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Abstract—The goal of subgraph matching is to determine the
presence of a particular query pattern within a large collection of
data graphs. Despite being a hard problem, subgraph matching
is essential in various disciplines, including bioinformatics, text
matching, and graph retrieval. Although traditional approaches
could provide exact solutions, their computations are known
to be NP-complete, leading to an overwhelmingly querying
latency. While recent neural-based approaches have been shown
to improve the response time, the oversimplified assumption
of the first-order network may neglect the generalisability of
fully capturing patterns in varying sizes, causing the perfor-
mance to drop significantly in datasets in various domains. To
overcome these limitations, this paper proposes xDualSM, a
dual matching neural network model with interleaved diffusion
attention. Specifically, we first embed the structural information
of graphs into different adjacency matrices, which explicitly
capture the intra-graph and cross-graph structures between the
query pattern and the target graph. Then, we introduce a
dual matching network with interleaved diffusion attention to
carefully capture intra-graph and cross-graph information while
reducing computational complexity. Empirically, our proposed
framework not only boosted the speed of subgraph matching
more than 10× compared to the fastest baseline but also achieved
significant improvements of 47.64% in Recall and 34.39% in F1-
score compared to the state-of-the-art approximation approach
on COX2 dataset. In addition, our results are comparable with
exact methods.

Index Terms—subgraph matching, graph neural networks,
graph mining, diffusion attention, matching by embedding

I. INTRODUCTION

Due to the variety of publicly available graph data [1],
significant efforts have been devoted to developing practical
solutions for challenging graph analysis tasks over the past few
decades. Subgraph matching is one of the most widespread
problems when dealing with large data graphs. Given a query
pattern, the goal of subgraph matching is to discover if
the query pattern is isomorphic to a subgraph of a target
graph. Despite the NP-completeness nature of the problem [2],
subgraph matching is an essential task as it lies at the core
of numerous application domains, including object molecular
detection [3], text matching [4]–[6], and graph retrieval [7].
Given the great significance, subgraph matching has received
considerable attention over the last several decades, and nu-
merous approaches have been proposed [3], [8]–[13].

The conventionally exact methods [8]–[10] employ combi-
natorial search algorithms. Although the exact computation of
subgraph matching could yield precise results, its scalability

is severely limited due to the NP-completeness nature of the
problem. More recent approaches [3], [11], [12] accelerate
the searching process by establishing efficient matching orders
and using heuristic filtering mechanisms to reduce the number
of candidates in the data graph. Although these approaches
enable the matching to scale to large target graphs, the query
size cannot extend beyond a few tens of nodes. Therefore,
most exact approaches suffer an overwhelming latency, leading
to significant overheads, which is far from being desirable
required by practical applications [14].

Given the importance, but the huge challenge, of subgraph
matching, approximately neural-based approaches [13], [15]
have been proposed to trade-off between speed and accuracy.
These works demonstrate that by learning a matching function
to approximate the matching metric, it is possible to locate the
candidates for a query pattern more rapidly than traditional
combinatorial approaches. Their learning algorithms heavily
rely on first-order dependency in each layer of the graph
neural network (GNN) architecture [13]. This suggests that
the receptive field of a single GNN layer is limited to one-hop
network neighbors. However, recent research showed that data
obtained from multiple complex systems might exhibit up to
fifth-order dependencies [16] rather than the first-order only.
Oversimplifying the assumption of the first-order network
may neglect the generalisability of fully capturing patterns in
varying sizes, causing the performance to drop significantly in
various domains (see Section VII-D for more detail).

Designing a learning-based method, which can achieve
excellent efficiency while approximating the subgraph match-
ing performance somewhat identical to classical methods, is
notoriously hard. Such an approach induces several fundamen-
tal challenges: (C1) High-order integration: graphs contain
patterns of varying scales that may be unknown beforehand.
The algorithm must capture and utilise structurally high-
order information and features of multiple granularities. (C2)
High computational complexity: although stacking many GNN
layers theoretically has the potential to broaden the receptive
field and learn non-neighboring interactions, such deep GNN
architectures are plagued by the over smoothing issue [17]
and high computational complexity. Cross-graph relation in-
tegration (C3): while cross-graph relations have widely been
proved to enhance performance on many graph analysis [18],
integrating them to enhance performance without compromis-
ing efficiency introduces another critical challenge.
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In this paper, we propose xDualSM, 10X faster subgraph
matching: dual matching networks with interleaved diffusion
attention. xDualSM addresses the three fundamental chal-
lenges for subgraph matching directly. In particular, we first
embed the structural information between the query pattern
and the data graph in two adjacency matrices: the first matrix
represents the purely structural information of the graphs, and
the second matrix represents the structures and their cross-
graph interactions. By constructing these two matrices, we
let our model learn how graph-graph interactions affect the
node embedding during the learning representation. Then we
introduce a novel variant of GNN—the dual matching net-
work with interleaved attention diffusion—that is suitable for
learning both graph presentation and graph-graph interaction
(C3). By adopting the interleaved hop-by-hop schema [19],
we achieve high-receptive field capturing (C1) while reduc-
ing computational complexity (C2). Finally, subtracting each
feature of a target graph and a query graph will highlight the
attention values between the case with and without the cross-
graph interaction, and therefore is adopted for the subgraph
matching task. It is worth noting that the dual matching
network is trained in an end-to-end manner to facilitate the
overall efficiency of the approach.

We summarise our contributions, as well as the structure of
the paper, following some background (Section II), as follows:

• xDualSM Framework: Section III proposes a framework
focuses on efficiently approximating the subgraph match-
ing task. The framework carefully encodes high-order
dependencies to enhance the approximate performance
while greatly reducing computational complexity.

• Construction of proxy inputs: Section IV proposes a map-
ping mechanism to construct new data representations of
the pattern and the data graph. The newly constructed
representations facilitate both intra-graph and cross-graph
representation.

• Dual Matching Network with Interleaved Diffusion At-
tention: Section V proposes a novel variant of GNN—
the dual matching network with interleaved attention
diffusion—that is suitable for learning both graph pre-
sentation and graph-graph interaction.

• Embedding Aggregation: Section VI aggregations the
node embeddings to find the pattern’s embedding. It is
important to note that our model can be adapted to any
matching metric by training its parameters.

In Section VII, we evaluate our approach using public
datasets in various domains. Our proposed framework success-
fully not only boosted the speed of subgraph matching more
than 10× compared to the fastest baseline, but also achieved
significant improvements of 47.64% in Recall and 34.39%
in F1-score compared to NeuroMatch—the state-of-the-art
approximation approach—on the COX2 dataset. In addition,
our results are comparable with exact methods. Finally, we
discuss related works in Section VIII before concluding the
paper in Section IX.

II. BACKGROUND

In this section, we set up a notation and briefly describe our
broad goal in this paper.

A. Preliminaries

This study focuses on labelled, undirected, connected
graphs. However, our framework is readily extensible to di-
rected graphs. We summarised the notations used in the present
study in Table I.

TABLE I: Summary of notation used

Symbol Definition

D a set of data graphs
T the target graph (T ∈ D)
P the query pattern

Ain proxy intra-graph adjacency matrix
Acr proxy cross-graph adjacency matrix
hℓ
i embedding of node vi at ℓ-layer

Hℓ all node embeddings at ℓ-layer
A1 normalised 1-hop attention matrix
AK normalised K-hop attention matrix

DEFINITION 1 (LABELLED GRAPH). A labelled graph, or
simply graph, is a 3-tuple T = (VT , ET , LT ) where

(1) VT is a set of nodes,
(2) ET ⊆ [VT ]

2 is a set of undirected edges (two-sets
of nodes),

(3) LT : VT → Σ assigns labels to nodes, where Σ is a
set of node labels.

We assume the alphabet of labels Σ to be defined as Rl. That
is, labels are l-dimensional real vectors. Next, we define the
notions of a subgraph and a graph isomorphism.

DEFINITION 2 (SUBGRAPH ISOMORPHISM (MATCH)).
Two graphs P = (VP , EP , LP ) and T = (VT , ET , LT )
are isomorphic, if there exists a label-preserving bijection
f : VP → VT :

(1) ∀ v ∈ VP : LP (v) = LT (f(v)), and
(2) ∀ {v1, v2} ∈ EP : {f(v1), f(v2)} ∈ ET .

We consider a graph database as a set of graphs D. The answer
set of a query pattern is then defined as the number of graphs
T ∈ D that contains P as an isomorphic subgraph.

B. Problem statement

Here, we formulate the central problem addressed by our
proposed framework using the notation above.

PROBLEM 1 (SUBGRAPH MATCHING QUERY). Given a
set D of data graphs and a query pattern P , the subgraph
matching query problem is to predict if P is isomorphic to a
graph T in D.

In subsequent sections, we will describe how to create a
neural network architecture for this purpose and explain why
such a design is appropriate for subgraph matching tasks.
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Fig. 1: xDualSM framework. In S1, the query pattern and data graph’s structural information is encoded in two adjacency
matrices. S2 learns both intra-graph and cross-graph representations, while S3 aggregates the features in an end-to-end process.

III. OVERVIEW APPROACH

A. Design Principles

Due to the nature of neural networks, xDualSM has a
significant advantage in terms of efficiency. In terms of effec-
tiveness, however, we must carefully design the neural network
architecture to satisfy the three properties listed below:

• (R1) High-order dependency. Conventional network
models that presume first-order dependency can be lim-
ited [16]. First-order network assumptions can neglect
pattern scalability. Recent investigations reveal that com-
plex system data can include up to fifth-order depen-
dencies [16]. As we move towards a scalable solution
for subgraph matching, high-order dependency represen-
tation becomes a must-have design principle.

• (R2) Cross-graph relation. While it has been well
demonstrated that cross-graph relations improve the per-
formance of various graph [18], combining them to im-
prove performance without sacrificing efficiency is crucial
for a subgraph matching task.

• (R3) Configurability. The model’s parameters should be
trained to match any metric. In some cases, nearly-
matched patterns are more important than exactly-
matched ones. For example, in vaccination development,
the illness-to-be (closely-matched) candidate is more
significant than the exactly diseased pattern (exactly-
matched) since it helps respond to the disease early. In
some scenarios, it is necessary to configure the model to
meet human intuition [14].

B. The Approach

Based on design principles, we propose xDualSM, and its
architecture is revealed in Fig. 1. The approach consists of
three stages:

Stage 1: Construction of proxy inputs. Unlike earlier approx-
imately neural-based approaches [13] that learn the pattern and
the target graph directly from separated adjacency matrices,

our newly created and unified proxy inputs enable capturing
the cross-graph relation (R2), as well as enhancing the learning
process simultaneously. Details of this stage are described
in Section IV.

Stage 2: Dual matching network with interleaved dif-
fusion attention. By adopting the interleaved hop-by-hop
schema [19], we propose a novel variant of GNN—the dual
matching network with interleaved diffusion attention. Our
network achieves high-receptive field capturing (R1) while
significantly reducing computational complexity. We present
the details of this stage in Section V.

Stage 3: Embedding aggregation. To carry out the subgraph
matching process, the final embedding is aggregated. It is
important to note that our model can be adapted to any match-
ing metric such as graph edit distance and graph similarity
estimation [7] by training its parameters (R3). Details of this
stage are presented in Section VI.

IV. CONSTRUCTION OF PROXY INPUTS

This section discusses the main steps by which the original
pattern and the target graph are converted into novel input
representations to facilitate the subsequent stages.

Given a target graph T = {VT , ET , LT }, where we aim
to identify the query pattern P = {VP , EP , LP }. It is worth
noting that LT and LP assign labels to nodes of the target
graph and the query pattern, respectively. The node labels Σ
are in l-dimensional real vectors, where l is the number of
labels. The input for our proposed model consists of three
components: the set of node feature vectors X , the proxy
intra-graph adjacency matrix Ain, and the proxy cross-graph
adjacency matrix Acr. The constructions of each component
are outlined below:

Node feature vectors. Each pattern node or target graph
node is encoded as a 2l-dimension one-hot vector where l
is the maximum number of distinct node labels. The first l
dimensions are preserved for the input pattern, and the rest is
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for the target graph. We separate pattern node features and
graph node features because we desire the model to learn
different embedding of pattern nodes and graph nodes, which
results in better mapping performance. After that, all the node
vectors are put together to form the input set X as follows.

X = {x1, x2, . . . , x|VP |, x|VP |+1, . . . , x|VP |+|VT |} where xi ∈ R2l

(1)

Proxy intra-graph adjacency matrix. The adjacency matrix
Ain is created by flagging intra-graph edges. That means there
are no proxy edges between the pattern and the transaction.
The Ain is formally defined below.

Ain
ij =

{
1 if there is an edge that connects j to i

0 otherwise
(2)

Proxy cross-graph adjacency matrix. As opposed to Ain,
the Acr matrix considers a “proxy” edge between a pattern
node and a target graph node in case they have the same label.
The Acr is defined as follows.

Acr
ij =


Ain

ij if i, j ∈ P or i, j ∈ T
1 if L(i) = L(j) and i ∈ P and j ∈ T,

or if L(i) = L(j) and i ∈ T and j ∈ P
0 otherwise

(3)

Different from other approximately neural-based ap-
proaches [13] that learn the pattern and the target graph
from separated inputs, our newly constructed proxy inputs
accelerate the learning process of the dual matching network,
which is revealed next.

V. DUAL MATCHING NETWORK WITH INTERLEAVED
DIFFUSION ATTENTION

Here, we first present how a single layer of GNN works
(Section V-A), and then we reveal how to incorporate the
interleaved diffusion attention mechanism into each layer
(Section V-B). Finally, we describe how to design a dual
matching network for learning graph nodes representation to
facilitate the subgraph matching task (Section V-C).

A. A Graph Neural Network Layer

A graph neural network (GNN) is similar to a convolutional
neural network (CNN) in terms of weight sharing between ℓ
layers [20]. Each GNN layer computes the hidden features for
the nodes through recursive neighborhood aggregation. Each
node representation derives its features from the previous layer
and from its neighbors to preserve the local structure of the
graph. Stacking of ℓ layers allows the model to learn node
representation from the ℓ-hop neighborhood of the nodes. We,
for simplicity, use the notions Ni, j ∈ Ni to indicate N (vi),
vj ∈ N (vi), respectively.

Data input. Let (P, T ) be a pair of graphs consisting of the
pattern and the target graph. Without loss of generality, we

consider a unified graph G = P∪T . The neighboring relations
between nodes in G are defined by an adjacency matrix A.
Depending on the semantic we desire to capture, adjacency
matrix A can be either Ain or Acr, which is defined in the
previous section. A node vi of G has the node feature xi, and
it is encoded to a d-dimensional hidden feature hi

0 using a
simple linear mapping function before passing it into a graph
neural network:

h0
i = W 0xi + b0 (4)

where W 0 ∈ Rd×2l, b0 ∈ Rd.

GNN Layer. We denote by hℓ
i the feature vector of node i at

the layer ℓ. The new feature vector hℓ+1
i for node i at layer

ℓ+1 is obtained by computing a non-linear transformation to
the feature hi

ℓ and the features hj
ℓ, where nodes j are the

node’s neighborhood i. Such transformation guarantees that
the node representations are invariant to the graph size and
node ordering. Formally, the feature of node i at the next layer
(ℓ+ 1) is defined as:

hℓ+1
i = σ

(
hℓ
Ni

)
(5)

where hℓ
Ni

is the aggregation function from the set of
neighbouring nodes j that points to node i, and σ is an
activation function. The formation of hℓ

Ni
is defined as a

weighted average of the following.

hℓ
Ni

=
∑
j∈Ni

wijh
ℓ
i (6)

For example, in the context of Graph Convolutional Net-
work (GCN [21]), the wij is determined by the degree of the
nodes that the messages coming from (i.e., wij =

√
1
di
.
√

1
dj

).
Instead of using a weighted average mechanism in which the
weights only depend on the number of connections of the
nodes, we adopt a function that calculates the weights. That
function concerns the embeddings of both the source and the
neighboring nodes; this allows the weights to depend on more
than just the number of neighbors but instead should include
anything the embedding could capture, such as data-driven
features or dynamic local structures. Such function is called
the attention function [22], [23], which is revealed next.

B. Interleaved Diffusion Attention Layer

The fixed weighted function for neighbor aggregation in
GNN neglects the generalisation of the representation learning
algorithm, especially for the challenging task like subgraph
matching. Therefore, we propose an attention-based adaptive
aggregation function in this section, to find the optimal weight
from different neighborhood nodes.

Graph Attention. By adopting the attention mechanism, we
replace the weighted aggregation wij in Eq. 6 with an attention
function [24].

hℓ
Ni

=
∑
j∈Ni

a(hℓ
i , h

ℓ
j)× hℓ

i (7)

Authorized licensed use limited to: Stanford University Libraries. Downloaded on January 15,2025 at 08:48:24 UTC from IEEE Xplore.  Restrictions apply. 



where a is a non-linear function learned by a deep neural
network. Formulation of this function is defined as:

eij = a(hℓ
i , h

ℓ
j) = σ(γT .[Whℓ

i ||Whℓ
j ]) (8)

where σ is an activation; γ, W are learnable vector and weight
matrix, respectively. Next, the softmax function normalises
all of the attention coefficients. We also apply the masked
attention, which means that only the nodes j ∈ Ni, where
Ni is the set of neighbor nodes of node i, are taken into
consideration. The normalisation is defined as:

αij = softmaxj(eij) =
exp(eij)∑

j∈Ni
exp(eij)

(9)

Moreover, to strictly strike off the effect of non-neighbor
nodes, we replace the normalised attention values of two nodes
i and j with minus infinity in case there is no edge connecting
i to j. Then, we obtain the 1-hop attention matrix A1 based
on the normalise attention values as follows:

A1 =

{
αij , if there is an edge that connects j to i

−∞, otherwise
(10)

Interleaved Diffusion Attention Layer. Recent studies
showed that data derived from many complex systems could
show up to fifth-order dependencies [16]. After having the 1-
hop attention matrix, we can calculate the K-hop attention
matrix AK to allow the effect of non-neighbor nodes by a
procedure called attention diffusion [22] given in Eq. 11. As
we adopt the idea of interleaved hop-by-hop schema [19], the
K is interleaved (i.e., K = 1, 3, 5, 7..) to increase the receptive
field without compromising the efficiency.

AK =

K∑
i=0

θiAi (11)

where
∑K

i=1 θi = 1 and θi > 0. In Eq. 11), θi is the
attention decay factor in ensuring the further the nodes are,
the less important they acquire. Next, for each node i, we
perform the weighted sum itself with other nodes using the
K-hop attention matrix.

To accelerate the learning process, we vectorise the features
of all input nodes and feed them to the network at once rather
than computing each node separately. As a result, estimating
embeddings for all nodes can be performed efficiently using
sparse matrix operation. The equivalent vector form for the
batch input can be re-written as follows:

InDiff(G,Hℓ,Θ) = AKLN(Hℓ) (12)

where Hℓ is the vector form of all hidden node features and
layer ℓ, and the Θ is the set of paratermers for interleaved
attention computation, and LN is the layer normalisation.
Since we calculate the attention diffusion recursively, the
layer normalisation is added to help stabilise the recurrent
computation procedure [25].

Finally, we apply Multi-head Attention [22] to get different
features from many distinct perspectives. The vectors created

by Multi-head Attention are then concatenated to create the
final node refined feature vectors. The final output of this layer
is defined as:

Hℓ =

(
Mn

m=1

δ.InDiff(m)

)
W =

(
Mn

m=1

δ
(
AK

(m)LN(Hℓ)
))

W

(13)
where M is the number of heads of Multi-head Attention,

AK
(m) is the normalized K-hop attention matrix of head m,

and W is a learnable weight matrix. We called the results
computed from Eq. 13 is the output of a single interleaved
diffusion attention (IDA) layer. The IDA layer is used as
a building block to firm the matching network, which is
presented in the next section.

C. Dual Matching Network with Interleaved Diffusion Atten-
tion

We design a subgraph matching network (SMN) to capture
the relations between the pattern and the target graph. Each
matching network relies on the IDA layer as the building
block, and we stack multiple IDA layers to ensure the general-
isability of the network (we empirically prove that four layers
of IDA are adequate for the matching network in this study).
In addition, as we can capture both intra-graph and cross-
graph relations, we apply a dual matching network based on
two different input representations (in Section IV), and their
computations are as follows.{

Hℓ
in = SMN(X,Ain)

Hℓ
cr = SMN(X,Acr)

(14)

Finally, as we desire to contrast the situation with and
without cross-graph relations, the final output of the dual
matching network is computed as:

Hℓ = Hℓ
cr −Hℓ

in (15)

The final output Hℓ will be aggregated and performed the
matching task in the final stage.

VI. EMBEDDING AGGREGATION

Toward the subgraph matching task, after being refined by
the dual matching network, the node feature vectors from
patterns are then aggregated to produce a representation vector.
This vector is used to decide whether the input pattern is
isomorphism to the target transaction or not through a classifier
containing LFC fully-connected layers. Eq. 16 gives way
how to calculate the representation vector for the pattern, and
equation Eq. 17 defines the formulations behind the classifier.

hℓ
P =

∑
i∈VP

hℓ
i (16)

Here, we employ a deep neural network as the classifier.
More precisely, the computation is outlined as follows.
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{
x
(i)
P = σ(W ix

(i−1)
P + bi), i = 1, LFC − 1

ŷ = σ(W yx
(LFC−1)
P + by)

(17)

where x
(i)
P is the feature of the i-th fully connected layer,

and x
(0)
P is assigned by hℓ

P . Finally, the cross-entropy loss
is integrated, making xDualSM feasible as an end-to-end
learning algorithm.

Loss = − 1

N

N∑
k=1

(yk · log(ŷk) + (1− yk) · log(1− ŷk)) (18)

where ŷk, yk are the predicted output at k-layer and the
ground truth, respectively. Note that our approach is generic
and can incorporate any optimisation problem such as graph
edit distance and graph similarity [7] (satisfying R3).

VII. EXPERIMENT

This section first describes evaluation protocols for
xDualSM, and then conducts experiments on four real-world
datasets to evaluate xDualSM’s performance. Experiments are
designed to specifically address the following research ques-
tions (RQs): RQ1: Does xDualSM outperform the competing
baselines on diverse metrics? RQ2: Is xDualSM efficient
compared to approximate approaches? RQ3: How well does
xDualSM approximate the exact approaches?

Before providing our empirical findings and results, we will
first describe the experimental setup.

A. Experimental Datasets

To evaluate the effectiveness of xDualSM, we conduct
experiments on four real-world datasets1 that are commonly
used in graph mining research [13], [26]–[29]. To evaluate
the generalisation capability of our proposed approach, we
choose datasets that spans a cross various domains including
bioinformatics (KKI [27]), chemical (COX2 [26]), computer
vision (MSRC [29]), and social networks (DBLP [28]). The
summary statistics of four datasets are presented in Table II.

TABLE II: Statistics of the datasets.
Domain Dataset #Graph #Node #Edge
Bioinformatics KKI [27] 83 2.2K 4.0K
Chemical COX2 [26] 467 19.3K 20.3K
Computer Vision MSRC [29] 563 43.64K 111.65K
Social Networks DBLP [28] 19,456 203.90K 381.31K

B. Evaluation protocols

Given a collection of query pattern P to query and a
collection of data graph D, we split P into 60%, 15%, and
25% for training, validation, and testing, respectively. We train
xDualSM and the baselines using the training set and then use
the validation set to select the corresponding parameters.

As it is common in the evaluation of algorithms for the
subgraph matching problem [11]–[13], we examine average
execution time of query sets, which exclude the data loading

1https://chrsmrrs.github.io/datasets/docs/datasets/

time from disks. Besides, we consider the additional five
metrics for evaluating the subgraph search task as follows.

• Precision: The precision is calculated by dividing the
number of true positive query samples by the number
of positively classified queries.

• Recall: The recall is computed by dividing the number
of true positive query samples by the number of positive
ground truth samples.

• Accuracy: The accuracy is defined as the ratio of correctly
classified query samples to the total number of samples,
with true positives rewarded and false positives penalised.

• Weighted F1-score: The score is determined by taking the
harmonic mean of Precision and Recall and weighting it
by the number of true query instances in each class.

• AUC score: The AUC score is a metric for classification
problems with different settings. The higher the AUC
score the model achieves, the better the model is.

C. Baseline techniques
We compare our approach with both exact and approximate

approaches. For exact methods, we implemented six different
representative models, which are outlined below.

• VF2 [8]. This is a state-of-the-art algorithm for exact
matching that uses backtracking as its core.

• QuickSI [9]. This is an algorithm that employs the
infrequent-edge-first ordering technique.

• GraphQL [10]. This is an algorithm that applies the
neighborhood signature filter and left-deep join ordering.

• TurboIso [3] This is a strategy for subgraph isomorphism
search that explores only candidate regions that could be
matched with the query graph.

• CECI [11]. Based on the Compact Embedding Cluster
Index, this approach divides the data graph into many
embedding clusters for parallel processing.

• DAF [12]. This study provides a fast solution for sub-
graph matching that incorporates dynamic programming,
directed acyclic graph (DAG) ordering, and early pruning.

For approximate methods, we adapt NeuralMatch [13],
which is the most recent neural approach for graph matching.
D. End-to-end comparison with neural approximate method

To answer the first question (RQ1) and (RQ2), we assess the
performance of xDualSM in an end-to-end manner, focusing
on six different metrics.

As we are in line with neural-based approaches for subgraph
matching problems, we mainly compare our results with
NeuroMatch [13]—the most recent and state-of-the-art neural
approach for subgraph matching. The results are presented
in Table III. From the results, we can see that xDualSM
outperformed NeuroMatch in four datasets over all employed
metrics. More precisely, while the query excution time is
crucial for contemporary applications, xDualSM achieves an
average improvement of ×8 speedup compared to Neuro-
Match. Moreover, we achieve the execution time that is ×12
and ×13 faster on COX2 and DBLP, respectively.

Considering the importance of matching accuracy, we also
present the results of matching performance using all em-
ployed metrics. Overall, we see that xDualSM outperforms
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Datasets Methods Metrics
Execution time (s/query) AUC score Precision Recall Accuracy F1-score

KKI NeuroMatch 0.00196 0.8652 0.7713 0.8214 0.7956 0.7896
xDualSM 0.00051 0.9799 0.9687 0.9916 0.9799 0.9798

COX2 NeuroMatch 0.00243 0.8837 0.8581 0.5097 0.6395 0.7127
xDualSM 0.00021 0.9835 0.9809 0.9861 0.9835 0.9835

MSRC NeuroMatch 0.00454 0.9851 0.9664 0.9914 0.9787 0.9784
xDualSM 0.00115 0.9956 0.9970 0.9971 0.9969 0.9970

DBLP NeuroMatch 0.00163 0.7357 0.6917 0.6929 0.6923 0.6921
xDualSM 0.00012 0.9663 0.9554 0.9781 0.9667 0.9662

TABLE III: Comparison with the neural-based approximate approach.

Fig. 2: Comparison with traditional exact approaches.

the competing baseline, indicating a solid capacity to match
subgraphs efficiently. Although NeuroMatch presents a com-
parable performance to xDualSM on the MSRC dataset, its
performance significantly drops in other datasets. The reason
could be that without a high-order integration, NeuroMatch
well represent a dense graph like MSRS, while it is less
efficient in sparser datasets. Therefore, xDualSM achieved
significant improvements of 47.64% in Recall and 34.39% in
F1-score compared to NeuroMatch on COX2 dataset. For other
metrics, we achieve an average of 10%-20% improvements to
the baseline.
E. End-to-end comparison with exact methods

To answer the first question (RQ1) and (RQ3), we assess
the performance of xDualSM in an end-to-end manner with
exact methods, employing all metrics in the study.

In this section, we compare the performance of xDualSM
to six representatively exact approaches, and the results are
presented in Fig. 2. Overall, we see that xDualSM achieves
the competitive performance compared to all exact methods
over all datasets. However, our approach’s execution improves
significantly compared with other baselines. More precisely,
it achieved average improvements of ×40 faster than the best
baselines (i.e., GraphQL). We explain the improvement in time
complexity using parameters. Specifically, we define ET as
the number of edges in the target graph, EP as the number

of edges in the query pattern, VT as the number of nodes in
the target graph, and VP as the number of nodes in the query
pattern. Our approach takes O(2K(|ET |+ |EP |)), where K is
the number of GNN layers. In comparison, the best baseline
(GraphQL) has a time complexity of O(|VT |× |EP |)+ |VT |×
|VP | for the simplest pattern. Additionally, many other exact
methods have exponential time complexity to complete the
matching process [3], [9].

VIII. RELATED WORKS

This section briefly presents the related work on subgraph
matching and graph neural networks.

Subgraph matching. The subgraph matching task is an NP-
complete problem [30], and it has attracted a great deal of
research efforts [3], [8]–[13] over the last decades. These
approaches [8] aim to achieve effectiveness in matching orders
and develop robust pruning procedures to reduce the num-
ber of intermediate candidates. QuickSI [9] implements the
infrequent-edge-first ordering strategy, which sorts edges of
the query pattern according to the frequencies with which they
appear in the target graph. Similarly, GraphQL [10] employs
a strategy, namely the left-deep-join ordering strategy, to
model the candidate enumerating process as a joining problem.
TurboIso [3]— a path-based ordering algorithm—provides a
matching order based on the decomposition of the query
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pattern into many pathways and sorting them by estimated
embeddings. Compact Embedding Cluster Index (CECI [11])
is a new framework for listing subgraphs that partitions the
target graph into many embedding clusters to facilitate parallel
processing. DAF [12] provides a novel solution to the subgraph
matching problem by constructing a queryDAG rather than a
spanning tree.

With recent advances in graph neural networks, Neuro-
Match [13] has been proposed to provide a trade-off between
speed and accuracy. However, it relies on the oversimplifying
assumption of first-order network dependency. Therefore, it
neglects the generalisability of fully capturing graphs in vary-
ing sizes, which causes a significant performance drop in many
datasets in various domains.

Graph Neural Network. Graph embedding vectorizes a
graph’s nodes to a numerical representation while preserv-
ing its structure [31]. Techniques for graph embedding can
be classified into three categories: (i) matrix-factorisation
techniques [32], which use the adjacency matrix to learn
the representation through matrix decomposition directly; (ii)
random-walk techniques [33], which do a random walk and
learn the embedding in such a way that the decoder optimises
the co-occurrences of nodes that appeared in the same walk;
(iii) Deep learning techniques, such as graph convolutional
networks [34], capture the attributes assigned to nodes and
the graph’s structure in a single model.

With xDualSM, we contribute a novel variant of GNN—
a dual matching network based on diffusion attention [22].
Unlike existing models, it preserves intra-graph and cross-
graph relations between the query pattern and the target graph.
As a result, xDualSM fully captures high-order dependencies
in graph data, thereby facilitating the accuracy of subgraph
matching while reducing computational complexity.

IX. CONCLUSION

This paper proposes xDualSM, a dual matching network
with interleaved diffusion attention that significantly boosts the
subgraph matching speed. xDualSM comprises of three steps:
1) construction of proxy inputs, 2) dual matching network with
interleaved diffusion attention, and 3) embedding aggregation.
Our experiments were conducted with four real-world datasets
in various domains against seven different baselines, and the
results illustrated that the proposed approach is:

• Efficient: xDualSM achieved the execution time 12× and
13× faster than the best approximate approach on COX2
and DBLP, respectively. In addition, we achieved average
improvements of 40× faster than the best exact baseline.

• Accurate: xDualSM achieved significant improvements
of 47.64% in Recall and 34.39% in F1-score compared to
the best approximate approach on the COX2 dataset while
achieving comparable performance with exact methods.

For future works, we intend to extend our framework to
more universal settings such as graph similarity search, graph
edit distance, and graph retrieval [7].
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