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ABSTRACT
Privacy and transparency are two key foundations of trustworthy
machine learning. Model explanations offer insights into a model’s
decisions on input data, whereas privacy is primarily concerned
with protecting information about the training data. We analyze
connections between model explanations and the leakage of sen-
sitive information about the model’s training set. We investigate
the privacy risks of feature-based model explanations using mem-
bership inference attacks: quantifying how much model predictions
plus their explanations leak information about the presence of a
datapoint in the training set of a model. We extensively evaluate
membership inference attacks based on feature-based model expla-
nations, over a variety of datasets. We show that backpropagation-
based explanations can leak a significant amount of information
about individual training datapoints. This is because they reveal
statistical information about the decision boundaries of the model
about an input, which can reveal its membership. We also empir-
ically investigate the trade-off between privacy and explanation
quality, by studying the perturbation-based model explanations.
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1 INTRODUCTION
Black-box machine learning models are often used to make high-
stakes decisions in sensitive domains. However, their inherent com-
plexity makes it extremely difficult to understand the reasoning
underlying their predictions. This development has resulted in in-
creasing pressure from the general public and government agencies;
∗The work was done while the author was an assistant professor at NUS.
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several proposals advocate for deploying (automated) model expla-
nations [21]. In recent years, novel explanation frameworks have
been put forward; Google, Microsoft, and IBM now offer model
explanation toolkits as part of their ML suites.1

Model explanations offer users additional information about
how the model made a decision with respect to their data records.
Releasing additional information is, however, a risky prospect from
a privacy perspective. The explanations, as functions of the model
trained on a private dataset, might inadvertently leak information
about the training set, beyond what is necessary to provide useful
explanations. Despite this potential risk, there has been little effort
to analyze and address any data privacy concerns that might arise
due to the release of model explanations. This is where our work
comes in. We initiate this line of research by asking the following
question: can an adversary leverage model explanations to
infer private information about the training data?

The established approach to analyze information leakage in ma-
chine learning algorithms is to take the perspective of an adversary
and design an attack that recovers private information, thus illus-
trating the deficiencies of existing algorithms (e.g., [3, 29, 39, 54]).
In this work, we use adversarial analysis to study existing methods.
We focus on a fundamental adversarial analysis, called member-
ship inference [40]. In this setting, the adversary tries to determine
whether a datapoint is part of the training data of a machine learn-
ing algorithm. The success rate of the attack shows how much the
model would leak about its individual datapoints.

This approach is not specific to machine learning. [22] demon-
strated a successful membership inference attack on aggregated
genotype data provided by the US National Institutes of Health and
other organizations. This attack was successful despite the NIH
witholding public access to their aggregate genome databases [16].
With respect to machine learning systems, the UK’s information
commissioners office explicitly states membership inference as a
threat in its guidance on the AI auditing framework [33]. Beyond its
practical and legal aspects, this approach is used to measure model
information leakage [40]. Privacy-preserving algorithms need to
be designed to establish upper bounds on such leakage (notably
using differential privacy algorithms, e.g., [1])

Our Contributions. Our work is the first to extensively analyze
the data privacy risks that arise from releasing model explanations,
which can result in a trade-off between transparency and privacy.
This analysis is of great importance, given that model explanations
are required to provide transparency about model decisions, and pri-
vacy is required to protect sensitive information about the training
data. We provide a comprehensive analysis of information leak-
age on major feature-based model explanations. We analyze both

1See http://aix360.mybluemix.net/, https://aka.ms/AzureMLModelInterpretability and
https://cloud.google.com/explainable-ai.
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backpropagation-based model explanations, with an emphasis on
gradient-based methods [7, 24, 43, 47, 53] and perturbation-based
methods [36, 48]. We assume the adversary provides the input
query, and obtains the model prediction as well as the explanation
of its decision. We analyze if the adversary can trace whether the
query was part of the model’s training set.

For gradient-based explanations, we demonstrate how and to
what extent backpropagation-based explanations leak informa-
tion about the training data (Section 3). Our results indicate that
backpropagation-based explanations are a major source of infor-
mation leakage. We further study the effectiveness of member-
ship inference attacks based on additional backpropagation-based
explanations (including Integrated Gradients and LRP). These at-
tacks achieve comparable, albeit weaker, results than attacks using
gradient-based explanations.

We further investigatewhy this type of model explanation leaks
membership information (Section 4). Note that the model expla-
nation, in this case, is a vector where each element indicates the
influence of each input feature on the model’s decision. We demon-
strate that the variance of a backpropagation-based explanation (i.e,
the variance of the influence vector across different features) can
help identify the training set members. This link could be partly due
to how backpropagation-based training algorithms behave upon
convergence. The high variance of an explanation is an indicator for
a point being close to a decision boundary, which is more common
for datapoints outside the training set. During training the decision
boundary is pushed away from the training points.

This observation links the high variance of the explanation to an
uncertain prediction and so indirectly to a higher prediction loss.
Points close to the decision boundary have both an uncertain pre-
diction and a high variance in their explanation. This insight helps
to explain the leakage. High prediction and explanation variance is
a good proxy for a higher prediction loss of the model around an
input. This is a very helpful signal to the adversary, as membership
inference attacks based on the loss are highly accurate [39]: Points
with a very high loss tend to be far from the decision boundary and
are also more likely to be non-members.

Further, our experiments on synthetic data indicate that the rela-
tionship between the variance of an explanation and training data
membership is greatly affected by data dimensionality. For low di-
mensional data, membership is uncorrelated with explanation vari-
ance. These datasets are relatively dense. There is less variability for
the learned decision boundary and members and non-members are
equally likely to be close to it. Interestingly, not even the loss-based
attacks are effective in this setting. Increasing the dimensionality of
the dataset, and so decreasing its relative density, leads to a better
correlation between membership and explanation variance. Finally,
when the dimensionality reaches a certain point the correlation
decreases again. This decrease is inline with a decrease in training
accuracy for the high dimensional data. Here, the model fails to
learn.

To provide a better analysis of the trade-off between privacy
and transparency, we analyze perturbation-based explanations,
such as SmoothGrad [48]. We show that, as expected, these tech-
niques are more resistant to membership inference attacks (Sec-
tion 5). We, however, attribute this to the fact that they rely on

out-of-distribution samples to generate explanations. These out-
of-distribution samples, however, can have undesirable effects on
explanation fidelity [46]. So, these methods can achieve privacy at
the cost of the quality of model explanations.

Additional results in supplementary material. In the supplemen-
tary material, we study another type of model explanation: the
example-based method based on influence-functions proposed by
Koh and Liang [25]. This method provides influential training dat-
apoints as explanations for the decision on a particular point of
interest. This method presents a clear leakage of training data, and
is far more vulnerable to membership inference attacks; in par-
ticular, training points are frequently used to explain their own
predictions . Hence, for this method, we focus on a more ambitious
objective of reconstructing the entire training dataset via dataset
reconstruction attacks [18].

The challenge here is to recover as many training points as possi-
ble. Randomly querying the model does not recover many points. A
few peculiar training data records — especially mislabeled training
points at the border of multiple classes — have a strong influence
over most of the input space. Thus, after a few queries, the set
of reconstructed data points converges. We design an algorithm
that identifies and constructs regions of the input space where
previously recovered points will not be influential . This approach
avoids rediscovering already revealed instances and improves the
attack’s coverage. We prove a worst-case upper bound on the num-
ber of recoverable points and show that our algorithm is optimal in
the sense that for worst-case settings, it recovers all discoverable
datapoints.

Through empirical evaluation of example-based model explana-
tions on various datasets , we show that an attacker can recon-
struct (almost) the entire dataset for high dimensional data.
For datasets with low dimensionality, we develop another heuristic:
by adaptivley querying the previously recovered points, we recover
significant parts of the training set. Our success is due to the fact
that in the data we study, the graph structure induced by the influ-
ence function over the training set, tends to have a small number
of large strongly connected components, and the attacker is likely
to recover at least all points in one of them.

We also study the influence of dataset size on the success of
membership inference for example-based explanations. Finally, as
unusual points tend to have a larger influence on the training
process, we show that the data of minorities is at a high risk of
being revealed.

2 BACKGROUND AND PRELIMINARIES
We are given a labeled dataset X ⊆ R𝑛 , with 𝑛 features and 𝑘 labels.
The labeled dataset is used to train a model 𝑐 , which maps each
datapoint ®𝑥 in R𝑛 to a distribution over 𝑘 labels, indicating its belief
that any given label fits ®𝑥 . Black-box models often reveal the label
deemed likeliest to fit the datapoint. The model is defined by a set
of parameters 𝜃 taken from a parameter space Θ. We denote the
model as a function of its parameters as 𝑐𝜃 . A model is trained to
empirically minimize a loss function over the training data. The loss
function 𝐿 : X ×Θ → R takes as input the model parameters 𝜃 and
a point ®𝑥 , and outputs a real-valued loss 𝐿( ®𝑥, 𝜃 ) ∈ R. The objective
of a machine-learning algorithm is to identify an empirical loss
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minimizer over the parameter space Θ:

𝜃 ∈ argmin𝜃 ∈Θ
1
|X|

∑
®𝑥 ∈X

𝐿( ®𝑥, 𝜃 ) (1)

2.1 Model Explanations
As their name implies, model explanations explain model decisions
on a given point of interest (POI) ®𝑦 ∈ R𝑛 . An explanation 𝜙 takes as
input the dataset X, labels over X — given by either the true labels
ℓ : X → [𝑘] or by a trained model 𝑐 — and a point of interest ®𝑦 ∈
R𝑛 . Explanation methods sometimes assume access to additional
information, such as active access to model queries (e.g. [2, 15, 36]),
a prior over the data distribution [7], knowledge of the model class
(e.g. that the model is a neural network [6, 42, 53], or that we know
the source code [14, 37]). We assume that the explanation function
𝜙 (X, 𝑐, ®𝑦, ·) is feature-based (here the · operator stands for potential
additional inputs), and often refer to the explanation of the POI ®𝑦
as 𝜙 ( ®𝑦), omitting its other inputs when they are clear from context.

The 𝑖-th coordinate of a feature-based explanation, 𝜙𝑖 ( ®𝑦) is the
degree to which the 𝑖-th feature influences the label assigned to
®𝑦. Generally speaking, high values of 𝜙𝑖 ( ®𝑦) imply a greater degree
of effect; negative values imply an effect for other labels; a 𝜙𝑖 ( ®𝑦)
close to 0 normally implies that feature 𝑖 was largely irrelevant.
Ancona et al. [5] provide an overview of feature-based explanations
(also called attribution methods). Many feature-based explanation
techniques are implemented in the innvestigate library2 [4] which
we use in our experiments. Let us briefly review the explanations
we analyze in this work.

2.1.1 Backpropagation-Based Explanations. Backpropagation-based
methods rely on a small number of backpropagations through a
model to attribute influence from the prediction back to each feature.
The canonical example of this type of explanation is the gradient
with respect to the input features [44], we focus our analysis on
this explanation. Other backpropagation-based explanations have
been proposed [7, 24, 43, 47, 48, 53].

Gradients. Simonyan, Vedaldi, and Zisserman [44] introduce
gradient-based explanations to visualize image classification mod-
els, i.e. 𝜙𝑖 ( ®𝑦) = 𝜕𝑐

𝜕𝑥𝑖
( ®𝑦). The authors utilize the absolute value of

the gradient, i.e.
��� 𝜕𝑐𝜕𝑥𝑖 ( ®𝑦)���; however, outside image classification, it

is reasonable to consider negative values, as we do in this work. We
denote gradient-based explanations as 𝜙GRAD . Shrikumar, Green-
side, and Kundaje [43] propose setting 𝜙𝑖 ( ®𝑦) = 𝑦𝑖 × 𝜕𝑐

𝜕𝑥𝑖
( ®𝑦) as a

method to enhance numerical explanations. Note that since an ad-
versary would have access to ®𝑦, releasing its Hadamard product
with 𝜙GRAD ( ®𝑦) is equivalent to releasing 𝜙GRAD ( ®𝑦).

Integrated Gradients. Sundararajan, Taly, and Yan [53] argue that
instead of focusing on the gradient it is better to compute the aver-
age gradient on a linear path to a baseline ®𝑥BL (often ®𝑥BL = ®0). This
approach satisfies three desirable axioms: sensitivity, implementa-
tion invariance and a form of completeness. Sensitivity means that
given a point ®𝑥 ∈ X such that 𝑥𝑖 ≠ 𝑥BL,𝑖 and 𝑐 ( ®𝑥) ≠ 𝑐 ( ®𝑥BL), then
𝜙𝑖 ( ®𝑥) ≠ 0; completeness means that

∑𝑛
𝑖=1 𝜙𝑖 ( ®𝑥) = 𝑐 ( ®𝑥) − 𝑐 ( ®𝑥BL).

2https://github.com/albermax/innvestigate

Mathematically the explanation can be formulated as

𝜙INTG ( ®𝑥)𝑖 ≜ (𝑥𝑖 − ®𝑥BL,𝑖 ) ·
∫ 1

𝛼=0

𝜕𝑐 ( ®𝑥𝛼 )
𝜕®𝑥𝛼

𝑖

����
®𝑥𝛼=®𝑥+𝛼 ( ®𝑥−®𝑥BL)

.

Guided Backpropagation. Guided Backpropagation [50] is amethod
specifically designed for networks with ReLu activations. It is a
modified version of the gradient where during backpropagation
only paths are taken into account that have positive weights and
positive ReLu activations. Hence, it only considers positive evidence
for a specific prediction. While being designed for ReLu activations
it can also be used for networks with other activations.

Layer-wise Relevance Propagation (LRP). Klauschen et al. [24]
use backpropagation to map relevance back from the output layer
to the input features. LRP defines the relevance in the last layer
as the output itself and in each previous layer the relevance is
redistributed according to the weighted contribution of the neurons
in the previous layer to the neurons in the current layer. The final
attributions for the input ®𝑥 are defined as the attributions of the
input layer. We refer to this explanation as 𝜙LRP ( ®𝑥).
2.1.2 Perturbation-Based Explanations. Perturbation-based meth-
ods query the to-be-explained model on many perturbed inputs.
They either treat the model as a black-box [13, 36], need predictions
for counterfactuals [13], or ‘smooth’ the explanation [48]. They can
be seen as local linear approximations of a model.

SmoothGrad. We focus our analysis on SmoothGrad [48], which
generates multiple samples by adding Gaussian noise to the input
and releases the averaged gradient of these samples. Formally for
some 𝑘 ∈ N,

𝜙SMOOTH ( ®𝑥) = 1
𝑘

∑
𝑘

∇𝑐 ( ®𝑥 + N(0, 𝜎)),

where N is the normal distribution and 𝜎 is a hyperparameter.

LIME. The LIME (Local Interpretable Model-agnostic Explana-
tions) method [36] creates a local approximation of the model via
sampling. Formally it solves the following optimization problem:

𝜙LIME ( ®𝑥) = argmin𝑔∈𝐺 L(𝑔, 𝑐, 𝜋 ®𝑥 ) + Ω(𝑔),
where𝐺 is a set of simple functions, which are used as explanations,
Lmeasures the approximation quality by𝑔 of 𝑐 in the neighborhood
of ®𝑥 (measured by 𝜋 ®𝑥 ) and Ω regularizes the complexity of 𝑔. While
the LIME framework allows for an arbitrary local approximation in
practice most commonly used is a linear approximation with Ridge
regularization.

2.2 Membership Inference Attacks
We assume the attacker has gained possession of a set of datapoints
𝑆 ⊂ 𝑅𝑛 , and would like to know which ones are members of the
training data. The goal of a membership inference attack is to create
a function that accurately predicts whether a point ®𝑥 ∈ 𝑆 belongs
to the training set of 𝑐 . The attacker has a prior belief how many
of the points in 𝑆 were used for training. In this work we ensure
that half the members of 𝑆 are members of the training set (this
is known to the attacker), thus random guessing always has an
accuracy of 50%, and is the threshold to beat.
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Models tend to have lower loss on members of the training set.
Several works have exploited this fact to define simple loss-based
attacks [29, 39, 54]. The idea is to define a threshold 𝜏 : an input ®𝑥
with a loss 𝐿( ®𝑥, 𝜃 ) lower than 𝜏 is considered a member; an input
with a loss higher is considered a non-member.

MembershipLoss,𝜏 ( ®𝑥) =
{
True if 𝐿( ®𝑥, 𝜃 ) ≤ 𝜏

False otherwise

Sablayrolles et al. [39] show that this attack is optimal given an
optimal threshold 𝜏opt, under some assumptions. However, this
attack is infeasible when the attacker does not have access to the
true labels or the model’s loss function.

Hence, we propose to generalize threshold-based attacks to allow
different sources of information. For this we use the notion of
variance for a given vector ®𝑣 ∈ R𝑛 :

Var (®𝑣) ≜
𝑛∑
𝑖=1

(𝑣𝑖 − 𝜇®𝑣)2 where 𝜇®𝑣 =
1
𝑛

𝑛∑
𝑖=1

𝑣𝑖

Explicitly, we consider (i) a threshold on the prediction variance
and (ii) a threshold on the explanation variance. The target model
usually provides access to both these types of information. Note,
however, a target model might only release the predicted label and
an explanation, making only explanation-based attacks feasible.

Our explanation-based threshold attacks work in a similar man-
ner to other threshold-based attack models: ®𝑦 is considered a mem-
ber iff Var (𝜙 ( ®𝑦)) ≤ 𝜏 .

MembershipPred,𝜏 ( ®𝑥) =
{
True if Var (𝑐𝜃 ( ®𝑥)) ≥ 𝜏

False otherwise

MembershipExpl,𝜏 ( ®𝑥) =
{
True if Var (𝜙 ( ®𝑥)) ≤ 𝜏

False otherwise

Intuitively, if the model has a very low loss then its prediction
vector will be dominated by the true label. These vectors have
higher variance than vectors where the prediction is equally dis-
tributed among many labels (indicating model uncertainty). This
inference attack breaks in cases where the loss is very high because
the model is decisive but wrong. However, as we demonstrate be-
low, this approach offers a fairly accurate attack model for domains
where loss-based attacks are effective. Hence, attacks using predic-
tion variance alone still constitute a serious threat. The threshold
attack based on explanation variance are similarly motivated. When
the model is certain about a prediction, it is also unlikely to change
it due to a small local perturbation. Therefore, the influence and
attribution of each feature are low, leading to a smaller explanation
variance. For points closer to the decision boundary, changing a
feature affects the prediction more strongly, leading to higher ex-
planation variance. The loss minimization during training “pushes”
points away from the decision boundary. In particular, models us-
ing tanh, sigmoid, or softmax activation functions tend to have
steeper gradients in the areas where the output changes. Training
points generally don’t fall into these areas.3 The crucial part for all
3The high variance described here results from higher absolute values, in fact instead
of the variance an attacker could use the 1-norm. In our experiments, there was no
difference between using 1-norm and using variance; we decided to use variance to be
more consistent with the prediction based attacks.

threshold-based attacks is obtaining the threshold 𝜏 . We consider
two scenarios:
(1) Optimal threshold For a given set ofmembers and non-members

there is a threshold 𝜏opt that achieves the highest possible pre-
diction accuracy for the attacker. This threshold can easily be
obtained when datapoint membership is known. Hence, rather
than being an actually feasible attack, using 𝜏opt helps estimat-
ing the worst case privacy leakage.

(2) Reference/Shadow model(s) This setting assumes that the
attacker has access to some labeled data from the target distri-
bution. The attacker trains 𝑠 models on that data and calculates
the threshold for these reference (or shadow) models. In line
with Kerckhoffs’s principle [35] we assume that the attacker has
access to the training hyper parameters and model architecture.
This attack becomes increasingly resource intensive as 𝑠 grows.
For our experiments we choose 𝑠 ∈ {1, 3}. This is a practically
feasible attack if the attacker has access to similar data sources.

3 PRIVACY ANALYSIS OF
BACKPROPAGATION-BASED
EXPLANATIONS

In this section we describe and evaluate our membership inference
attack on gradient-based explanation methods. We use the Purchase
and Texas datasets in [32]; we also test CIFAR-10 and CIFAR-100
[39], the Adult dataset [17] as well as the Hospital dataset [51]. The
last two datasets are the only binary classification tasks considered.
Where possible, we use the same training parameters and target ar-
chitectures as the original papers (see Table 1 for an overview of the
datasets). We study four types of information the attacker could use:
loss, prediction variance, gradient variance and the SmoothGrad
variance.

Table 1: Overview of the target datasets for membership in-
ference

Name Points Features Type # Classes
Purchase 197,324 600 Binary 100
Texas 67,330 6,170 Binary 100
CIFAR-100 60,000 3,072 Image 100
CIFAR-10 60,000 3,072 Image 10
Hospital 101,766 127 Mixed 2
Adult 48,842 24 Mixed 2

Table 2: The average training and testing accuracies of the
target models.

Purchase Texas CIFAR CIFAR Hospital Adult
-100 -10

Train 1.00 0.98 0.97 0.93 0.64 0.85
Test 0.75 0.52 0.29 0.53 0.61 0.85
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3.1 General setup
For all datasets, we first create one big dataset by merging the
original training and test dataset, to have a large set of points for
sampling. Then, we randomly sample four smaller datasets that are
not overlapping. We use the smaller sets to train and test four target
models and conduct four attacks. In each instance, the other three
models can respectively be used as shadow models. We repeat this
process 25 times, producing a total of 100 attacks for each original
dataset. Each small dataset is split 50/50 into a training set and
testing set. Given the small dataset, the attacker has an a priori
belief that 50% of the points are members of the training set, which
is the common setting for this type of attack [41].

3.2 Target datasets and architectures
The overview of the datasets is provided in Table 1 and an overview
of the target models accuracies in Table 2.

3.2.1 Purchase dataset. The dataset originated from the “Acquire
Valued Shoppers Challenge” on Kaggle4. The goal of the challenge
was to use customer shopping history to predict shopper responses
to offers and discounts. For the original membership inference at-
tack, Shokri et al. [41] create a simplified and processed dataset,
which we use as well. Each of the 197,324 records corresponds to
a customer. The dataset has 600 binary features representing cus-
tomer shopping behavior. The prediction task is to assign customers
to one of 100 given groups (the labels). This learning task is rather
challenging, as it is a multi-class learning problem with a large
number of labels; moreover, due to the relatively high dimension
of the label space, allowing an attacker access to the prediction
vector — as is the case in [41] — represents significant access to
information. We sub-sampled smaller datasets of 20,000 points i.e.
10,000 training and testing points for each model. We use the same
architecture as [32], namely a four-layer fully connected neural net-
work with tanh activations. The layer sizes are [1024, 512, 256, 100].
We trained the model of 50 epochs using the Adagrad optimizer
with a learning rate of 0.01 and a learning rate decay of 1e-7.

3.2.2 Texas hospital stays. The Texas Department of State Health
Services released hospital discharge data public use files spanning
from 2006 to 2009.5 The data is about inpatient status at various
health facilities. There are four different groups of attributes in each
record: general information (e.g., hospital id, length of stay, gender,
age, race), the diagnosis, the procedures the patient underwent, and
the external causes of injury. The goal of the classification model is
to predict the patient’s primary procedures based on the remaining
attributes (excluding the secondary procedures). The dataset is
filtered to include only the 100 most common procedures. The
features are transformed to be binary resulting in 6,170 features and
67,330 records. We sub-sampled smaller datasets of 20,000 points
i.e. 10,000 training and testing points for each model. As the dataset
has only 67,330 points we allowed resampling of points. We use
the same architecture as [32], namely a five-layer fully connected
neural network with tanh activations. The layer sizes are [2048,
1024, 512, 256, 100]. We trained the model of 50 epochs using the

4https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
5https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm

Adagrad optimizer with a learning rate of 0.01 and a learning rate
decay of 1e-7.

3.2.3 CIFAR-10 and CIFAR-100. CIFAR-10 and CIFAR-100 are well-
known benchmark datasets for image classification [26]. They con-
sists of 10 (100) classes of 32 × 32 × 3 color images, with 6,000 (600)
images per class. The datasets are usually split in 50,000 training
and 10,000 test images. For CIFAR-10, we use a small convolutional
network with the same architecture as in [39, 41], it has two con-
volutional layers with max-pooling, and two dense layers, all with
Tanh activations. We train the model for 50 epochs with a learn-
ing rate of 0.001 and the Adam optimizer. Each dataset has 30,000
points (i.e. 15,000 for training). Hence, we only have enough points
to train one shadow model per target model. For CIFAR-100, we
use a version of Alexnet [27], it has five convolutional layers with
max-pooling, and to dense layers, all with ReLu activations. We
train the model for 100 epochs with a learning rate of 0.0001 and
the Adam optimizer. Each dataset has 60,000 points (i.e. 30,000 for
training). Hence, we don’t have enough points to train shadow
models. However, with a smaller training set, there would be too
few points of each class to allow for training.

3.2.4 UCI Adult (Census income). This dataset is extracted from
the 1994 US Census database [17]. It contains 48,842 datapoints. It
is based on 14 features (e.g., age, workclass, education). The goal
is to predict if the yearly income of a person is above 50,000 $. We
transform the categorical features into binary form resulting in 104
features. We sub-sampled smaller datasets of 5,000 points i.e. 2,500
training and testing points for each model. For the architecture, we
use a five-layer fully-connected neural network with Tanh activa-
tions. The layer sizes are [20, 20, 20, 20, 2]. We trained the model
of 20 epochs using the Adagrad optimizer with a learning rate of
0.001 and a learning rate decay of 1e-7.

3.2.5 Diabetic Hospital. The dataset contains data on diabetic pa-
tients from 130 US hospitals and integrated delivery networks [51].
We use the modified version described in [25] where each patient
has 127 features which are demographic (e.g. gender, race, age),
administrative (e.g., length of stay), and medical (e.g., test results);
the prediction task is readmission within 30 days (binary). The
dataset contains 101,766 records from which we sub-sample bal-
anced (equal numbers of patients from each class) datasets of size
10,000. Since the original dataset is heavily biased towards one
class, we don’t have enough points to train shadow models. As
architecture, we use a four-layer fully connected neural network
with Tanh activations. The layer sizes are [1024, 512, 256, 100]. We
trained the model for 1,000 epochs using the Adagrad optimizer
with a learning rate of 0.001 and a learning rate decay of 1e-6.

3.3 Evaluation of main experiment
Explanation-based attacks. As can be seen in Figure 1, gradient-

based attacks (as well as other backpropagation-based methods, as
further discussed in Section 3.5) on the Purchase and Texas datasets
were successful. This result is a clear proof of concept, that model
explanations are exploitable for membership inference. However,
the attackswere ineffective for the image datasets; gradient variance
fluctuates wildly between individual images, making it challenging
to infer membership based on explanation variance.

Paper Presentation AIES ’21, May 19–21, 2021, Virtual Event, USA

235

https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data
https://www.dshs.texas.gov/THCIC/Hospitals/Download.shtm


AIES ’21, May 19–21, 2021, Virtual Event, USA Shokri et al.

Pur
cha

se
Tex

as

CIFA
R-1

00
CIFA

R-1
0

Hos
pita

l
Adu

lt
0%

20%

40%

60%

80%

Random guess Attack types
Optimal Shadow p

A
tta

ck
ac
cu
ra
cy

𝐿(𝑐 ( ®𝑥); 𝑙 ( ®𝑥)) 𝐿(𝑐 ( ®𝑥); 𝑙 ( ®𝑥))
Var (𝑐 ( ®𝑥)) Var (𝑐 ( ®𝑥))
Var (∇𝑐 ( ®𝑥)) Var (∇𝑐 ( ®𝑥))

Figure 1: Results for the threshold-based attacks using different attack information sources. The Optimal attack uses the
optimal threshold; the Shadow trains a shadow model on data from the same distribution, and uses an optimal threshold for
the shadow model. Using three such models results in nearly optimal attack accuracy.

Loss-based and predictions-based attacks. When loss-based at-
tacks are successful, attacks using prediction variance are nearly
as successful. These results demonstrate that it is not essential
to assume that the attacker knows the true label of the point of
interest.

Types of datasets. The dataset type (and model architecture)
greatly influences attack success. For both binary datasets (Texas
and Purchase), all sources of information pose a threat. On the other
hand, for the very low dimensional Hospital and Adult datasets,
none of the attacks outperform random guessing. This lack of per-
formance may be because the target models do not overfit to the
training data (see Table 2), which generally limits its vulnerability
to adversarial attacks [54].

Optimal threshold vs. shadow models. Shadow model-based at-
tacks compare well to the optimal attack, with attacks based on
three shadow models performing nearly at an optimal level; this is
in line with results for loss-based attacks [39].

Considering the entire explanation vector. In the attacks above,
we used only the variance of the explanations. Intuitively, when the
model is certain about a prediction because it is for a training point,
it is unlikely to change the prediction with small local perturbation.
Hence, the influence (and attribution) of each feature is low. It has
a smaller explanation variance. For points closer to the decision
boundary, changing a feature affects the prediction more strongly.
The variance of the explanation for those points should be higher.
The loss minimization during training tries to “push” points away
from the decision boundary. Especially, models using tanh, sigmoid,
or softmax activations have steep gradients in the areas where
the output changes. Training points generally don’t fall into these
areas.6 Hence, explanation variance is a sufficient parameter for
deploying a successful attack. To further validate this claim, we
conduct an alternative attack using the entire explanation vector
as input.

The fundamental idea is to cast membership inference as a learn-
ing problem: the attacker trains an attack model that, given the
6The high variance described here results from higher absolute values. Instead of the
variance, an attacker could use the 1-norm. In our experiments, there was no difference
between using 1-norm and using the variance. We decided to use variance to be more
consistent with the attacks based on the prediction threshold.

output of a target model can predict whether or not the point ®𝑥
was used during the training phase of 𝑐 . The main drawback of this
approach is that it assumes that the attacker has partial knowledge
of the initial training set to train the attack model. Shokri et al. [41]
circumvent this by training shadow models (models that mimic the
behavior of 𝑐 on the data) and demonstrate that comparable results
are obtainable even when the attacker does not have access to parts
of the initial training set. As we compare the results to the optimal
threshold, it is appropriate to compare with a model that is trained
using parts of the actual dataset. This setting allows for a stronger
attack.

The specific attack architecture, we use in this section, is a neural
network inspired by the architecture of Shokri et al. [41]. The net-
work has fully connected layers of sizes [𝑟, 1024, 512, 64, 256, 64, 1],
where 𝑟 is the dimension of the respective explanation vector. We
use ReLu activations between layers and initialize weights in a
manner similar to Shokri et al. [41] to ensure a valid comparison
between the methods. We trained the attack model for 15 epochs
using the Adagrad optimizer with a learning rate 0.01 of and a
learning rate decay of 1e-7. As data for the attacker, we used 20,000
explanations generated by the target 10,000 each for members and
non-members. The training testing split for the attacker was 0.7 to
0.3. We repeated the experiment 10 times. We omitted CIFAR-100
for computational reasons.

As can be seen in Figure 2, attacks based on the entire explanation
perform slightly better than attacks based only on the variance.
However, they are qualitatively the same and still perform very
poorly for CIFAR-10, Adult, and Hospital.

3.4 Combining different information sources
The learning attacks described in the previous paragraph allow for
a combination of different information sources. For example, an
attacker can train an attack network using both the prediction and
the explanation as input. Experiments on combining the three infor-
mation sources (explanation, prediction, and loss) lead to outcomes
identical to the strongest used information source. Especially if
the loss is available to an attacker, we could not find evidence that
either the prediction vector or an explanation reveals additional
information.
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Figure 2: A comparison between attacks using only the vari-
ance of the gradient and attacks using the entire gradient
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Figure 3: Results for the threshold-based attacks using dif-
ferent backpropagation-based explanations as sources of in-
formation for the attacker.

3.5 Results for other backpropagation-based
explanations

Besides the gradient, several other explanation methods based on
backpropagation have been proposed. We conducted the attack
described in Section 2.2 replacing the gradient with some other
popular of these explanation methods. The techniques are all imple-
mented in the innvestigate library7 [4]. An in-depth discussion
of some of these measures, and the relations between them, can
also be found in [5]. As can be seen in Figure 3 on the Purchase,
Texas, and CIFAR-10 datasets, the results for other backpropagation
based methods are relatively similar to the attack based on the
gradient. Integrated gradients performing most similar to the gra-
dient. For Adult, Hospital and CIFAR-100 small-scale experiments
indicated that this type of attack would not be successful for these
explanations as well, we omitted the datasets from further analysis.

7https://github.com/albermax/innvestigate

4 ANALYSIS OF FACTORS OF INFORMATION
LEAKAGE

In this section, we provide further going analysis to validate our
hypothesis and broaden understanding.

4.1 The Influence of the Input Dimension
The experiments in Section 3 indicate that𝑉𝑎𝑟 (∇𝑐 ( ®𝑥)), and | |∇𝑐 ( ®𝑥) | |1
predict training set membership. In other words, high absolute gra-
dient values at a point ®𝑥 signal that ®𝑥 is not part of the training
data: the classifier is uncertain about the label of ®𝑥 , paving the way
towards a potential attack. Let us next study this phenomenon on
synthetic datasets, and the extent to which an adversary can ex-
ploit model gradient information in order to conduct membership
inference attacks. The use of artificially generated datasets offers us
control over the problem complexity, and helps identify important
facets of information leaks.

To generate datasets, we use the Sklearn python library.8 For 𝑛
features, the function creates an 𝑛-dimensional hypercube, picks
a vertex from the hypercube as center of each class, and samples
points normally distributed around the centers. In our experiments,
the number of classes is either 2 or 100 while the number of features
is between 1 to 10,000 in the following steps,

𝑛 ∈ {1, 2, 5, 10, 14, 20, 50, 100, 127, 200, 500, 600,
1000, 2000, 3072, 5000, 6000, 10000}.

For each experiment, we sample 20,000 points and split them evenly
into training and test set. We train a fully connected neural network
with two hidden layers with fifty nodes each, the tanh activation
function between the layers, and softmax as the final activation.
The network is trained using Adagrad with learning rate of 0.01
and learning rate decay of 1e − 7 for 100 epochs.

Increasing the number of features does not increase the complex-
ity of the learning problem as long as the number of classes is fixed.
However, the dimensionality of the hyper-plane increases, mak-
ing its description more complex. Furthermore, for a fixed sample
size, the dataset becomes increasingly sparse, potentially increasing
the number of points close to a decision boundary. Increasing the
number of classes increases the complexity of the learning problem.

Figure 4 shows the correlation between | |∇𝑐 ( ®𝑥) | |1 and training
membership. For datasets with a small number of features (≤ 102)
there is almost no correlation. This corresponds to the failure of
the attack for Adult and the Hospital dataset. When the number
of features is in the range (103 ∼ 104) there is a correlation, which
starts to decrease when the data dimension is further increased. The
number of classes seems to play only a minor role; however, a closer
look at training and test accuracy reveals that the actual behavior
is quite different. For two classes and a small number of features
training and testing accuracy are both high (almost 100%), around
𝑛 = 102 the testing accuracy starts to drop (the model overfits) and
at 𝑛 = 103 the training accuracy starts to drop as well reducing the
overfitting. For 100 classes the testing accuracy is always low and
only between 103 ≤ 𝑛 ≤ 104 the training accuracy is high, leading
to overfitting, just on a lower level. We also conduct experiments
with networks of smaller/larger capacity, which have qualitatively
8the make_classification function https://scikit-learn.org/stable/modules/
generated/sklearn.datasets.make_classification.html

Paper Presentation AIES ’21, May 19–21, 2021, Virtual Event, USA

237

https://github.com/albermax/innvestigate
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html


AIES ’21, May 19–21, 2021, Virtual Event, USA Shokri et al.

101 102 103 104

−0.4

−0.2

0

Ad
ul
t

H
os
pi
ta
l Pu
rc
ha
se

CI
FA

R
Te
xa
s

𝑘 = 100
𝑘 = 2

Number of features

Co
rr
le
at
io
n

Synthetic dataset

Figure 4: The correlation between | |∇𝑐 ( ®𝑥) | |1 and trainingmember-
ship for synthetic datasets for increasing number of features 𝑛 and
different number of classes 𝑘 ∈ {2, 100}

0 20 4050%

55%

60%

65%

CIFAR-10

Purchase

Texas

Number of epochs

A
tta

ck
ac
cu
ra
cy

Figure 5: The attack accuracy of the attacker increases with
increasing number of epochs.

similar behavior. However, the interval of 𝑛 in which correlation
exists and the amount of correlation varies .

4.2 Using individual thresholds
Sablayrolles et al. [39] proposed an attack where the attacker ob-
tains a specific threshold for each point (instead of one per model).
However, to be able to obtain such a threshold, the attacker would
need to train shadow models including the point of interest. This
situation would require knowledge of the true label of the point.
This conflicts with the assumption that when using explanations
(or predictions) for the attack the attacker does not have access
to these true labels. Furthermore, Sablayrolles et al. [39] results
suggest that this attack only very mildly improves performance.

4.3 Influence of overfitting
Yeom et al. [54] show that overfitting significantly influences the
accuracy of membership inference attacks. To test the effect of overfit-
ting, we vary the number of iterations of training achieving different
accuracies. In line with previous findings for loss-based attacks, our
threshold-based attacks using explanations and predictions work
better on overfitted models; see Figure 5.
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Figure 6: Attacks using LIMEor SmoothGrad do not outper-
form random guessing in any of our experiments.

5 PRIVACY ANALYSIS OF
PERTURBATION-BASED EXPLANATIONS

Neither the threshold-based attacks described in Section 2.2 nor the
learning-based attacks in Section 3.3 outperform random guessing
when given access to the SmoothGrad [48]. Given that Smooth-
Grad is using sampling rather than a few backpropagations, it is
inherently different from the other explanations we considered so
far. We discuss the differences in this section.

5.1 Attacks using LIME explanation
As a second perturbation-based method, we looked at the popular
explanation method LIME [45]. The type of attack is the same as
described in Section 2.2. We use an optimal threshold based on the
variance of the explanation. However, the calculation of LIME ex-
planations takes considerably longer than the computation of other
methods we considered. Every single instance computes for a few
seconds. Running experiments with 10,000 or more explanations
would take weeks to months. To save time and energy, we restricted
the analysis of the information-leakage of LIME to smaller-scale
experiments where the models train on 1,000 points, and the attacks
run on 2,000 points each (1,000 members and 1,000 non-members).
We also repeated each experiment only 20 times instead of 100
as for the others. Furthermore, given that the experiments for the
other explanations indicated that only for Purchase and Texas the
attack was likely to be successful, we restricted our experiments to
these two datasets. Figure 6 shows the results for these attacks. To
ensure that it is not the different setting that determines the out-
come, we also rerun the attacks for the gradient and SmoothGrad
explanations, as well as the attack using the prediction variance
in this new setting. Neither LIME nor SmoothGrad outperforms
random guessing. For the Purchase dataset, however, the attack
using the gradient variance fails as well. As a final interesting ob-
servation, which we are unable to explain at the moment: For the
Texas dataset, the gradient-based attack performs better than on
the larger dataset (shown in Figure 1) it even outperforms the attack
based on the prediction in this specific setting. Something we want
to explore further in future works.
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5.2 Analysis
While it is entirely possible that perturbation-basedmethods are vul-
nerable to membership inference, we conjecture that this is not the
case. This conjecture is due to an interesting connection between
perturbation-based model explanations and the data-manifold hy-
pothesis [19]. The data-manifold hypothesis states that “data tend
to lie near a low dimensional manifold” [19, p. 984]. Many works
support this hypothesis [9, 10, 31], and use it to explain the perva-
siveness of adversarial examples [20]. To the best of our knowledge,
little is known on how models generally perform outside of the
data manifold. In fact, it is not even clear how one would measure
performance of a model on points outside of the training data dis-
tribution: they do not have any natural labels. Research on creating
more robust models aims at decreasing model sensitivity to small
perturbations, including those yielding points outside of the mani-
fold. However, robustness results in vulnerability to membership
inference [49]. Perturbation-based explanation methods have been
criticized for not following the distribution of the training data and
violating the manifold hypothesis [28, 52]. Slack et al. [46] demon-
strate how a malicious actor can differentiate normal queries to
a model from queries generated by LIME and QII, and so make a
biased model appear fair during an audit. Indeed, the resilience of
perturbation-based explanations to membership inference attacks
may very well stem from the fact that query points that the model
is not trained over, and for which model behavior is completely
unspecified. One can argue that the fact that these explanations do
not convey membership information is a major flaw of this type
of explanations. Given that the results in the previous section indi-
cate that for many training points the model heavily overfits — to
the extent that it effectively “memorizes” labels — an explanation
should reflect that.

6 BROADER IMPACT
AI governance frameworks call for transparency and privacy for
machine learning systems.9 Our work investigates the potential
negative impact of explaining machine learning models, in particu-
lar, it shows that offering model explanations may come at the cost
of user privacy. The demand for automated model explanations led
to the emergence of model explanation suites and startups. How-
ever, none of the currently offered model explanation technologies
offer any provable privacy guarantees. This work has, to an extent,
arisen from discussion with colleagues in industry and AI gover-
nance; both expressed a great deal of interest in the potential impact
of our work on the ongoing debate over model explainability and
its potential effects on user privacy.

One of the more immediate risks is that a real-world malicious
entity uses our work as the stepping stone towards an attack on
a deployed ML system. While our work is still preliminary, this is
certainly a potential risk. Granted, our work is still at the proof-
of-concept level, and several practical hurdles must be overcome
in order to make it into a fully-fledged deployed model, but nev-
ertheless the risk exists. In addition, to the best of our knowledge,
model explanation toolkits have not been applied commercially

9See, for example, the white paper by the European Commission on Artificial Intelli-
gence – A European approach to excellence and trust: https://ec.europa.eu/info/sites/
info/files/commission-white-paper-artificial-intelligence-feb2020_en.pdf

on high-stakes data. Once such explanation systems are deployed
on high-stakes data (e.g., for explaining patient health records or
financial transactions), a formal exploration of their privacy risks
(as is offered in this work) is necessary.

Another potential impact — which is, in the authors’ opinion,
more important — is that our work raises the question whether
there is an inevitable conflict between explaining ML models — the
celebrated “right to explanation” — and preserving user privacy.
This tradeoff needs to be communicated beyond the ML research
community, to legal scholars and policymakers. Furthermore, some
results on example-based explanations suggest that the explain-
ability/privacy conflict might disparately impact minority groups:
their data is either likelier to be revealed, else they will receive
low quality explanations. We do not wish to make a moral stand in
this work: explainability, privacy and fairness are all noble goals
that we should aspire to achieve. Ultimately, it is our responsibil-
ity to explain the capabilities — and limitations — of technologies
for maintaining a fair and transparent AI ecosystem to those who
design policies that govern them, and to various stakeholders. In-
deed, this research paper is part of a greater research agenda on
transparency and privacy in AI, and the authors have initiated
several discussions with researchers working on AI governance.
The tradeoff between privacy and explainability is not new to the
legal landscape [8]; we are in fact optimistic about finding model
explanation methods that do not violate user privacy, though this
will likely come at a cost to explanation quality.

Finally, we hope that this work sheds further light on what con-
stitutes a good model explanation. The recent wave of research
on model explanations has been recently criticized for lacking a
focus on actual usability [23], and for being far from what humans
would consider helpful. It is challenging to mathematically capture
human perceptions of explanation quality. However, our privacy
perspective does shed some light on when explanations are not use-
ful: explanations that offer no information on the model are likely
to be less human usable (note that from our privacy perspective, we
do not want private user information to be revealed, but revealing
some model information is acceptable).

7 RELATEDWORK AND CONCLUSIONS
Milli et al. [30] show that gradient-based explanations can be used
to reconstruct the underlying model; in recent work, a similar
reconstruction is demonstrated based on counterfactual explana-
tions [3] this serves as additional evidence of the vulnerability of
transparency reports. However, copying the behavior of a model is
different from the inference of its training data. While the former
is unavoidable, as long the model is accessible, the latter is more
likely an undesired side effect of current methods. There exists
some work on the defense against privacy leakage in advanced
machine learning models. Abadi et al. [1] and Papernot et al. [34]
have designed frameworks for differentially private training of deep
learning models, and Nasr, Shokri, and Houmansadr [32] proposes
adversarial regularization. However, training accurate and privacy-
preserving models is still a challenging research problem. Besides,
the effect of these techniques (notably the randomness they induce)
on model transparency is unknown. Finally, designing safe trans-
parency reports is an important research direction: one needs to
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release explanations that are both safe and formally useful. For
example, releasing no explanation (or random noise) is guaranteed
to be safe, but is not useful; example-based methods are useful but
cannot be considered safe. Quantifying the quality/privacy trade-off
in model explanations will help us understand the capacity to which
one can explain model decisions while maintaining data integrity.
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