall equation to calculate the Moy, position for
next time instant i.e. (r+1) is

T
e=lnl =) )]
Pyl Py 1; Vy 1
[P
Pyt — PYtji—1

Yo is the optimal estimate, py is the position on x axis, py is
the position on y axis, 7T is the time duration between frames,
vy is the x-axis velocity, vy is the y-axis velocity, G is the
Kalman gain, px; is the x-axis position of Mop; as measured
at time ¢, px;|;— is the x-axis position of Mop; at time ¢ as
predicted at time ¢ — 1, py; is the y-axis position of Moy as
measured at time 7, pyy,—1 is the y-axis position of Mop; at
time instant ¢ as predicted at time ¢ — 1.

ey

C: Reference

In our framework, we want the Mop; centroid to be imaged
at the center of the image plane. This allows high quality
facial images to be obtained in the center of the image plane
together with contextual information from the non-center
portions. Our reference point always remains at the center of
image plane [0, 0] assuming that egomotion i.e. the motion of
the camera itself, has been compensated for. The compensa-
tion for egomotion is handled by the optimizer section when
it makes calculations on appropriate input parameters to be
fed into the system.

D: Optimizer

The basic aim of the optimizer is to find out the optimal cur-
rent input (1), which decreases the Moy, tracking error as
well as the control effort required. Hence, we want to min-
imize a penalty term that represents the weighted sum of
future errors and control actions. This can be represented in
a mathematical form as follows:

Ny N
min Q> (y(k) —ref(k)* + R D (uk+ 1) — u(k)’

k=N k=N

@)

where, O, R are the weight factors, k is the instant of time
being considered, Ni, N; are the start and end point of the
duration of interest, y(k) is the output i.e. Mop; centroid on
the image plane, u (k) is the control input i.e. movement of
camera in terms of image plane coordinates, ref(k) is the
reference signal i.e. image plane center [0,0].

The factors Q and R decide the relative importance given
to the reduction of future error and the control action. After
a few rounds of experiments and tuning, the values of 0.8
and 0.2 were found to be most appropriate for parameters Q
and R respectively. This is due to the fact that in our frame-
work reducing tracking error is much more important than
reducing the camera movement.

The y(k) as mentioned in Eq. (2) is the position of Mop;
centroid on the image plane and can be obtained for future
frames by using Kalman filter as described in Eq. (1). The
ref (k) represents the center of the image plane [0, 0], but it
needs to be compensated for the movement of the camera
itself. Hence for future instants of time:

ref(k) = Au(k) A3)

This process of parameter translation across frames has been
demonstrated in Figs. 7, 8. While Fig. 7 demonstrates the
normal error as observed for two consecutive frames in the
case of no camera movement between frames, Fig. 8§ demon-
strates how these parameters are translated in the next frame
in case there is camera movement between frames. Basically
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Frame k

Fig. 7 Movement of Mop; centroid on the image plane between two

consecutive frames
z.

yik+1) - ref(k+1)
y(k+1) - ref (k)

T
ek [ Frame k+1 |

AU(K)

Fig. 8 Impact of control input on the reference frame

the reference itself moves by Au(k), and hence the effec-
tive error should be reduced by Au(k) to compensate for the
camera movement.

The second term of Eq. (2) clearly represents the move-
ment of the camera between frames and can be written as
Au (k) too. Hence, Eq. (2) can also be written as:

N> No
min 0 > (v(k) = Au(k)’ + R > (Auk)® (@)

k=N, k=N

To facilitate the solution of this equation we bring it to a
standard quadratic form, which is

min X' Hx — g'x 5)
X

For which the solution is described in [17] asx = 0.5¢ H -1,
We translate our MPC problem of Eq. (4) to the standard
quadratic form given in Eq. (5). The process of translation
and simplification is similar to one described in [17]. The
specific mathematical steps have been omitted due to space
constraints. After simplification we obtain the final value of
input parameters as:
2

G B ©)
where, AU (k) is a matrix containing optimal values of next n
incremental movements to be made by system at time k, Y (k)

AU (k) =

@ Springer

is a matrix thatrepresents the next n estimated Mop; positions
at time k, Q and R are the weight parameters as described
earlier.

We use the above equation to obtain the values of AU (k)
matrix after each iteration. The first value of this matrix is
actually fed into the system and after this AU (k 4 1) is cal-
culated at the next iteration. The first value of AU (k + 1)
matrix is fed into the system and such a process is repeated
for the entire period of interest.

3.6 Choosing the appropriate time for role transfer

An important component of our framework is dynamic role
swapping so as to continually employ the best suited sen-
sor for the (sub) goal. Delayed role-swapping may degrade
the system performance, however frequent changing of roles
may also cause heavy overheads. Also, this appropriate sen-
sor to sub-goal allocation problem is dependent on the adver-
sary behavior which further compounds its complexity. The
key idea is that the system has to continuously ‘out-guess’ the
adversary to make the correct sensor to sub-goal allocation.

One way to look at this problem is to compare it with the
cache-selection problem in memory/systems research. Only
a limited number (say k) out of the n possible candidates can
be chosen to be in the cache. Normally k is lesser than n and
there are significant penalties for cache-misses. Similar prob-
lem occurs in surveillance where the system can monitor only
k states out of the n possible states which the adversary can
select. Also, just like cache-selection problems ‘thrashing’
remains a major issue here as a determined adversary may
choose states just after they have they have been unselected
(or unmonitored) by the system. However, unlike memory
systems we cannot employ assumptions like spatial or tem-
poral locality to make the better selection decisions. In fact
we cannot make any assumptions regarding the adversary
behavior other than the fact that he wants to beat the system.

This translates into an ‘out-guessing’ conflict and both
sides want to out-guess each other. Conventionally this ‘bur-
den of out-guessing’ has been borne by the system. Further,
the most common strategy used is the reactive ‘trailing’ of
intruder states. But there always exists some physical time-
delay between the system realizing that it needs to change its
state and the actual time at which it becomes functional in its
new state. In practice, any determined adversary can exploit
such a delay (Tswapdelay) and keep changing his states very
frequently.

‘We propose a simple counter-strategy for the system. The
system can choose to pass the ‘burden of out-guessing’ on to
the adversary rather than taking it on itself. Instead of follow-
ing any regular patterns or a reactionary approach towards
state selection, the system can use a random approach itself.
If the adversary does not want the system to win, he has equal
(if not more) interest in trying to guess the state to be chosen
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by the system in next time instant. Thus now the ‘burden of
out-guessing’ lies squarely on the adversary rather than the
system.

We also realize that despite its benefits, a truly random
approach cannot be employed by any surveillance system
as it needs certain performance bounds. Hence we impose
certain parameter bounds to the proposed random approach
so that the system can keep the adversary guessing but still
provide a certain specified performance on average.

Such a random approach can be applied in any given n
choose k scenario e.g. 2 cameras which can monitor any 2
out of the 4 directional (north, east, west, south) states which
the adversary can take or any other similar scenario. However,
we continue further discussion with the base case scenario of
2 choose 1 states as it occurs in our two camera adaptation.
Clearly the adversary can choose two different states for his
facial direction. But we can only allow camera in one direc-
tion to focus on the face (as the other camera must be reserved
for detecting newer intrusions). Thus we want to study how
we can better perform the sensor to sub-goal allocation at
each time instant.

To understand the proposition further let us consider a sce-
nario where the intruder has already turned his face direction
a few times and wants to change his face direction once more
so as to avoid face detection.

Based on our random approach we ensure that camera
keeps focusing on the intruder for duration Tpersist €ven if he
has changed his facial direction. This proposition rests on
the fact that the intruder also has limited number of states
to choose from. Further, he is also aware that system may
choose to follow him to his new state, thus there is a possi-
bility that the adversary may want to return to his initial time
within a certain amount of time.

Let us make the value Tpersist to be random number R
times larger than Tywapdelay. Hence,

R = random(0, v) @)

Tpersist = R X Tswapdelay (8)

where parameter v gives abound to maximum amount of time
the system can continue to focus in the same direction even if
the intruder has changed his direction. This value can not be
too low as then it becomes a conventional reactive ‘trailer’
system, nor can it be too high as then the system runs the
risk of not obtaining good quality images for a long time of a
person who has genuinely changed his direction and contin-
ues walking in that direction. Based on some basic parameter
tuning experimentation, in our framework, we have chosen
v to be 6. Hence the system continues to maintain the same
sensor to sub-goal for arandom duration between 0 to 6 times
Of Tswapdelay 1.€. an average value of 3 times.

To illustrate the above-mentioned approach further, let us
look at a simple example. We assume:

Tswapdelay = 1 s(average)
R = 3(average)

Thersist = 3 X Tgwapdelay = 3 s(average)

We know that the intruder can escape detection, only if
he changes his facial direction during the parameter transfer
time. If he changes back his direction before parameter trans-
fer, the camera in the other direction is still active and shall
capture his face. If we allow the parameter transfer to be com-
pleted before changing direction then he will get captured in
his current position itself. Thus, assuming total random dis-
tribution of the time moments when the intruder changes his
facial direction:

Prob(Escape) after 1 cycle =

Tswapdelay _ 1
Tpersist + Tswapdelay (I+3)

=25%

Prob(Escape) after n cycles =

( Tswapdelay )” _ (l) n
Trollow + Tswapdelay 4

For example, if the intruder stays in the surveyed area for
12's (3 cycles) his probability of escaping is 1.56% i.e. prob-
ability of his image getting captured is 98.44%. Please note
that theoretically the same probability of capture is possible
with a fixed persistence time of 3s. In practice however, a
determined adversary can easily out-guess a system which is
following a fixed pattern. Thus it makes sense to always keep
the intruder guessing about the next time the system changes
sensor roles. We shall further verify the applicability of the
proposed random approach in the experiments Sect. 5.2.

4 System implementation

This section describes the practical implementation details
for the two surveillance scenarios adopted.

In both the adaptations, we have made use of Canon VC-
C4 PTZ (Pan Tilt Zoom) capable cameras. Conceptually we
treat each camera as a separate entity which can compute
its own suitability metric and in turn be granted a task. The
practical implementation has been done with the use of a
VC++ software running on a central PC which has separate
objects of the camera-agent class for each camera. These
objects interact with the coordinator class running on the
PC which takes as input the suitability measures from each
of these camera-agent classes and then allocates the roles
accordingly. The camera-agent classes also keep the coordi-
nator class updated about their current performance metric
at regular intervals. Thus the coordinator can be sure that the
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various tasks are undertaken appropriately and what is the
current system performance level. Any time the coordinator
class decides that role-swapping is required it can send the
newer task allocation commands to the various camera-agent
classes. Thus we exploit the physical co-location of all the
camera-agent classes to ease the implementation in our cur-
rent set of experiments. It is worth noting that there may be
a number of practical challenges in making such a task allo-
cation/coordination ‘truly’ distributed. We are looking into
this aspect as part of our future work.

However, we intend to use the same generic protocol for
performing the coordination amongst multiple sensors. We
expect each sensor to send a suitability metric for the sys-
tem sub-goals at regular intervals. We only want to transfer
such meta-data (a few bytes) and not the whole image set etc.
Similarly the role allocation commands shall be pre-assigned
textual commands which are very small in size. The coordi-
nator can also ask for any helpful parameters from the cur-
rently allocated sensor before issuing the role re-allocation
commands or passing such helpful parameters to the newly
allocated sensor. On the whole, we intend to continue to use
the paradigms of meta-level information sharing and process
abstraction rather than passing huge image data sets or com-
plicated processing tasks in between the sensors.

Also, please note that we have focused only on single
intruder scenarios for our current implementation and exper-
imentation. This has been done in order to circumvent the
complexities of multiple object tracking which is indeed
a challenging open problem in surveillance research. For
example, we currently assume that the location parameters
passed between cameras are those of the only intruder. This
assumption may not hold in multi-intruder scenarios and
hence we shall need to verify the intruder identity. This could
possibly be achieved by using biometric features or check-
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Fig. 9 Three camera system
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Fig. 10 GUI of the software application

ing the shirt-color or by using a different (non-vision) sensor
modality. We hope to explore these issues in our future works.
The physical layout for the triple camera setup as it is
currently implemented has been shown in Fig. 9. The three
cameras were connected in a daisy chain setup as is supported
by the Canon cameras. The camera control commands were
transmitted using custom-made cable which connected to
RS-232C port on the PC. The image data was captured using
a Picolo-Pro video capture card with co-axial data cables.
A software interface application was developed for easy
monitoring of the system performance as well as setting the
parameters like interaction mode, delay in role-exchanging
etc. A snapshot of the application GUI is shown in Fig. 10,
with the three cameras undertaking their respective tasks.

5 Results and analysis

To establish the veracity of our proposed framework in per-
forming surveillance tasks, we have conducted two sets of
comprehensive experiments to compare the coopetitive inter-
action approach and MPC feedback mechanism with their
possible alternatives. While one set demonstrates how our
coopetitive interaction strategy performs against similar dual
camera systems, the second set demonstrates the scalabil-
ity of the coopetitive interaction approach to a framework
with three cameras which have to undertake three different
roles. In both the sets, we compare the coopetitive interac-
tion approach with other plausible approaches such as ‘only
cooperation’ and ‘only competition’. We also compare the
performance of the proposed MPC feedback mechanism with
that of the traditional PID control. Besides this, we also con-
duct a set of experiments to find the appropriate time for role
swapping. The idea is to verify the suitability of our pro-
posed random approach for camera to sub-goal allocation as
compared to the conventional intruder-follower approaches.
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Note that we do not use standard data sets, like those
described in PETS [6], to evaluate the performance of our
surveillance system, as such data sets do not provide any
means for estimating the performance of real time surveil-
lance experiments. They provide off-line images to be used
for evaluating the performance, which is not possible in our
system as it needs to undertake physical panning, tilting and
zooming operations in real time in order to capture the Mop;.
Hence, we use real-time experiments to evaluate the perfor-
mance of our system.

5.1 Dual camera experiments

This section describes the experiments undertaken to authen-
ticate the application of the proposed framework in a dual
camera surveillance setup. Our system goal, as discussed
earlier, is obtaining frontal facial images of an intruder in a
rectangular premises.

We describe briefly the first three experiments conducted
in dual-camera setup as follows. Experiment 1 helped us in
determining which camera interaction approach or feedback
mechanism provides us with best ability to obtain images
of intruders traversing certain definitive trajectories in an
enclosed environment. In Experiment 2, we determine which
interaction approach or feedback mechanism can detect an
intruder most number of times in a given time period even if
the intruder is allowed freedom to choose his own trajectory
and intentionally try to avoid detection. Experiment 3 pro-
vides a comparison between MPC and PID feedback mecha-
nisms in terms of their ability to track and obtain high resolu-
tion images of the Mop;. Please note that the experiments and
the results for two camera setup have earlier been described
in [22] which can also be referred for further details.

Here, we reproduce a summary of the results obtained. As
can be seen in Fig. 11, we notice that coopetitive approach
along with MPC feedback mechanism has performed sig-
nificantly better than other approaches. In experiment 1, for
three chosen trajectories which varied from simple to com-
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Fig. 11 Comparison summary between different frameworks for the
dual camera setup

plex, we notice that ‘Coopetitive with MPC’ approach was
able to obtain good quality images for over 55% of times.
This was better than ‘Coopetitive with PID’ whose perfor-
mance began to drop significantly as the trajectory became
more complex and ‘Only cooperation” and ‘Only competi-
tion” which performed well below the proposed approach.

In experiment 2, we noticed that on average the ‘Coopet-
itive with MPC’ approach was able to obtain facial images
of an intruder 17.9 times per minute which was greater than
13 for ‘Coopetitive with PID” and 12.4 and 11.3 for ‘Only
Competition’ and ‘Only Cooperation’ respectively.

In third experiment, where we specifically compare ‘Coo-
petitive with MPC’ with the ‘Coopetitive with PID” approach,
we found that the ‘Coopetitive with MPC’ approach on
average obtained 16% less error in centering the Moy, to
the center of the image plane and 15% higher resolution
for the facial images obtained. These improvements are due
to the fact that MPC uses explicit forward estimation to pre-
dict the person’s position and hence is able to counter the
various delays.

Hence, based on these results we were able to conclude
that the ‘Coopetitive with MPC’ interaction approach per-
formed significantly better than the other approaches for the
described dual-camera surveillance setup.

5.2 Dynamic role-swapping experimentation

As part of our generic framework, we have highlighted
that the system should continually keep checking the
appropriateness of the roles assigned to the sensors. If at
any time, the over-all system performance can be improved
by swapping roles between cameras, then it should be under-
taken. Needless, to say that the ‘appropriate time’ depends on
the nature of the task and adversary behavior. As discussed
in Sect. 3.6 we want to improve the system performance by
adopting a random approach for role swapping.

Besides this we also want to cut down the number of
unnecessary role-swaps which may be caused by system
implementation noise and irregularities. In our implementa-
tion, we employ the conventional ‘face detection’ for
focusing on and obtaining images. As we are aware that
mechanisms like face detection are noisy i.e. not 100% accu-
rate, we need to devise some counter mechanisms.

Thus in this subsection we test our two hypothesis to better
undertake the dynamic role transfer.

1. Costly operations like role-exchange should not be
undertaken based on one (noisy) reading i.e. one nega-
tive face detection.

2. A random approach to role swapping can improve the
system performance.
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For this set of experiments, we considered a scenario
where an intruder comes inside the surveyed area, picks up
an object and leaves. He can spend minimum 30 s and maxi-
mum | min inside the surveyed premises. The intruder must
try not to get his face captured even a single time. The camera
system on the other hand tries to capture his facial images as
many times as possible.

For the purpose of these experiments we employed a dual
camera setup similar to that described in the preceding sub-
section. However, while those results were described earlier
in [22], the role-swapping experimentation results are being
described for the first time in this paper.

We conducted 25 rounds of experiments with each role-
exchanging strategy and the average results have been shown
in Fig. 12. We define successful detection as obtaining at least
one good quality image of the intruder. Hence successful
detection percentage reported is the percentage of experiment
rounds for which we found at least one good quality image
of the intruder. We also report the number of good quality
images found on average for each role exchange option.

We find that exchanging roles each time the person’s face
is not found might not be optimal. This is due to the fact
that the person might still be there but the face detection
algorithm was not able to detect it. It was found much bet-
ter to exchange roles if the face was not detected for three
consecutive frames, as there is a higher probability that the
person actually changed his facial direction. We also found
that random role-exchanging time with average Tpersisc Of 58
gave better detection percentage and facial image capturing
performance than fixed role-exchanging every 5s. This is
because some of the intruders were able to estimate the role-
exchange time after the first 15 to 20s in case of the fixed
role-exchanging strategy.

Another interesting point to note is that as the Tpersist
increases the probability of capturing the face at least once
also increases. But this comes with a trade-off for the number
of times the face is captured. Intuitively it makes sense that if

Camera role 90
exchange
strategies 80

Strategy 1- Facenot | 70 ——
found for one frame

60
Strategy 2- Face not

found consecutively | 50

for 3frames

40
Strategy 3 Fixed
Swiapping 5 30 +—4
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20 +—

Strategy 4 Random
Swapping Average | 10 +—

5 zeconds
0
Strategy 1 Strategy 2 Strategy 3 Strategy 4
0 Successful detection % 40 48 68 80
B MNumber of facial images 17 28 24 29
found

Fig. 12 Comparison summary between different role-exchange
strategies
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the system constantly focuses in one direction then the prob-
ability of the person looking at least once in that direction is
high. However, the probability that he will continue to look
in the same direction is low.

Thus based on this set of experiments we were able to
verify that:

1. It is better to carefully check the incoming data before
undertaking costly operations like role-swapping

2. A random role swapping strategy does perform better
than a fixed time swapping strategy.

5.3 Triple camera experiments

To test the versatility of our proposed ‘Coopetitive with MPC’
approach, we test its adaptability to a three camera surveil-
lance setup. As discussed earlier, the system should be able
to detect any abandonment event and then obtain images of
the person leaving the object, the object itself and the trajec-
tory of the person. To understand this process better, let us
take a closer look at one such scenario as shown in Fig. 13.
The images from the three cameras have been shown in the
figure at various time intervals. We describe them as follows:

1. Set(a) frame 5: The images from the three cameras at
the time the person is entering the surveyed premises.

2. Set(b) frame 89: The person is leaving an object.

3. Set(c) frame 149: The ‘abandonment event’ is detected.
Cameral is allocated the faceCam task. Camera2 is
allocated as the objectCam and Camera3 takes over as
trajCam.

4.  Set(d) frame159: Cameral is recording trajectory. Cam-
era2 has focused on the object. Camera3 is trying to
focus on the face.

5. Set(e) frame 175: Camera?2 has focused and zoomed on
to the face

6. Set(f) frame 240: Person leaving the surveyed premises.

7. Set(g) frame 350: Camera2 zooms further into the object
to obtain to higher resolution object images.

We notice from this scenario shown in Fig. 14 that the
appropriate images have been captured by the cameras based
on the correct role allocation for them. In fact, the interaction
mechanism used for this example scenario was ‘coopetition’.
One point to note is that camera3 has correctly been allocated
as the faceCam. This is because it is the only camera that has
been able to obtain frontal facial images amongst the three
cameras, and hence the correct allocation allows us to capture
facial images appropriately. Another important point to note
is that camera2 was able to focus on to the object even though
it did not even see the object on its own. Based on the param-
eters passed by the eventCam however it was able to focus
on to the object.
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Camera2(a)

Camera3(a) (b)

Fig. 13 One Scenario

Now that we have a clear idea about the system goal and
sub-goals it is trying to undertake, let us discuss further the
experimental results obtained for the different interaction
strategies and feedback mechanisms in such a surveillance
setup.

For the purpose of this set of experiments, we define ‘only
cooperation’ as the interaction strategy in which each sensor
is assumed to be fully capable of handling any given sys-
tem task. Hence the parameters as well as roles are freely
passed to all cameras by the camera which detects the aban-
donment activity. The roles are allocated by a random distri-
bution method.

The ‘only competition’ mode on the other hand, assumes
the cameras to be separate entities trying to obtain the most
coveted task and then performing the allocated task as well as
possible without any help from the other sensors. This inter-
action mechanism follows a strict measure of merit to assign
the tasks to the various cameras. The facial image capturing
which is the most restrictive is allocated to only one of the
three competing cameras. This camera is decided to be the
one which detect frontal face with highest size at the time of
event detection. This is followed by the competition between
the remaining two cameras for the task of focusing on object
for which the measure of merit is the distance between the
object and the person. This prevents any occlusion of the
object by the person in the camera which gets allocated this
task.

The proposed coopetitive interaction mode makes use of
the best features of the above mentioned two approaches to
obtain better system results. It uses the same measures of
merit as ‘only competition’ to allocate the tasks to the most
suitable cameras. It also adopts the parameter passing par-
adigm of the ‘only cooperation’ method to pass the correct
object location information to the camera allocated the task.

For each of the different interaction strategies, we repeated
the experiment 20 times with different object positions. The

(9)

first important step in successful execution of the surveil-
lance task is the proper allocation of roles between sensors.
In particular the allocation of the appropriate camera to the
faceCam is of prime importance.

A summary of the faceCam role allocation using the var-
ious interaction strategies has been shown in Fig. 14. As can
be seen from the figure, we notice that the faceCam role
allocation for the ‘only cooperation’ strategy has not been
accurate. This is due to the fact that in ‘only cooperation’
strategy all camera are assumed to be fully capable of han-
dling the various system tasks. Hence the role allocation is
random. This results in the correct camera being allocated the
faceCam task only around 35% of the times, which corrobo-
rates well with the fact that the role allocation is random. The
faceCam role allocation is done correctly for a high percent-
age of cases (over 80%) for the ‘only competition’ and both
the variants of ‘coopetition’ strategy. This is due to the fact
that in these cases, the role allocation is based on an explicit
notion of merit or worthiness between sensors. This means
that only a camera which can see the person’s frontal face
clearly has been allocated the faceCam task.

After the role allocation, let us look into the three system
sub-goals. Also, please note that for ease of presentation,
we use the average values obtained from the twenty experi-
mental rounds for each strategy in the remaining results. The
first system task was to obtain three ‘good quality’ images of
the person who is abandoning the object. This task is in fact
closely related to the process of appropriate camera alloca-
tion. If an inappropriate camera is allocated this task it would
be impossible for it to obtain frontal facial data and hence
good quality facial images.

As can be seen from the results shown in Fig. 15, the ‘only
cooperation’ framework was able to obtain high quality facial
images only 30% of the times. Again, this corroborates well
with the fact that the role allocation is random in ‘only coop-
eration’ interaction strategy.
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Mode: Only Cooperation Mode: Coopetitive (with PID)

Camera sllocated as Face cam | Total Correct Ci 1% Camera allocated as Face cam | Total Correct | t |Correct %
1 7 3 4 43% 1 7 6 1 86%
2 6 2 4 3% 2 6 8 0 100%
3 7 2 5| 29% 3 7 5 1 B6%

Total for 3 cameras 20| 7 131 ’@ Total for 3 cameras 20] 18] 2 gﬂ

Mode: Only Competition Mode: Coopetitive + MPC

Camera allocated as Face cam | Total Correct Camera allocaled as Face cam Total Correct _|Incorrect |Correct %
1 7 6 1 7 T 0 100%
2 6 6 2 6 5 1 83%
3 T 7 3 7 B| 1 86%

Total for 3 cameras 20/ 19 Total for 3 cameras 20 18 2 0%

Fig. 14 FaceCam role allocation for the three cameras

Obtaining 3 good quality images of the person leaving
behind the object

@ % of cases with
appropriate facial
images

B Number of frames
required to obtain
the 3 images

]
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”

Only
Only

“MNWwhd
[=lele]lele]le]e]
|
cooperation -"
competition - [
(with PID) -‘

Coopetition
Coopetition
+MPC

Fig. 15 Comparison between different frameworks for obtaining three
good quality images of the person leaving behind the object

On the other hand, the ‘only competition’ and ‘coopeti-
tion’ strategies both employ a suitability yard stick to allocate
the face capturing task. Hence we notice a high percentage
(over 80%) success rate for these two interaction strategies.

Another important yard-stick for measuring performance
is to see how fast the three good quality images are captured.
This is important as the intruder tries to get away from the
scene as possible. We noticed it took 28 frames on average for
the system to capture three facial images if the PID feedback
was used. However, if we change the feedback mechanism
to MPC we are able to obtain the images in only 24 frames
on average. This signifies a 19% improvement in the speed
of obtaining three high quality images. The improved per-
formance with MPC can be explained due to the fact that it
uses a forward state estimation to track the person better.

The second system task is to obtain high quality images
of the abandoned object. The correct position parameters of
the object need to be passed from the camera detecting the
‘abandonment’ event to the most suitable camera.

As can be observed from Fig. 16, the only competition
strategy was able to obtain images good quality images only
in 25% of the cases. This was due to the fact that in only com-
petition strategy, no object position parameters are passed
from one camera to the another. Hence, the only scenario
in which a camera may obtain appropriate object images is
that in which the object and the person were also visible to
this camera at the time of event detection and hence it can
make a correct object position inference on its own. The only
cooperation and coopetitive interaction strategies are able to
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Obtaining 3 good quality images of the abandoned
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Fig. 16 Comparison between different frameworks for obtaining three
good quality images of the abandoned object

obtain images for over 85% of the cases as they obtain the
appropriate position information from the event detection
camera.

The third system task is to obtain the correct trajectory
information for the person abandoning the object. This task
does not need active movement of the camera but is still
important as an evidence of the over-all happenings in the
scene as well as the trajectory of the person. For example the
fact that a person exited from a window instead of the usual
exit door can significantly increase the suspiciousness of the
object he has left behind.

As can be seen in Fig. 17, we were able to obtain the
images of the person’s trajectory in the surveyed premises
for over 90% of the cases. We are not able to obtain person’s
trajectory in all cases as the camera field-of-view was not able
to cover the entire surveyed area. As this part requires static
camera placement rather than any active sensing, we notice
that all the different interaction strategies perform almost
equally well.

After looking at the results piece-meal for each of the
three system tasks let us now undertake an overall compari-
son of the results obtained for the the three system tasks. The
summarized results have been shown in Fig. 18. We real-
ize that coopetitive interaction strategy combined with MPC
feedback has consistently performed well in all the tasks. This
framework has significantly outperformed only cooperation
strategy in terms of the capability to obtain facial images
of the person abandoning the object. Similarly, it has also
severely out-performed only competition strategy in terms
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Obtaining correct trajectory information

90 + — — oo

60 | |3 % of frames
correct trajectory
information
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+ MPC

Only Only
cooperation competition +PID

Fig. 17 Capturing the trajectory of the person abandoning the object
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Fig. 18 Summary of the results

of obtaining good quality object images. Lastly, the MPC
feedback mechanism has provided better tracking capability
to the cameras and hence we see that the number of frames
required to obtain three good quality images of the person
has been reduced by 19% as compared to the PID feedback
mechanism.

Hence, this set of experimentation has re-affirmed to us
that coopetitive interaction strategy can provide significantly
better results than other plausible alternatives.

5.4 Further discussion

While undertaking the practical implementation of our pro-
posed systems and following experimentation, we faced a
number of practical challenges. Such issues may not have
a significant theoretical merit but are indeed an important
aspect of practical implementation.

We feel that such issues are often faced but rarely docu-
mented in research works. Hence, we would like to document
a summary of the practical challenges faced in the course of
our experimentation. Some of the key challenges faced and
our adopted counter-actions were as follows:

1. Camera control: We used a daisy chain of Canon VC-
C4 cameras connected to a PC to pass the camera con-
trol commands. We faced a problem that the some of

the commands given to cameras were not being imple-
mented. Later, we realized that if multiple commands
are passed consecutively then only the last given com-
mand is actually transferred and the other commands
get aborted. Hence we need to provide a delay between
various control commands to allow the commands to be
passed to the cameras correctly.

2. Face and blob detection: Our system uses blob detection
and face detection for the various system tasks, hence its
accuracy is important for our framework to work well.
We faced some issues in detecting correct blobs and
faces. We were able to improve the performance to a
higher accuracy by using ambient lighting and adjust-
ment of various parameters. Also, for face detection we
adopted the policy of three consecutive detections to
conclude on presence or absence of faces.

3. Real time experimentation: In our experiment we were
dealing with real-time camera controlling, hence we
needed to set-up the complete system before each debug-
ging/experimentation. As we were using ad-hoc setting
up of the equipment, this involved significant set-up
costs each time we conducted experiments. In future,
we are considering creating a permanent customizable
test-bed for undertaking debugging before performing
actual real-time experiments.

To sum up our discussion for this section, we have pro-
posed a generic active multi-sensor framework with coopet-
itive interaction and MPC. We have conducted experiments
with two different adaptations of the framework. We have
also conducted a preliminary study into finding appropriate
time for exchanging roles between sensors.

We found that ‘coopetitive’ interaction approach was bet-
ter able to perform the system tasks than the ‘only coopera-
tion’ strategy for the two dual camera experiments as well as
the facial image capturing in the the triple camera experiment.
It also performed better than the ‘only competition’ interac-
tion strategy in the two dual camera experiments as well as
for obtaining object images in the triple camera experiment.

We also found that a random approach to role-exchange
between sensor can push the ‘burden of out-guessing’ on to
the adversary and help in improving the system performance.

We also found that MPC contributed significantly toward
improving system performance. In the two camera adap-
tation, it performed significantly better (56% frames with
appropriate images) as compared to the PID approach (36%
of frames) for frontal image capturing task in a complicated
trajectory. Similarly the intruder detection rate was 27.4%
higher using MPC as compared to PID. Also, the average
centering error was reduced by 16.5% and average facial
image size increased by 13.2% by using MPC instead of
PID. The positive trend by adoption for MPC has continued
in the triple camera scenario where the time taken to capture
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three facial images was reduced by 19% with the use of MPC.
Each of these improvements can significantly alter the over-
all system impact in a sensitive application like surveillance
where a 15-20% impovement in capturing speed or image
size could prove to be the difference between a criminal being
identified or going unnoticed. Itis also worth noting that MPC
has consistenly outperformed PID and these improvements
have been more marked in complex scenarios and scenar-
ios where there needs to be frequent parameter/role transfer
between multiple sensors.

Hence, based on our variety of experiments conducted
with both dual and triple camera set-ups, we are able to con-
clude that a ‘coopetitive with MPC’ based framework does
indeed perform significantly better than other comparable
strategies and MPC does out perform the conventional PID
feedback strategy.

6 Conclusions

In this paper we have proposed an enhanced generic
framework for multi-sensor environments which has novel
features in terms of its mode of interaction and feedback
mechanism. We have proposed coopetitive approach for inter-
action between sensors which allows sensors to cooperate
based on a merit decided by competition. We have also
established the value of MPC as an efficient feedback mech-
anism that can help to counterbalance various transfer and
reaction delays observed in cooperative sensing.

We have also tested the adaptability and the scalability of
the proposed framework via two different surveillance adap-
tations which differ in terms of their surveillance goal as well
as the number of sensors employed. While the dual camera
adaptation aimed at capturing intruder faces as many times as
possible in an enclosed environment, the triple camera setup
aimed at obtaining detecting ‘abandonment’ events followed
by getting images of the person abandoning the object, the
object itself and the trajectory undertaken.

From the results for the both dual and triple camera adap-
tations, we can clearly conclude that for interaction between
Sensors, coopetition i.e. cooperation based on merit performs
significantly better than ‘only cooperation’ or ‘only competi-
tion’ approaches. We also deduce that MPC performs signifi-
cantly better than PID as a feedback mechanism for vision
sensors. This is by virtue of MPC’s capability to consider
estimated future values rather than just past data to make its
control decisions.

Future work scope in this area remains in creating more
precise means for defining and handling cooperation and
competition between sensors. More sophisticated means of
estimating future states would also be very useful.

We are currently working on extending the proposed
framework to handle multiple intruders and multiple sen-
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sors which could be visual as well as non-visual e.g. audio
sensor, infra-red sensors etc. Such non-visual sensors would
allow the framework to handle situations where visual sens-
ing alone might fail e.g. intruder hiding the face or using a
face-mask etc. Besides this, we are also exploring how we can
make the sensing system truly distributed where the sensors
are not coordinated by a central agent.

References

1. Barreto, J.P,, Batista, J., Peixoto, P., Araujo, H.: Integrating vision
and control to achieve high perfomance active tracking. Tech. rep.,
TR-BAR-0202, ISR/DEEC, University of Coimbra (2002)

2. Bowyer, R.S., Bogner, R.: Cooperative behaviour in multi-sensor
systems. In: International Conference on Neural Information Pro-
cessing, pp. 155-160. Perth, Australia (1999)

3. Castanedo, F., Patricio, M.A., Garca, J., Molina, J.M.: Extend-
ing surveillance systems capabilities using BDI cooperative sensor
agents. In: ACM International Workshop on Video Surveillance,
pp- 131-138. Santa Barbara, USA (2006)

4. Collins, R., Lipton, A., Fujiyoshi, H., Kanade, T.: Algorithms
for cooperative multisensor surveillance. Proc. IEEE 89(10),
1456-1477 (2001)

5. Collins, R., Lipton, A., Kanade, T., Fujiyoshi, H., Duggins, D.,
Tsin, Y., Tolliver, D., Enomoto, N., Hasegawa, O.: A system for
video surveillance and monitoring. Tech. rep., CMU-RI-TR-00-12,
Robotics Institute, CMU, USA (2000)

6. Datasets: In: IEEE International Workshop on Performance Eval-
uation of Tracking and Surveillance. Breckenridge, USA (2005)

7. Dias, M., Stentz, A.: A market approach to multirobot coordina-
tion. Tech. rep., CMU-RI -TR-01-26, Carnegie Mellon University
(2001)

8. Garcia, J., Carbo, J., Molina, J.M.: Agent-based coordination of
cameras. Int. J. Comput. Sci. Appl. 2(1), 33-37 (2005)

9. Greiffenhagen, M., Ramesh, V., Comaniciu, D.: Statistical model-
ing and performance characterization of a real-time dual camera
surveillance system. In: IEEE International Conference on Com-
puter Vision and Pattern Recognition, pp. 2335-2342. Hilton Head
Island, USA (2000)

10. Khadir, M., Ringwood, J.: Linear and nonlinear model predictive
control design for a milk pasteurization plant. J. Control Intell.
Systems 31(1), 37-44 (2003)

11. Lam, K.Y., Chiu, C.K.H.: Adaptive visual object surveillance
with continuously moving panning camera. In: ACM International
Workshop on Video Surveillance and Sensor Networks, pp. 29-38.
New York, USA (2004)

12. Laurent, D., Mustapha, E., Claude, P., Pascal, V.: A mobile robot
localization based on a multisensor cooperation approach. In: IEEE
International Conference on Industrial Electronics, Control, and
Instrumentation, pp. 155-160. New York, USA (1996)

13. Liu, Q., Kimber, D., Foote, J., Wilcox, L., Boreczky, J.: FLYSPEC:
a multi-user video camera system with hybrid human and auto-
matic control. In: ACM Conference on Multimedia, pp. 484—492.
New York, USA (2002)

14. Marchesotti, L., Messina, A., Marcenaro, L., Regazzoni, C.: A
cooperative multisensor system for face detection in video sur-
veillance applications. Acta Autom Sinica Chinese J. Autom. 29,
423-433 (2003)

15. Molina, J., Garca, J., Jimenez, F., Casar, J.: Surveillance mult-
isensor management with fuzzy evaluation of sensor task priori-
ties. Eng. Appl. Artif. Intell. 15(6), 511-528 (2002)



Coopetitive multi-camera surveillance using model predictive control

16. Molina, J., Garcia, J., Jimenez, F., Casar, J.: Cooperative man-
agement of a net of intelligent surveillance agent sensors. Int.
J. Intell. Systems 1(8), 279-307 (2003)

17. Morari, M., Lee, J.H., Garcia, C.E., Prett, D.M.: Model Predictive
Control. Prentice Hall, Englewood Cliffs (2003)

18. Papanikolopoulos, N., Khosla, P., Kanade, T.: Visual tracking of a
moving target by a camera mounted on a robot: A combination of
control and vision. IEEE Trans. Robot. Autom. 9(1), 14-35 (1993)

19. Roy, PK., Mann, G., Hawlader, B.C., Masek, V., Young, S.O.:
Comparative study of model predictive and decoupled PID control-
ler for a multivariable soil heating process. In: IEEE Newfoundland
Electrical and Computer Engineering Conference. Newfoundland,
Canada (2004)

20. Saedan, M., Jr, M.H.A.: 3D vision-based control on an indus-
trial robot. In: IASTED International Conference on Robotics and
Applications, pp. 152—157. Clearwater, USA (2001)

21. Sharkey, P., Murray, D.: Delays versus performance of visu-
ally guided systems. IEE Proc. Control Theory Appl. 143(5),
436-447 (1996)

22. Singh, V.K., Atrey, PK.: Coopetitive visual surveillance using
model predictive control. In: ACM International Workshop on
Video Surveillance and Sensor Networks, pp. 149-158. Singapore
(2005)

23. Swarup, S., Oezer, T., Ray, S.R., Anastasio, T.J.: A self-aiming
camera based on neurophysical principles. In: The International
Joint Conference on Neural Networks, pp. 3201-3206. Portland,
USA (2003)

24. Wang, J., Zhang, C., Shum, H.: Face image resolution versus face
recognition performance based on two global methods. In: Asian
Conference on Computer Vision. Jeju Island, Korea (2004)

25. Zhou, X., Collins, R., Kanade, T., Metes, P.: A master-slave system
to acquire biometric imagery of humans at distance. In: ACM Inter-
national Workshop on Video Surveillance, pp. 113-120. Berkley,
USA (2003)

Author biographies

Vivek Kumar Singh is currently
working as a Research Assistant
at the National University of Sin-
gapore. He has obtained B.Eng
(Comp. Eng.) and Master of
Computing (part-time) degrees
from the same university in years
2002 and 2006 respectively. He
also worked as a Lecturer at
the Institute of Technical Educa-
tion, Singapore from July 2002
to April 2006. His research inter-
ests lie in Multimedia Surveil-
lance and Active Media Sensing.

Pradeep Kumar Atrey is a
Research Fellow at the Multime-
dia Communications Research
Laboratory,  University  of
Ottawa, Canada since August
2006. At the time of writing this
article, he was with School of
Computing, National University
of Singapore, where he obtained
his Ph.D. in Computer Science in
July 2006. He has also worked
as a lecturer at Delhi College of
Engineering, University of Delhi
and at Deenbandhu Chhotu Ram
University of Science and Tech-
nology, Murthal (Haryana), India
from 1992 to 2002. His research interest includes Video/Audio Process-
ing, Assimilation and Analysis, Multimedia Surveillance, Event Detec-
tion, and Multimedia Security.

Mohan Kankanhalli obtained
his BTech (Electrical Engineer-
ing) from the Indian Insti-
tute of Technology, Kharagpur
and his MS/Ph.D. (Computer
and Systems Engineering) from
the Rensselaer Polytechnic Insti-
tute. He is a Professor at the
School of Computing at the
National University of Singa-
pore. He is on the editorial
boards of several journals includ-
ing the ACM Transactions on

; Multimedia Computing, Com-
munications, and Applications, IEEE Transactions on Multimedia,
ACM/Springer Multimedia Systems Journal, Pattern Recognition Jour-
nal and the IEEE Transactions on Information Forensics and Security.
His current research interests are in Multimedia Systems (content pro-
cessing, retrieval) and Multimedia Security (surveillance, authentica-
tion and digital rights management).

@ Springer



	Coopetitive multi-camera surveillance using modelpredictive control
	Abstract 
	Introduction
	Related work
	Proposed framework
	Generalized framework
	Dual camera system
	Triple camera system
	Use of coopetitive interaction approach
	Use of MPC
	Our MPC framework
	Choosing the appropriate time for role transfer
	System implementation
	Results and analysis
	Dual camera experiments
	Dynamic role-swapping experimentation
	Triple camera experiments
	Further discussion
	Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


