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Abstract—Privacy risk is a major concern when training machine learning models on sensitive
data. Research shows that some constraints trustworthy machine learning poses on training
processes can create considerable privacy concerns. We discuss the tradeoffs between data
privacy and other goals of trustworthy machine learning (notably fairness, robustness, and
explainability).

MACHINE LEARNING ALGORITHMS try to
discover patterns from the training data that can
be used to perform particular predictive tasks on
new data. The application domains of machine
learning touch many aspects of personal life,
ranging from image processing used in health
care and self-driving cars, natural language pro-
cessing for personal assistants, to decision support
systems in educational and judicial systems.

In critical domains such as medicine, finance,
education, and the judicial system, we need to
analyze machine learning algorithms with respect
to their trustworthiness, beyond their average
prediction accuracy. Can these models be trusted
to operate on our personal and private data?
Are these systems fair, or do they replicate or
potentially increase existing bias in society? Can
we rely on their decisions, by being able to
explain how models arrive at a decision? Can we
intervene if they draw conclusions for the wrong
reasons? Are the models robust to manipulation
during deployment and training, or can small
changes to the data result in adversarial behavior?

To ensure trustworthy machine learning, we
need to pose additional constraints on the mod-
els we can create. We use specifically designed
algorithms to make models privacy-preserving,

Figure 1. Different pillars of trustworthy machine
learning. In this article, we discuss how data privacy
interacts and conflicts with the other aspects.

fair, robust, or explainable. These algorithms,
however, come with trade-offs. There is a sig-
nificant body of research on studying the cost of
trustworthy ML on the performance of models
with respect to their prediction accuracy. What
is very concerning is that constraining a model
could also pose a risk to the privacy of training
data. In this article, we discuss the interaction
of data privacy with other pillars of trustworthy
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Figure 2. The typical machine learning workflow. Model parameters (learned from private training data) and
model predictions can indirectly leak sensitive information about the training data. This leakage can happen
even if the entire training process is confidential (e.g., using secure MPC).

machine learning.

Threats to Data Privacy
When considering data privacy, it is impor-

tant to differentiate between direct and indirect
leakage of information. Direct leakage can hap-
pen during training or inference time when an
untrusted entity can access the data. This threat
can be prevented via access control and confiden-
tial computing (secure multi-party computation,
homomorphic encryption, and trusted hardware).
These measures, however, cannot prevent indirect
leakage, which is the focus of this article.

An adversary, who can only observe the model
and not the training data, can use inference
algorithms to reconstruct information about the
training data. Obviously, it lies in the nature of
useful machine learning that model parameters,
and consequentially model predictions, contain
some information about the training data.

To obtain a precise definition for data privacy,
we need to differentiate between general patterns
that apply to the entire population, which we
would want to reveal, and the patterns that apply
to specific data of individual users, which we
want to keep private. Hence, learning anything
about individual data records beyond the general
patterns should be considered a privacy violation.
This is the basis of differential privacy, which
measures the worst-case sensitivity of an algo-
rithm to changes in individual users’ data.

We design a (hypothetical) indistinguishably

game, between the algorithm and the adversary, to
measure the amount of information leakage of an
algorithm about its training data. In the game, we
consider two possible worlds. In the first world,
a model is trained on a dataset containing the
information of a particular individual x. In the
second world, the model is trained on the same
dataset, except this time x’s data is removed.
The adversary interacts with the model, in an
unknown world, and tries to infer if the model’s
training set contains x’s data. The capacity to
which the adversary can win this game tells
us the extent of individual private information
leakage. In the white-box setting, the attacker has
complete access to the model’s parameters. In the
black-box setting, the attacker can only interact
with the model’s predictions. Shokri et al. [12]
designed membership inference attacks, which are
algorithms to simulate the game and measure
the information leakage of models about their
training data. Besides, the reports by the US
National Institute for Standards and Technology
(NIST)1 and the UK Information Commissioner’s
Office (ICO)2 specifically mention membership
inference as a confidentiality violation and po-
tential threat to the training data in AI.

In the black-box setting, membership infer-
ence attacks attempt to exploit the signals con-
tained in a model’s predictions. Major examples

1https://nvlpubs.nist.gov
2https://ico.org.uk
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of such a signal are the prediction error and uncer-
tainty. Predictions tend to be more accurate and
certain for members of the training set compared
to unseen points. Powerful membership inference
attacks have been demonstrated for many differ-
ent scenarios in machine learning [10, 15].

We can use membership inference attacks
to quantitatively measure the privacy risks of
machine learning algorithms in many diverse
scenarios. Throughout this article, we will use
membership inference attacks as a tool to measure
information leakage of private data. This way, we
can study the privacy implications of the other
aspects of trustworthy machine learning.

Given a set of points X ⊆ Rn with member-
ship m : X → {0, 1} to a training set, we define
the average privacy risk of a trained model as3

max
A∈A

1

|X|
∑
x∈X

[A(s(x)) = m(x)] .

Here, s : X → Rk is the signal the attacker
can observe for each point after a model is
trained. The signal can be the model’s predic-
tion, the model’s loss, an explanation, or similar
observable signals about a data point (which
differentiates members from non-members). A is
the set of possible attack algorithms the attacker
can use. For actual evaluations [3, 11, 12, 13, 14]
specific attack algorithms are designed. Usually,
X is assumed to be balanced, i.e., the lower
bound on the privacy risk is 0.5 obtained by an
attacker randomly guessing membership.

Murakonda and Shokri [9] provide a tool
called Privacy Meter4 that can quantify privacy
risks of a wide range of machine learning algo-
rithms (e.g., models for classification, regression,
computer vision, and natural language process-
ing). The tool relies on state-of-the-art inference
techniques and generates extensive reports.

A common attack strategy are threshold-based
attacks [11, 15]. Here, the attacker directly com-
pares the signal to a predefined threshold τ . For
example, it is common for the loss of training
set members to be lower than for non-members.
In a threshold-based attack using the point’s loss
as a signal, each point with a loss lower than
the threshold is considered a member, and each

3See Ye et al. [15] for a more comprehensive discussion on
how to measure privacy risk in machine learning.

4https://privacy-meter.com
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Figure 3. Experimental results on a Law School
Admission problem provided by Chang and Shokri
[3]. There is a tradeoff between privacy and fairness
of a model. Increasing fairness (i.e., decreasing δ)
increases the privacy risk of the qualified unprivileged
group.

point with a loss higher is considered a non-
member. The attacker can obtain the threshold
by observing the loss distribution of points on
reference (or shadow) models. All experimental
results presented here were originally obtained
using threshold-based attacks.

Algorithmic Fairness
Machine learning models potentially cause

disproportionate harm to specific groups. This
bias might arise from demographic disparities in
the training data, the implicit focus on optimizing
performance on the majority group, or at other
steps in the machine learning pipeline [2].

While there are many different fairness con-
cerns, the research community has paid the most
attention to statistical notions of group unfairness
for classification tasks. For this, we observe the
differences in the behavior of a classifier for
inputs of different demographic groups according
to specific protected attributes (e.g., gender, race).
In this context, protected attributes are provided
by anti-discrimination laws or societal standards.

As an illustrative example, let us consider
the following hypothetical scenario: A company
wants to use an automated classifier to approve
loan applications based on various user-provided
data. An auditor can split a dataset for which the
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classifier has made approval decisions into the
decisions made for male and female applicants.
One criterion of fairness would be to require
that applicants that pay back their loan have
an equal opportunity of getting the loan in the
first place. This notion of fairness is known as
equal opportunity [6]. Formally, we can say that
a classifier f : Rn → {0, 1} satisfies δ-Equal
Opportunity with respect to two groups X1, X2

and true labels y : Rn → {0, 1}, if the false
negative rate of the classifier in the groups are
within δ range of one another:

|Px∼X1
[f(x) = 0|y(x) = 1]

− Px∼X2
[f(x) = 0|y(x) = 1] | ≤ δ.

Note that equal opportunity is only one of
many potential fairness notions. The auditor
could also compare false-positive rates among
the groups, or the auditor could validate if the
approval rates are the same among the genders.

Fairness-aware learning is a way to mitigate
the bias of a given classifier, by enforcing
the fairness constraints. These algorithms can
either modify the training set and the training
algorithm, or post-process the fully trained model.

“Achieving group fairness comes at a cost
for individual privacy.”

Chang and Shokri [3] show that the achieved
group fairness comes at a cost for privacy. They
create a group-specific membership inference at-
tack to demonstrate that the privacy risks of
different demographic groups are affected dis-
parately by fairness-aware learning. In particular,
the privacy risks of the unprivileged group (i.e.,
the group the original classifier is biased against)
increases. Higher bias in the unconstrained model
leads to greater privacy risks of the unprivileged
class in the corresponding fair model. Further, the
stronger the fairness constraint is enforced, the
more the privacy risks increase.

Figure 3 reproduces their experimental results
on how enforcing a smaller fairness gap increases
the privacy risk. The experiment considers a
depth-10 decision tree trained on the law school
admission dataset. Fairness is enforced using the
reductions approach (see [3] for more details).

Why is there this tradeoff between privacy
and fairness? An answer lies in how we cre-

ate unbiased models. By enforcing constraints,
fairness-aware algorithms ensure the equal per-
formance of the model on different subgroups.
However, correctly learning the underprivileged
group’s classification might be difficult for several
reasons. There might be fewer data available for
the group, the data might have higher variance,
or the task might be more complex. Hence, this
might force the model to memorize more of the
underprivileged group’s data instead of correctly
learning a general pattern. This higher memoriza-
tion links directly to higher privacy risk. It is
easier for the adversary to differentiate between
members and non-members. It follows that group
fair models have a higher privacy risk.

Bagdasaryan et al. [1] provide complementary
evidence for the privacy-fairness tradeoff. They
demonstrate that the accuracy reduction caused
by differentially private training disparately af-
fects different groups. Smaller, unprivileged sub-
groups suffer more. Again the intuitive connec-
tion stems from memorization. Smaller groups
rely more on memorization, which differentially
private training suppresses.

For some settings, this tradeoff is even theo-
retically unavoidable. Cummings et al. [4] show
cases where a model cannot be trained in a
differentially private way and still satisfy group
fairness constraints exactly.

Overall we have strong experimental [1, 3]
and theoretical [4] evidence on the incompatibil-
ity of individual privacy and group fairness.

Explainability
Modern machine learning often achieves per-

formance improvements by increasing the com-
plexity of the model architectures and training
process. In consequence, the patterns learned by
the models are harder to understand. Further, it
becomes difficult or impossible to comprehend
why a model came up with a specific decision.
However, this lack of understanding is undesir-
able for many critical decision-making scenarios.
Here, we require that the semantics of the model
align with the semantics of the tasks. This way,
we can be confident that a model did not pick up
spurious correlations in the training data [8].

Feature-based attribution methods are model
explanations that try to highlight which features
of the input were important to a specific point’s
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Figure 4. The privacy risks of different
backpropagation-based explanation methods of
a neural network trained on the Texas hospital
dataset. Provided by Shokri et al. [13].

prediction. Many of these attribution methods
are based on the model’s gradient with respect
to the input. The gradient tells us exactly
how much a model’s output changes if we
make infinitesimally small changes to input. So
methods derived from the gradient highlight
influential input features.

“Model explanations can be exploited by
inference attacks.”

From the privacy perspective, model expla-
nations provide the attacker with an additional
source of information. This is especially true
in scenarios where the attacker cannot directly
access a model’s uncertainty or loss. High feature
attribution values are a proxy for model uncer-
tainty. They indicate that a small change to the
input would radically change the model’s output.
Hence, an attacker can construct successful mem-
bership inference attacks solely based on model
explanations to distinguish between members and
non-members [13].

Figure 4 shows the privacy risks for a mem-
bership inference attack based on different ex-
planations methods for a neural network trained
on the Texas hospital dataset (see [13] for more
details). So, model explanations can also conflict
with individual privacy.

(a) Normal model (b) Robust model

Figure 5. Many of the existing robust training algo-
rithms change the decision boundary around training
points in a specific way. It is possible for an attacker
to discover and exploit these patterns to create more
successful inference attacks.

Robustness during deployment
Decision boundaries of modern neural net-

works are very complex. For many normal inputs,
an adversary can craft a very small change in
a specific direction. The manipulation is almost
unnoticeable yet still crosses the model’s decision
boundary. So, adversaries can force wrong classi-
fications and potentially bypass security checks.

So, a robust model is required not just to
correctly predict the label for normal and benign
inputs, but to remain correct if the input is slightly
manipulated. For a distribution (x, y) ∼ D of
points x and labels y, the standard supervised
learning objective is to find a parameter θ that
minimizes the expected loss L of a classifier fθ

min
θ

E(x,y)∼D [L(fθ(x, y)] .

Assuming that an adversary can modify each
point by δ ∈ S the robust supervised learning
objective is to minimize the maximal loss an
attacker can achieve [7]:

min
θ

E(x,y)∼D

[
max
δ∈S

L(fθ(x+ δ, y))

]
Many defenses against evasion attacks affect

the model’s decision boundaries so that, within a
small area around each input, model predictions
remain the same [7]. Yet, the methods can
enforce this objective only on the training data.
It follows that the impact of individual training
points on robust models increases. The more
extensive influence raises the privacy risk of
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Figure 6. The privacy risks of robust-training methods
compared to standard training of a neural network
trained on the CIFAR10 dataset. Provided by Song
et al. [14].

training set members.

“Defending against evasion attacks
(adversarial examples) via adversarial training
can increase privacy risks.”

In Figure 6, we reproduced Song et al. [14]’s
results for the privacy risks of different robust
training methods for a neural network trained on
the CIFAR10 dataset. The entire current gener-
ation of robustness algorithms that change the
model’s training behavior seems to suffer from
this robustness-privacy tradeoff. However, it is
unclear whether there exists a fundamental trade-
off between robustness to attacks and privacy.

Robustness during training
The quality and reliability of the training data

cannot be guaranteed in all scenarios. Crowd-
sourced data might suffer from unmotivated or
malicious crowd workers. Data collection might
be noisy. In a federated setting, data from differ-
ent clients is not of the same quality. In the worst
case, an adversary might actively try corrupting
parts of the training data to manipulate the train-
ing process and harm the model’s performance.

Among all threats data poisoning attacks have
gotten the most attention. We can only consider
the model’s training robust if it has some form of
immunity to data poisoning attacks. Modern ma-
chine learning algorithms are generally not robust

against such threats. Many works have demon-
strated the possibility of manipulating models via
poisoning their training data.

Some robust training algorithms try to reduce
the sensitivity of the training to changes of small
parts of the training set. Others try to detect and
completely ignore outliers. The goal is to make
the model’s training focus on general patterns
and avoid being influenced by distinct points.

“Robustness against poisoning attacks
aligns well with data privacy.”

In contrast to the other goals of trustworthy
machine learning, the constraints posed by train-
ing data robustness align well with data privacy.
Both differential privacy (DP) and robustness are
notions of insensitivity to training data changes.
While the existing metrics for these notions are
not exactly the same, DP focuses on worst-
case changes of single inputs and robustness on
restricted changes of groups of data. There are
reasons for cautious optimism. Research of robust
statistics further supports this optimism as ro-
bust mechanisms are demonstrably good starting
points for differentially private mechanisms [5].

Conclusions
In this article, we have discussed many aspects

in which current ways to ensure a more trust-
worthy classifier come at a cost to data privacy.
Yet, the situation is not clear-cut. While group
fairness comes with a fundamental tradeoff to
privacy [4, 3], for the other aspects, much is
unknown. Current algorithms to make models
robust against attacks during deployment hurt
data privacy [14]. But we cannot rule out the
possibility of designing robust algorithms which
are also accurate and privacy-preserving. The sit-
uation is similar in the case of explainability. Here
we also understand that some existing methods
are vulnerable [13]. Yet, we do not know if it
extends to all types of explanations.

Trustworthy machine learning is a laudable
goal, but it should not come at the cost of
data privacy. We call for more investigation of
the interactions of these two aspects. Instead of
looking at these problems separately, we need to
develop techniques to achieve both.

Finally, privacy concerns in machine learning
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are not limited to membership inference. Re-
searchers have considered further threats such
as reconstruction attacks, model extraction, or
property inference. These concerns also interact
with the other aspects of trustworthy machine
learning and require further study.

REFERENCES
1. Eugene Bagdasaryan, Omid Poursaeed, and

Vitaly Shmatikov. Differential privacy has
disparate impact on model accuracy. Ad-
vances in Neural Information Processing Sys-
tems, 32:15479–15488, 2019.

2. Solon Barocas, Moritz Hardt, and Arvind
Narayanan. Fairness and Machine Learn-
ing. fairmlbook.org, 2019. http://www.
fairmlbook.org.

3. Hongyan Chang and Reza Shokri. On the
privacy risks of algorithmic fairness. In 2021
IEEE European Symposium on Security and
Privacy (EuroS&P), pages 292–303. IEEE,
2021.

4. Rachel Cummings, Varun Gupta, Dhamma
Kimpara, and Jamie Morgenstern. On the
compatibility of privacy and fairness. In
Adjunct Publication of the 27th Conference
on User Modeling, Adaptation and Personal-
ization, pages 309–315, 2019.

5. Cynthia Dwork and Jing Lei. Differential
privacy and robust statistics. In Proceedings
of the forty-first annual ACM symposium on
Theory of computing, pages 371–380, 2009.

6. Moritz Hardt, Eric Price, and Nati Srebro.
Equality of opportunity in supervised learn-
ing. Advances in neural information process-
ing systems, 29, 2016.

7. Aleksander Madry, Aleksandar Makelov,
Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models
resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

8. Christoph Molnar. Interpretable machine
learning. Lulu. com, 2020.

9. Sasi Kumar Murakonda and Reza Shokri. Ml
privacy meter: Aiding regulatory compliance
by quantifying the privacy risks of machine
learning. arXiv preprint arXiv:2007.09339,
2020.

10. Milad Nasr, Reza Shokri, and Amir
Houmansadr. Comprehensive privacy

analysis of deep learning. In 2019 ieee
symposium on security and privacy, 2018.

11. Alexandre Sablayrolles, Matthijs Douze,
Cordelia Schmid, Yann Ollivier, and Hervé
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