Scientific Committee

Chang Ee-Chien (chair)
Martin Henz
Leong Wing Lup, Ben
Frank Stephan
Sung Wing Kin, Ken
Tan Keng Yan, Colin
Overview

• Two aspects in programming/algorithm design
 – Correctness
 – Efficiency: Running times, memory size, etc.

• Roles of *data structure*.
Tasks

1. CARD
2. BESTP
3. SAILING
4. PKMATCH
5. WEATHER
1. Problem
2. Algorithm
 I. Direct implementation
 II. Linked list
 III. Tracking the top-of-array
 IV. Tracking the targeted location
3. Remarks.
Problem description

Given a sequence of re-arrangements to a stack of n cards, and an index k, find the k-th element after all re-arrangements have been applied.
Problem description

Moves: A B A A

↑
Moves: A B A A
Moves: A B A A
Moves: A B A A

1: 2 3 4 5 6
2: 1 3 4 5 6
3: 1 2 4 5 6
4: 1 2 3 5 6
5: 1 2 3 4 6
6: 1 2 3 4 5
Moves: A B A A A
Moves: A B A A

What is the 3rd card from the bottom?
1. Problem
2. Algorithm
 I. Direct implementation
 II. Linked list
 III. Tracking the top-of-array
 IV. Tracking the targeted location
3. Remarks.
Algorithms

Four approaches

I. Direct implementation. (slow*)
II. Using doubly linked list.
III. Keeping track of the top-of-array + circular buffer.
IV. Follow the targeted location -- backward.

* : Able to gain partial marks in this contest.
Given an array S and a move,

If move is “A”,
begin
 temp ← $S[0]$;
 for $i = 1$ to $n-2$, $S[i] ← S[i+1]$;
 $S[n-1] ← temp$;
end

If move is “B”,
begin
 temp ← $S[1]$;
 for $i = 2$ to $n-2$, $S[i] ← S[i+1]$;
 $S[n-1] ← temp$;
end

Number of shifts
(i.e. number of times the operation ← being carried out)

is at least $m \times n$ where m is the number of moves.
II. Using linked list.

Move is “B”

Constant number of operations per move.
III. Tracking the top-of-array

move is “A”

top of array

No shifting! Just modify the top-of-array pointer.

Constant number of operations per move.
move is “B”

top of array

Constant number of operations per move.
The previous method can be viewed as an implementation of linked-list using circular buffer. This data-structure supports constant time insertion/removal of elements near the two ends of the queue. However, there are large fraction of waste space. In the task CARD, the size is fixed and hence no issue on waste space.
IV. Follow the targeted location -- backward

Moves: A B A A
IV. Follow the targeted location -- backward

Moves: A B A A
IV. Follow the targeted location -- backward

Moves: A B A A
IV. Follow the targeted location -- backward

Moves: A B A A
IV. Follow the targeted location -- backward

Moves: A B A A

3 ? ?

↑

? 3 ? ?

? ? ? ?

? ? ? ?
CARD

1. Problem
2. Algorithm
 I. Direct implementation
 II. Linked list
 III. Tracking the top-of-array
 IV. Tracking the targeted location
3. Remarks.
How good is Alice as a card dealer?

Very bad.

When the number of moves m is small, even without knowing the actual moves, from m, one can correctly guess the content in the targeted location with high chance.

How many “shuffles” are suffice for 52 cards?

7 “riffle” shuffles\(^1\).

\(^1\) Brad Mann, *How many times should you shuffle a deck of card?* in Topics in contemporary probability and its applications, 1995.
A popular encryption algorithm RC4 (Rivest Cipher 4) encrypts message in the following way:

1) It first derives a shuffled array based on the short secret key.

2) Next, the message is encrypted using the shuffled array.

(The program ED.c, ED.pas given in Task CIPHER, 2009 NOI is RC4).

Adi Shamir, Ronald Rivest, and Leonard Adleman
Recipients of 2002 Turing award
1. Problem
2. Solutions
 I. Exhaustive Search
 II. Divide-and-conquer
 III. Scanning from left to right
Given a sequence of n integers $b_1, b_2, b_3, \ldots, b_n$, find the maximum value of

$$(b_{i+1} + b_{i+2} + \ldots + b_{j-1} + b_j)$$

among all possible i, j where $i < j$.
2 -1 3 -8

All possible consecutive subsequences and their sum:

Max is 4.
Let \(s_k = b_1 + b_2 + \ldots + b_k \)

\[
\begin{align*}
 s_i &= b_1 + b_2 + \ldots + b_i \\
 s_j &= b_1 + b_2 + \ldots + b_i + b_{i+1} + \ldots + b_j \\
 s_j - s_i &= 0 + b_{i+1} + \ldots + b_j
\end{align*}
\]
Given a sequence $s_0=0, s_1, s_2, s_3, ..., s_n$, find the maximum value of

$$(s_j - s_i)$$

among all possible i, j where $0 \leq i < j \leq n$
BESTP

1. Problem
2. Solutions
 I. Exhaustive Search
 II. Divide-and-conquer
 III. Scanning from left to right
Solutions

Three approaches

I. Three for-loops. Two for-loops. (slow*)
II. Divide-and-conquer.
III. Scanning from left to right.

*: Able to gain partial marks in this contest.
I. Three for-loops, two for-loops

Search all possible i, j’s.

Given a sequence of \(n \) integers \(b_1, b_2, b_3, ..., b_n \), find the maximum value of

\[
(b_{i+1} + b_{i+2} + ... + b_{j-1} + b_j)
\]

among all possible \(i, j \) where \(i < j \).

Number of additions > \((1/8) \ n^3 \)

Given a sequence \(s_0=0, s_1, s_2, s_3, ..., s_n \), find the maximum value of

\[
(s_j - s_i)
\]

among all possible \(i, j \) where \(0 \leq i < j \leq n \)

Number of subtractions > \((1/4) \ n^2 \)
II. Divide-and-conquer

Want to find the i, j s.t $s_j - s_i$ is max.

[Divide] Divide the sequence into two halves.

[Conquer] There are 3 steps corresponding to 3 cases:

- Both s_i, s_j are in the left halve.
 - Recursively find them in the left.

- Both s_i, s_j are in the right halve.
 - Recursively find them in the left.

- Otherwise
 - s_i must be the min in the left. Find it.
 - s_j must be the max in the right. Find it.

[Combine] Choose the largest among the above 3 results.

Running time: $O(n \log n)$. Can be improved to $O(n)$ with some modifications.
Main Idea:
Let \((i, j)\) be the indices corresponds to the max. Then,

1. \(s_i\) must be the minimum among \(\{s_1, s_2, \ldots, s_{j-1}\}\). For each \(j\), let \(M(j)\) be the \(i\) s.t. \(s_i\) is min among \(\{s_1, s_2, \ldots, s_{j-1}\}\).

 So, we can exhaustive try all possible \(j\), and for each \(j\), find \(M(j)\). Nevertheless, the number of operations required is still in \(\Omega(n^2)\).

2. \(M(j-1) \leq M(j)\).

 So, instead of computing \(M(j)\) for each \(j\), we can re-use previous result of \(M(j-1)\).
1. Problem

2. Solution: Dijkstra’s algorithm
 I. with linear search
 II. with binary search tree
 III. with priority queue
Given two grid points S and F and the locations of the obstacles, find the path for the sailing boat Invincible to sail from S to F in the shortest time.

The constrains on the sailing directions w.r.t. the wind direction, the time taken in changing directions and the sailing speed are stated in the task description.
Wind direction

10 mins 10 mins

9 mins 9 mins

15 mins 15 mins

lost 12 mins

invincible
Quick Turn Rescue

Approach in a Close Reach with the MOB downwind or to the leeward side of the boat. Let the jib go and ease the mainsail to adjust speed.
1. Problem

2. Solution: Dijkstra’s algorithm
 I. with linear search
 II. with binary search tree
 III. with priority queue
Possible states of invincible:
 – The location of Invincible, and
 – the direction of Invincible.

Transition Time from state S to state D:
 – Distance of the two locations, and
 – time lost in changing direction.

Weighted Graph:

State ↔ Vertex
Transition time ↔ Edge wt.
Given a weighted graph G and a vertex s, find the shortest path from s to each vertex w in G.

E.W. Dijkstra, 1930 – 2002, recipient of 1972 Turing Award
Given a weighted graph G and a vertex s, find the shortest path from s to each vertex w in G.

E.W. Dijkstra, 1930 – 2002, recipient of 1972 Turing Award
Let T be set of all vertices.
For each v in T, $\text{Dist}[v] \leftarrow \infty$
$\text{Dist}[s] \leftarrow 0$;
Repeat
 Find and remove the v from T where $\text{Dist}[v]$ is smallest.
 For each w adjacent to v,
 $\text{Dist}[w] \leftarrow \min \{ \text{Dist}[w], \text{Dist}[v] + \text{weight of the edge } (v,w) \}$
Until T is empty
// Dist now keeps the length of the shortest path to each vertex

Detailed description of Dijkstra’s algorithm can be found in most algorithm textbooks.
Let T be set of all vertices.
For each v in T, $\text{Dist}[v] \leftarrow \infty$
$\text{Dist}[\text{s}] \leftarrow 0$;
Repeat
Find and remove the v from T where $\text{Dist}[v]$ is smallest.
For each w adjacent to v,
$\text{Dist}[w] \leftarrow \min \{ \text{Dist}[w], \text{Dist}[v] + \text{weight of the edge } (v,w) \}$
Until T is empty
// Dist now keeps the length of the shortest path to each vertex

Detailed description of Dijkstra’s algorithm can be found in most algorithm textbooks.

Note that it requires a data-structure that support:
(1) Extract the element with the smallest value.
(2) Given an element, reduce its value.
Data-structures that supports the above two operations are known as priority queue.
Shortest path algorithm with one of the following as priority queue:

I. Array. Use linear search to find min (slow*)
 Extract min in $\Theta(n)$, reduce key in $\Theta(1)$

II. Binary search tree, heap (fast)
 Extract min in $\Theta(\log n)$, reduce key in $\Theta(\log n)$

III. Fibonacci heap (very fast)
 Introduced by Fredman and Tarjan in 1998.
 Extract min in $\Theta(\log n)$, reduce key in $\Theta(1)$ (amortized time)

* : Able to gain partial marks in this contest.

Robert Tarjan, recipient of 1986 Turing Award, together with John Hopcroft.
1. Problem
2. Solution
 I. Random player
 II. Prioritize the monsters.
 III. Dynamically find the strongest
 IV. Optimal.
I’m going to play a multiple-rounds game with an opponent and I know the opponent’s algorithm. What is my optimal strategy?
A multiple-rounds Card Game
Strength table

<table>
<thead>
<tr>
<th>Elephant</th>
<th>Lion</th>
<th>Cat</th>
<th>Mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table above shows the strength hierarchy among different animals. Elephants are the strongest, followed by lions, cats, and finally mice.
In this task, the strength table is randomly generated in each game.
PKMATCH

1. Problem

2. Solution

I. Random player
II. Prioritize the monsters
III. Dynamically find the strongest
IV. Optimal
I. Random *

II. Before the game starts, derive a sorted list of monsters, starting from the “strongest” down to the “weakest”. In every round, always play the strongest monster among the remaining *.

III. In every round, find the “strongest” monster *.

IV. An optimal strategy.

*: Able to gain partial marks in this contest.
A random player is expected to win around 60% of the games.
II. Prioritize the monsters

Before the game starts, from the table, decide an ordering of the monsters, starting from the strongest. In each round, always plays the strongest monster in the remaining cards.
III. Dynamically choose the strongest

In each round, decides which is the strongest among the remaining cards.

<table>
<thead>
<tr>
<th></th>
<th>Randy</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

- k-o 3 monsters
- k-o 4 monsters
- k-o 2 monsters (2 monsters)
- k-o 2 monsters (2 monsters)
- k-o 1 monsters
IV. Optimal

Probability (I win if I play in the first round) = 0.25 \times \text{Randy plays} \times (\text{chances that I win in the resulting configuration.})

+ 0.25 \times \text{Randy plays} \times (\text{chances that I win in the resulting configuration.})

+ 0.25 \times \text{Randy plays} \times (\text{chances that I win in the resulting configuration.})

+ 0.25 \times \text{Randy plays} \times (\text{chances that I win in the resulting configuration.})

Repeat the above computation for each card.
Play the card with the highest probability of winning.

$$\text{Probability (I win)} = \max \{ \text{Probability (I win if I play Elephant in the first round)}, \text{Probability (I win if I play Dog in the first round)}, \text{Probability (I win if I play Cat in the first round)}, \text{Probability (I win if I play Mouse in the first round)} \}$$
For a “randomly” chosen strength table, the probability of winning is approx 77%.

For this table*,

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

the probability of winning is 79.1% the optimal first move is 4.

*: Note that this table is slightly different from example given in the task description.
WEATHER

1. Problem
2. Solution
3. Remark: DNA sequencing
Problem

- Given the (multi)-set of all length-\(d\) substrings of a string \(S\), find the first and last character in \(S\).
WEATHER

1. Problem
2. Solution
3. Remark: DNA sequencing
Main Idea

Following the hint given in the task description:
Observations:

- The first node: # of edges pointing to it, is less than # of arrows coming out.
- The last node: # of edges pointing to it, is more than # of arrows coming out.

Programming:

- For large \(d \), say \(d = 10 \), the number of nodes is \((26)^{10}\). An algorithm that enumerates all the nodes is not feasible*.
- It is not necessary to explicitly construct the graph.

*: Able to gain partial marks in this contest.
WEATHER

1. Problem
2. Solution
3. Remark: DNA sequencing
Remark

- Although this task can be easily solved, there are many variants of this problem that can be shown to be NP-hard*.

\[P \neq NP \]

- Cook formalized the notion of NP-completeness. He received Turing Award in 1982.

*: The original slides shown during the presentation mistakenly indicated that finding the string S is NP-hard. There is a polynomial time algorithm to find the S.
Remark

This task belongs to a class of “sequencing problems”. Typically, the input of a sequencing problem consists of a set C of short fragments/substrings from a long string. The goal is to find a long string S that is consistent with C.

Applications: DNA sequencing.