
Catching Captain Jack: Efficient Time and Space Dependent
Patrols to Combat Oil-Siphoning in International Waters

Xinrun Wang,1 Bo An,2 Martin Strobel,3 Fookwai Kong4

1,2,3School of Computer Science and Engineering, Nanyang Technological University, Singapore
4DSO National Laboratories, Singapore

1,2 {xwang033, boan}@ntu.edu.sg, 3, 4 {martin.r.strobel, dfookwaikong}@gmail.com

Abstract

Pirate syndicates capturing tankers to siphon oil, causing an
estimated cost of $5 billion a year, has become a serious secu-
rity issue for maritime traffic. In response to the threat, coast
guards and navies deploy patrol boats to protect international
oil trade. However, given the vast area of the sea and the highly
time and space dependent behaviors of both players, it remains
a significant challenge to find efficient ways to deploy patrol
resources. In this paper, we address the research challenges
and provide four key contributions. First, we construct a Stack-
elberg model of the oil-siphoning problem based on incident
reports of actual attacks; Second, we propose a compact formu-
lation and a constraint generation algorithm, which tackle the
exponentially growth of the defender’s and attacker’s strategy
spaces, respectively, to compute efficient strategies of security
agencies; Third, to further improve the scalability, we propose
an abstraction method, which exploits the intrinsic similarity
of defender’s strategy space, to solve extremely large-scale
games; Finally, we evaluate our approaches through extensive
simulations and a detailed case study with real ship traffic
data. The results demonstrate that our approach achieves a dra-
matic improvement of scalability with modest influence on the
solution quality and can scale up to realistic-sized problems.

Introduction

It was around midnight on the 4th of June 2015 when a group
of pirates boarded the Malaysia-registered oil tanker Orkim
Victory from a speed boat while under way to Kuantan port,
Malaysia. After taking control of the ship, the pirates moved
the Orkrim Victory to a different location where a second
tanker pulled up alongside it. Within a couple of hours the pi-
rates siphoned 770 metric tons of Automotive Diesel Oil and
disappeared. This was the eighth of eleven piracy incidents
occurring in the South China Sea (SCS) in 2015 (ReCAAP
2015a; 2015c). The estimated worldwide economic damage
due to piracy reaches from $5 to $12 billion a year and a
major part of the attacks occur in the SCS (Kemp 2015;
Bowden et al. 2010). To combat the threat of piracy in the
SCS, Singapore, Malaysia and Indonesia plan to establish
patrols in the region (Xue 2015). Given the vast area of the
SCS, the huge number of merchant ships passing through and
the limited number of patrol boats, the question of how to

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

efficiently deploy patrol resources is extremely challenging
to the security agencies.

During the last decade, several scheduling and patrolling
systems based on security games were developed and de-
ployed in the real world, e.g., ARMOR used by the LA In-
ternational Airport (Jain et al. 2010), IRIS supporting the
U.S. Federal Air Marshal Service (Jain et al. 2010), and
PROTECT used by the U.S. Coast Guard (An et al. 2012).
The successful deployment has led to the creation of a new
and active research area of security games and even sub-
areas like green security games considering environmental
issues (Fang et al. 2016; Yin and An 2016) and protecting
large public events (Yin, An, and Jain 2014). However, these
methods cannot be directly applied to our problem due to
three main issues: i) our game is highly time and space
dependent and both players take paths as their strategies
while most previous works assume that at most one player
takes paths (Basilico, Gatti, and Amigoni 2009; Fang, Stone,
and Tambe 2015) or the values of targets are static over
time (Zhang et al. 2017); ii) continuous externalities, e.g.,
alarm influence, are incorporated to make our model more
realistic, which are ignored (Yin et al. 2012) or only consid-
ered for protecting targets (Gan, An, and Vorobeychik 2015;
Gan et al. 2017); iii) our game, with a reasonable discre-
tion of time and space, is extremely large-scale and can-
not be solved by the existing methods (Yin et al. 2012;
Yin and An 2016). We also note another line of research
relate to our problem (Bošanskỳ et al. 2011; Jakob, Vaněk,
and Pechoucek 2011; Vaněk et al. 2013) where the attacker
attacks the ships whose schedules are fixed and known to
both players. However, according to the incident reports, the
attacker may damage the communication system and move
the ship to another place, which deviates from the schdule.

In this paper we address the above challenges and pro-
vide four key contributions. First, we construct a Stackelberg
Model of the Oil-Siphoning problem (SMOS), where both
players take time-dependent paths on the grid as their strate-
gies, based on the incident reports from actual attacks as
well as special reports conducted by maritime authorities to
make the model realistic and computable; Second, in order to
compute the efficient defender’s patrol strategy, we propose a
compact formulation and a constraint generation (CG) algo-
rithm, which avoids the exponentially increasing number of
pure strategies of the defender and the attacker, respectively;

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

208

Figure 1: A map of the south region of SCS showing the ship
locations during one week (grey) and pirate attacks between
2007 and 2016 (red dots). The rectangular area is considered
in the case study in the case study in the evaluation section.

Third, to further improve the scalability, we propose an ab-
straction method to solve the extremely large-scale problem,
which exploits intrinsic properties of the defender’s strategy
space to reduce the size of the game and makes a tradeoff
between scalability and optimality; Finally, we evaluate our
approaches through extensive simulations and a detailed case
study with real ship traffic data. The results demonstrate that
our approaches can scale up to realistic-size problems with
modest influence on the solution quality, significantly out-
performing existing methods, and provide robust solutions
against the uncertainties in the real world.

Motivating Scenario

In this section, we analyze the situation in the south of the
SCS shown in Figure 1, which is a current hotspot of siphon-
ing attacks. According to the ReCAAP information sharing
center (ISC), there were 99 piracy attacks in the SCS from
2007 to 2017. As the considered region is too large to be
considered as a continuous model, we discretize the region
into a grid of zones and assign the value of each zone ac-
cording to the ship traffic data obtained from the automatic
identification system (AIS). Besides, we discretize the time
into equal steps, where the patrol boats use a number of steps
from one node to its neighbors. Further, the vast majority
of the attacks occurred during night time, which means that
there is an ending time when the attackers have to finish their
attack and that the patrol boats can relocate during the day,
so there are no restrictions on the starting and ending zones
of patrols and finite time steps are considered.

Note that siphoning can be done only in specific zones re-
ferred to as siphoning locations which can be determined
via geographical features, usually close to the coast, or
through ship density data. We assume that both the security
agencies and the pirates know all possible siphoning loca-
tions. Based on the ReCAAP ISC reports (ReCAAP 2015b;
2015c), the model of the attack process includes: i) capturing
the ship, including approaching, boarding the ship, control-
ling the crew and damaging the communication system, etc,
which takes a certain amount of time; ii) steering the ship
to the siphoning location through a path on the grid; and iii)
siphoning the oil to another ship, which also takes a certain
amount of time and during which the attacker cannot move.
We assume that both capturing time and siphoning time are

the same for all zones, respectively.
By patrolling through the zones, the patrol boats offer

two kinds of protection. The first is that they might discover
pirates during any step of the attack, which is mainly in the
zones they patrol in, but also a weaker extent in neighboring
zones, due to the noticed anomalies on AIS or radar systems
installed on the boats. The second form of protection is due
to the fact that patrolling ships can quickly react to alarms
sent out by attacked ships before communication systems are
damaged and so have a chance to disrupt attacks.

Model

We propose a Stackelberg Model of the Oil-Siphoning prob-
lem (SMOS) where the defender commits to a mixed pa-
trolling strategy, then, after careful observation, the attacker
performs an optimal response (Tambe 2011). We start by
dividing the maritime territory into a set of zones Z which
form a grid M . For a zone i ∈ Z we denote the neighbors
of i on M by N (i)1. Furthermore, we discretize the night
into a sequence of time points t = 〈t1, . . . , tτ 〉, the consecu-
tive time points are equidistant. Players can only act at these
time points and every action, e.g., moving from one zone to
a neighboring zone, is assumed to take one time step. The
underlying grid together with the time line form a transition
graph G = (V, E) on which the players can act. Every vertex
v = (i, tk) consists of a zone i ∈ Z and a time step tk. There
is an edge e between two vertices v = (i, tk), v

′ = (i′, tk′)
when k′ = k + 1 and i′ ∈ N (i).

Defender strategies. In our model the defender has m
resources (i.e., patrol boats). Let S = {v = (i, t1)} be the
set of vertices corresponding to all possible zones at the first
time step and T = {v = (i, tτ)} all possible zones at the last
time step. Therefore, a patrol strategy Pr of a resource r is
a path from a node in S to a node in T . A pure strategy of
the defender is then, consequently, given by a m-dimensional
vector of patrol paths, i.e., P = 〈P1, . . . , Pm〉. A mixed
strategy of the defender can be represented by a distribution
of the possible pure strategies, i.e., x = 〈xP 〉 where xP is
the probability of P being used. We have

∑
P xP = 1, ∀ x.

Attacker strategies. Let O ⊆ Z be the set of possible
oil siphoning locations and let a and b denote the number
of time steps it takes to capture a ship and to siphon the oil,
respectively. We define an attacker’s strategy as a path F =
((i1, th), . . . , (il, th+l)) on G where the first a time steps
have to be spent on the same zone i, i.e., i1 = i2 = · · · = ia
and the last b time steps have to be spent on one of the oil
siphoning zones, i.e., ih+l = ih+l−1 = · · · = ih+l−b ∈
O and th is the time the attacker starts his attack. Since
attacks are costly and occur with relative low frequencies,
we assume there is an attacker and only pure strategies are
considered, which is in line with previous works in security
games (Kiekintveld et al. 2009).

Utilities and Stackelberg equilibrium. In our model
each zone i ∈ Z has a certain value at each time step tk
denoted by u(i, tk) which is the value gained by the attacker
when attacking a ship at zone i at time tk. If the attacker
successfully launches an attack F in zone i at tk, he gets

1For convenience we define i ∈ N (i).

209

(a) (b)

Figure 2: (a) The red zones are neighboring zones of the
black zone. (b) Suppose the attacker arrives at the black zone
at th +2, if the resource at any one of the red zones at th, the
resource is close enough to catch the attacker.

U(F) = u(i, tk) and the defender gains −U(F). If the de-
fender detects the attacker, both players get 0. Therefore, our
game is zero-sum, as most related works in security domain.

A resource can detect the attacker via three ways:
1. At a time step tk, the attacker is detected with a probability

d ≤ 1 if they are inside the same zone;
2. At a time step tk, the attacker is detected with a probability

e < d if they are in the neighboring zones;
3. At the starting time of the attack th, the attacker is de-

tected if an alarm is raised by the ship being attacked and
the resource is close enough to catch the attacker. The
probability of raising an alarm is α.

A resource is considered close enough if it can interdict the
attacker’s path starting from its position at time th. Figure 2
presents a simple example of the three kinds of detection. Let
Pr be the patrol strategy of resource r and F the attacker’s
strategy,

Br = {v|v ∈ Pr ∩ F}
be the set of vertices they have in common,

Nr = {(i, tk)|(i, tk) ∈ Pr, ∃(j, tk) ∈ F s.t. j ∈ N (i), j �= i}
the set of nodes where the patrol and the attacker are in

neighboring zones and

Rr = {(i, th)|(i, th) ∈ Pr, ∃(j, tk) ∈ F : d(i, j) ≤ tk− th}
the set of zones from which the patrol could reach the attacker
(at unit speed). Following the formulation adopted in (Jakob,
Vaněk, and Pechoucek 2011; Yin et al. 2012; Yin and An
2016), the probability of detecting the attacker is calculated
as min(1, d|Br|+ e|Nr|+ α Rr

) where R is the indicator
function of set R, indicating if resource r could reach the
attacker’s path if an alarm is raised.

Further, we assume that the independent work of the pa-
trols leads to an addition of the individual probabilities.
Hence, given a strategy F of the attacker and a strategy
P = 〈Pr〉 of the defender, the probability to detect the at-
tacker is given by

dpp(P, F) = min
(
1,
∑m

r=1
(d|Br|+ e|Nr|+ α Rr)

)
.

From this we can deduce the players’ expected utilities.
Given a pair of strategies (P, F) the attackers utility is
Ua(P, F) = (1 − dpp(P, F))U(F). When the defender is
allowed to play a mixed strategy x = 〈xP 〉, the attacker’s
expected utility is Ua(x, F) =

∑
P xPU

a(P, F) by slight

abuse of notation, the expected utility of the defender is de-
fined as Ud = −Ua.

We want to compute the optimal strategy for the defender
to commit to. Given the zero-sum setting, this is equivalent
to maximizing the defender’s utility under the assumption
of best response of the attacker. This leads to the following
optimization problem. Let X and F be the strategy space for
the defender and attacker, respectively.

maxx∈X Ud(x, F)

s.t. Ua(x, F) ≥ Ua(x, F ′), ∀F ′ ∈ F

Constraint Generation

In this section, we introduce a compact formulation to the
original problem to avoid the exponentially large number of
defender’s pure strategies; and then adopt the constraint gen-
eration method to incrementally add the attacker’s strategy
into consideration to speed up the algorithm.

Compact LP formulation

The exponentially increasing number of pure strategies of
both the defender and the attacker in the size of the game
makes the computation of optimal solutions in the original
formulation intractable. Many previous researches use com-
pact representation as a remedy (Basilico and Gatti 2011;
Yin et al. 2012; Yin and An 2016). In our model, a com-
pact representation can be given via a coverage vector
c = 〈cv|v ∈ V〉 which assigns the marginal coverage on
the node v in the graph. Let x be a given mixed strategy of
the defender, we have cv =

∑
P xPP (v) where P (v) repre-

sents the number of resources going through v in the pure
strategy P . For any pure strategy F of the attacker, we can
write the attacker’s utility Ua(c, F) as (1− dpp(c, F))U(F)
where

dpp(c, F) = min(1, d
∑

v∈F
cv + e

∑
v∈N(F)

cv + α
∑

v∈R(F)
cv).

Now we can construct the linear program coreLP to compute
the optimal coverage:

maxc U (1a)
U ≤ −Ua(c, F), ∀F ∈ F (1b)

c(i,tk) =
∑

j∈N (i)
f((i,tk),(j,tk+1)), ∀i ∈ Z, k ∈ {1, . . . , τ − 1}

(1c)

c(i,tk) =
∑

j∈N (i)
f((j,tk−1),(i,tk)), ∀i ∈ Z, k ∈ {2, . . . , τ}

(1d)

m =
∑

i∈Z
c(i,tk), k ∈ {1, τ}, (1e)

where f((i,tk),(j,tk+1)) ∈ R
+ are flow variables, so that

Eqs.(1c) and (1d) ensure that the coverage vector can be
obtained by a mixed strategy (Yin and An 2016). Eq.(1e)
forces the number of patrol resources at the beginning and
end of the game to be m and Eq.(1b) represents that the at-
tacker uses his best-response to the defender’s strategy. Given
a coverage vector c, we can easily obtain a mixed strategy by
splitting the flow into a set of weighted simple paths, which
leads to only a minor loss for the defender (Yin et al. 2012).
Notice that this formulation is still exponentially large in the
size of the game since the number of pure strategies of the

210

attacker is exponentially large. Therefore, we use Constraint
Generation (CG) to incrementally add the attacker’s pure
strategy into consideration to further improve the scalability.

CG for compact representation

In order to improve the scalability of coreLP, we apply Con-
straint Generation (CG) to the compact representation. In-
stead of starting with all of the exponentially many con-
straints, we start with only a small subset F ′. After we obtain
a coverage vector for the subset F ′, we call the attacker oracle
(AO). The AO computes, based on a given coverage vector c,
for every possible starting point (i, th) of an attack F the path
which offers the attacker the best chances to escape. After
considering every (i, th), we obtain the best response F ∗ of
the attacker. If F ∗ is already in F ′ the algorithm terminates
in an equilibrium, otherwise we add F ∗ into F ′ and restart
the coreLP.

At the heart of the AO is Algorithm 1. For a given cover-
age c as well as the starting node (is, ts), every step on the
attacker’s path brings a certain additional probability to be
caught. Viewing these probabilities as weights on a graph,
the goal of the attacker is to find a shortest path from (is, ts)
to a position where the attack is finished, i.e., reach a si-
phoning location and finish siphoning. This shortest path can
be found with a modified Dijkstra’s algorithm. Algorithm 1

Algorithm 1: findBestPath (c, is, ts)

1 for (i, tk) ∈ V do

2 c′(i,tk) ← d · c(i,tk) + e
∑

j∈N (i) c(j,tk);

3 Q ← initializeQueue();
4 while Q �= ∅ do

5 (p, i, t, b̂, A) ← Q.pop();
6 t++;
7 if b̂ = 0 then break ;
8 else if b̂ < b then

9 pa, A
′ ← getAlarmPos(ts, t, i, c, A);

10 Q.push((p+ pa + c′(i,t), i, t, b̂− 1, A′));

11 else for j ∈ N (i) do

12 pa, A
′ ← getAlarmPos(ts, t, j, c, A);

13 if j ∈ O then

Q.push((p+ pa + c′(i,t), i, t, b̂− 1, A′)) ;
14 Q.push((p+ pa + c′(i,t), i, t, b̂, A

′));

15 return (buildPath(i, t), p);

starts by computing the actual catching probability c′ based
on direct patrolling and the externality effect (lines 1 and 2).
The elements (p, i, t, b̂, A) of priority queue Q consist of the
probability to be caught p (this is the priority), the current
position i, the current time t, the remaining time to finish
the siphoning b̂ and a list A of points which already have
been considered as starting points of a patrol boat in case of
an alarm. A is specific to the path and so cannot be precal-
culated. The initialization (line 3) also ensures that the first
a time steps are spent in the same zone. Further, we keep

track of nodes visited on the way to each node, so we can
create the correct path at the end of the algorithm. In the
main part of the algorithm (lines 4 to 14), we consider the
node which currently has the lowest probability for detection,
if the siphoning is finished we can stop (line 7), otherwise
if the siphoning has started, we continue siphoning (lines 8
to 10) at the same position. The getAlarmPos finds new
nodes from which a patrol starting at ts could reach the cur-
rent location in time to catch the attacker if an alarm would
be raised. Moreover, getAlarmPos returns a list A′ of all
locations that have been considered so far. It also returns
the additional catching probability pa corresponding to the
coverage of the locations added to A′. If the siphoning has
not started (lines 11 to 14), the attacker can move to a neigh-
boring zone j and if j is a siphoning location, the attacker
also can start siphoning. Some special considerations are not
displayed in Algorithm 1: If the attack does not finish in
time the attack automatically fails; As soon as the catching
probability p ≥ 1 the attack will not be successful and does
not need to be considered.; When a = 0 and is ∈ O the si-
phoning can start at ts. Differently from Dijkstra’s algorithm,
we do not need to consider the update of probabilities of
elements inside Q since the inbound weights into a node are
all equal and so his weight cannot decrease after it is added
to Q. Finally, the buildPath computes the attacker’s path
based on references to prior visited nodes (line 15).

The AO can find the attacker’s best-response in time
O(|V|2(log(|V|) + |Z|)). The first term is the running time
of the underlying Dijkstra algorithm and the second comes
from the getAlarmPos subroutine, which finds new zones
in linear time in |Z|. So CG can solve small games efficiently.
However, when the game becomes larger, e.g., with 100 zones
and 12 time steps, it takes a long time to solve the coreLP,
even with a small set F ′ due to the large number of variables.
To further improve the scalability, we need to reduce the num-
ber of variables. Hence, we introduce an abstraction method
in the next section.

Abstraction to Further Improve Scalability

Abstraction has been successfully applied to solve large-
scale games by exploiting the intrinsic similarity of strategy
space to shrink the game to a simpler one before solving
it. As both players take paths as their strategies rather than
a specific node and the zones on the attacker’s escape path
play a vital role for the defender to detect the attacker, the
methods proposed in (Basilico, Gatti, and Amigoni 2009;
Basak et al. 2016; Zhang et al. 2016), which typically re-
move the nodes unnecessary to reduce the size of the game,
cannot be directly applied to our model. The basic idea of
the abstraction method applied here is that the defender can
only determine the coverage of a large area, which can be
assigned to small areas following a pre-defined mapping
method, which ensures that the generated coverage satisfies
the flow conservation constraints. We note that the coverage
of a specific node cannot influence the defender’s utility dra-
matically, especially when the scale of the game becomes
extreme large.

211

ss

Defender’s Grid

Attacker’s Grid

(a)

.4 .4
t̃ t̃+ 1

t t+ 1 t+ 2 t+ 3
.1.1
.1.1

.1.1

.1.1
.1.1
.1.1

.1.1

.1.1

{ {

(b)

Figure 3: (a) Abstraction with s = 2. (b) A counterexample
which shows that the uniform mapping method cannot gen-
erate the valid coverage c. The coverage of the defender’s
grid from t̃ to t̃+ 1 is valid for the defender’s grid. While we
use uniform mapping to map the coverage to the attacker’s
grid, the coverage at t + 2 cannot be implemented by any
flow from the coverage at t+ 1.

Abstraction of the grid

The first step to apply the abstraction method is to obtain the
abstracted defender’s grid by combining s× s neighboring
nodes into a node where s is named as sparsity. Let ĩ denote
the node on the defender’s grid and we say the i ∈ ĩ, i ∈ Z
if i is included in ĩ. We assume that the width and the length
of the grid M , as well as τ , are divisible by s. The original
grid M is referred as the attacker’s grid. Figure 3a shows
both defender’s and attacker’s grids. Now the defender’s
strategy is the valid coverage on the defender’s grid, i.e.,
the coverage can be satisfied by some flow f̃ , denoted by
c̃ and the attacker’s pure strategy is the same as previous.
Note that because the node of the defender’s grid is s × s
times as large as the node of the attacker’s grid, the length
of a defender’s time step is s times of the attacker’s. To
compute the attacker’s best-response to a given c̃, as well
as the corresponding utilities, we need to map the coverage
from the defender’s grid to the attacker’s grid. Hence, we
introduce a mapping method Ψ in the next subsection.

Mapping method Ψ

In applying the abstraction method, we need to map the
coverage vector c̃ to the attacker’s grid. The mapping method
Ψ must ensure that the mapped coverage c is executable by
some mixed strategy, i.e., there exists a flow f which satisfies
Eqs.(1c) and (1d) on the attacker’s grid. A straightforward
method is uniform mapping, which uniformly assigns the
flow over the nodes over each attacker’s time step. However,
Figure 3b provides a counterexample to show that uniform
mapping cannot work. Therefore, we propose Algorithm 2 to
generate the valid coverage on the attacker’s grid.

The basic idea of Algorithm 2 is keeping the trace of
flow f̃ on the defender’s grid. Figure 4 is an example which
shows the change of a flow at each attacker’s time step from
a node to one of its neighbors on the defender’s grid. For
each attacker’s time step, if the node is covered, we will add
the flow into its coverage. Note that the flow is uniformly
assigned to each node it covers. After considering all flows
on the defender’s grid, we obtain the coverage c.

In detail, we first map the defender’s time step t̃k to the
attacker’s (line 3). For each flow f̃(̃i,t̃k),(j̃,t̃k+1)

such that

Algorithm 2: Mapping method Ψ(f̃)

1 c = 0;
2 for f̃(̃i,t̃k),(j̃,t̃k+1)

∈ f̃ do

3 t ← s · t̃k;
4 if ĩ �= j̃ then
5 for Δt = 1 : s do

6 for i ∈ ĩ && di +Δt < s do

7 c(i, t+Δt)+ = (1/s2) · f̃(̃i,t̃k),(j̃,t̃k+1)
;

8 for j ∈ j̃ && dj < Δt do

9 c(j, t+Δt)+ = (1/s2) · f̃(̃i,t̃k),(j̃,t̃k+1)
;

10 else for Δt = 1 : s && i ∈ ĩ do

11 c(i, t+Δt)+ = (1/s2) · f̃(̃i,t̃k),(j̃,t̃k+1)
;

12 ;

13 return c;

ĩ �= j̃, which implies a flow flows from one node to another
different node, we define the distance di for each node i ∈ ĩ,
as the distance from node i to the edge where the flow flows
out. The distance dj , j ∈ j̃ is defined analogously as the
distance from node j to the edge where the flow flows in. For
each attacker’s time step Δt between t̃k and t̃k+1 (line 5),
for node i ∈ ĩ, if di +Δt < s, which implies the flow does
not leave this node, we will add the flow into i’s coverage
(lines 6 to 7). Analogously, if dj < Δt, which implies the
flow reaches this node, we will add the flow into j’s coverage
(lines 8 to 9). When Δt = s, the flow f̃(̃i,t̃k),(j̃,t̃k+1)

reaches

j̃. For the flow f̃(̃i,t̃k),(j̃,t̃k+1)
with ĩ = j̃, which implies a

flow from a node to itself, we simply assign the flow to the
nodes i ∈ ĩ uniformly (lines 10 to 11). Then we obtain the
coverage c.

d

(a) Δt = 1

d

(b) Δt = 2

d

(c) Δt = 3

d

(d) Δt = 4

Figure 4: The change of a flow from a node to one of its
neighbors (right neighbor) along with the attacker’s time
step with s = 4. The gray nodes are covered by the flow at
each attacker’s time step. Besides, the red (green) node is
one of the node of the defender’s grid where the flow flows
out (in) and the corresponding distance d = 2, defined in
Algorithm 2, to the edge where the flow passes is displayed.

Proposition 1. The generated c can be satisfied by a flow.

Proof. We can find a flow to satisfy c. For each
f̃(̃i,t̃k),(j̃,t̃k+1)

∈ f̃ such that ĩ �= j̃, for i ∈ ĩ, we denote
the neighbor as i′ of i where the flow reaches i′ before i,
as well as j′ for j ∈ j̃. For Δt = 1 : s, if di + Δt < s,
f(i′,t−1+Δt)(i,t+Δt) = (1/s2) · f̃(̃i,t̃k),(j̃,t̃k+1)

; and if dj <

Δt, f(j′,t−1+Δt)(j,t+Δt) = (1/s2) · f̃(̃i,t̃k),(j̃,t̃k+1)
. For each

212

f̃(̃i,t̃k),(j̃,t̃k+1)
∈ f̃ such that ĩ = j̃, f(i,t−1+Δt)(i,t+Δt) =

(1/s2) · f̃(̃i,t̃k),(j̃,t̃k+1)
. Now we get f which satisfies c.

Analysis We can use the ratio r =
U−Ua

s

U−Ua to evaluate
the performance of the abstraction method where U =
max{u(i, tk)}, Ua

s and Ua are utilities of the attacker with
and without the abstraction, respectively. For the general
games, it is difficult to obtain a good bound for the abstrac-
tion method theoretically due to the highly interdependence
between time and space. However, for uniform games where
all zones are with the same value, which means the shipping
traffic are uniformly assigned to each zone and steady in all
time steps, we have the following proposition.

Proposition 2. For uniform games, r ≥ 1/s2.

Proof. Because the zones are with the same value in the uni-
form game, the attacker will only attack the zones in O, which
can bring at least the same utility if he attacks other zones.
Therefore, the defender would only assign the coverage to
zones in O and keep the coverage steady during all time steps.
Suppose the optimal coverage is c and the corresponding
attacker’s utility is Ua. Then, we can construct a valid cover-
age for the abstraction cs with sparsity s: for each time step
tk, k ∈ {1, · · · , τ}, cs(i, tk) = 1

s2

∑
j∈ĩ c(j, tk), ∀ i ∈ ĩ,

which implies that cs(i, tk) ≥ 1
s2 c(i, tk). As the values of

all zones are the same, r = dpp(cs,Fs)
dpp(c,F) where Fs and F

are the attacker’s best-response to cs and c, respectively. If
Fs = F , r ≥ 1

s2 due to the fact that cs(i, tk) ≥ 1
s2 c(i, tk). If

Fs �= F , as F is the best response to c, , we can obtain that
dpp(cs, Fs) ≥ 1

s2 dpp(c, Fs) ≥ 1
s2 dpp(c, F), which leads to

r ≥ 1
s2 .

Proposition 2 provides the worst case guarantee and we
found that the abstraction can achieve a close approximation
to optimal solution quality with a dramatic improvement of
scalability in the experimental evaluation.

Evaluation

We evaluate the performance of our approach based on i)
extensive experiments completed via simulations and ii) real-
world ship density data of CSC. We use CPLEX (version
12.6) to solve the LPs and all computations are performed
on a 64-bit PC with 16.0 GB RAM and a 3.50 GHz CPU.
The detecting factor d, the external detecting factor e and the
alarm probability α are fixed as 0.5, 0.1 and 0.25, respectively,
unless otherwise specified.

Experimental evaluation on synthetic data

In this section, we systematically generate square grids with
different sizes. The values of nodes of grids are randomly
generated from a uniform distribution in [0, 100]. For all
simulations, the attack time a and the siphoning time b are
fixed as 2 and 3, respectively. All values are averaged over
30 instances unless otherwise specified.

We compare the scalability of three versions of our algo-
rithms: i) our CG algorithm, which is denoted as s = 1 in the

figures; ii) our abstraction method with s = 2; and iii) our ab-
straction method with s = 4. The CDOG algorithm proposed
in (Yin and An 2016) is also implemented as a benchmark
with a slight modification that we relax the coverage vec-
tor c to be continuous. To evaluate the solution quality, we
compare our algorithms’ solutions with two heuristic patrol
strategies: i) rand where c(i, tk) = m/|Z|, which implies
that the defender randomly patrols all zones; and ii) prop

where c(i, tk) =
∑τ

tk=1 u(i, tk) ·m/
∑|Z|

i=1

∑τ
tk=1 u(i, tk),

which implies that the defender patrols the zones propor-
tionally to the values of zones. Note that when s = 1, the
abstraction method is the same as CG which returns the opti-
mal solution as CDOG.

8X8 12X12 16X16 20X20 24X24
0

400

800

1200

1600

2000

2400

R
un

tim
e(

s)

Size of Grid

 s=4
 s=2
 s=1
 CDOG

(a) m = 3, τ = 12

8 12 16 20 24 28
0

500

1000

1500

2000

R
un

tim
e(

s)

Number of Time Steps

 s=4
 s=2
 s=1
 CDOG

(b) |Z| = 12× 12,m = 3

Figure 5: Runtime analysis

Scalability analysis. We first compare the scalability of
our algorithms. The result is depicted in Figure 5a where
the x-axis indicates the size of the grid. The result shows
that both CG and CDOG cannot scale up to the grid larger
than 16 × 16 with runtime cap of 2400 seconds. Besides,
CG is always faster than CDOG because CDOG needs to
call the defender oracle many times to generate the subgrid.
While, our abstraction methods with s = 4 and s = 2 can
solve the grid with 20× 20 in less than 1600 seconds, which
significantly outperform the CG and CDOG. We also com-
pare the scalability of our algorithm on games with different
time length. The result is showed in Figure 5b. The result
shows that our abstraction method can scale up to the real-
istic length of time steps and for small sparsity, the runtime
increases faster because when τ increases, more variables
and constraints are added into the formulation. We also vary
the number of resources, which has much less influence on
the runtime and the result is not displayed.

-100

-80

-60

-40

-20

0
1 2 3 4 5

Number of Resources

D
ef

en
de

r's
 U

til
ity

 rand
 prop
 s=4
 s=2
 s=1

(a) |Z| = 8× 8, τ = 12

-100

-80

-60

-40

-20

0
1 2 3 4 5

Number of Resources

D
ef

en
de

r's
 U

til
ity

 rand
 prop
 s=4
 s=2
 s=1

(b) |Z| = 16× 16, τ = 12

Figure 6: Solution quality

213

Solution quality. As the main advantage of the abstraction
method is that it can significantly improve the scalability with
some loss of the optimality, we then evaluate the quality of the
solutions obtained by the abstraction method. The results, dis-
played in Figures 6a and 6b, show that given the grids, when
the number of resources m increases, our abstraction method
shows a greater advantage against the random patrol and
when the sparsity s becomes smaller, the abstraction method
provides a better approximation to the optimal solution. It is
worth to note that in all experiments, the abstraction obtains
a much higher value of the ratio r (0.6 ∼ 0.8) compared with
the theoretical bounds. Given the number of resources m,
when the gird becomes larger, the advantage of our solutions
against the two baselines is reduced. Besides, the propor-
tional patrol strategy gets even worse utility than the random
patrol strategy in some cases, because patrolling the nodes
with low values is also important to catch the attacker who
takes paths as strategies.

-100

-80

-60

-40

-20

0
1 2 3 4 5

Number of Resources

D
ef

en
de

r's
 U

til
ity

 rand
 prop
 s=4
 s=2
 s=1

(a) û (δ = 0.1)

-100

-80

-60

-40

-20

0
1 2 3 4 5

D
ef

en
de

r's
 U

til
ity

 rand
 prop
 s=4
 s=2
 s=1

Number of Resources

(b) ĉ (ρ = 0.1)

Figure 7: Robustness

Robustness analysis. In reality, the defender may not
know the exact value of each zone due to the fluctuation of
ship density over time. Besides, during the patrol process, the
real coverage of each zone may deviate from the defender’s
strategy. Thus, we evaluate the robustness of our solutions
in two aspects: i) the real value of each zone û(i, tk) ranges
in [1 − δ, 1 + δ] · u(i, tk), and ii) the real coverage of each
zone ĉ(i, tk) ranges in [1 − ρ, 1 + ρ] · c(i, tk). The results
are displayed in Figure 7 with δ = ρ = 0.1. The results
show that our solutions are robust enough and outperform the
random patrol strategy under a high level of uncertainty of
targets’ values and coverage. Note that when the number of
resources m is extremely small, the advantage of our solution
with large sparsity is reduced.

SCS real-world evaluation

We consider an area of 64800 NM2 in the south of the SCS
showed in Figure 1. We define the attacker’s grid by dividing
this area into small square zones with a length of 10 NM,
which ensures that a patrol boat can provide efficient protec-
tion of a zone at each time step through its radar system. By a
normal patrol speed of 15 knots, it takes 40 minutes from one
zones to the next (DAMEN 2016), so we consider 18 time
steps for twelve hours of darkness, i.e., τ = 18. We assume
a = 4 and b = 6 which imply that the attackers need roughly
three hours to capture a ship and four to siphon the goods
according to the incident reports. In order to determine the

-100

-80

-60

-40

-20

0
1 2 3 4 5

D
ef

en
de

r's
 U

til
ity

 rand
 prop
 s=6

Number of Resources

(a) Solution quality

-0.10 -0.05 0.00 0.05 0.10
-45

-40

-35

-30

-25

-20

-15

D
ef

en
de

r's
 U

til
ity

 d
 e
 α

(b) Range factors

Figure 8: Real-world application

value of each zone we obtained data from AIS used by vessel
traffic services. The data cover the first week of February
2017 and after deletion of faulty entries, it contained about
20000 entries in the considered area. In 500 of the 648 zones
no ship appeared during the week, we declare these zones
as siphoning locations. The value of each zone at each time
point was then mapped to lie in [0, 100] where all locations
where 30 or more ships came through in one time step were
mapped to a value of 1002.

The results are depicted in Figure 8. All instances are
solved averagely in 2800 seconds, which is better than our
simulated results due to the vast zones with value 0, which
reduces the strategy space of both players. In Figure 8a, we
range the number of resources and choose s = 6 to our
abstraction method. The results show that our algorithm sig-
nificantly outperforms the two baselines. In Figure 8b, we
range different factors d, e and α by [−0.1, 0.1] around the
default values with m = 3 and s = 6. The results show that
improving the alarm probability α has more influence on
the utility, compared with d and e, because it increases the
detecting probability of all closing zones near the attack, so
we highly recommend that the ships install fast and respon-
sive alarm system. Besides, improving e is more effective
than improving d to improve the defender’s utility due to the
improvement of coverage of all neighbors of nodes.

Conclusion

This paper aims at addressing the oil-siphoning problem
through efficiently assigning the limited patrol resources. A
novel Stackelberg model, SMOS, is proposed ,based on the
traffic data, where both players take paths as their strategies
with different kinds of externalities. A compact formulation
and a constraint generation algorithm with efficient attacker
oracle to add constraints is proposed. To further improve
the scalability, an abstraction method is proposed. Extensive
experimental results and a detailed case study for SCS demon-
strate that our approaches can result in dramatic improvement
of scalability with modest influence on the solution quality
and can scale up to realistic-sized problems.

2A flaw of AIS data is that there are some zones which have
extremely larger traffic density than their neighbors at some time
step. To make the data reasonable, zones with more than 30 are
considered outliers, otherwise they will dominate the game.

214

Acknowledgments

This research is supported by NRF2015 NCR-NCR003-004
and NCR2016NCR-NCR001-002

References

An, B.; Shieh, E.; Tambe, M.; Yang, R.; Baldwin, C.; Di-
Renzo, J.; Maule, B.; and Meyer, G. 2012. PROTECT –
A deployed game theoretic system for strategic security al-
location for the United States coast guard. AI Magazine
33(4):96–110.
Basak, A.; Fang, F.; Nguyen, T. H.; and Kiekintveld, C. 2016.
Abstraction methods for solving graph-based security games.
In Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 13–33.
Basilico, N., and Gatti, N. 2011. Automated abstractions for
patrolling security games. In Proceedings of the Twenty-Fifth
AAAI Conference on Artificial Intelligence (AAAI), 1096–
1101.
Basilico, N.; Gatti, N.; and Amigoni, F. 2009. Leader-
follower strategies for robotic patrolling in environments
with arbitrary topologies. In Proceedings of The 8th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS), 57–64.
Bošanskỳ, B.; Lisỳ, V.; Jakob, M.; and Pěchouček, M. 2011.
Computing time-dependent policies for patrolling games with
mobile targets. In The 10th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 989–
996.
Bowden, A.; Hurlburt, K.; Aloyo, E.; Marts, C.; and Lee, A.
2010. The economic costs of maritime piracy. One Earth
Future Foundation.
DAMEN. 2016. Stan Patrol 3007 - Executive Sum-
mary. http://products.damen.com/en/ranges/stan-patrol/stan-
patrol-3007.
Fang, F.; Nguyen, T. H.; Pickles, R.; Lam, W. Y.; Clements,
G. R.; An, B.; Singh, A.; Tambe, M.; and Lemieux, A. 2016.
Deploying PAWS: Field optimization of the protection assis-
tant for wildlife security. In Proceedings of the Twenty-Eighth
Innovative Applications of Artificial Intelligence Conference
(IAAI), 3966–3973.
Fang, F.; Stone, P.; and Tambe, M. 2015. When security
games go green: Designing defender strategies to prevent
poaching and illegal fishing. In Proceedings of the 24th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
2589–2595.
Gan, J.; An, B.; and Vorobeychik, Y. 2015. Security games
with protection externalities. In Proceedings of the 29th AAAI
Conference on Artificial Intelligence (AAAI), 914–920.
Gan, J.; An, B.; Vorobeychik, Y.; and Gauch, B. 2017. Se-
curity games on a plane. In Proceedings of the 31st AAAI
Conference on Artificial Intelligence (AAAI), 530–536.
Jain, M.; Tsai, J.; Pita, J.; Kiekintveld, C.; Rathi, S.; Tambe,
M.; and Ordóñez, F. 2010. Software assistants for randomized
patrol planning for the LAX airport police and the Federal
Air Marshal Service. Interfaces 40(4):267–290.

Jakob, M.; Vaněk, O.; and Pechoucek, M. 2011. Using agents
to improve international maritime transport security. IEEE
Intelligent Systems 26(1):90–96.
Kemp, T. 2015. Crime on the high seas: The world’s most
pirated waters. CNBC.
Kiekintveld, C.; Jain, M.; Tsai, J.; Pita, J.; Ordóñez, F.; and
Tambe, M. 2009. Computing optimal randomized resource
allocations for massive security games. In Proceedings of
The 8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 689–696.
ReCAAP. 2015a. Annual report - piracy and armed robbery
against ships in Asia. http://www.recaap.org/DesktopModu
les/Bring2mind/DMX/Download.aspx?Command=Core D
ownload&EntryId=421&PortalId=0&TabId=78.
ReCAAP. 2015b. Half yearly report - piracy and armed
robbery against ships in Asia. http://www.neptunemarit
imesecurity.com/imb-recaap-isc-release-2015-half-yearly-
reports-on-piracy-armed-robbery-at-sea/.
ReCAAP. 2015c. Incident update siphoning of fuel/oil from
Orkim Victory. http://www.recaap.org/Portals/0/docs/Lates
t%20IA/2015/Incident%20Update%20Orkim%20Victory
%20(4%20Jun%2015).pdf.
Tambe, M. 2011. Security and Game Theory: Algorithms,
Deployed Systems, Lessons Learned. Cambridge University
Press.
Vaněk, O.; Jakob, M.; Hrstka, O.; and Pěchouček, M. 2013.
Agent-based model of maritime traffic in piracy-affected wa-
ters. Transportation Research Part C: Emerging Technologies
36:157–176.
Xue, J. 2015. Singapore, Malaysia and Indonesia could
extend joint patrols in South China Sea. Channel News Asia.
Yin, Y.; An, B.; and Jain, M. 2014. Game-theoretic resource
allocation for protecting large public events. In Proceedings
of the 28th AAAI Conference on Artificial Intelligence (AAAI),
826–834.
Yin, Y., and An, B. 2016. Efficient resource allocation
for protecting coral reef ecosystems. In Proceedings of the
25th International Joint Conference on Artificial Intelligence
(IJCAI), 531–537.
Yin, Z.; Jiang, A. X.; Johnson, M. P.; Kiekintveld, C.; Leyton-
Brown, K.; Sandholm, T.; Tambe, M.; and Sullivan, J. P. 2012.
TRUSTS: Scheduling randomized patrols for fare inspection
in transit systems. In Proceedings of the Twenty-Eighth
Innovative Applications of Artificial Intelligence Conference
(IAAI), 2348–2355.
Zhang, C.; Bucarey, V.; Mukhopadhyay, A.; Sinha, A.; Qian,
Y.; Vorobeychik, Y.; and Tambe, M. 2016. Using abstrac-
tions to solve opportunistic crime security games at scale.
In Proceedings of the 2016 International Conference on Au-
tonomous Agents & Multiagent Systems (AAMAS), 196–204.
Zhang, Y.; An, B.; Tran-Thanh, L.; Wang, Z.; Gan, J.; and
Jennings, N. R. 2017. Optimal escape interdiction on trans-
portation networks. In Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI), 3936–
3944.

215

