Main Memory Indexing: The Case for BD-tree
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Abstract

In this paper, we adapt and optimize the BD-tree for main memory data processing.
We compare the memory-based BD-tree against the BT-tree and CSB™-tree. We present
cost models for exact match query for these indexes, including L2 cache and translation
lookahead buffer (TLB) miss model and execution time model. We also implemented
these structures and conducted experimental study. Our analytical and experimental
results show that a well tuned BD-tree is superior in most cases.

Index Terms: Main memory databases, BD-tree, B™-tree, CSB™-tree.

1 Introduction

The impact of advances in hardware and main memory capacity is beginning to be felt by the
software community [3, 4, 6, 11].Not only is it possible to store the entirety of a database in
memory now, many algorithms that were designed in the past need to be reexamined. For
example, the memory-based index structure T-tree [9] is no longer attractive because of its low
fanout, poor cache behavior and excessive utilization of pointers. In this paper, we reexamine
the indexing issue in main memory databases.

To improve performance, an indexing structure must facilitate effective use of the L2 caches
and CPU. One promising structure is the CSB*-tree [11] that reduces the cache misses by
storing all the child nodes of any given node contiguously, and keeping only the address of the
first child in each node, thereby increasing the utilization of the cache line. However, while
the CSB™-tree is efficient for range queries, it does not perform well for exact match queries

(compared to hash-based schemes). This is because multiple nodes need to be accessed during



the tree traversal. This prompted us to search for a structure that can combine the benefits
of hashing and tree indexing.

In this paper, we present our solution to facilitate efficient query processing in main memory
environment. We adapted and optimized the Bounded Disorder (BD) method introduced
by Litwin and Lomet [10] for main memory processing. The BD-tree is essentially a B-
tree where the leaf nodes are large-sized partitions, and each leaf node is organized by hash
tables. We evaluated the optimized memory-based BD-tree against the CSB*-tree and B™-
tree analytically and empirically. Our results show that a well-tuned BD-tree outperforms the

other two indexes in most cases.

2 The Memory-based BD-tree

Figure 1 shows the structure of the BD-tree [10], which comprises two tiers. In the first tier, a
hierarchical multi-way tree structure (e.g., B*-tree) range partitions the data. The second tier
begins at the leaf level of the tree, which organizes the data in each leaf node using a hashing

method. Records within a leaf are not ordered.

Bucket 1: 1
Bucket 2: :
Bucket 3: : -
Bucket 4: :

Figure 1: The BD-tree

The BD-tree is efficient for memory-based query processing. First, the leaf node size of a
BD-tree is much larger than that of a B*-tree. This means fewer internal nodes are needed,

i.e. a shorter tree. Therefore fewer cache and TLB! misses are needed during tree traversal.

1The TLB is an essential part of modern processors, which keeps the mapping from logical memory address
to physical memory address.



Moreover, since leaf nodes are organized as hash buckets, only the necessary buckets need to
be searched. This clearly benefits exact match queries. Second, the tree structure essentially
acts as a dynamic range partitioning mechanism, allowing each leaf node to have different
range size. As such, only the necessary leaves need to be examined for range queries.

To optimize the BD-tree for main memory processing, we adapt the hash function with low
computation cost to reduce the CPU overhead of searching the leaf nodes. Since the use of
tree structure essentially acts as a dynamic range partitioning mechanism and the difference
between the numbers of keys in the leaf nodes is bounded, the average performance can be
accurately predicted under the uniformity assumption. Moreover, since data may be skewed
or the hash functions may not distribute the data uniformly within each leaf, we allow each
bucket to have at most k chains (for some integer £k >= 1). In other words, a leaf will
be split only when a new record is to be inserted into a bucket whose k chained buckets
are already full. There are exceptions where the duplicated keys (hash keys) overflow the
chained buckets and no splitting will help. In these cases, we allow more than k£ chains. For
simplicity, we ignore such special cases in our discussion. Since the fanout of a main memory
tree structure is typically small compared to a disk-based index, we can reduce the height of
BD-tree significantly by setting a relatively large leaf size. Within the leaf, we set the bucket
size to correspond to the cache line size. Note that although we can keep the leaf nodes of
a BT-tree/CSB*-tree larger than its internal nodes, a larger leaf node size does not result in
better search performance. Because a large leaf node size also means more cache misses when
the node is accessed, some non-contiguous segments of the leaf need to be loaded into cache
even if we use binary search. For exact match queries in the BD-tree, we only need one cache
miss to access each chain bucket and at most k buckets to be retrieved in leaf level. For range
queries, because the leaf partitions are ordered, we just scan the leaves that overlap the desired
query ranges. To speed up the range query, we store the chained buckets contiguous with the

primary buckets of the leaf in the memory, and hence reduce the TLB misses of scanning.



3 Cost Analysis

To have an insight into the performance of the BT-tree, CSB*-tree and BD-tree, we present
analytical models to evaluate the cost of exact match query, i.e. a cache and TLB misses
model and an execution time model. We model the cost of exact match query as a function
of three variables: number of L2 cache misses, TLB misses and instructions. There are other
factors that affect performance, such as branch mispredictions, instruction cache misses and
L1 data cache misses. However these factors do not play a significant role in determining the
overall cost [3]. The representative parameters used for the analysis are shown in Table 1.
Some of the values were produced by measuring the performance of indexes in the experiment.
And to simplify the analysis, we assume that the buckets in the leaf nodes of the BD-tree have

no overflow chains.

Variable Value Description

¢ 10M the cardinality of the dataset

|k| 4 bytes the size of a key

p| 4 bytes the size of pointer

7| 8 bytes the size of a < key, RID > pair

|| 64 bytes the size of a cache line (UltraSPARC processor)

In| 32-256 bytes the size of a node

|b] 64 bytes the size of a hash bucket

u 70% the average utilization of a node/bucket

d 64 the directory size of leaf partition (the BD-tree)

me 150 cycles the cost of a L2 cache miss

my 100 cycles the cost of a TLB miss

|| 12 bytes the size of metadata in the node of tree

I 40 number of instructions to evaluate a key and calculate
next evaluation position in binary search

Table 1: Parameters for Analysis

3.1 Cache and TLB Miss Model

The L2 cache misses and TLB misses play an important role in the tree operations. For each
node access, there may be several cache misses and one TLB miss for various node sizes (<
virtual memory page size). The node size and tree height are two main parameters in this

cost model. A larger node size implies a shorter tree, and vice versa.
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To determine the height of the tree, we first present the formula for fanout, f.

; KE: |"||klm| +1] : CSBT-tree

|u ||7;c||1||7;|| +1] : Bt-tree/BD-tree

Also with the given size of dataset, the number of leaf node, L is :

fw-| . Bt-tree/CSBT-tree
I — O

[—Smr m 1 : BD-tree

u*d*

Therefore, the height of the tree, h, is given as follows:

h = [log; L +1].

For an exact match query, we must traverse the tree from the root to the leaf to get the
answer. At each level, a child node is determined by a binary search in the parent node, so the
number of L2 cache lines accessed of a node is [(log, (u * n.) + 0.5)], where n, is the number
of cache lines spanned by one node (n. = [||l| 1)- Because we always need to access the first
cache block of the node, we add 0.5 cache miss for each node access.

On the first query of the index, the number of cache misses is the cache lines accessed.
However, there is a higher probability of finding some nodes in the cache for subsequent
queries, e.g. the nodes in the upper levels of the tree are accessed frequently and may always
reside in the cache. Re-accessing of these nodes will result in fewer cache misses. To model
cache misses more efficiently, we use the Cardenas’s formula [5]:

X(n,q) =nx(1-(1-1/n)9),
where X is the number of unique nodes accessed, n is the number of nodes available and q
is the number of queries. Using this formula, the average number of uniquely accessed nodes
for a query, i.e. (Z’q , reduces when we increase the number of queries. We combine the
Cardenas’s formula with the tree structure to determine the number of unique nodes that are
accessed when we traverse the tree. The number of cache misses in the leaf node of BD-tree

is 1 as we assume no chained buckets in the model. Thus we can model the number of cache

misses per query as:

h .
o Ei:lx(n(z)’q)*[;logz(u*nc)w'sﬂ : Bt-tree/CSBT-tree
m = h—1 .
2im; X(n(@).0)+[(log, ((Iu*nc)+0.5ﬂ+X(n(h),q) . BD-tree




where n(7) is the number of nodes at level i in the tree (n(i) = f°!). The model gives the
compulsory cache misses, but not the capacity cache misses [8]. Because the cache size is
finite, eventually some highly accessed cache lines can be replaced after running many queries.
However, with large cache size, these effects are not significant for a first-order approximation.

For an individual query, the number of TLB misses can be equal to the height of the tree,
while the TLB misses may be satisfied from the L2 cache hits and top levels of the tree may
stay cached for subsequent queries. Therefore, the number of the TLB misses, T LB,, can be
much smaller than the tree height and also smaller than C,, because of larger TLB page size.

TLB,, is represented by the following equations:

TLB b a5 | Bi-tree/CSBT-tree
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W"‘l . BD-tree
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Figure 2: The number of cache and TLB misses for a single query

We show the average number of TLB and cache misses for 1000 exact match queries using
the above models in Figure 2. The BT-tree performs worst among these trees. Compared with
the CSB™-tree, the B-tree has a smaller branching factor than the CSB*-tree since it needs
to store more child pointers. Hence, the B*-tree is taller than the CSB*-tree, and incurs more
TLB and cache misses. Not surprisingly, the BD-tree is best because its leaf node (partition)
has more keys, thus the BD-tree is shorter. When we increase the node size, both the number
of cache and TLB misses reduce. The number of cache misses is much smaller than the number

of cache lines accessed, because some of the frequently accessed nodes can reside in the cache.



The number of TLB misses is fewer than that of cache misses when the node size is larger
than 64 bytes, because one node access only incurs one TLB miss but several cache misses
in this case. For the CSB*-tree, when the node size is 64 bytes (cache line size), the number
of cache misses is smallest. For the BT-tree and BD-tree, the optimal node size is 128 bytes.
In all cases, the cache misses do not increase much for larger node sizes. Because the tree is
shorter, more proportional accessed nodes can be resident in the cache, although more cache

lines need to be accessed. The number of cache misses is a compromise of these factors.

3.2 Execution Time Model

The time to execute a single query (Tg) includes computation time (T¢), L2 cache misses time
(Tonr) and TLB misses time (Trppa). Thus, we can estimate the execution time Ty as:
To=Tc +Tom +TriBu-

The above equation ignores the effects of out-of-order execution which can hide a portion
of cache miss latency by continuing to execute the instructions out-of-order on the processor
[3]. It is easy for us to get Toayr and Tprppar because we know the number of TLB and cache
misses from the TLB and cache miss model. We obtain the cost of each TLB and cache miss
using the Calibrator Tool [1], e.g. a L2 cache miss latency m, is 150 cycles and a TLB miss
latency m; is 100 cycles for SUNFire 4800.

The computation cost is the time taken to execute all the instructions for a query. The
number of instructions executed at each level is mainly the binary search inside the node, so

we can give the equation to calculate the number of total instructions I as follows:

T, % ((h = 1) * [logy (u =kl 4+ 1)] + [log, (ux PHml £ 1))+ B-tree

Ig = I ((h—1) * [logy (ux ™ 4+ 1)] + [log, (w24 4+ 1)]) ' CSB*-tree

Iy« ((h— 1) % [log, (u * |"||;Im| + 1)] + [log, (u * % +1)]) : BD-tree

where [, is the number of instructions required to evaluate a key and select the next position
in a binary search. The Perfmon tool [2] can be used to count the number of instructions/cycles
of an evaluation. Hence, we can get the number of instructions for an exact match query using
the above equation. The CPU cycles per instruction (CPI) used in the model is equal to 2.

The number of instructions and total CPU cycles for a query are shown in Figure 3.

7



2000 T T T T T T T T T T T T
6000
1500
2 8
S S, 4000 |-
S 1000 S
E 5
500 | 2000 —
B+-tree — B+-tree —
CSB+-tree ——---- CSB+-tree ——----
BD-tree - BD-tree -
0 L L L 1 0 L L L 1
32 64 96 128 160 192 224 256 32 64 96 128 160 192 224 256
Node Size (Byte) Node Size (Byte)
(a) Instructions (b) CPU cycles

Figure 3: The number of instructions and cycles for a single query

Figure 3 (a) shows the number of instructions executed versus node size per query. The
number of instructions is quite stable when the node size is larger than 64 bytes, because
we execute binary search in each node and the overall computation cost is similar. More
instructions are incurred when the node size is equal to 32 bytes, because the binary search is
not efficient when the node size is too small. The total execution time is the combination of
TLB and cache misses and CPU cost. When the node size is equal to the cache line size, the
CSB™-tree performs best, while 128 bytes is an optimal node size for B*-tree and BD-tree.

Clearly, the BD-tree performs best among these trees, followed by the CSB*-tree and B*-tree.

4 A Performance Study

In this section, we present an experimental evaluation on SUNFire 4800, which has 750MHz
CPU, 16 GB RAM and 8M L2 cache. The dataset we used consists of 10 million unique
integers. The data in the structures consists of < key, pointer > pairs, both 4 bytes long, and
the keys are uniformly distributed. We also conducted sensitivity analysis on the techniques
by varying distributions of datasets, cardinarlity of datasets, and so on. For a full set of of
the experimental study, readers are referred to [7].

The BD-tree has two extra parameters, the number of buckets in leaf and the bucket size.

Our preliminary study to tune these parameters shows that the exact match query performance



of BD-tree improves with a large number of buckets. On the other hand, the large leaf size
may reduce the performance of range queries with small query range. We found that the
performance of tree is near optimal when the leaf has 64 buckets each of size 64 bytes, and
we use it as the default values in our study here. Moreover, we allow at most a chain of two
buckets (i.e., k = 2). All the buckets in a leaf node are allocated in the contiguous memory

space to minimize TLB misses.

4.1 On Exact Match Query

In this experiment, we study the effect of node size on the performance of exact match query
of the various schemes by varying the node size from 32 bytes to 256 bytes. This also serves to
tune the various schemes for optimal settings of node sizes. We conducted 1000 operations of
exact match queries, and recorded their performance. The results are shown in Figure 4 and

it is clear that the performance of the three indexes is consistent with the analytical results.
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Figure 4: Performance of exact match query

Figure 4 (a) shows the overall elapsed time of exact match queries. For all tree-based
schemes, when the node size is too small (e.g, 32 bytes), the fanout becomes so small that it
results in a very tall tree. This leads to more TLB and cache misses as the tree is traversed.
When the node size increases, the number of TLB and cache misses decreases. For the BT -tree,
its optimal performance for exact match queries occurs when the node size is equal to 128

bytes. For the CSB*-tree, we observe that it is optimal when the node size is 64 bytes which is



the cache line size of L2. Same as the B*-tree, the BD-tree yields optimal performance when
the internal node size is equal to 128 bytes. Comparing these various B*-tree based structures,
we see that the CSBT-tree is better than the BT-tree in all cases, but the difference is not
significant when the node size is larger than 128 bytes. This result is consistent with the
findings in the analytical study. The BD-tree performs best and is about 40% better because
of the shorter tree traversal and the efficient bucket access in the leaf level.

In Figure 4 (b), we show the numbers of average cache misses of exact match query, which
were obtained by Perfmon [2]. Because we did not flush the L2 cache after each query and
the L2 cache can be fairly large on modern machines, running many queries on the index will
eventually result in fewer cache misses per query, e.g. some highly accessed cache lines can
always reside in the L2 cache. Note that there is no index node residing in the cache before the
operations. So smaller index size can benefit more from this mechanism as the upper levels of
the tree can always reside in the cache.

Based on the results of the previous experiment, we pick the node size for the BD-tree and
BT-tree to be 128 bytes, the node size for the CSB*-tree to be 64 bytes. These will be used

as the default settings for the subsequent experiments.

4.2 On Range Query

In this experiment, we study the various schemes’ performance on range queries. We vary the
selectivities of the queries ranges from 0.01% to 10% of the total number of keys. The result
is shown in Figure 5 (a). The cost of range queries falls into two parts, tree traversal to locate
the leaf node containing the first record and scanning all leaf nodes that contain the answers.
The CSB*-tree is always better than the B*-tree, because the CSB™-tree can locate the leaf
faster and fewer TLB misses are incurred for scan, as the leaf nodes with the same parent
node are stored sequentially in memory. Although the BD-tree can locate the leaf node much
faster, the disorder within the leaf incurs some additional cost. Therefore, when the range
selectivity is small, e.g. 0.01% selectivity, the BD-tree shows poorer results because it needs
to access the whole leaf. On the other hand, the BD-tree performs as well as the CSB*-tree

and better than the B*-tree when the selectivity is larger than 0.1% in our experiment. Each
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Figure 5: Performance of range query and insertion

leaf node of the BD-tree has much more keys than the other two trees, and hence the scan of

leaf nodes causes fewest TLB misses.

4.3 On Insertion

We also study the insertion performance of the various schemes. Figure 5 (b) shows the result
of 1000 insertion for various node sizes. In all cases, we observe similar performance: the
BD-tree is the most efficient, the CSB™*-tree is the worst and the B*-tree is slightly better
than the CSB*-tree. The CSB*-tree is worse than the B*-tree for the following reasons. The
insertion cost has three parts: search cost, sort cost and the split cost. The split cost of
the CSB*-tree includes copying a complete node group, whereas a node split of the B*-tree
involves creating a new node. The BD-tree performs better than the B*-tree because the leaf
partitions of the BD-tree have much more keys than those of the CSB*-tree and B*-tree, thus
the tree is shorter; at the same time inserting a key within a leaf is also very efficient as we

only need to calculate the hash value and insert the key into the target bucket.

5 Conclusion

In this paper, we have revisited the problem of accessing data in main memory databases. We

adapted and optimized the BD-tree [10] to facilitate fast search in main memory environment.
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The BD-tree taps on the strengths of a hierarchical tree structure to evenly distribute and

range partition the keys (facilitating efficient range queries processing) and the efficiency of

hash-based methods for processing exact match queries. We studied the BD-tree against the

B*-tree and CSB*-tree analytically and empirically. Our results showed that the BD-tree is

a promising index structure for memory-based processing.
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