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Fast Practical Solution of Sorting by Reversals 

Alberto Caprara* Giuseppe Lancia t See Kiong Ngt 

Abstract  
We deal with the practical solution of the problem of Sort- 
ing a permutation By Reversals (SBR), which has relevant 
applications in computational biology. We present a success- 
ful approach based on the use of Linear Programming (LP). 
In particular, we deal with an LP relaxation with exponen- 
tially many variables, that can be handled by generating 
variables "on the fly", according to a so-called column gen- 
eration scheme. A major advantage with respect to previous 
analogous approaches is that the subproblem to face in the 
column generation phase requires no longer the solution of 
min-cost general matching problems, but the solution of rain- 
cost bipartite matching problems. Experiments show that, 
at least for our purposes, there is a speed-up of one order 
of magnitude in going from general matching to bipartite 
matching, although the best-known algorithms for. the two 
problems have the same theoretical worst-case complexity. 
We also prove the worst-case ratio between the lower bound 
value obtained by our new method and previous ones. 

The LP relaxation is used within a polynomial-time 
heuristic and an enumerative exact algorithm for SBR. We 
show the effectiveness of our approach through extensive 
computational experiments. In particular, we can solve 
to proven optimality the largest real-world instances from 
the literature in few seconds, and the other (smaller) real- 
world instances within few milliseconds on a workstation. 
Moreover, we can solve to optimality random instances 
with n = 100 within 2-3 seconds, as well as provide a 
solution within 2% of the optimum for ranxtom instances 
with n = 500 within 10 minutes. 

These results show that, although the problem is hard 
and the exact algorithm we propose has apparently expo- 
nential running time even on average (in particular, random 
instances with n = 400 seem to take months, if not much 
longer), the instances of practical interest can be solved to 
proven optimality very fast. 
Key words: sorting by reversals, alternating-cycle decom- 
position, column generation, matching, experimental results. 

1 I n t r o d u c t i o n  

In this paper we deal with the problem of Sorting a 
permutation By Reversals (SBR), which is defined as 
follows. Let r = (Trl . . .  7r,) be a permutation of 
( 1 , . . . , n } ,  and denote by ~ the identity permutation 
(1 2 . . .  n -  1 n). A reversal of the interval ( i , j )  is an 
inversion of the subsequence ~ . . .  ~j of 7r, represented 
by the p e r m u t a t i o n p =  (1 . . .  i - 1  j j - 1  . . .  i +  
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1 i j + l  . . .  n). Composition of ~ with p yields 

where elements 7r~,...,Trj have been reversed. Given 
a permutat ion 7r, SBR calls for a shortest sequence 
of reversals PI , - . . ,Pd(~)  such tha t  7rpl ...pd(~) = ~. 
The optimal solution value d ( r )  is called the reversal 
distance of ~r. 

The main application of the problem is in computa- 
tional biology. Let  the order of the genes in two single 
chromosome organisms be represented by two permuta- 
tions ~r and T of {1 , . . .  ,n}. An inversion of the segment 
comprising the genes from the i-th to the j - t h  is repre- 
sented by a reversal of the interval ( i , j ) .  A shortest 
sequence of reversals needed to  transform r into r is 
clearly equal to  an optimal solution of SBR on T-17r. 
Therefore, the solution of SBR yields a possible sce- 
nario to explain how an organism evolved from another, 
under the simplifying assumptions tha t  inversions were 
the only rearrangement to occur, and that  evolution re- 
quired the minimum number of rearrangements. Even 
if these assumptions lead to some approximation, both 
are well-motivated. Indeed, on the one hand inversions 
are by far the most  frequent type of rearrangement, and 
on the other rearrangements are very rare events. 

With the more general aim of reconstructing an evo- 
lutionary tree (see e.g. [24]), SBR may be the subprob- 
lem to be solved to evaluate the distance between two 
species in the tree. In this respect, it would be conve- 
nient to have very fast (in practice) algorithms to solve 
it. 

SBR has been widely studied in the last years, 
among others, by Kececioglu and Sankoff [23, 22], Bafna 
and Pevzner [1], Hannenhalli and Pevzner [17, 18], 
Caprara, Lancia and Ng I8], Berman and Hannen- 
halli [3], Irving and Christie [19], Tran [25], Ka- 
plan, Shamir and Tarjan [20], Caprara [6, 7], Christie 
[10]. Most of these papers deal with the complex- 
ity and theoretical approximability of the problem. 
In particular, SBR was shown to be NP-hard in [6] 
and Max SNP-hard in [4]. References [23, 1, 10] 
present, respectively, polynomial-time 2-approximation, 
~-approximation, and 23--approximation algorithms. 

In this paper we are concerned about  the practical 
solution of SBR. We present a successful approach based 
on the use of Linear Programming (LP). In particular, 
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we deal with an LP relaxation with exponentially many 
variables, that  can be handled by generating variables 
"on the fly", according to a so-called column generation 
scheme. A major advantage with respect to previous 
analogous approaches (see [23], [8]) is that  the subprob- 
lem to face in the column generation phase requires no 
longer the solution of min-cost general matching prob- 
lems, but the solution of min-cost bipartite matching 
problems. Experiments show that ,  at least for our pur- 
poses, there is a speed-up of one order of magnitude 
in going from general matching to bipartite matching, 
although the  best-known algorithms for the two prob- 
lems have the same theoretical worst-case complexity. 
We also prove the worst-case ratio between the lower 
bound value obtained by our new method and previous 
ones. 

The LP relaxation is used within a polynomial- 
time heuristic and an enumerative exact algorithm for 
SBR. We show the effectiveness of our approach through 
extensive computational experiments. In particular, we 
can solve to proven optimality the largest real-world 
instances from the literature in few seconds, and the 
other (smaller) instances within few milliseconds on 
a workstation. Moreover, we can solve to optimality 
random instances with n = 100 within 2-3 seconds, as 
well as provide a solution within 2% of the optimum for 
random instances with n = 500 within 10 minutes. 

These results show that ,  although the problem is 
hard and the exact algorithm we propose has apparently 
exponential running time even on average (in particular, 
random instances with n = 400 seem to take months, if 
not much longer), the instances of practical interest can 
be solved to proven optimality very fast. 

The paper is organized as follows. In Section 2 
we survey known results in the literature, describing 
a combinatorial relaxation of SBR and the associated 
(natural) Integer Linear Programming (ILP) formula- 
tion, whose LP relaxation can be solved using general 
matching for column generation. Section 3 explains our 
new LP relaxation, showing that  the associated column 
generation problem can be solved by bipartite matching 
and that,  even in the worst case, the lower bound value 
obtained is at least 3/4 times that  of the original LP 
relaxation. We also illustrate exact and heuristic algo- 
rithms based on the use of this LP relaxation. Finally, 
in Section 4 we present computational results both on 
real-world and random instances. 

2 S B R  a n d  Alternating-Cycle Decompositions 
Consider a permutation ~r = (~rl . . .  7rn) of {1 , . . . n ) .  
Throughout the paper, n will denote the number of 
elements of the permutation ~r considered. Following 
the description in [1], define the breakpoint graph G(Tr) = 

4 

Figure 1: The breakpoint graph G(lr) associated with 
lr = (4 2 1 3). Gray edges are drawn as thin lines, black 
edges as thick lines. 

(V, B U Y )  of 7r as follows. Add to 7r the elements 7to := 0 
and ~rn+t := n + 1, re-defining r := (0 ~rl . . .  rn n + 1). 
Also, let the inverse permutat ion  ~r -1 of lr be defined by 
r~ l  := i for i = 0 , . . . , n  + 1. Let V := { 0 , . . . , n +  1}, 
where each node v E V represents an element of ~r. 
Graph G(~r) is bicolored, i.e. its edge set is partitioned 
into two subsets, each represented by a different color. 
B is the set of black edges, each of the form (~ri, lri+l), for 
all i e ( 0 , . . . ,  n} such tha t  [zri- ~iq-l[ ~ 1, i.e. elements 
which are in consecutive positions in ~r but not in the 
identity permutation r. Such a pair 7ri,lri+t is called a 
breakpoint of lr, and an element 7ri is called a singleton 
if both r i - l , r i  and ~ri,~ri+l are breakpoints of ~r. Let 
b(lr) := [B I be the number of breakpoints of ~r. Y is 
the set of gray edges, each of the form ( i , i  + 1), for all 
i e ( 0 , . . . ,  n} such tha t  I~r~ -t - ~r/~l ] ~ 1, i.e. elements 
which are in consecutive positions in r but not in ~. 
Note that  each node i • V has either degree 0, 2 or 
4, and has the same number of incident gray and black 
edges. Therefore, [B I = [Y](= b(lr)). Figure 1 depicts 
the breakpoint graph associated with the permutation 
(4 2 1 3). 

An alternating cycle of G(Tr) is a cycle whose 
edges are alternately grey and black, without edge 
repetitions b u t  possibly with node repetitions. For- 
really, an alternating cycle is a sequence of edges 
bl , yl , b2, Y2, . . . , bin, Ym , such that:  

(i) bi E B ,  Yi • Y for i = 1 , . . . , m ;  

(ii) bl and yj have a common endpoint for i = j = 
1 , . . . , m  and for i = j  + 1, j = 1 , . . . , m ;  

(iii) bl and bi+l (resp. Yi and Yi+I) have no common 
endpoint for i = 1 , . . .  ,m; 

(iv) bl ~ bj (resp. Yi ~ Yj) for 1 < i < j < m; 
where indices are understood to be modulo m. For ex- 
ample, edges (0, 4), (4, 3), (3,1), (1, 0) and (4, 2), (2, 3), 
(3, 5), (5, 4) form alternating cycles in the graph of Fig- 
ure 1. 

An alternating-cycle decomposition of G(Tr) is a 
collection of edge-disjoint alternating cycles, such 
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that every edge of G is contained in exactly one 
cycle of the collection. It is easy to see that 
G(Tr) always admits an alternating-cycle decomposi- 
tion (recalling that an alternating cycle is allowed to 
visit the same cycle twice). In the graph of Fig- 
ure 1, alternating cycles (0,4),(4,3),(3,1),(1,0) and 
(4, 2), (2, 3), (3, 5), (5, 4) form an alternating-cycle de- 
composition. For a given lr, let c(~r) be the maxi- (2.4) 
mum cardinality of an alternating-cycle decomposition 
of G(Tr). Bafna and Pevzner [1] (see also Kececioglu and  
Sankoff [23]) proved the following property 

THEOREM 2.1. ([1], [23]) For every permutation 7r, 
b(Tr) -c(Ir) <_ d(~). 
Therefore b(Tr) - c(lr) gives a valid lower bound on 
the optimal solution value of SBR. The above discus- 
sion motivates the study of the following Alternating- 
Cycle Decomposition (ACD) problem, which, given the 
breakpoint graph G(~r) of a permutation 7r, calls for 
a maximum-cardinality alternating-cycle decomposition 
of G(~). 

A key question raised by the discussion above con- 
cerns the strength of lower bound b(Tr) - c(=) on the 
optimal solution value d(Tr). Since the very first com- 
putational experiments on SBR, it was observed that 
this bound is very often equal to the optimum, and this 
was a strong enough motivation to encourage the use 
of this bound within a branch-and-bound framework. 
In principle, according to worst-case analysis, the lower 
bound can be quite far from the optimum, namely the 
following holds 

THEOREM 2.2. ([6], [10]) For every permutation ~, (2.5) 
b(r)-c(Tr) _> ~d(~). Moreover, there exist permutations 
for which bOr ) - cOr) = 2 dC~r). 
In fact, a theoretical result which motivates the strength 
of the lower bound is 

THEOREM 2.3. ([7]) The probability that b(lr) - 
c(~') < d(~r) .for a random permutation 7r with n 
elements is O(1/nS). 

From a complexity point of view, all the negative 
results for SBR apply to ACD as well [6, 4]. On 
the other hand, from a practical point of view, the 
great advantage of dealing with ACD instead of SBR 
is the fact that the former has a strong, natural ILP 
formulation with one variable for each alternating-cycle 
of G(Tr), which was proposed in [23, 8]. Let C denote 
the set of all the alternating cycles of G(Tr), and for each 
C 6 C introduce a binary variable xc.  A natural ILP 
model is 
(2.1) 

subject to 

(2.2) 

max Z 2c 
cEc 

Z xc  < 1, 
Cge 

e 6 E ,  

(2.3) x c  6 {0 ,1} ,  C 6 C. 

A valid upper bound [c*0r)J on c(lr), and hence a 
valid lower bound [b(Tr) - c* (~r)] on d(Tr), is given by 
the optimal solution value c* (Tr) of the LP relaxation of 
(2.1)-(2.3), obtained by replacing constraints (2.3) with 

zc >_ 0, C 6 C. 

Solving the LP relaxation (2.1), (2.2) and (2.4) 
amounts to solving an LP having [E I = O(n) con- 
straints, and ICI = O(2 n) variables, i.e. a possibly huge 
number of variables. This can be done by column gen- 
eration techniques (see e.g. [2]), starting from a "small" 
LP with a restricted subset of the variables (implicitly 
fixing the other variables to 0), and iteratively solving 
the small LP, testing if the solution is optimal for the 
overall LP, and, if not, adding few variables with posi- 
tive (in case of maximization) reduced cost to the small 
LP. The optimality test, namely the detection of vari- 
ables with positive reduced cost, is called column gen- 
eration problem. 

Due to a fundamental result of GrStschel, Lov~sz 
and Schrijver [15] based on Khachian's ellipsoid algo- 
rithm [21], the overall approach works in polynomial 
time provided the column generation problem can be 
solved efficiently. In particular, for LP (2.1), (2.2) and 
(2.4), it is easy to show that this problem, given a weight 
Ue associated with each edge e E E, calls for finding an 
alternating cycle C 6 C such that 

Z u~ < 1, 
eEC 

or proving that none exists. Reference [8] describes a 
polynomial-time algorithm for this problem, proving the 
following statement. 

THEOREM 2.4. ([8]) LP (2.1), (2.2) and (2.4) can 
be solved in polynomial time 5n n). 
The algorithm presented in [8] to solve the column gen- 
eration problem computes up to n + 1 min-cost perfect 
matching problems in a suitably-defined (nonbipartite) 
graph. 

3 A M u c h  Fas te r  to  Solve LP R e l a x a t i o n  

The solution of rain-cost general matching problems 
in the solution of LP (2.1), (2.2) and (2.4) turns out 
to eat almost all of the overall computing time, even 
by using state-of-the-art codes for matching [14] and 
by trying a number of heuristic procedures to identify 
positive reduced-cost variables before resorting to the 
use of these codes. To overcome this serious drawback, 
we came up with an alternative LP relaxation, which is 
described in this section. 
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bl ~ y 4 ~ ~ y  J b3 

Figure 2: Pseudo alternating cycle C = bl,yl,b2,y2, 
b3,y3, b2,y4, where Db2,e = 2 and #e,c = 1 for e E 
c \ 

3.1 The  new LP  relaxation A surrogate alter- 
nating cycle of G(n) is a cycle whose edges are alter- 
nately black and grey, possibly with edge repetitious, 
that does not contain a strictly smaller surrogate alter- 
nating cycle. More precisely, a surrogate alternating cy- 
cle is a minimal sequence of edges hi, yl , b2, y2, . . . , bin, 
Ym, such that :  

(i) bi e B, Yi E Y for i = 1, . . . , rn;  

(ii) bi and yj have a common endpoint for i = j = 
1 , . . . , m  and for i = j + 1, j = 1 , . . . ,m;  

(iii) bi and bi+l (resp. Yi and yi+1) have no common 
endpoint for i = 1 , . . . ,  m. 

In other words, condition (iv) in the definition of alter- 
nating cycle has been removed. By minimal we mean 
that the sequence of edges does not contain another sur- 
rogate alternating cycle as a subsequence. Note that 
alternating cycles are also surrogate alternating cycles. 
We call pseudo alternating cycle a surrogate alternating 
cycle which is not an alternating cycle, i.e. such that 
bi = bj or Yi = Yj for some 1 < i < j < m. An example 
of a pseudo alternating cycles is given in Figure 2. Let 
S denote the set of surrogate alternating cycles of G(Tr) 
and P = S \ C the set of pseudo alternating cycles of 

The new LP relaxation that we propose is the 
counterpart of (2.1), (2.2) and (2.4), where the set C of 
alternating cycles is replaced by the set ,~ of surrogate 
alternating cycles. In other words, the LP model reads 

(3.6) max ~ x c  
CE8 

subject to 

(3.7) ~ ~e,V xc  <_ 1, e E E 
COe 

(3.8) xc  _> 0, C ~ C, 

where, for each C E 8 and e E C, ~e,C is the number 
of times that edge e appears in the sequence defining 
surrogate alternating cycle C. Note that the new LP 

4 

1 2 

Figure 3: Graph G(~r) and the associated graph D(Tr). 

relaxation is a relaxation of LP (2.1), (2.2) and (2.4) 
as the former has a wider set of variables. Obviously, 
~e,c = 1 for each alternating cycle C and edge e 6 C, 
and, by definition, ~e,C _> 2 for at least one edge e in 
a pseudo alternating cycle C (in fact it is easy to show 
that I~e,c <_ 2; see below). This yields the following 

REMARK 3.1. In every integer solution of (3.6)- 
(3.8), z c  = O for all C e P.  
Therefore, by solving LP (3.6)-(3.8) instead of (2.1), 
(2.2) and (2.4), the bounds obtained may be weaker, 
but if the optimal LP solution is integer then we 
have an optimal ACD solution. In other words, with 
the additional restriction that the variables must be 
binary, (3.6)-(3.8) yields an alternative ILP formulation 
of ACD. 

3.2 Column generation by bipartite matching 
The dual of (3.6)-(3.8) has the form 

(3.9) 

subject to 

(3.10) 

min ~ ue 
eEE 

~_,#~,c Ue >_ 1, C E S, 
eEC 

(3.11) ue > 0, e • g .  

The associated column generation problem requires 
finding, if any, a surrogate alternating cycle C E $ such 
that ~eeC/~e,c u~ < 1 for a given u* vector. Call 
Y~eec ~e,c u~ the weight of C 6 S. We next show how 
to solve this problem. 

Construct the arc-weighted directed graph D(Tr) = 
(V,A) from G(Tr) and u* as follows. D(Tr) has the same 
node set V as G(r)  and, roughly speaking, each path 
consisting of a black and a grey edge in G(Tr) is replaced 
by an arc in D(Tr). Formally, for each node pair i, j E V, 
D(r )  has an arc ( i , j )  6 A if there exists k 6 V such 
that (i,k) 6 B and ( k , j )  6 Y .  The arc weight for ( i , j )  
is given by u~i,k ~. To be precise, there may exist two 
such k, in which'case we consider the one leading to the 
minimum weight of arc (i,j).  Figure 3 shows the graph 
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D(Tr) associated with graph G(Tr) in Figure 1. Let A 
denote the set of simple (i.e. without node repetitions) 
directed cycles of D(lr), called dicycles in the following. 

THEOREM 3.1. Each surrogate alternating cycle of 
G(Tr) corresponds to a dicycle of D(rr) of the same 
weight, and viceversa. 

Proof. Omitted. 

COROLLARY 3.1. For a given u*, G(Tr) contains a 
surrogate alternating cycle C E S of weight < 1 if  and 
only if  D(~r) contains a dicycle of weight < 1. 

We now describe how we check the existence of 
dicycles having weight < 1 in D(r) .  First of all, we 
introduce loops in D(r),  i.e. arcs of the form (i,i) 
for all i E V, and initialize their weight to 0. The 
solution of an Assignment Problem (AP) on the weight 
matrix of D(Tr) corresponds to a set of dicycles of D(Tr) 
(possibly including loops) such that each node is visited 
by exactly one dicycle in the set and the sum of the 
weights of the arcs in the dicycles is a minimum. The 
problem coincides with the rain-cost perfect matching 
problem on the complete bipartite graph having [V[ 
nodes on each shore of the bipartition, and where the 
cost of edge (i,j) is equal to the weight of arc (i , j)  if 
(i,j) E A, to +oo otherwise (see e.g. [14]). 

The solution of the AP corresponds to all the loop 
arcs, and has value 0. Note that, provided an ACD 
solution is contained in the set of variables in the current 
LP, the "interesting" alternating cycles visit at least 
one node of degree 4, as possible alternating cycles 
visiting only nodes of degree 2 are already contained 
in the variable set. Therefore, we consider each node 
i of degree 4 in G(rr), in turn, set to +oo the weight 
of the corresponding loop in D(~r), and solve the AP 
for the new distance matrix. The new AP solution is 
formed by a minimum-weight dicycle in D(Tr) visiting 
node i, and by loop arcs. Hence, we get the rain-weight 
alternating cycle visiting node i in G(rr). This latter 
AP need not be solved from scratch', since by starting 
from the solution of the first AP (with all loop weights 
equal to 0), the computation of an augmenting path is 
sufficient (see [14] for details). Trying all the nodes of 
degree 4 in G(Ir) guarantees finding, if any, a dicycle of 
D(Tr) (and an alternating cycle of G(Tr)) of weight < 1, 
solving the column generation problem. 

By using efficient implementations of the Hungarian 
method (see e.g. [14]), one can solve the initial AP in 
time O([VI[A[ log IV[), and each of the other APs by just 
one augmentation step, in time O([A[ log [VI). Noting 
that [A[ = O([V D = O(n) due to the structure of D(rr), 
where in particular every i E V has at most 4 ingoing 
and outgoing arcs, one has the following 

THEOREM 3.2. The column generation problem for 
LP (3.6)-(3.8) can be solved in O(n  2 logn) time. 

COROLLARY 3.2. LP (3.6)-(3.8) can be solved in 
polynomial time (in n). 
Nevertheless, it is not the theoretical worst-case com- 
plexity but the much smaller time required in practice 
that determines the success of the procedure above with 
respect to a procedure to solve the column generation 
problem for LP (2.1), (2.2) and (2.4). 

3.3 Worst-ease compar i son  of  the old and new 
lower bounds  We now turn our attention to a the- 
oretical comparison of the lower bounds obtained by 
solving the old and new LP relaxations, motivated by 
the fact that these bounds turn out to be basically the 
same in practice. Let c* (Tr) denote the optimal solution 
value of LP (2.1), (2.2) and (2.4), and ~(~r) the optimal 
solution value of LP (3.6)-(3.8). Clearly, c*(r) < ~(Tr), 
i.e. [b(~r) - c*(rr)l is a better lower bound on d(Tr) than 
[b(Tr) -~(Tr)]. It is possible to show that there are exam- 
ples in which c*(rr) = 1 and ~(rr) = O(n) for arbitrarily 
large n, implying that the worst-case ratio between ~(Tr) 
and c* (~r) can be very bad. Anyway, we will show in the 
following that the ratio between the actual lower bounds 
on SBI~ is bounded by ¼, giving a partial theoretical ex- 
planation of empirical evidence. 

LEMMA 3.1. For every pseudo alternating cycle C 
o/G(~), 

p~,c >_ 4, 
e 6 B N C  

i.e. every pseudo alternating cycle of G(rr) contains 
at least ~ black edges, counting each edge with its 
multiplicity within the cycle. 

Proof. Omitted. 

THEOREM 3.3. For every permutation 7r, 

b(Tr) - e(Tr) _> 3(b(Tr) - c*(Tr)). 

Moreover, there exist permutations for which b(Tr) -~(Tr) 
is arbitrarily close to 3(b(Tr) - c*(r)). 

Proof. Let ~(~r) = cc + ~7~, where ~c is the contri- 
bution to objective function (3.6) of the variables corre- 
sponding to alternating cycles of G(Tr), whereas ~ is the 
contribution of the variables corresponding to pseudo 
alternating cycles of G(rr). Note that 

(3.12) e(=) = ec + eH > c* (~) > ~c. 

Recall that b(Tr) is the number of black edges of G(rr), 
and note that every alternating cycle of G(Tr) contains 
at least two black edges, as G(Tr) has no parallel edges, 
whereas by Lemma 3.1 every pseudo alternating cycle- 
of G(Tr) contains at least 4 black edges. Adding up 
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constraints (3.7) for black edges we get 

eEB Cge 068 

+ 

CEC CE~ 

where ~c := ~eeBnCDe,C for C 6 S. As ~c _> 2 if 
C 6 C and/3c _> 4 if C 6 7 ~, we get 

CEC CE7 ~ CEC CE7 ~ 

which imples that 

y~xc <b(r) 1 
- 4 2 ~ xc .  

CE7 ~ CEC 

Hence, for the solution of (3.6)-(3.8), say ~, 

- - 7 -  4 2 
C67 ~ C6C 

Using the last inequality in (3.12), one gets 

b(~) -c*(~) - b(r) - 5 c  - 

_ _  u 

b(Tr) - cc 4" 

The illustration of the (asymptotically) tight examples 
is omitted. 

3.4 Exact  and heurist ic  a lgor i thms  based o n  
the  LP relaxat ion An effective heuristic algorithm 
for ACD is the following diving heuristic in which one 
solves LP (3.6)-(3.8), obtaining solution z*, fixes to 1 
all variables xc with x~ = 1 as well as the fractional 
variable closest to 1 corresponding to an alternating 
cycle (i.e. not to a pseudo alternating cycle), solves 
again the LP, and so on, until an integer solution is 
found. Corollary 3.2 shows that this algorithm runs in 
polynomial time, as the number of variables to fix to 1 
before termination is O(n). 

We next briefly outline an exact enumerative al- 
gorithm for ACD. Branch-and-Price (B&P) algorithms 
are branch-and-bound algorithms in which an LP re- 
laxation with exponentially many variables is solved at 
every node of the branch-decision tree by column gener- 
ation, see [2]. A B&P algorithm for ACD follows quite 
naturally from formulation (3.6)-(3.8). In particular, a 
main issue to be addressed in B&P algorithms is the 
definition of a branching rule which preserves the struc- 
ture of the column generation problem in the nodes of 

the branch-decision tree. For the specific case of ACD, 
such a branching rule amounts to replacing a node of 
degree 4 in G(~) by two nodes of degree 2, each inci- 
dent with a black and a grey edge, in the two possible 
ways. 

A main point with the algorithms above is how 
to turn them into algorithms for SBR, which is the 
problem that we would like to solve. The main step in 
this direction is the very nice interpretation of an ACD 
solution in terms of Signed SBR, which is a relevant 
variant of SBR where elements have signs and the 
effect of a reversals is also to flip signs in the reversed 
subsequence. SSBR is in principle closer to the real- 
world genome rearrangement problem, in that genes 
have an orientation which can be represented by signs. 
Nevertheless, this orientation is unknown in most cases, 
and this motivates the interest for SBR. A breakthrough 
result obtained by Hannenhalli and Pevzner [17] is 
that SSBR can be solved in polynomial time. The 
algorithm they proposed was later improved by Berman 
and Hannenhalli [3] and Kaplan, Shamir and Tarjan 
[20], leading to the following 

THEOREM 3.4. ([17], [3], [20]) SSBR can be solved 
in O(n 2) time. 

We omit the description of the relationship between 
ACD solutions and SSBR and their use within our 
algorithms. 

4 Exper imenta l  Resu l t s  

In this section we present the experimental results 
that we carried out to testify the effectiveness of our 
algorithm. We tested both real-world and randomly 
generated instances from the literature. 

Our algorithm was coded in C and ran on a Dig- 
ital Ultimate Workstation 500 MHz, which is approxi- 
mately 2-3 times faster than a PC Pentium 350 MHz. 
The LP solver used is CPLEX 6.0. The solution of the 
Assignment Problems in the column generation phase 
was carried out using a C implementation of the Hun- 
garian method (see e.g. [14]) along the same lines as the 
FORTRAN one by Carpaneto, Martello and Toth [9], 
adapted so as to take care of the sparsity of the cost 
matrix. The min-cost perfect matching code used for 
the solution of LP (2.1), (2.2) and (2.4) is the one by 
Cook and Rohe [11], which is the state-of-the-art for the 
solution of the problem. 

Most of the following subsections will present results 
for random permutations. By random permutation with 
n elements we mean a permutation chosen with uniform 
probability among the n! permutations with n elements. 

4.1 Improvements with the new LP relaxation 
Table I reports the results obtained by solving instances 
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associated with random permutations with our exact 
algorithm and with a variant of it that uses LP relax- 
ation (2.1), (2.2) and (2.4), solving rain-cost (nonbipar- 
tire) perfect matching problems in the column genera- 
tion phase as illustrated in [8]. 

We solved instances up to size 200. For each value 
of n, we report average values over 10 instances. For 
the variant (column old LP) we report the number of 
instances solved to proven optimality within a time limit 
of 1 hour (column # sol), the solution time (time), the 
time spent in the solution of matching problems for 
column generation (match time), the average number of 
nodes considered in the branch-decision tree ( #  nodes) 
and the time spent in the root node (root time), mainly 
for the solution of the LP relaxation. For our algorithm 
(column new LP) we give the same information, in 
particular column AP time reports the time spent in the 
solution of assignment problems for column generation. 
Finally, we report the average ratios between the old 
and new LP relaxation values, before rounding up these 
values. (After rounding up, the lower bound values 
provided by these two LP relaxations turned out to be 
always the same for all the 60 instances tried.) Finally, 
we give in column speed-up the speed-up factor achieved 
by using the new LP relaxation instead of the old one 
for the solution of the LP at the root node. 

Table 1 shows the clear improvement in running 
time (almost one order of magnitude for n ~ 100) 
achieved by using the new LP relaxation, whose lower 
bound value is essentially the same as that of the old 
LP relaxation. 

4.2 Randomly generated instances Table 2 re- 
ports results of our B&P algorithm for random permu- 
tations with n up to 200. For each value of n we ran 
our algorithm on 10 instances, and we report the aver- 
age (maximum) number of singletons in the permuta- 
tion (column #singO, the average (maximum) number 
of reversals in the optimal (or best found) solution ( #  
rev), the number of instances solved to proven optimal- 
ity within a time limit of 1 hour (column # sol), the 
average (maximum) running time (time), the average 
(maximum) time spent at the root node (root time), 
the average time (average percentage over total time) 
for the solution of LPs by CPLEX (LP time), the av- 
erage time (average percentage over total time) for the 
solution of assignment problems in the column genera- 
tion phase (AP time), the average (maximum) number 
of nodes explored in the branch-decision tree ( #  nodes), 
the average (maximum) percentage gap between the op- 
timal (or best found) solution value and the lower bound 
at the root node (root gap). This gap is computed as 
d(Ir)-fb(Ir)-~(Ir)] 

dC~) 

These results show a considerable improvement 
with respect to the previous best algorithm [8], that 
could solve instances with size up to 100, which are now 
solved within 2-3 seconds. Within our time limit of 
1 hour, we can consistently solve to proven optimality 
instances with n up to 200. To our knowledge, real- 
world instances are going to have a much smaller n (see 
also the next subsection), hence we expect our algorithm 
to be able to solve these instances to proven optimality 
within small computing time. 

We tackled larger instances by applying our diving 
heuristic algorithm. The results are given in Table 
3, where the columns have the same meaning as in 
Table 2, with the exception of column final gap, that 
reports the average (maximum) percentage gap between 
the solution found and the LP lower bound. Table 3 
shows that even for instances with n = 500 we can find 
solutions provably within 2% of the optimum in about 
10 minutes. Even if the size of the sample is very small, 
it seems that the running time of our heuristic algorithm 
in practice is basically O(n4). 

4.3 Results  for real-world ins tances  We tested 
our algorithm on the largest real-world instances that 
we could find, which are obtained by comparing the 
genomes of men and mouse, and were given us by Srid- 
har Hannenhalli [16]. The input format is a partially 
signed permutation, meaning that the orientation of 
only part of the genes (namely, 47 out of 138) within 
the genomes is known. From this input we derived two 
instances, one by ignoring the signs of the elements and 
the other by considering the actual partially signed per- 
mutation. Table 4 illustrates the results of our algo- 
rithm on the two instances. The columns given in the 
table have the same meaning as the omonimous columns 
in Table 2. In particular, the minimum number of rever- 
sals is 106 if signs are ignored and 118 if they are taken 
into account. To our knowledge, our algorithm is the 
first one capable of finding a provably optimal solution 
for these two instances. 

Moreover, we obtained from Mathieu Blanchette [5] 
a number of smaller size permutations associated with 
mitochondrial genomes. The size of these permutations 
is much smaller than the man-mouse one above, namely 
eacah permutation has 37 elements. We used our code 
to compute the distances between each pair of permu- 
tations, reported in Table 5, where we also report the 
scientific name of each species associated with the 20 
genomes. The overall time for computing the whole 
table was 4.5 seconds, i.e., an average of about 0.025 
seconds to compare a pair. This shows that, even if 
the problem id NP-hard, the reversal distance for per- 
mutations of this size can be computed very fast, and 
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therefore one may afford computing several times this 
distance within algorithms that  t ry to reconstruct evo- 
lutionary trees (see e.g. [24]). 
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2 0  

old LP 

# sol time (match time) # nodes root time 
25 10 0.01 (0.00) 1.0 0.01 
50 10 0.16 (0.11) 1.0 0.12 
75 10 2.58 (2.19) 3.0 0.84 
i00, 10 21.65 (19.86) 13.2 3.88 
1251 10 133.60 (125.08) 42.5 9.08 

1150 10 251.96 (239.48) 30.8 13.76 
175 6 1919.67 (1783.37) 320.4 24.41 

i200 4 2687.93 (2552.16) 188.8 34.84 

new LP 

# sol time (AP time) # nodes root time 
10 0.01 (0.00) 1.1 0.01 
10 0.07 (0.03) 1.0 0.04 
10 0.52 (0.15) 2.8 0.25 
10 2.78 (0.95) 13.9 0.55 
10 4.83 (1.77) 9.1 1.26 
I0 22.50 (9.53) 32.8 2.23 
I0 400.93 (195.24) 506.7 3.33 
9 956.55 (479.55) 826.0 5.18 

b(x) -e(=) 
b(~r) - c*(~') 

1.OOO 
0.999 
1.000 
1 .OOO 
1.000 
1.000 
1.ooO 
1.ooO 

Table 1: Results with the old and new LP relaxations. Average values over 10 instances. 

speed-up 

1.7 
2.6 
3.3 
7.1 
7.2 
6.2 
7.3 
6.7 

n # singl 
25 19.5 (23) 
5o 42.1 (48) 
75 70.6(75) 
too 95.1 (loo) 
125 120.8 (125) 
150 144.1 (148) 
175 171.0 (173) 
2oo lg6.8 (29o) 

# rev # sol 
16.2 (18) lO 
35.0 (37)  10 
~ . 1  (58) 10 
76.1 (78) 10 
96.6 (98) i0 

116.6 (118) I0 
138.6 (141) 10 
159.1 (160) 9 

t ime root time LP time AP time # nodes root gap 
o.o1 (0.02) 
0.07 (0.12) 
0.52 (1.37) 
2.78 (9.40) 
4.83 (12.52)  

22.50 (84.83) 
400.93 (1769.00) 
956.55 (3600.00) 

o.ot (0.02) 
0.04 (0.08) 
!0.25 (0.32) 
3.55 (0.63) 
t.26 (1.47) 
2.23 (2.80) 
3.33 (4.20) 
5.18 (7.13) 

o.oo (50.0%) 
0.03 (46.2%) 
0.26 (49.7%) 
1.17 (42.3%) 
1.96 (40.6%) 
8.89 (39.5%) 

142.82 (35.6%) 
332.96 (34.8%) 

0.00 (25.0%) 
0.03 (43.6%) 
0.15 (29.6%) 
0.95 (34.3%) 
1.77 (36.7%) 
9.53 (42.3%) 

195.24 (48.7%)1 
479.55 (50.1%)i 

I.i (2)  
1.0 (1)  

2.8 (16) 
13.9 (64) 
9.1 (34) 

32.8 (156) 
506.7 (2341) 
826.0 (3306) 

0.0% (0.0%) 
0.0% (0.0%) 
0.2% (1.8%) 
D.3% (1.4%) 
0.1% (1.0%) 
0.7% (0.9%) 
0.6% (1.4%) 
0.6% (1.2%) 

Table 2: Exact  solution of random permutations. Average (maximum) values over 10 instances. 

. # singl 
100 95.1 (10O) 
2oo 196.8 (2oo) 
300 295.6 (300) 
400 395.0 (400) 
5oo 4 ~ . o  (5oo) 

# rev 
76.5 (79) 

159.5 (100) 
245.3 (247) 
380.2 (333) 
417.5 (422) 

time 
1.10 (1.50) 

16.85 (19.42) 
88.52 (93.75) 

270.43 (287.80) 
649.30 (667.13) 

LP time 
0.47 (43.2%) 
4.74 (28.1%) 
20.28 (22.9%) 
60.73 (22.5%) 
143.32 (22.1%) 

AP time final gap 
0.31 (28.6%) 0.8% (2.5%) 
7.21 (42.8%) 0.9% (1.9%) 

39.51 (44.6%) 1.6% (2.4%) 
123.18 (45.6%) 1.6% (2.1%) 
301.85 (46.5%) 1.9% (2.6%) 

Table 3: Heuristic solution of random permutations. Average (maximum) values over 10 instances. 

instance n # singl # rev time root time LP t ime AP time # nodes root gap 
ignoring signs 138 133 106 10.58 0.45 5.11 4.36 18 1 

partially signed 138 135 118 2.33 0.25 0.60 0.62 1 0 

Table 4: Results for man and mouse genome instances. 
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m i m e  
Ii--.n~aiMm:lw~.~i~]i:iw~im--ii--IRIRi~lW, lW~gw, imai~iiT] E 

iE '~ lw~a- , ,aw~,aw~,aX- , l iUBHm~On - - m R m g H ~  

i ~ a ~ . ~ w ~ , ~ * ~ , . . , . , . w ~ l l ~ l ~ l ~ l ~ ~ ~ ~ ~ [  

i n H H H m m . , . ~ . - u ~ . q ~ . , , - . - , ~ - . ~ , . , , , . ~ . ~ . ~ . H g g H i  

I n ~ H H ~ a i e a m : i H H n o ~ B H H H n H H [  

ll~li~jHnw~:lW~ail:lW~lil,ll~lit]gi~lit,lW~iW~,lltalt,lJ~lE 

iHH I I ID I : IW~ , I I ~ I I : I ~HHOi~ l i~ IW~ lW~lW~I I I I I I ID I I  ~ 
l u a a i ~ r i i a r 4 H H O ~ H o n n ~ m H H H n n ~  

1 Homo Sapiens 
2 Albinaria Coerulea 
3 Arbacia Lixula 
4 Artemia Franciscana 
5 Ascaris Suum 
6 Asterina Pectinifera 
7 BalanogLossus Carnosus 
9 Cepaea Nemoralis 
10 Cyprinus Carpio 
11 Didelphis Virginiana 
12 Drosophila Yakuba 
13 Florometra  Serratissima 
14 Kathar ina  Tunicata 
15 Lumbricus Terrestris 
t6 Onchocerca Volvulus 
17 Polypterus Ornatipinnis 
18 Protopterus  Dolloi 
19 Strongylocentrotus Purpura tus  
20 Struthio Camelus 

Table 5: Mitochondrial genome distances. All permutations have size 37 and the overall time for computing the 
table was 4.5 seconds. 


