A COLUMN-GENERATION BASED
BRANCH-AND-BOUND ALGORITHM
FOR SORTING BY REVERSALS

Alberto Caprara*, Giuseppe Lancia™ and See-Kiong Ng°©
* DEIS, University of Bologna, Italy
T GSIA, Carnegie-Mellon University, USA

¢ Computer Science Department, Carnegie-Mellon University, USA

1 Introduction

Until recently, most evolutionary studies in molecular biology have been based on sequence
alignment, i.e. comparison of single genes to detect local mutations in the sequence of nu-
cleotides. However, in the last few years, we have witnessed an increasing interest in analyzing
entire genomes at once, this way shifting the attention from gene level to chromosome level
(Sankoff et al., [13], Sankoff, [12]). In fact, as it is often found that the order of genes is pre-
served more easily than the DNA sequence (see [3], [14]), looking at genomes instead of DNA
sequences allows one building some otherwise extremely difficult evolutionary scenarios; this is
particularly true for plant mitochondrial DNA, virology and Drosophila genetics. Rearrange-
ment of genomes can occur in many different ways, among which inversions, transpositions,
deletions, insertions and duplications of fragments.

Let the order of the genes in two single-chromosome organisms be given by permutations
m=(m ... mp)and 7 = (71 ... 1) of {1,...,n}. An inversion of the segment comprising the
genes from the i-th to the j-th is represented by the permutation p= (1 ... 1 —1 j ... i j+
1 ... n). We call p a reversal of the interval (i,j). Composition of 7 with p yelds mp =
(m ... Mi—1 W ... T Tj41 ... ™) where genes m;,...,m; have been reversed. The reversal
distance between 7 and 7 is the minimum integer k£ such that there exist reversals pi,..., px
for which mp;...px = T.

Clearly the reversal distance between 7 and 7 equals the reversal distance between 777
and the identity permutation ¢. Sorting a permutation = by reversals (SBR) is the problem of
finding the reversal distance d(m) between 7 and ¢ (and a sequence of reversals p1,.. ., pg(r) for
which 7p1 ... p4(xy = 1)

The algorithmic study of the problem of sorting by reversals has been started by Kececioglu
and Sankoff [11] who gave the first exact and approximation algorithms and also posed a set
of challenging open questions, first of all the computational complexity of the problem. Later
Bafna and Pevzner [1] proved some of their conjectures and developed an approximate algorithm
which yields solutions never worse than 7/4 times the optimum.

Although the major question remains to determine whether sorting by reversals is NP-hard,
recently Hannenhalli and Pevzner [7] surprisingly found that a very similar problem in which
we consider signed permutations is polynomially solvable, and described an O(n*) algorithm for
solving it. A signed permutation 7 is a permutation in which each element is signed either +

or —. In this case a reversal has the effect of both inverting the order of a sequence of elements
and also flipping their signs. This model is more realistic when applied to evolutionary studies
since genes do have an orientation, although this is not always known. The problem of sorting
by reversals a signed permutation 7 amounts to finding a shortest sequence of reversals that
transforms 7 into the signed identity permutation (+1+2 ... +n).

In studying the problem of signed permutations, Hannenhalli and Pevzner were also able
to identify the bottleneck making the unsigned version hard in the presence of elements ;
for which |m; — mi—1| # 1 and |m; — miy1| # 1, called singletons of w. They then proved that
SBR is polynomially solvable when 7 contains O(logn) singletons, and showed that sorting by
reversals is in fact equivalent to finding proper signs for such elements, reducing the problem
to a signed one.

In this paper we present an exact branch—-and-bound algorithm for SBR. Our lower bound
is based on the results of Bafna and Pevzner [1] (see also Kececioglu and Sankoff [11]) where the
reversal distance is related to the number of edge—disjoint cycles in a suitable graph associated
with the permutation. In order to estimate this number we solve a Linear Programming (LP)
problem containing a possibly exponential (in n) number of variables. This LP is solved by using
column generation techniques, which have been shown to be effective for many combinatorial
optimization problems (see [2]). The approach is described in Sections 2.1 and 2.2, where we
prove that the above-mentioned LP is solvable in polynomial time. The branching is based
on signing the singletons of 7, as discussed in detail in Section 2.3. Finally, in order to obtain
upper bounds (feasible solutions) we use a greedy heuristic, also described in section 2.3.

The overall procedure turns out to be very effective; the tightness of the lower bound
obtained by using column generation has allowed us to solve problems of considerable size if
compared to the previous algorithms.

The only exact algorithm so far proposed for SBR and widely computationally tested is
due to Kececioglu and Sankoff [11]. The algorithm was implemented before Hannenhalli and
Pevzner [8] proved some properties which could be used for improving its performance. Ke-
cecioglu and Sankoff report in their paper optimal solutions for problems of up to n = 50
elements. With our algorithm we have been able to solve exactly problems on random permu-
tations with 100 elements, in a matter of a few minutes. Tables with detailed computational
results are reported in Section 3. A promising result at the very beginning of our work was
being able to solve in a few minutes (now in a few seconds) the unsolved 36—element problem
mentioned in [11].

2 The Branch—and—Bound Algorithm

In this section we give a description of the algorithm we use for solving SBR. Subsections 2.1,
2.2 and 2.3 outline the fundamental parts of the algorithm, while Subsection 2.4 gives some
details concerning its actual implementation.

2.1 Lower Bound

The lower bound we compute for SBR is based on a result by Bafna and Pevzner [1], which is
also very closely related to the work of Kececioglu and Sankoff [11].

N

Figure 1: The breakpoint graph G(m) associated with 7 = (4 2 1 3).

Consider the permutation 7 = (71 ... m,), and ideally add to « the elements 7y := 0 and
Tnt1 = n + 1, re—defining 7 := (0 71 ... m, n+ 1). Let the inverse permutation mtof w
be defined by 7r7?i1 =14 for s = 0,...,n + 1. Following the description in [1], we define the
breakpoint graph G(w) = (V,E U F) as follows. Each node v € V represents an element of m,
therefore we let V := {0,...,n+1}. E is the set of red (say) edges, each of the form (m;, m;41),
for all i € {0,...,n} such that |m; — mi+1| # 1, i.e. elements which are in consecutive positions
in 7 but not in the identity permutation o := (01 ... n n+1). Such a pair (m;, m41) is called a
breakpoint of w. F is the set of blue (say) edges, each of the form (i,i+ 1), for alli € {0,...,n}
such that |7} - 7rl-_+11| # 1, i.e. elements which are in consecutive positions in ¢ but not in 7.
Notice that each node 7 € V' has either degree 0, 2 or 4, and has the same number of blue and
red edges incident with it. We let §(i) C E U F denote the set of edges incident with node 4.
Figure 2.1 depicts the breakpoint graph associated with permutation (4 2 1 3).

An alternating cycle of G(m) is a sequence of edges C = {e1, f1,€2, f2,- -+, €m, fm}, where
e € E, fie Ffori=1,...,m; e and f; have a common node for ¢ = j = 1,...,m and for
i=j+1,5=1,...,m (whereey1 :=e€1);ande; # e;, fi # fjfor1 <i<j<m. Anodei eV
such that |6(7) N C| > 0 is called visited by C. For example, edges {(0,4), (4,3),(3,1),(1,0)}
and {(4,2),(2,3),(3,5),(5,4)} form alternating cycles in the graph of Figure 2.1. A cycle
decomposition of G(w) is a collection of edge-disjoint alternating cycles, such that every edge
of G is contained in exactly one cycle of the collection. It is easy to see that G(7) always admits
a cycle decomposition. A cycle decomposition of maximum cardinality is called optimal. In
the graph of Figure 2.1, cycles {(0,4), (4,3),(3,1),(1,0)} and {(4,2),(2,3),(3,5), (5,4)} form
an optimal cycle decomposition. Furthermore, Bafna and Pevzner [1] (see also Kececioglu and
Sankoff [11]) proved the following property.

Theorem 1 ([1], [11]) Let d() be the optimal solution value to SBR for a given m, and let
c(m) be the cardinality of an optimal cycle decomposition of G(w). Then d(w) > |E| — ¢(w).

Therefore |E|—c(m) gives a valid lower bound on the optimal solution value to SBR. In practical
cases this bound turns out to be very tight, and is frequently equal to the optimum, as observed
by Kececioglu and Sankoff [11].

Unfortunatley, we do not know how to compute ¢(w) in polynomial time. Instead, we
compute an upper bound c¢*(7) on ¢(7), and use |E| — ¢*(7) as a valid lower bound on d(m).
For this purpose, let us first state the maximum—cardinality cycle decomposition problem as
the following Integer Linear Programming (ILP) problem. Let C denote the set of all the
alternating cycles of G(7), and for each C' € C introduce a 0-1 decision variable z¢. A possible

ILP model is
¢(m) = max Z zc (1)

ceC
s.t.
Z zc=1 e€eFk (2)
Coe
zc €{0,1} CecC (3)

Constraints (2) ensure that each edge in F is contained in exactly one cycle C such that
zc = 1. It is easy to see that the same will hold for each edge in F', due to the structure
of G(m). In an optimal solution z* to (1)—(3), the set of cycles C' such that 3, = 1 forms a
maximum-—cardinality cycle decomposition.

A valid lower bound ¢*(7) on ¢(7) can be obtained by solving the LP relazation of model
(1)—(3), obtained by substituting constraints (3) with

zc>0 CeC. (4)

(Notice that in the model defined by (1), (2) and (4), z¢ < 1 is trivially implied.) The dual
for LP (1), (2) and (4) reads
min Z Ye (5)
eckE
s.t.

ZyGZI cecC (6)
ecC

where each variable y., e € F, is unconstrained in sign.

Solving the LP relaxation (1), (2) and (4) amounts to solving an LP problem having
|E| = O(n) constraints, and |C| = O(2") variables, i.e. a possibly huge number of variables.
Kececioglu and Sankoff [11] face the same problem with the LP relaxation for the maximum-—
cardinality cycle decomposition of a slightly different graph than G(7). They solve an LP con-
taining only variables associated with cycles up to a fixed length, and use a suitably—defined
correction term so as to obtain an upper bound on the solution value for the LP containing all
the variables.

In fact, due to a result by Grotschel, Lovasz and Schrijver [5] that uses Khachian’s ellipsoid
algorithm [9], LP (1), (2) and (4) can be solved in polynomial time (in n) provided the following
column generation problem is efficiently solvable: given a weight vy, for each e € F, find an
alternating cycle C € C such that

Sur<l, 7
ecC
or prove that none exists. In the next section we describe a polynomial-time algorithm for this
problem, thus proving the following statement.

Proposition 1 LP (1), (2) and (4) can be solved in polynomial time.

We call an alternating cycle satisfying (7) a violated cycle (w.r.t. edge weights y*). Solving
the column generation problem amounts to finding (if any) a negative reduced—cost variable
z¢, with respect to the dual variables y}. The overall LP relaxation can then be solved through
the following scheme:

Figure 2: The graph H(G(w)) associated with m = (4 2 1 3).

procedure SOLVE_LP RELAX;
begin
initialize the LP (1), (2) and (4) by considering only a subset S C C of the variables
(e.g., a heuristically-determined cycle decomposition);
repeat
solve the LP (1), (2) and (4) with variables in S only and let y* be an optimal
dual solution;
for all e € F let y; be the weight of edge e;
if violated cycles exist, find a nonempty subset V of them and let § := SUV
until no violated cycle exists
end.

In practice, solving LP relaxations having an exponential number of variables by column gen-
eration turns out to be a very effective way of approaching many difficult combinatorial opti-
mization problems, see the survey by Barnhart et al. [2].

2.2 Column Generation

The identification of a violated cycle (with respect to y*) in G(7) can be stated as the problem
of finding an alternating cycle of G(7) having weight < 1, where each edge e € FE is given the
weight y2, and each edge f € F is given the weight 0. Notice that edge weights are possibly
negative. We next show how to solve this problem in polynomial time.

Let us call an alternating cycle C simple if |6(i) N C| =0 or 2 for all i € V. Our reduction
starts with a general result, which does not apply only to breakpoint graphs, but to all graphs
with edges of two colors. Let G = (V, E U F') be such a graph.

Consider the following construction, analogous to that used by Grotschel and Pulleyblank
for finding minimum-weight odd and even paths in an undirected graph [6]. Define the graph
H(G) = (Vg UVp,Lg U Lp U Ly) from G as follows. For each node i € V, H(G) contains
2 twin nodes ig,ip. For each red edge (i,j7) € E, H(G) has an edge (ig,jg) € Lg; for each
blue edge (i,j) € F, H(G) has an edge (ip,jr) € Lp. Each edge in Ly U Ly is given the
same weight as its counterpart in G. Finally twin nodes are connected in H(G) by means of
edges (ig,ip) € Ly, for each i € V, each having weight 0. For example, the graph H(G(7))
associated with G(m) in Figure 2.1, is depicted in Figure 2.2.

A matching M of H(G) is a subset of edges of H(G) such that no node of H(G) is incident
with more than one edge in M. The following proposition justifies the use of H(G).

Proposition 2 There is a bijection between perfect matchings of H(G) and (possibly empty)
sets of node—disjoint simple alternating cycles of G.

Proof. To map matchings into cycles, consider a perfect matching M in H(G). If M = Ly,
i.e. M is formed by all the edges of the form (ig,ir), there is no corresponding cycle in G.
Otherwise, consider a node i which is not matched with ¢r. The matching then contains a
sequence of edges of the form (ig, jr),(jr, kr),(kg,lE),. - .,(PF,iFr), such that the corresponding
edges of G form a simple alternating cycle. If we are given a different perfect matching M’ #
Ly, then at least one edge in M' N (Lg U Lp) is not in M; therefore the alternating cycles
corresponding to M and M’ are different. To show the map is onto, consider a set of simple
alternating cycles. For each node ¢ € V which is not spanned by this set, match i with ip,
and match the remaining nodes of H(G) by using the edges in Lg U Ly corresponding to the
edges in the cycles. This way a perfect matching is obtained. O

We have seen that sets of simple cycles in G and perfect matchings in H are equivalent;
however we want to allow also for alternating cycles which go through some of the nodes twice.
Since we are interested in graphs G(m) where each node has degree < 4, for this purpose we
can define a new graph G2 from G by applying the following two steps (fig. 2.2):

i) separation: for each pair 7, j of nodes of degree 4 in G connected by an edge, we introduce
two new nodes, say k, [, between them, and replace the edge (i,) by the equivalent alternating
path (i, k), (k,1),(l,j), where (i,k) and (l,j) have the same color as (i,7). Let G; be the
resulting graph. Note that there is an obvious bijection between the alternating cycles of G
and G1. Also, no two nodes of degree 4 are adjacent in G1.

ii) splitting: for each node of degree 4, we perform the following split operation. Assume the
neighbors of 4 are j, k (through blue edges) and [, m (through red edges); then we introduce a
new node i’ in V and blue edges (7',7), (¢, k). Finally we remove the edge (i, m) and replace
it by a red edge (i’,m). Let us call the graph thus obtained Gs.

Note that for each red edge e of G, either e = (i, m) and e is in G; also, or e = (i',m) and
(i,m) is in G1. From the way splitting is defined, we have a bijection ¢ between red edges of
G1 and G5. Furthermore, it can be easily seen that two red edges €', e" are linked via a blue
edge f in G (i.e. €, f,e” is an alternating path of G7) if and only if their correspondents are
linked via a blue edge in G2. As a final remark, note that all alternating cycles in G4 are simple
as in G5 each node has degree < 3.

Proposition 3 There is a bijection between alternating cycles (simple or not) of G and Gs.

Proof. By our previuos remarks e, e, ..., e, are the consecutive red edges of an alternating
cycle in Go if and only if ¢(e1), p(e2),. .., d(ex) are the consecutive red edges of an alternating
(though not necessarily simple) cycle of G1. Since two different alternating cycles have at least
one different red edge, we get that there is a bijection of alternating cycles of G and G;. Since
there is also a bijection between alternating cycles of G; and G, the claim follows. O

In view of propositions 2 and 3, we can state the following

Figure 3: Separation and Splitting.

Proposition 4 There is a bijection between perfect matchings of H(G2) and (possibly empty)
sets of edge—disjoint alternating cycles of G.

Again, note that to node-disjoint cycles of G there correspond edge-disjoint cycles of G (and
G). Indeed, in G, there are at most two copies of any (blue) edge of G, which are incident
with a common node and therefore cannot be both present in two node—disjoint cycles of Gs.

Having established a correspondence between matchings of H(G2) and sets of alternating
cycles in G, we now turn to considering edge weights. The way we update the weights in
passing from G to Gs is as follows:

i) separation: if the edge e removed is blue, we give weight 0 to all the edges in the new
3—path; if it is red, we give weight y.* to one of the red edges in the new 3—path (arbitrarily
chosen) and weight 0 to the other two new edges.

ii) splitting: referring to the previously described situation, we give weight 0 to the blue
edges (i, j), (', k) and weight y*(; ,) to the red edge (i',m).

It is immediate to see that for any nonempty set S of edge—disjoint alternating cycles of
G and the corresponding matching M of H(G2) we have w(M) = y*(S), where w(M) :=
Yeermr w(e) and y*(S) is the overall weight of the cycles in S. Tt then follows:

Proposition 5 There is one alternating cycle in G of weight < 1 if and only if there exists a
perfect matching M # Ly in H(G3) of weight < 1.

To find such a matching we can proceed as follows. First, we compute a Minimum Weight
Perfect Matching (MWPM) in H(G3). If it does not consist only of edges in Ly, then clearly
it has negative weight and we are done. Otherwise, for each egde e € Ly of weight w(e) < 1/2
(there must be at least one in a cycle of weight < 1) we find a MWPM on H(G32) which includes
edge e. This can be accomplished by removing all other edges in H(G3) incident with e. We
stop as soon as a matching of weight < 1 is found, or otherwise we conclude that no violated
cycle exists.

The size of G5 is greater than the size of G by at most a constant factor. Also, a MPWM can
be solved in polynomial time, and our procedure requires computing at most O(n) MWPMs.
Then Proposition 1 follows when we substitute G(w) for G.

Figure 4: The breakpoint graph G°(n°) associated with 75 = (+4 21 — 3).

2.3 Branching and Heuristics

Our branching and heuristic procedures were inspired by the work on the signed version of
SBR by Kececioglu and Sankoff [10], and further motivated by the recent relevant results of
Hannenhalli and Pevzner [7], [8].

Given 7, call m; a singleton if |m; — mi—1| # 1 and |m; — 41| # 1. Notice that singletons
correspond to nodes of degree 4 in G(7). The signing of a singleton 7; corresponds to imposing a
parity on the number p(7;) of reversals involving element 7; in a solution to SBR. In particular,
we say that m; is signed + if p(m;) has to be even, and that =; is signed — if p(m;) has to be
odd. Hannenhalli and Pevzner [7], [8] proved the following result.

Theorem 2 ([7], [8]) SBR with signs imposed on each singleton can be solved in polynomial
time.

Based on this result, Hannenhalli and Pevzner suggest to solve SBR by finding the optimal
signing to singletons. For this purpose, they propose a simple enumerative algorithm. Our
branch—and-bound implements the same idea in a more effective way.

We follow again the construction in [1]. Given a permutation 79 of n elements where some
singletons are signed, we construct the associated breakpoint graph G° () = (V*, ES U F¥)
from G(7), where 7 is the unsigned counterpart of 7°. In G(), each singleton 7; has incident
red edges (m;, m;—1) and (7;, m11), and incident blue edges (m;, m; — 1) and (;, m; + 1). Initialize
G®(7%) := G(x). For each signed singleton 7; of 7°, perform the following splitting operation
on node ; of G°(7®). In V¥ replace node 7; by nodes 7! and 7. In F*° replace edge (m;, m; —1)
by (n!,7m; — 1) and (m;,7; + 1) by (7, m; + 1). Moreover, if 7; is signed +, in ES replace edge
(mi,mi—1) by (7}, m—1) and (m;, mi1) by (77, mi41). Similarly, if m; is signed —, in E® replace
edge (m;,mi—1) by (n},mi_1) and (m;,mi+1) by (m},mi41). Figure 2.3 depicts the breakpoint
graph G5 (r%), for 7% := (+4 21 —3).

From the results of Bafna and Pevzner [1], Hannenhalli and Pevzner [7], [8], it is immediate
to see that |E°| — ¢%(7°) is a valid lower bound on the optimal solution value to the signed
version of SBR, where ¢® () is the maximum cardinality of a cycle decomposition of G (7).

S

Furthermore, if all singletons are signed in 7%, every node of G°(7°) has degree 0 or 2, and

then there exist a unique (optimal) cycle decomposition, which is trivially determined.

We observe that an optimal cycle decomposition of G(7) gives somehow an indication on
the optimal signing of each singleton, as the following proposition suggests.

Proposition 6 Given a permutation m and a corresponding optimal cycle decomposition of
G(7) of cardinality c(r), it is easy to sign all the singletons so that c°(w) = c(n) for the

resulting signed permutation 75.

Proof. Construct the signed permutation 7° from 7 as follows. Consider each singleton m;
of 7, in turn. If the optimal cycle decomposition for G(7) contains only one alternating cycle
C visiting ;, sign 7 as you like. Otherwise, let C' be the cycle visiting 7; that contains edge
(7, mi—1). If C contains edge (m;, m; — 1), sign m; +, otherwise sign it —. It easy to check that
each cycle in the optimal decomposition for G() has a counterpart in G° (7). a

Therefore, once an optimal cycle decomposition for G(7) is available, it is possible to
construct a signed permutation 7° from , such that the lower bounds on the optimal solution
values to signed SBR for 7 and to (unsigned) SBR for 7 coincide. Hopefully, the signed and
unsigned problems have a same sequence of reversals as an optimal solution.

Our heuristic algorithm works as follows: given the (possibly fractional) solution z* to
the LP relaxation (1), (2) and (4), we greedily sign the singletons by taking into account
this solution, and find a greedy heuristic solution to the corresponding signed problem. Each
singleton ; is signed by considering the cycle C visiting m; having highest value zj. If C
contains all the 4 edges incident with 7;, then any sign is given to ;. Otherwise, 7; is signed
so that C has a counterpart in the graph associated with the signed permutation (see the proof
of Proposition 6).

The branching rule is based on the same idea. If the LP solution is integer (i.e. the cycle
decomposition problem has been solved to optimality), we choose a singleton visited by 2 cycles
in the solution (if any), and generate two subproblems by signing it + and —, respectively. For
one subproblem, the lower bound will be unchanged, according to Proposition 6. For the
other subproblem, one can hopefully have a lower bound increase. If no singleton is visited
by 2 cycles in the solution, we branch by signing any singleton + and —, respectively, with no
bound increase for both subproblems generated.

If the LP solution is fractional (i.e. the cycle decomposition problem has not been solved
yet), we branch by trying to “break” the fractional solution so as to get quickly to an integer
one, hopefully with a lower bound increase on both branches. We use the following simple

property.

Proposition 7 Any alternating cycle C' such that 0 < x7, < 1 in the LP solution, visits at
least one singleton.

We then choose the variable x¢ having value closest to 0.5, consider a singleton 7; in cycle C,
and branch by signing w; + and —, respectively.

Therefore, in the branch decision tree, at the root node we have no signed singleton, at
the intermediate nodes we have a subset of the singletons which are signed, and at the leaf
nodes we have all singletons signed, so that the corresponding problem can be solved efficiently
(without further branching) by the algorithm of Hannenhalli and Pevzner [7], [8].

2.4 Implementation Details

Our algorithm was coded in ANSI C, and ran on a SUN SparcStation 300. We use CPLEX 2.1
as LP solver, which is known as a very fast and robust LP solver, capable of dealing with the
degeneracy problems sometimes arising for the largest instances we solved.

In the column generation phase, we apply a slightly different procedure than that described
in Section 2.2. This procedure is much faster in practice, but possibly returns “degenerate”
violated cycles. More precisely, we construct the arc-weighted directed graph D(w) = (V, A)
from G(7) and from a dual solution y* to (5)—(6), as follows. D(x) has the same node set V
as G(m). For each node pair 4, j € V, D(n) has an arc (4,5) € A if there exists k € V such that
(i,k) € E and (k,j) € F. The arc weight for (i, 7) is given by Y(ik): (In other words, each path
consisting of a red and a blue edge in G() is replaced by an arc in D(7).) It is easy to see that
if D(m) does not contain any cycle having weight < 1, then no violated cycle exists in G().
On the other hand, not all the cycles of D(7) correspond to alternating cycles of G(7), since
they possibly correspond to sequences of edges where some edges appear twice. If all the cycles
of weight < 1 identified in D(7) have this “degenerate” form, the corresponding variables are
added to the LP (1), (2) and (4), which is therefore relaxed. Nevertheless, in practical cases
we typically obtain the same lower bound values as if we used the exact column generation
procedure of Section 2.2.

We briefly describe how we check the existence of cycles having weight < 1 in D(7x). First of
all, we introduce loops in D(r), i.e. arcs of the form (7,7) for all i € V. The weight of the loops
is initially set to 0, and a first Assignment Problem (AP) is solved on the distance matrix of
D(7), checking the existence of negative—weight cycles in D(7). If none is found, we consider
each node of degree 4 in G(7), in turn, set to +oo the weight of the corresponding loop in
D(r), and solve the AP for the new distance matrix. This gives a minimum—weight cycle in
G(7) visiting node i. This new AP need not be solved from scratch, since by starting from the
solution of the first AP (with all loop weights = 0), the computation of an augmenting path
is sufficient. The AP’s are solved by using the code by Carpaneto, Martello and Toth [4], the
complexity of the overall procedure being O(n3).

Our tree exploration in the branch-and-bound algorithm is of best first type, i.e. among
the active subproblems we explore first the “sons” of the subproblem having the lowest lower
bound value. At the root node, we solve LP (1), (2) and (4) starting with a set of variables
given by a heuristically-determined cycle decomposition. Each other subproblem inherits all
the LP variables of its “parent”, apart from those corresponding to cycles eliminated by the
branching constraints.

At the leaf nodes, the signed version of SBR is solved by signing the elements which are not
singletons according to the rules illustrated in [8], and by optimally sorting the (fully—signed)
resulting permutation by using the branch-and-bound algorithm of Kececioglu and Sankoff
[10]. In fact, in our experiments we never reach leaf nodes of the tree.

The heuristic algorithm is applied at every tree node, and sorts a signed permutation with
a sequence of reversals, each randomly chosen among those removing the maximum number
of breakpoints (see [10] for the definition of breakpoint of a signed permutation, and for a
detailed description of the signed problem). Notice that our final aim is sorting an unsigned
permutation, therefore we avoid reversals acting on a single element.

10

n singl | B&B nodes | root gap | B&B time root time
10 | 6.46 1.16 0.06 0.23 s 0.22 s
20 | 16.28 1.08 0.06 1.03 s 0.98 s
30 | 25.68 1.40 0.20 3.67 s 3.27s
40 | 35.82 1.58 0.52 10.79 s 9.32s
50 | 45.96 2.58 0.84 27.58 s 20.81 s
60 | 55.70 2.46 1.18 49.57 s 39.77 s
70 | 66.26 5.28 1.34 1m51.57s | 1m 12.18 s
80 | 75.86 7.58 1.98 3m 23.04s | 1 m 59.97 s
90 | 86.02 10.38 2.48 5m5291s | 3m932s
100 | 95.96 11.66 3.30 9m3.33s | 4m 38.88s

Table 1: Computational results for randomly-generated instances (average values over 50 in-
stances — SUN SparcStation 300 CPU times).

3 Computational Results

As mentioned in the introduction, the algorithm described in the previous section was initially
tested, among others, on the real-world 36-element permutation mentioned in [11]. In that
paper, the authors observed that their exact algorithm was not capable of solving the instance,
yielding an upper bound of 27 and a lower bound of 25 on the optimal solution value. In fact,
in [8] an optimal solution of value 26 is given (without reporting the computing time).

At the very beginning of our implementation, we observed that optimally solving the LP
relaxation (1), (2) and (4), yields a lower bound value of 25, corresponding to a widely fractional
LP solution. After a few branchings, the best lower bound value for the active subproblems
is 26. As soon as we introduced our heuristic algorithm, we were able to find the optimal
solution and proving optimality in a few minutes on a SUN SparcStation 300. With our
current implementation we can solve the problem in a few seconds.

In Table 3 we report computational results for randomly—generated SBR instances, corre-
sponding to permutations where for ¢ = 1,...,n the element 7; is chosen with uniform proba-
bility among {1,...,n} \ {m1,...,m—1}. The entries of the table have the following meaning;:

n is the number of elements in the permutations;
singl is the average number of singletons;

B&B nodes is the average number of subproblems explored by the branch—-and-bound algo-

rithm;
root gap is the average gap between the upper and lower bound values at the root node;
B&B time is the average time needed by the branch—-and—bound algorithm;
root time is the average time spent at the root node of the branch—-and—-bound algorithm.

The average values are over 50 instances for each value of n run on a SUN SparcStation 300. All
the instances were solved to optimality by our algorithm. The computational results compare
favourably with those reported in [11], where not all instances were solved to optimality for
n > 40, in particular no instance was solved for n > 60. Notice that most of the computing

11

time is spent at the root node: it is basically required for solving the initial LP, with a lot

of calls to the column generation procedure. (At the other nodes, the solution of the LP is

considerably faster, since a set of “good” LP variables is available from the previous nodes.)

References

[1]

[10]

[11]

[12]

V. Bafna and P. Pevzner, “Genome Rearrangements and Sorting by Reversals”, Proceed-
ings of the 34th IEEE Symposium on Foundations of Computer Science (1993) 148-157
(to appear on SIAM Journal on Computing).

C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh and P.H. Vance,
“Branch—-and—Price: Column Generation for Solving Huge Integer Programs”, in Math-
ematical Programming: State of the Art 1994 (1994) 186-207, edited by J.R. Birge and
K.G. Murty.

N. Franklin, “Conservation of genome form but not sequence in the transcription antiter-
mination determinants of bacteriophages A, ¢21 and P22”, Journal of Molecular Evolution
181 (1985) 75-84.

G. Carpaneto, S. Martello and P. Toth, “Algorithms and Codes for the Assignment Prob-
lem”, Annals of Operations Research 13 (1988) 193-223.

M. Grotschel, L. Lovasz and A. Schrijver, “The Ellipsoid Method and its Consequences in
Combinatorial Optimization”, Combinatorica 1 (1981), 169-197.

M. Grotschel and W.R. Pulleyblank, “Weakly Bipartite Graphs and the Max—Cut Prob-
lem”, Operations Research Letters 1 (1981) 23-27.

S. Hannenhalli and P. Pevzner, “Transforming Cabbage into Turnip (Polynomial Algo-
rithm for Sorting Signed Permutations by Reversals)”, Proceedings of the 27th Annual
ACM Symposium on the Theory of Computing (1995), to appear.

S. Hannenhalli and P. Pevzner, “Reversals Do Not Cut Long Strips”, Technical Report
CSE-95-006, Department of Compter Science and Engineering, The Pennsylvania State
University, February 1995.

L.G. Khachian, “A Polynomial Algorithm for Linear Programming”, Soviet Mathematics
Doklady 20 (1979) 191-194.

J. Kececioglu and D. Sankoff, “Efficient Bounds for Oriented Chromosome Inversion Dis-
tance”, Proceedings of 5th Annual Symposium on Combinatorial Pattern Matching, Lec-
ture Notes in Computer Science 807 (1994) 307-325, Spinger Verlag.

J. Kececioglu and D. Sankoff, “Exact and Approximation Algorithms for Sorting by Re-
versals, with Application to Genome Rearrangement”, Algorithmica 13 (1995) 180-210.

D. Sankoff, “Analytical approaches to genomic evolution”, Biochimie 75 (1993) 409-413.

12

[13] D. Sankoff, G. Leduc, N. Antoine, B. Paquin, B. F. Lang and R. Cedergren, “Gene order

comparisons for phylogenetic inference: Evolution of the mitochondrial genome”, Proc.
Natl. Acad. Sci. USA 89 (1992) 6575-6579.

[14] G.A. Watterson, W.J. Ewens, T.E. Hall and A. Morgan, “The Chromosome Inversion
Problem”, Journal of Theoretical Biology 99 (1982) 1-7.

13

