356

IEEE Transactions on Consumer Electronics, Vol. 48, No. 2, MAY 2002

COMPRESSED-DOMAIN SCRAMBLER/DESCRAMBLER FOR DIGITAL VIDEO

Mohan S. Kankanhalli and Teo Tian Guan
School of Computing, National University of Singapore
Kent Ridge, Singapore 119260
E-mail: mohan@comp.nus.edu.sg

ABSTRACT

Multimedia data security is very important for
multimedia commerce on the Internet and real-time
video multicast. However, traditional encryption
algorithms for data secrecy such as DES may not be
suitable for multimedia applications because they are
unable to meet the real-time constraints required by the
multimedia applications. For multimedia applications,
lightweight encryption algorithms are attractive.

This paper examines the joint encryption and
compression framework in which video data are
scrambled in the frequency domain by employing
selective bit scrambling, block shuffling and block
rotation of the transformed coefficients and motion
vectors. In addition a lightweight MPEG video
encryption algorithm is proposed whose primary
motivation is to save the encryption computation by
taking the advantage of combining MPEG compression
and data encryption, and at the same time avoids adverse
effects on the video compression rate.

Keywords: Multimedia data security, MPEG encryption,
MPEG codec, digital video broadcasting, conditional
access system.

1. INTRODUCTION

The proportion of free access channels among analog TV
transmissions is decreasing continuously, and at the same
time as the number of digital TV channels increases, a
significant number of them will be pay-TV services. As
MPEG-2 becomes the standard for digital video
broadcasting, encryption of the MPEG-2 video data is
important to provide assurance to the provider of pay-TV
services that their investment will be worthwhile.

Data security will be extremely important for enabling
multimedia commerce on the Internet such as pay-per-
view digital video broadcast. In a typical pay-per-view
broadcast system, digital video is transmitted through the
coaxial cable or carried over-the-air, as described in
Figure 1.1. The commercial digital video broadcaster
needs to get the assurance that unauthorized users will

Contributed Paper
Original manuscript received December 27, 2001

Revised manuscript received April 5, 2002

not be able to gain access to its services. Hence, digital
video signals have to be broadcast in an encrypted form,
and can only be decrypted by means of a set-top box for
an authorized user. The set-top box requires the
necessary hardware, software, and interfaces to select,
receive, and decrypt the programs. However, it must be
kept at a minimum cost for the user.

N

Qe
X0 Ercryptionikey
£V {distrbuted fwough wiother
Video'signals ney ;
| ! S
S AP
| wna | N m
, R
CATV provider. k= Saf-iopbox
AKuthorized user
e
Cable head-exd.

Uplink statiort Kdversaiy apping the

video signals

Figure 1.1 Tapping of digital video over a broadcast
network.

Traditional cryptographic algorithms for data security are
often not fast enough to process the vast amount of
continuous data, such as video, to meet the real-time
constraints. Most algorithms either added huge amount
of overheads to both the encoding and decoding
processes, or have adverse effects on the video
compression efficiency. This causes unnecessary
decoding delays, requiring high cost set-top boxes.
Hence, lightweight encryption algorithms that do not add
large amount of overheads, and yet provide reasonable
security are preferred.

The rest of the paper is organized as follows: Section 2
presents some background information pertaining to the
work, describing the MPEG-2 standard and Huffman
encoding scheme. In addition, some related works on
video data encryption and the encryption methods that
this study was based on are described. The details of the
proposed scrambling scheme are presented in Section 3.
Experimental results and findings are shown in Section
4. Finally Section 5 makes some concluding remarks and
discusses the future work that can be done.

0098 3063/00 $10.00 © 2002 IEEE

Kankanhalli and Guan: Compressed-Domain Scrambler/Descrambler for Digital Video 357

2. BACKGROUND
2.1 Overview of MPEG

MPEG is the acronym for the Moving Picture Experts
Group, which was formed by the ISO (International
Standards Organization) in 1990. The first outcome of its
work was the ISO/IEC 11172, widely known as MPEG-
1. MPEG-2 was then published in November 1994, and
is the source-coding standard used by the European
Digital Video Broadcasting (DVB) committee [10], and
by the American ATSC (Advanced Television Systems
Committee) for future digital TV broadcasting.

To help with error handling, random search, editing, and
synchronization, MPEG defines a hierarchy of layers
within a video sequence. A pictorial representation of the
MPEGQG layers is given below.

" Sequence
b
LR R
_ Picture (VP/B)
I' 16316 racroblock
Slice -1 »| bl] Imh-n
Slice-3 v Block
. RS REd ¥
Slice-m Yy
420 format {six 8x8blocks) 8B p&xek

Figure 2.1 Hierarchy of the MPEG Video layers.

During encoding, successive groups of digital video
information are reordered in order to benefit from the
statistical correlation within successive groups of
information. This process is followed by discrete cosine
transformation (DCT). Next, the DCT coefficients are
quantized, after which redundancy reduction by means of
a run-length amplitude/variable length coder is applied.

To exploit temporal redundancy due to the strong
correlation between successive parts of the digital video
signal, 3 types of pictures are defined and arranged as
shown:

Prediction

Interpolation " Inerpolation

Figure 2.2 Types of pictures defined in MPEG-2.

I (intra) pictures are coded without reference to other
pictures.

P (predicted) pictures are coded with reference to a past
picture (I or P picture).

B (bi-directional) pictures require both a past and a
future reference for prediction.

In addition to temporary redundancy reduction, MPEG
exploits the spatial redundancy presence in the still
images and prediction error signals to achieve high
compression. The technique to perform intraframe
compression with the DCT consists of three stages:
computations of transform coefficients; quantization of
the transform coefficient; and conversion of the
quantized coefficients into {run, amplitude} pairs after
reorganizing them in a zigzag or alternate scanning order
(see Figure 2.3).

=

Zigzag Scan Altersate Scan

Figure 2.3 Methods for scanning DCT coefficients.

Scanning of the coefficients in a zigzag pattern results in
a sequence of numbers with high probability of long runs
of consecutive zero coefficients. This sequence is then
represented as a run-length (representing the number of
consecutive zeroes) and amplitude (coefficient value
following a run of zeroes). These values are then looked
up in a fixed table of variable length codes, where the
most probable occurrence is given a relatively short
code, and the least probable occurrence is given a
relatively long code. It uses the Huffman coding
algorithm.

If the individual code words of a Huffman Code are
concatenated to form a stream of bits, then correct
decoding by a receiver requires that every combination
of concatenated code words be uniquely decipherable. A
sufficient condition for this is that the code satisfies the
so-called prefix rule, which states that no code word may
be the prefix of any other code word. It is this prefix rule
that renders the scrambling of the VL.C (Variable Length
Coding) tables difficuit.

358

2.2 Related Work

The most direct approach to encrypt data is to employ
known encryption algorithm such as Data Encryption
Standard (DES). However, a DES implementation is not
fast enough to process the vast amount of multimedia
data due to the complicated computations involved.
Furthermore, in these systems, the encryption/decryption
processes are done in between MPEG
encoding/decoding. This adds latency to real time video
delivery.

Tang [15] proposed shuffling the DCT coefficients
within an 8x8 block for JPEG/MPEG based transmission
system. Tang’s methods use a random permutation list to
replace the zigzag order to map the DCT coefficients to a
1x64 vector. Since mapping according to the zigzag
order and mapping according to a random permutation
list have the same computational complexity, the
encryption and decryption add very little overhead to the
video compression and decompression processes.
Unfortunately, this method decreases the compression
rate significantly for some video sequences as noted in
[15]. The reason being the statistical property of the DCT
coefficients is changed.

Another scheme proposed by Shi and Bhargava [12] uses
.a permutation of the Huffman code word list as a secret

key. During MEPG encoding (decoding), their encoder

(decoder) uses the secret key instead of the standard
Huffman code word list. Video frames decoded using the
standard Huffman code word become incomprehensible.
However, this method has a disadvantage in its difficulty
in the generation of the encryption keys, resulting in
having each generated key to be tested before using, as
reported in [12].

Zeng and Lei [16] proposed a joint encryption and
compression framework in which video data are
scrambled in the frequency domain by employing
selective bit scrambling, block shuffling and block
rotation of the transformed coefficients and motion
vectors. Their proposal performs encryption of the video
data by scrambling the block coefficients and/or motion
vectors.

A cryptographic key will be used to control the
scrambling. The scrambled coefficients and motion
vectors are then subjected to video compression before
they are transmitted over networks or stored in a storage
device. (In other words, the scrambling is performed
prior to compression [quantization and Huffman, run-
length, arithmetic, embedded, or other entropy coding.])

At the decoder, the compressed video bitstream will first
be decompressed (entropy decoding and de-
quantization). Authorized users will then use the same

IEEE Transactions on Consumer Electronics, Vol. 48, No. 2, MAY 2002

key to unscramble the decompressed coefficients before
they are subjected to inverse transformation, and
unscramble the motion vectors before motion
compensation.

As mentioned in [16], a combination of the scrambling
methods renders a completely incomprehensible image,
and it is difficult for an adversary to recover the image
through exhaustive searches. Nevertheless, these
advantages are achieved at high computational cost. For
example the implementation of block shuffling
introduces unnecessary latency to the encoding/decoding
process, as the whole slice of macroblocks have to be
stored into memory, shuffle/unshuffle before the blocks
of coefficients can be written to output file. Besides with
a combination of all the suggested scrambling methods
([Random sign change + Block shuffle shuffling] on all
pictures + Random sign change on the motion vector),
the compressed file size increases by as much as 10%.

An encryption scheme that provides reasonable security
with less computational overhead, and yet does not affect
the compression rate adversely is required. Hence, this
provides the motivation for the suggested scrambling
method.

3. SCRAMBLING OF THE HUFFMAN CODE
WORDS

As mentioned in the previous section, the proposed
approach aims to reduce the overheads that are added to
the encoding/decoding processes during
encryption/decryption. In addition, it does not increase
the compression ratio adversely. These twin aims are
achieved by applying the techniques proposed in [16] on
the Huffman tables that are used for Variable Length
Coding (VLC). The resulting proposal is simple to
implement; yet, as we will show, it provides reasonable
security.

The Huffman encoding scheme can be considered as a
substitution algorithm, where during encoding, it
transforms (with a function H) the original video data M
into variable length bit stream B with a key k. At the
decoder end, a function D is used to obtain the original
data from the bitstream with the use of the same key.

M =D (H (M, k), k)

Of course, in a normal MPEG?2 video, the functions H, D
and the key k are already fixed. Hence we can simplify
equation @ to M =D (H (M))

The function D that MPEG decoder uses is to map each
H(M) to an entry in the table(s) to decipher the variable
length bits. This function is best illustrated with the
example of MPEG Table B-12 (Table 3.1) showing the
entries in the VL.C tables used in decoding and encoding:

Kankanhalli and Guan: Compressed-Domain Scrambler/Descrambler for Digital Video 359

{OXOTTE, 0}
8*10 10 {0x01fe, 9} 10
7¥10 9 {0x00fe, 8} 9 Table 11
610 8 {0x007e¢, 7} 8
5%10 7 {0x003¢, 6} 7
#10 6 {0x001¢, 5} 6
1110 5 {0x000e, 4} 5
110 4 {0x0006, 3} 4
101 3 {0x0005, 3} 3
01 2 {0x0001, 2} 2 Table T’
00 1 {0x0000, 2} 1
100 0 {0x0004, 3} 0 (0,3} 16=19

The proposed encryption algorithm encodes the video
with new functions H’, and decoding requires the
corresponding D’. Keys are used to generate these H’
and D’ functions. D’ actually is the reshuffling of the
indexes of the code words in the tables.

3.1 The Proposed Algorithm

The proposed scrambling algorithm consists of two
methods:

1. Shuffling of the code words within each of the
Huffman tables.

2. Random flipping of the last bit of the code word.

3.1.1 Shuffling of the Code Words for VLC

The code words used for VLC are shuffled within each
Huffman table during the initialization of the encoding
process. To minimize the impact on the compression
rate, the code words for each of the tables are grouped
into different subsets according to their bit length of
code words. Different shuffling tables are generated for
each Huffman table, increasing the difficulty of
guessing the correct sequence. Similarly, when the
correct values are obtained after re-shuffling during the
decoder’s initialization process, the entire video can be
decoded with any further changes to the original
program design.

In addition, this scrambling method has a nice property
that any shuffling permutation will not violate the prefix
rule of Huffman coding. Therefore, there is no need for
extra checks for the validity of the shuffling table to

| |
Table 3.1 Entries used for the encoding and decoding from MPEG Table B-12.

ensure that the decoder is able to decipher the
concatenated code words.

Algorithm to shuffle the code words:

Let C; be the code word used to represent th
original information O; in Table T;, and k be th
scrambling key. Let E be the shuffling operatio
(the same shuffling table is used for encryption an
decryption).

During encoding/encrypting, E (C;, k) gives
a new code word to represent each O; in Table T;.
For proper decipherment during th
decoding/decrypting process, a function D’ i
required to map O; to the correct entry in th
corresponding decoder tables for T;.

D’ (E (C;, k)) is used to find the correc
index in the decoding table.

Table 3.2 Algorithm for shuffling the Huffman code
words.

3.1.2 Random Bit Flipping of the Code Words
for VL.C

To increase the level of security, the last bit representing
the code word is randomly flipped. However, to ensure
the prefix rule is not validated, flipping of the last bit
may require changing the bits of those affected code
words. Hence, the following rule is devised:

360

Rule for random bit flipping:
For each code word C; in the table,

Flip its last bit randomly.
If C; last bit is flipped (C; becomes C;’), then
For each subsequent code word C; in the table,
If Ci’ becomes the prefix of C;, then
Replace the affected prefix of C; with Ci
End if C;’ becomes the prefix of C;
End for each subsequent code word
End if last bit is flipped

End for each code word

Table 3.3 Rule for random flipping of the last bit of the
Huffman code word.

To illustrate, suppose the last bits for all the code words
in Table B-12 are flipped, the new Huffman table is as
shown in Table 3.4.

Original code words | New code words Size
in MPEG Table B-12
111111111 1 1000 0000 11
111111110 1 1000 0001 10
11111110 1100 0001 9
1111110 110 0001 8
111110 11 0001 7
11110 11001 6
1110 1101 5
110 111 4
101 100 3
01 00 2
00 01 1
100 101 0

Table 3.4 Code words after implemented the rules for bit
flipping.

As the example in Table 3.4 has illustrated, the new
Huffman tree retains the same shape as the original. This
implies the video (entropy coded with this new tree)
retains the statistical property (the size of the video will
not be increased nor will the compression rate be
decreased). Unauthorized users who use the original
code words to decode will not be able to restore the
picture.

IEEE Transactions on Consumer Electronics, Vol. 48, No. 2, MAY 2002

3.2 Analysis of the Proposed Scrambling Methods

The proposed algorithm adds little overhead to the
encoding/decoding process. Compared to the extensive
DCT operations overheads, the processing amount
required for the scrambling and unscrambling of the
Huffman code words is very low.

3.2.1 Security Strengths/Weakness

Because a single bit error in the transmission will
scramble all future transmissions (an effect called “error
propagation”); an adversary will have to guess all the
correct shuffling positions in order to recover the
complete picture. However, experiments conducted have
shown that not all tables with their code words scrambled
produce visually scrambled images. This is expected, as
only those tables (namely from Table B-12 to Table B-
15) that are involved in the entropy encoding of the DCT
coefficients will affect the image. Let the cardinality of
each set of Huffman code words scrambled be n;. The
number of permutations for the shuffling of the Huffman
code words is:

k

Hi —1((n) 1), where k is the total number
of subsets of Huffman cod
words shuffled across all
tables.

For the second scrambling method, the number of
permutations can be calculated as follows:

h
H,_ 2mi , where h is the number of Huffma

i=1 tables whose the last bits of the cod
words are randomly flipped. m; is total
number of possible code words in tabl
i whose last bit can be flipped. (Eac
of these code words can be represente
in two forms: its origina
representation or the representation
with its last bit flipped)

A quantitative breakdown showing the total number of
permutation is as follows:

Kankanhalli and Guan: Compressed-Domain Scrambler/Descrambler for Digital Video 361

MPEG Table Number of possible scrambling

B-10" 31 x 41 x 9!

B-12 7% 50 % 2°

B-13 6!'x 6! x 2°

B-14 6! x 13! x 4! x 41 x 6!

B-15 20! x 16!

B-14 and B-15° 16! x 16! x 41 x 12! x10! x 10!
Total L68x 10

Table 3.5 Total number of tries required ensuring a
perfect image is recovered.

As not all code words in the tables will be used for the
encoding of an image, some subsets of the code words
scrambled within a table will produce little unintelligible
images to a viewer. Further experiments carried out show
that certain sets of code words do scramble the image
consistently.

MPEG Table Number of possible scrambling
B-10 3!
B-12 X2
B-13 6l x 2F
B-14 6!
B-15 16!
Total 5.37 x 107

Table 3.6 Estimated number of scrambling methods.

The above is a conservative estimate of the minimum
number of combinations that the proposed scrambling
methods can offer to distort the video image. The effect
on the scrambled image is dependent on the particular
distribution of the coefficients in the spatial domain of
the video which really depends on its content.

Since the code words are actually bit strings
representation of the original codes and the first
scrambling method changes the length of the bit string
representation, the compression ratio will be increased
slightly. However, this actually makes the algorithm
more resistant to plaintext attacks. Scrambling the
Huffman code words, without changing the length of the
code words is very vulnerable to plaintext attacks. As by
obtaining some of the original video images (the
plaintext) and the encrypted video (the cipher text), an
adversary can determine all the substituted code words

! Scrambling Table B-10 (table for motion vector code)
will distort the motion of the video.

2 Some code words are common between Table B-14 and
Table B-15. Hence, these code words have to be
scrambled together.

easily by performing an alignment of the encrypted bit
stream with the original. Shuffling the code words within
the Huffman tables, coupled with the random flipping of
the last bits of the code words, provides good confusion
and will discourage random guessing.

Scrambling the Huffman code words once for the entire
video implies that once the adversary obtains the
unscrambled Huffman tables by launching a successful
plaintext attack, the entire video can be deciphered
without further efforts. Hence, to overcome this
weakness, and to further increase the security of the
proposed algorithm, the Huffman code words can be
reshuffled after certain number of frames. This number
can be treated as a unicity distance that is the number of
frames required to uncover all the scrambled Huffman
code words.

3.2.2 Other Considerations

Some encryption algorithms encrypt every bit of the
video bit stream, including the long run of zeros for
resynchronization and the MPEG header bits. With these
bits encrypted, the video will not be readable to common
MPEG tools. Since the proposed scrambling methods do
not change the MPEG video structure, an encrypted file
is still readable by MPEG tools. This is an important
feature as a nonpaying watcher can be enticed to
subscribe to this service provided by the conditional
access TV provider, an idea that is first presented in [16].

4. EXPERIMENTAL RESULTS AND
FINDINGS

Experiments are conducted primarily to:

1. Compare the performance of different scrambling
schemes.

2. Evaluate the effects of different scrambling schemes
has on the video.

Two performance metrics are used to gauge the effects of
the encryption has on the video files:

1. Size of scrambled video file. The study of this effect
is important as entropy coding is one of the
compression schemes employed by MPEG, and the
proposed algorithm is working on the Huffman code
words used for entropy coding. Ideally, there should
be no effect on the compression ratio.

302

2. Time taken to decipher the scrambled video file into
its raw PPM files format. The purpose is to provide
an idea on the overheads caused by the proposed
algorithm and the existing encryption schemes.
Again, it is desirable that the scrambling and
descrambling processes have no impact on the time
taken for this operation.

All results are obtained from a DELL computer running
on Microsoft Windows NT 4.0, with dual PIII-450
processors and 256 MB RAM.

4.1 Effects of Different Scrambling Techniques

As it is impossible to include all the images frames here,
only the effects of [-frame scrambled using different
techniques are shown (Figure 4.1a and 4.1b). Table 4.1
provides a description of the effects.

[EEE Transactions on Consumer Electronics, Vol. 48, No. 2, MAY 2002

Scrambling Methods | Visual effects on the

Used video image

1. Random sign change Though outlines of objects
(block coefficients) are visible, generally provides

unintelligible frames.

2. Block shuffling along
slices

Different objects in the video
are still distinguishable.

3. Block coefficients
rotation

Produces unintelligible
images, but motion is visible
if the motion vectors are not
scrambled.

4. Random sign change
(block coefficients) +
Block shuffling along
slices

Produces unintelligible
images.

Original image (No
encryption)

5. Random sign change
(block coefficients) +
Block shuffling along
slices + Block
coefficients rotation +
Random sign change
(motion vector)

Produces unintelligible
images.

6. Shuffling + Flipping of
last bit of code words in
Table B-12

A large portion of the image
is indistinguishable.

7. Shuffling + Flipping of
last bit of code words in
Table B-13

Some portions of the original
image still remain visible.

8. Shuffling of code words
in Table B-14

A large portion of the original
image is still visible.

9. Shuffling of code words
in Table B-15

Produces an unintelligible
image.

10.

10. Shuffling + Flipping of
last bits of code words
in Table B-12 and B-13

Produces an unintelligible

+ Shuffling of code image.
words in Table B-10, B-
14 and B-15
11. Shuffling of code words Not significant impact on the

in Table B-1, 3, 4.

image (results not displayed
here).

12. Shuffling of code words
in Table B-10 alone. OR
Random sign change
(motion vector)

Picture content is highly
visible except that motion of
the picture is distorted
(results not displayed here).

Figure 4.1b Effects of Huffiman code words scrambling.

Another scrambling technique is selective scrambling of
different types of frames. In this experiment, the effect of
scrambling employing random sign change (block
coefficients), block shuffling along slices, block
coefficients rotation and random sign change (motion
vector) on the I-frame alone is compared with that on all
frames-types. A group of images selected from a GOP of
each of the scrambled videos is displayed in Figure 4.2.

Table 4.1 Description of scrambling effects.

Kankanhalli and Guan:

Figure 4.2 Pictures from a GOP (scrambling done on the
I-frames).

Some of the pictures, as shown in Figure 4.2, are still
distinguishable if only the I-frames are scrambled.
However, this can entice a non-subscriber to pay for the
services provided by the commercial digital video
broadcaster. Furthermore, the overhead cost of
scrambling all frame types is found to be too expensive
compared to scrambling of only the I-frame. Hence, if
the requirement on the security aspects of the video is
not that critical, then it is recommended to scramble only
the I-frames using the method proposed in [16].

4.2 Scrambling of Different Sub-Sets of Code
Words

As not all sub-sets of Huffman code words will produce
incomprehensible images when they are subjected to
scrambling, experiments are conducted to test which sub-
set produces consistent scrambling effects. This study is
important, as an adversary can forgo the efforts of
descrambling a sub-set, in exchange for a movie that is
still viewable, though not that enjoyable (as some
portions of the picture are still encrypted).

The effect of scrambling different sub-sets of the
Huffman code cords on one frame from the “Carphone”
video sequence is shown in Figure 4.3. The cardinality of
each sub-set is indicated within the brackets. As the
effects of scrambling each sub-set of code words are
highly dependent on the spatial frequency distribution
the DCT coefficients in the video pictures, the effects
shown in Figure 4.3 are not meant to be representative,
However, they provide us with a gauge on how effective
the scrambling each of the sub-sets.

Compressed-Domain Scrambler/Descrambler for Digital Video 363

Sub-setIL(4) Sub-set 11l (9)
Shuffling of code words in Table B-10

Sub-set I (3)

Sub-set [(7) ub—set I (5)
Shuffling of code words in Table B-12

Random flipping
of the last bits of
code words in

Table B-12

Random pp1 g
of the last bits of
code words in
Table B-13

Sub-set I (6) Sub-set II (6)
Shuffling of code words in Table B-13

Sub-set IV (4) et
Shuffling of code words in Table B-14

Sub-set 11 (
Shuffling of code words in Table B-15

G

Sub-sct VI (10)

Sub-set [V (12)

Sub-set V (10)

Scrambling of code word common in Table B-14 and B-15

Figure 4.3 Effects of different sub-sets of code words
being scrambled.

In general, scrambling of those code words in Table B-
12 and Table B-13 renders the video picture

364

incomprehensible. Sub-set I from Table B-14 and sub-set
II from Table B-15 produce consistent scrambling effects
on the video image too. The shuffling of code words that
are common to both Table B-14 and Table B-15 yield the
least effect on the picture. Scrambling of the code words:
for motion vectors mainly distorted images that are
“predicted” by motion interpolation, and hence have no
effect on encryption of I frames.

4.3 Performance of Different Scrambling
Techniques

Keeping all environment settings consistent for each of
the test video sequence, experiments were conducted to
observe the impact of the proposed scrambling technique
as compared to the existing scrambling methods. The
time taken to unscramble the video is calculated and the
size of the scrambled files are measured and compared in
the Table 4.2.

Each video Existing Scrambling S .
. L3 crambling
sequence are at Original Technique
. . on Huffman
704 x 480 with video All frame code words"®
450 frames I frames types
o File 11,250,362 11,250,154 11,250,321
“Susf” size | VL2090 16 00204) (:0.003%) (:0.002%)
N Time 728 748 (+2.75%) 939 (+29.0%) 729 (+0.14%)
“Cactus File 11.249 649 11,249,935 11,249,579 11,249,851
&Comb® | Size »249 (+0.003%) (-0.001%) (+0.002%)
sequence [Time 733 755 (+3.0%) 047 (+29.2%) 734 (+0.14%)
“Mobile File 11.225.931 11,232,990 11,231,947 11,229,146
&Calend Size VoL, (+0.06%) (+0.05%) (+0.03%)
ar”
sequence | Time 733 751 (+2.46%) | 948 (+29.3%) 734 (+0.14%)
“Flowerg File 11.258.616 11,261,370 11,260,466 11,269,610
arden” Size »235 (+0.02%) (+0.02%) (+0.10%)
sequence Time 731 750 (+2.6%) 945 (+29.3%) 732 (+0.14%)

Table 4.2 Performance of different scrambling technique.

Fial ;Lz‘o“ of 8crambied Video |

st WOHgw wigmo

WEnerypted veiig
wkdeing techniquee.
on 1 frimes

Captusa Comb *MobyegCal® *Flowarganien®
Tite of VIdeo Clipy

Figure 4.4 Graphical represéntation of the final size of
the scrambled video.

’ Random sign change (block coefficients) + Block

shuffling along slices + Block coefficients rotation +
Random sign change (motion vector)

* Shuffling + Flipping of last bits of code words in Table
B-12 and 13 + Shuffling of code words in Table B-10, 14
and 15

IEEE Transactions on Consumer Electronics, Vol. 48, No. 2, MAY 2002

Tima isken to d.dph-r;:flygli;:‘ leg:u clipga

Y| -morgiod vdeo

WEjikiypiad uing sweling
technique on Iframes.

DEncrypd using edeting
techrkques on il frames

QEnerypiad Using propoved
‘tehnigue

Title of Vklea Cips-

Figure 4.5 Graphical representation of the time taken to
decipher the encrypted video

Generally the proposed scrambling technique will not
increase the size of the compressed video, even though
the Huffman code words used for entropy encoding are
being shuffled, whereas the existing scrambling
techniques frequently result in larger file sizes.
Moreover, the proposed scrambling technique requires
much less overhead when compared with the existing
method that scrambled on all frame types (requires
around 30% more time to unscramble). Even the time
required unscrambling the file with only the I-frames
encrypted seems larger than that of scrambling the
Huffman code words. Therefore, it will be much cheaper
to scramble video files using the proposed technique than
employing the existing techniques. No quantitative
results are shown here on the impact of the proposed
technique on the picture quality, as only the Huffman
code words used. for entropy coding are scrambled, there
will no loss in signal quality due to noise.

5. CONCLUSION

Macq and Quisquater[2] have pointed out that the value
of multimedia information is much lower, while the bit
rate is much higher. Hence, though our proposed
scrambling method might be wvulnerable to various
cryptanalysis attacks the high costs of breaking our
scheme (relative to the cost of buying the video) is
sufficient to dissuade any adversaries. Contrarily, the
high cost of encrypting the video data is of concern.
Therefore, the low overhead cost of our algorithm
compared to the scrambling of each of the block
coefficients makes our scheme more attractive for a low-
cost scrambling system that provide reasonable security.

In addition, the MPEG decoding process increases the
cost of plaintext attack to most of the encryption
algorithms. Coupled with the fact that a computer does
not know if a guessed picture is comprehensible to a
human being, human intervention is required for a
cryptanalysis attack. These factors are sufficient to deter
any adversaries from considering breaking of the
encrypted video.

Kankanhalli and Guan: Compressed-Domain Scrambler/Descrambler for Digital Video 365

One area that can be explored is to develop an algorithm
to generate all possible Huffman trees for each of the
VLC tables that are used for entropy encoding (based on
the exact number of bits that are used for each code
word). Furthermore, efforts are required to ensure that all
the Huffman trees generated can be used for proper
encoding/decoding of the video. The work done here can
be considered as a subset of this possible algorithm.

In addition, some of the video encoded in the
experiments has shown improvement of the compression
efficiency (in term of the compressed video sizes) when
the code words in the VLC tables were permutated.
Hence, further research can be done to improve the
compression efficiency by dynamically changing the
code words used for VLC, based on the distribution of
the spatial frequencies during encoding and decoding,.

Lastly, most of the research work done on the encryption
of MPEG video works on the video layer, and testing is
usually limited to local machines. It is best to develop a
system layer scrambler/descrambler and carry out
experiments to observe possible side effects that the
encryption can cause when the MPEG video is broadcast
over a network. The results of these experiments will be
very useful, as MPEG-2 becomes the standard for digital
television.

6. REFERENCES

[1] Ash Rofail, “Adopt a Ul-driven architecture”,
http://www.devx.com/upload/free/features/entdev/19
99/06jun99/fe0699/f0699.asp, June 1999.

[2] B. Macq and J. Quisquater, “Cryptology for digital
TV broadcasting,” In Proc. Of the IEEE, vol. 83(6),
Pp. 944-957, 1995.

[3] Barry G. Haskell, Atul Puri, Arun N. Netravali,
“Digital Video: An Introduction to MPEG-2", 1997,
Chapman & Hall.

[4] Charles P. Pfleeger, “Security in Computing”, 1989,
Prentice-Hall.

{5] Didier Le Gall, “MPEG: A Video Compression
Standard for Multimedia Applications,” April
1991/Vol.34, No.4/ Communications of the ACM.

[6] H. Benoit, “Digital Television, MPEG-1, MPEG-2
and Principles of the DVB System™, 1997, Arnold.

[7] J. Meyer and F. Gadegast, “Security Mechanisms for
Multimedia Data with the Example MPEG-1
Video,” http://www.gadegast.de/work.html, 1995,

8] J. Watkinson, “MPEG-2", 1999, Focal Press.

[9] Jennifer Seberry, Josef Pieprzyk, “Cryptography: An
Introduction to Computer Security”, 1989, Prentice-
Hall.

[10]Ronald de Bruin, Jan Smits, “Digital Video
Broadcasting ~ Technology, Standards, and
Regulations”, 1999, Artech House, Inc.

[11]Shi, C. and B. Bhargava, “A Fast MPEG Video
Encryption Algorithm”. In Proceedings of the 6th
ACM International Multimedia Conference, Bristol,
UK pp. 81-88.

[12]Shi, C. and B. Bhargava, “Light-weight MPEG
Video Encryption Algorithm”. In Proceedings of the
International Multimedia Conference on
Multimedia,(Multimedia98, Shaping The Future)
January 23-25, 1998, pages 55-61, New Delhi, India.
IETE, Tata Mcgraw-Hill Publishing Company.

[13]Shi, C., S. Y. Wang, and B. Bhargava: 1999, “Fast
MPEG Video Encryption Algorithms", Purdue
University, USA.

[14]Shi, C., S. Y. Wang, and B. Bhargava: 1999,
“MPEG Video Encryption in Real-time Using Secret
Key Cryptography”. In Proceedings of the
International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’
99), Las Vegas, Nevada, USA

[15]Tang. L.: 1996, ‘“Methods for Encrypting and
Decrypting MPEG Video Data Efficiently”. In
Proceedings of the ACM Multimedia96, pages 219-
229, Boston, MA., November 1996.

[16]W. Zeng and S. Lei, “Efficient Frequency Domain
Digital Video Scrambling for Content Access
Control”, Proceedings of the conference on ACM
multimedia '99, 1999.

BIOGRAPHIES

Mohan S Kankanhalli got his B.Tech. in EE from
Indian Institute of Technology, Kharagpur, M.S. and
Ph.D. in Computer & Systems Engineering from
Rensselaer Polytechnic Institute, NY. He is currently a
faculty member with the School of Computing, NUS.
His research interests are in Multimedia Information
Systems and Information Security.

Teo Tian Guan received his B.S. degree in Computer
Science from the National University of Singapore in
2000. He has since joined Adroit Innovations Limited as
a Software Engineer specializing in applications for the
Internet. Currently he is pursuing a Masters degree with
the School of Computing, NUS as a part-time student.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

