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Abstract

Results from voting theory are increasingly used when dealing with collective de-
cision making in computational multiagent systems. An important and surprising
phenomenon in voting theory is the No-Show Paradox (NSP), which occurs if a voter
is better off by abstaining from an election. While it is known that certain voting
rules suffer from this paradox in principle, the extent to which it is of practical con-
cern is not well understood. We aim at filling this gap by analyzing the likelihood
of the NSP for three Condorcet extensions (Black’s rule, MaxiMin, and Tideman’s
rule) under various preference models using Ehrhart theory as well as extensive com-
puter simulations. We find that, for few alternatives, the probability of the NSP is
negligible (less than 1% for four alternatives and all considered preference models,
except for Black’s rule). As the number of alternatives increases, the NSP becomes
much more likely and which rule is most susceptible to abstention strongly depends
on the underlying distribution of preferences.

1 Introduction

Results from voting theory are increasingly used when dealing with collective decision mak-
ing in computational multiagent systems [see, e.g. Rothe, 2015, Brandt et al., 2016a, Endriss,
2017]. A large part of the voting literature studies paradoxes in which seemingly mild prop-
erties are violated by common voting rules. Moreover, there are a number of sweeping
impossibilities, which entail that there exists no optimal voting rule that avoids all para-
doxes. It is therefore important to evaluate and compare how severe these paradoxes are
in real-world settings. In this paper, we employ sophisticated analytical and experimental
methods to assess the frequency of the No-Show Paradox (NSP), which occurs if a voter is
better off by abstaining from an election [Fishburn and Brams, 1983]. The question we ad-
dress goes back to Fishburn and Brams, who write that “although probabilities of paradoxes
have been estimated in other settings, we know of no attempts to assess the likelihoods of the
paradoxes of preferential voting discussed above, and would propose this as an interesting
possibility for investigation. Is it indeed true that serious flaws in preferential voting such
as the No-Show Paradox [. . . ] are sufficiently rare as to cause no practical concern?” It is
well-known that all Condorcet extensions, a large class of attractive voting rules, suffer from
the NSP and this is often used as an argument against Condorcet extensions [Moulin, 1988].
Our analysis covers three Condorcet extensions: Black’s rule, MaxiMin, and Tideman’s rule.

In principle, quantitative results on voting paradoxes can be obtained via three different
approaches. The analytical approach uses theoretical models to quantify paradoxes based
on certain assumptions about the voters’ preferences such as the impartial anonymous cul-
ture (IAC) model, in which every preference profile is equally likely. Analytical results
usually tend to be quite hard to obtain and are limited to simple—and often unrealistic—
assumptions. The experimental approach uses computer simulations based on underlying
stochastic models of how the preference profiles are distributed. Experimental results have
less general validity than analytical results, but can be obtained for arbitrary distributions
of preferences. Finally, the empirical approach is based on evaluating real-world data to an-



alyze how frequently paradoxes actually occur or how frequently they would have occurred
if certain voting rules had been used for the given preferences. Unfortunately, only very
limited real-world data for elections is available.

We analytically study the NSP under the assumption of IAC via Ehrhart theory, which
goes back to the French mathematician Eugène Ehrhart [Ehrhart, 1962]. The idea of Ehrhart
theory is to model the space of all preference profiles as a discrete simplex and then count the
number of integer points inside of the polytope defined by the paradox in question. The num-
ber of these integer points can be described by so-called quasi- or Ehrhart-polynomials, which
can be computed with the help of computers. The computation of the quasi-polynomials
that arise in our context is computationally very demanding, because the dimension of the
polytopes grows super-exponentially in the number of alternatives and was only made pos-
sible by recent advances of the computer algebra system Normaliz [Bruns et al.]. We
complement these results by extremely elaborate simulations using four common preference
models in addition to IAC (IC, urn, spatial, and Mallows). In contrast to existing results,
our analysis goes well beyond three alternatives.

2 Related Work

The NSP was first observed by Fishburn and Brams [1983] for a voting rule called single-
transferrable vote (STV). Moulin [1988] later proved that all Condorcet extensions are prone
to the NSP; the corresponding bound on the number of voters was recently tightened
by Brandt et al. [2017]. Similar results were obtained for weak preferences and stronger
versions of the paradox [Pérez, 2001, Duddy, 2014]. The NSP was also transferred to other
settings including set-valued voting rules [see, e.g., Pérez et al., 2010, Brandl et al., 2015a],
probabilistic voting rules [see, e.g., Brandl et al., 2015b, 2018] and random assignment rules
[Brandl et al., 2017].1

The frequency of the NSP was first studied by Ray [1986], who, in line with Fishburn
and Brams’s classic paper, analyzed situations where STV can be manipulated in elections
with three alternatives. A similar goal was pursued by Lepelley and Merlin [2000] who
quantified occurrences of the NSP assuming preferences are distributed according to IC or
IAC. However, in contrast to the present paper, Lepelley and Merlin employed different
statistical techniques to estimate the likelihood of multiple variants of the paradox and
focused on score-based runoff rules in elections with three alternatives.

The general idea to quantify voting paradoxes via IAC has been around since the formal
introduction of this preference model by Gehrlein and Fishburn [1976]. Still, it took a good
30 years until the connection to Ehrhart theory [Ehrhart, 1962] was established by Lepelley
et al. [2008]. We refer to Gehrlein and Lepelley [2011] for a more profound explanation of
all details and an overview of results subsequently achieved. The step from three to four
alternatives, i.e., from six to 24 dimensions, was only made possible through recent advances
in computer algebra systems by De Loera et al. [2012] and Bruns and Söger [2015]. Brandt
et al. [2016b] used a framework similar to ours to study the frequency of two single-profile
paradoxes (the Condorcet Loser Paradox and the Agenda Contraction Paradox).

Plassmann and Tideman [2014] conducted computer simulations for various voting rules
and paradoxes under a modified spatial model in the three-alternative case. To the best
of our knowledge, this is—apart from Brandt et al. [2016b]—the only study of Condorcet
extensions from a quantitative angle.

1Interestingly, when considering set-valued or probabilistic voting rules, there are Condorcet extensions
immune to the NSP under suitable assumptions [Brandl et al., 2015a, 2018].



3 Preliminaries

Let A be a set of m alternatives and N = {1, . . . , n} a set of voters. We assume that every
agent i ∈ N is endowed with a preference relation �i over the alternatives A. More formally,
�i is a complete, asymmetric and transitive binary relation, �i ∈ A×A, which gives a strict
ranking over the alternatives. If x �i y, we say that i prefers x to y.

A preference profile � is a tuple consisting of one preference relation per voter, i.e.,
� = (�1, . . . ,�n). By �−i we denote the preference profile resulting of voter i abstaining
the election, �−i = (�1, . . . ,�i−1,�i+1, . . . ,�n).

For two alternatives x, y ∈ A and a preference profile � we define the majority mar-
gin gxy(�) as

gxy(�) = |{i ∈ N : x �i y}| − |{i ∈ N : y �i x}|.

Whenever � is clear from the context we only write gxy. A voting rule is a function f
mapping a preference profile � to a single alternative, f(�) ∈ A.

Condorcet Extensions. Alternative x ∈ A is a Condorcet winner if it beats all other
alternatives in pairwise majority comparisons, i.e., gxy > 0 for all y ∈ A \ {x}. If a voting
rule always selects the Condorcet winner whenever one exists, it is called a Condorcet ex-
tension. A wide variety of Condorcet extensions has been studied in the literature [see, e.g.,
Fishburn, 1977, Brandt et al., 2016a]. In this paper, we consider three Condorcet extensions:
Black’s rule, MaxiMin, and Tideman’s rule. The main criteria for selecting these rules were
decisiveness (i.e., in order to minimize the influence of lexicographic tie-breaking), simplicity
(to allow for Ehrhart analysis and because voters generally prefer simpler rules), and effi-
cient computability (to enable rigorous and comprehensive simulations).2 In the following,
we briefly define the three rules.

Black’s rule selects the Condorcet winner whenever one exists and otherwise returns a
winner according to Borda’s rule (Borda’s rule itself is no Condorcet extension).

fBlack(�) ∈

{
x if x is a Condorcet winner in �
arg maxx∈A

∑
y∈A\{x} gxy otherwise.

The MaxiMin rule returns an alternative for which the worst pairwise majority comparison
is maximal. Formally,

fMaxiMin(�) ∈ arg maxx∈A miny∈A\{x} gxy.

Tideman’s rule returns an alternative for which the sum of weighted pairwise majority
defeats is minimal, i.e.,

fTideman(�) ∈ arg maxx∈A
∑

y∈A\{x}min(0, gxy).3

In order to obtain well-defined voting rules we employ lexicographic tie-breaking for all
rules defined above. All presented voting rules can be computed in polynomial time and
do not rely on the exact preference profile � but only on the majority margins that can
conveniently be represented by a skew-symmetric matrix or a weighted directed graph.

2Note that other decisive Condorcet extensions such as Kemeny’s rule, Dodgson’s rule, and Young’s rule
are NP-hard to compute [see, e.g., Brandt et al., 2016a].

3Tideman’s rule is arguably the least well-known voting rule presented here. It was proposed by Tideman
[1987] to efficiently approximate Dodgson’s rule and is not to be confused with ranked pairs which is
sometimes also called Tideman’s rule. Also note that the ‘dual’ rule returning alternatives for which the
sum of weighted pairwise majority wins is maximal is not a Condorcet extension.



For the sake of illustration consider an example with N = {1, . . . , 7} and A = {a, b, c, d}.
� shall be such that

a �1 c �1 d �1 b, b �4 c �4 d �4 a, d �7 b �7 a �7 c

and �1 = �2 = �3, �4 = �5 = �6. The matrix of pairwise majority margins then evaluates
to

(gxy)x,y∈A =

a b c d


a 0 −1 1 −1
b 1 0 1 −1
c −1 −1 0 5
d 1 1 −5 0

.

In the absence of a Condorcet winner, and due to lexicographic tie-breaking, we have
fBlack(�) = c, fMaxiMin(�) = a, and fTideman(�) = b.

Strategic Abstention. A voting rule f is manipulable by strategic abstention if there
exist some N , A, and � such that for some i ∈ N , f(�−i) �i f(�). Given an occurrence of
manipulability by strategic abstention, f is said to suffer from the No-Show Paradox (NSP)
(for N , A, �). Slightly abusing notation, we also say that � is prone to the NSP when-
ever f , N , and A are clear from the context. Black’s rule, Maximin, and Tideman’s rule,
are Condorcet extensions and therefore manipulable by strategic abstention. The smallest
examples for this require three, four, and four alternatives, respectively.

Stochastic Preference Models. When analyzing properties of voting rules, it is a com-
mon approach to sample preferences according to some underlying model. Various concepts
to model preferences have been introduced over the years; we refer to, e.g., Critchlow et al.
[1991] and Marden [1995] for a detailed discussion. We focus on three parameter-free models,
impartial culture (IC) where each voter’s preferences are drawn uniformly at random, im-
partial anonymous culture (IAC) where anonymous preference profiles are drawn uniformly
at random, and the two-dimensional spatial model where we sample points uniformly in
the unit square and their proximity determines the voters’ preferences. Furthermore, we
consider the urn model with parameter 10 and Mallows’ model with φ = 0.8.

The preference models we consider (such as IC, IAC, and the Mallows model) have
also found widespread acceptance for the experimental analysis of voting rules within the
multiagent systems and AI community [see, e.g., Aziz et al., 2013, Brandt and Seedig, 2014,
Goldsmith et al., 2014, Oren et al., 2015, Brandt et al., 2016b].

4 Quantifying the No-Show Paradox

The goal in this paper is to quantify the frequency of the NSP, i.e., to investigate for
how many preference profiles a voter is incentivized to abstain from an election. In order
to achieve this goal, we employ an exact analysis via Ehrhart Theory and experimental
analysis via sampled preference profiles.

4.1 Exact Analysis via Ehrhart Theory

The imminent strength of exact analysis is that it gives reliable theoretical results. On the
downside, precise computation is only feasible for very simple preference models and even
then only for small values of m. We focus on IAC and make use of Ehrhart theory.



First, note that an anonymous preference profile is completely specified by the number of
voters sharing each of the m! possible rankings on m alternatives. Hence, we can uniquely
represent an anonymous profile by an integer point x in a space of m! dimensions. We
interpret xi as the number of voters of type �i, i.e., sharing preference ranking �i. For
fixed m, our goal is to describe all profiles that are prone to the NSP by using linear
(in)equalities, i.e., as a polytope Pn.4 Given that this is possible, the fraction of profiles
prone to the NSP can be computed by dividing the number of integer points contained in
Pn by the total number of profiles for n voters, i.e., the number of integer points x satisfying
xi ≥ 0 for all 1 ≤ i ≤ m! and

∑
1≤i≤m! xi = n.

While the latter number is known to be
(
m!+n+1
m!−1

)
, the former can be determined us-

ing Ehrhart theory. Ehrhart [1962] shows that it can be found by so-called Ehrhart- or
quasi-polynomials f—a collection of q polynomials fi of degree d such that f(n) = fi(n) if
n ≡ i mod q. Obtaining f is possible via computer programs like LattE [De Loera et al.,
2004] or Normaliz [Bruns et al.]. Brandt et al. [2016b] give a more detailed description of
the general methodology.

In order to illustrate this method, consider MaxiMin in elections with four alternatives
under IAC. For the modeling we need to give linear constraints in terms of voter types—or
equivalently majority margins—that describe polytopes containing all profiles prone to the
NSP.

Recall the definition of MaxiMin from Section 3 and assume fMaxiMin = x. For the
NSP to occur, two intrinsic conditions have to be fulfilled: (i) There is a voter i such that
fMaxiMin(�−i) = y 6= x and (ii) for voter i, we have y �i x. We find that for A = {a, b, c, d},
conditions (i) and (ii) entail that manipulation from a to b is only possible for �i: c, b, a, d
and �j : d, b, a, c. It can be shown that no instance exists in which both voter types can
influence the outcome in their favor. For the sake of this example, let us focus on �i.

A first analysis shows that a’s highest defeat has to be against d while b’s highest defeat
necessarily is against c with gad = gbc,

5 and any other defeat of b lower by at least two.
This gives rise to a first set of essential constraints.6

gad = gbc, gad ≤ 0,

gab ≥ gad, gba ≥ gad + 2 (basis)

xi ≥ 1

At this point, we distinguish between gcd = 0, gcd ≤ −1, and gcd ≥ 1. In case gcd = 0,
we trivially only need bounds on the defeats of c against a and d against b:

gcd = 0, gca ≤ gad, gdb ≤ gad (A)

If gcd ≤ −1, c’s highest defeat could be against a, d, or both. We consequently need a case
distinction to accommodate for these possibilities.

gcd ≤ −1, gdb ≤ gab (B)

gcd ≤ gad, gca ≤ gad (B.1)

gcd ≤ gad, gca ≥ gad + 1, gac ≥ gad (B.2)

gcd ≥ gad + 1, gca ≤ gad (B.3)

For gcd ≥ 1 and an almost symmetric reasoning with reversed arguments for c and d we
obtain (C), (C.1), (C.2), and (C.3).

4More precisely, Pn is a dilated polytope depending on n, Pn = nP = {n~x : ~x ∈ P}.
5Theoretically, we only require gad − 1 ≤ gbc ≤ gad. As either all gxy are even or all gxy are odd, this

collapses to gad = gbc.
6Some inequalities are omitted to remove redundancies when taken together with later constraints.



Finally, the total set of profiles admitting a manipulation from a to b by i can be described
by seven polytopes making use of the constraints developed above. We obtain

• P1 = (basis) + (A),

• P2 = (basis) + (B) + (B.1), P3 = (basis) + (B) + (B.2), P4 = (basis) + (B) + (B.3),

• P5 = (basis)+(C)+(C.1), P6 = (basis)+(C)+(C.2), and P7 = (basis)+(C)+(C.3).7

Since we also need to consider �j and all other combinations of alternatives we undergo
a similar reasoning 24 times which amounts to a total of 168 disjoint polytopes. Note that
for the lexicographic tie-breaking and different types of manipulators, there are no exact
symmetries that could be exploited to reduce this number.

This approach is substantially more involved than using Ehrhart theory for other para-
doxes, e.g., the Condorcet Loser Paradox [Brandt et al., 2016b], because of three reasons.

(i) An occurrence of the NSP requires the presence of a certain type of voter.

(ii) Preference profiles for which different types of voters are able to manipulate must be
counted only once.8

(iii) Possible manipulations not only rely on the winning alternative itself but on all ma-
jority margins that have to adhere to different constraints.

4.2 Experimental Analysis

In contrast to exact analysis, the experimental approach relies on simulations to grasp the
development of different phenomena under varying conditions. On the upside, this usually
allows for results for more complex problems or a larger scale of parameters, both of which
might be prohibitive for exact calculations. At the same time we however face the problem
that we need a huge number of simulations per setting to get sound estimates which in turn
often requires a high-performance computer and a lot of time. Also, there remains the risk
that even a vast amount of simulations fails to capture one specific, possibly crucial, effect.

Regarding the pivotal question of our paper, the frequency of the NSP for various voting
rules, we sample preference profiles for different combinations of n and m using the modeling
assumptions explained in Section 3 and then we test for each profile whether eliminating
one voter would lead to the paradox.

5 Results and Discussion

In this section we present our results obtained by both exact analysis and computer simu-
lations.

5.1 Results under IAC

We first focus on MaxiMin with four alternatives, as our modeling in Section 4.1 allows for
an exact analysis of the NSP. The fraction of profiles prone to the NSP is depicted in Figure
1 together with an experimental analysis of the same question. There are four interesting
observations to be made.

7We choose this informal notation for the sake of readability. It is to be understood in a way that P1

is the polytope described by (in)equalities labelled (basis) as well as (A). We additionally assume for all
polytopes that the sum of voters per type adds up to n and each type consists of a nonnegative amount of
voters.

8As a matter of fact, this cannot occur for MaxiMin. It is, however, relevant for, e.g., Black’s rule.
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Figure 1: Profiles prone to the NSP for MaxiMin and m = 4

First, we note that the results obtained by simulation almost perfectly match the exact
calculations which can be seen as strong evidence for the correctness of both. It additionally
stands to reason that this accordance with the exact numbers also holds for larger m or even
different rules, which is most useful for cases where determining the corresponding Ehrhart
polynomials or even the modeling via polytopes is infeasible.

We see that the maximum is attained at 14 voters with 0.55% of all profiles suffering
from the NSP. Hence, we can argue that for elections with four alternatives, the NSP hardly
causes a problem, independently of the number of voters.

Furthermore, we note that the probability for the NSP to occur converges to zero as
n goes to ∞; a behavior that holds true for all voting rules considered and all fixed m.
Intuitively, this is to be expected as for larger electorates, a single voter’s power to sway the
result diminishes. This first idea can be confirmed by considering the respective modeling
via polytopes. Each modeling will contain at least one equality constraint, e.g. in (basis)
of fMaxiMin in Section 4.1. Consequently, the polytopes describing profiles for which a
manipulation is possible are of dimension at most m! − 1 meaning the number of those
profiles can be described by a polynomial of n of degree at most m! − 1 [see also Ehrhart,
1962]. The total number of profiles, on the other hand, can equivalently be determined via
a polynomial of degree m! giving that the fraction of profiles prone to the NSP is upper-
bounded by O(1/n). Following the intuitive argument, similar behavior is to be expected for
all reasonable preference models.

Finally, note that the computed numbers result from Ehrhart polynomials with period
q = 55 440, i.e., no two values in Figure 1 are computed via the same polynomial. It is thus
even more remarkable that they form such a regular curve.

For m = 4, determining the Ehrhart polynomials for both Black’s as well as Tideman’s
rule proved to be infeasible, even when using a custom-tailored version of Normaliz and
employing a high-performance cluster.9 For all rules, m ≥ 5 appears to be out of scope for
years to come.

We therefore rely on simulations to grasp how often the NSP can occur for different

9For Black’s rule we find that the polynomial would be of period q ≈ 2.7 · 107 corresponding to a mid
two-digit GB file size.
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Figure 2: Profiles prone to the NSP for MaxiMin

combinations of n and m up to 50 voters and 30 alternatives. Our results can be found in
Figures 2 to 4. The following observations can be made.

To begin with, the relatively low fraction of profiles prone to the NSP for MaxiMin
and m = 4 increases dramatically as m grows. This leads to the fact that for only 20
alternatives a rough fifth of all profiles admit a manipulation by abstention for a medium
count of voters—a number too large to discard the NSP as merely a theoretical problem.
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Figure 3: Profiles prone to the NSP for Black’s rule

Especially when considering Black’s and Tideman’s rule we see that the parity of n
crucially influences the results. However, the parity of n affects the fractions in opposite
directions: higher fractions occur for Black’s rule when n is even, in contrast to Tideman’s
rule where this happens when n is odd. For Black’s rule, this is most probably due to the
fact that there are more suitable profiles close to having a Condorcet winner (gxy = 0)
than profiles close to not having one (gxy = 1).10 For Tideman’s rule we currently lack a
convincing explanation for the observed behavior, mostly because it is hard to intuitively
grasp when exactly a preference profile is manipulable. Regarding MaxiMin, the parity of n

10For Black’s rule, manipulation is only possible either towards or away from a Condorcet winner since
Borda’s rule is immune to strategic abstention.



seems to have little effect on the numbers. More detailed analysis shows that this appearance
is deceptive; when manipulating towards a lexicographically preferred alternative fractions
are higher for even n while the contrary holds for manipulations towards a lexicographically
less preferred alternative. In sum, these two effects approximately cancel each other out.
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Figure 4: Profiles prone to the NSP for Tideman’s rule

The flawless smoothness and regularity of Figures 2 to 4 are due to 106 runs per data
point. This large number allows for all 95% confidence intervals to be smaller than 0.2%.
Our simulations were conducted on a XeonE5-2697 v3 with 2 GB memory per job and took
35 to 48 hours for each data point. Since there are 1 500 data points per plot, the total
runtime for all three figures easily accumulates to ten years on a single-processor machine.

5.2 Comparing Different Preference Models

In order to get an impression of the frequency of the NSP under different preference models
we fix the number of alternatives to be m = 4 or m = 30 and sample 106 profiles for
increasing n up to 1 000 or 200, respectively.11 Figure 5 gives the fraction of profiles prone
to the NSP using either MaxiMin, Black’s, or Tideman’s rule.

A close inspection of these graphs allows for multiple conclusions. First, we see that in
particular Black’s rule shows a severe dependency on the parity of n. For better illustration,
we depict two lines per preference model to highlight this effect; which line stands for odd
and which for even n is easiest checked using their corresponding point of intersection with
the x-axis which is either 1, 2, or 3 throughout. Apart from explanations given earlier, it
is not completely clear why differences are more prominent for some voting rules, why we
sometimes see higher percentages for odd n and other times for even n, or why for some
instances there is a large discrepancy for one preference model but hardly any for another.

IC and IAC are often criticized for being unrealistic and only giving worst-case estimates.
This criticism is generally confirmed by our experiments which show that the highest frac-
tions of profiles is prone to the NSP when they are sampled according to IC or IAC. A
notable exception is Black’s rule for 30 alternatives, where a different effect prevails: For
many alternatives and comparably few voters situations in which a Condorcet winner (al-
most) exists appear less frequently under IC or IAC than under the other preference models.

11For increasing m the computations quickly become very demanding. The values for m = 30 and n > 99
are determined with 50 000 runs each only. The size of all 95% confidence intervals is however still within
0.5%.
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Figure 5: Profiles prone to the NSP for different rules, fixed m, and increasing n; two lines
per preference model depending on the parity of n; IC, IAC and the urn model collapse for
m = 30, resulting in a pink line.



In absence thereof, Black’s rule collapses to Borda’s rule which is immune to the NSP. Note
that were we to conduct a dual experiment with fixed n and increasing m, the fraction of
profiles prone to the NSP using Black’s rule and IC or IAC would converge to zero for
similar reasons.

We moreover see that IC, IAC, and the urn model exhibit identical behavior for m = 30.
The right-hand side of Figure 5 therefore seems to only feature three preference models,
even though all five are depicted. This may be surprising at first but is to be expected since
IC and IAC can equivalently be seen as urn models with parameters 0 and 1, respectively.
For 30! ≈ 2.7 · 1032 voter types the difference between parameters 0, 1, and 10 is simply too
small for a visible difference.

Finally, Maximin appears to fare exceptionally bad with respect to the NSP and IC,
IAC, and the urn model while a contrary behavior is visible for the spatial and Mallows
model. Though generally in line with expectations, we currently do not have an explanation
for the magnitude of this effect.

5.3 Empirical Analysis

We have also analyzed the NSP for empirical data obtained from real-world elections. Un-
fortunately, such data is generally relatively rare and imprecise and often only fragmentarily
available. We have checked all 315 strict profiles contained in the PrefLib library [Mattei
and Walsh, 2013] for occurrences of the NSP. Our evaluation shows that two profiles12 admit
a manipulation by abstention when Black’s rule is used and that no manipulation is possible
for MaxiMin and Tideman’s rule. While this suggests a low susceptibility to the NSP in
real-world elections, much more data would be required to allow for meaningful conclusions.

6 Conclusion

We analyzed the likelihood of the NSP for three Condorcet extensions (Blacks rule, Max-
iMin, and Tidemans rule) under various preference models using Ehrhart theory as well as
extensive computer simulations and some empirical data. Our main results are as follows.

• When there are few alternatives, the probability of the NSP is negligible (less than
1% for m = 4, MaxiMin, Tideman’s rule, and all considered preference models; less
than 4% for Black’s rule).

• When there are 30 alternatives and preferences are modeled using IC, IAC, and the
urn model, Black’s rule is least susceptible to the NSP (< 6%), followed by Tideman’s
rule (< 16%) and Maximin (< 29%).

• For 30 alternatives and the spatial and Mallows model, this ordering is reversed.
Maximin is least susceptible (< 4%), followed by Tideman’s rule (< 5%) and Black’s
rule (< 10%).

• The parity of the number of voters significantly influences the manipulability of Black’s
and Tideman’s rules. Black’s rule is more manipulable for an even number of voters
whereas Maximin is more manipulable for an odd number of voters.

• Whenever analysis via Ehrhart theory is feasible, the results are perfectly aligned with
our simulation results, highlighting the accuracy of the experimental setup.

• Only two (out of 315) strict preference profiles in the PrefLib database are manipu-
lable by strategic abstention (both manipulations only occur for Black’s rule, but not
for MaxiMin and Tideman’s rule).

12Both had four voters, one had 32 candidates and the other 240.
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cones and affine monoids. Available at https://www.normaliz.uni-osnabrueck.de.

D. E. Critchlow, M. A. Fligner, and J. S. Verducci. Probability models on rankings. Journal
of Mathematical Psychology, 35:294–318, 1991.

J. A. De Loera, R. Hemmecke, J. Tauzer, and R. Yoshida. Effective lattice point counting
in rational convex polytopes. Journal of Symbolic Computation, 38(4):1273–1302, 2004.
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