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Abstract

In many real-world applications, the amount of data avail-
able for training is often limited, and thus inductive bias
and auxiliary knowledge are much needed for regularizing
model training. One popular regularization method is to im-
pose prior distribution assumptions on model parameters, and
many recent works also attempt to regularize training by in-
tegrating external knowledge into specific neurons. However,
existing regularization methods fail to take account of the in-
teraction between connected neuron pairs, which is invalu-
able internal knowledge for adaptive regularization for better
representation learning as training progresses. In this paper,
we explicitly take into account the interaction between con-
nected neurons, and propose an adaptive internal knowledge
driven regularization method, CORR-Reg. The key idea of
CORR-Reg is to give a higher significance weight to con-
nections of more correlated neuron pairs. The significance
weights adaptively identify more important input neurons for
each neuron. Instead of regularizing connection model pa-
rameters with a static strength such as weight decay, CORR-
Reg imposes weaker regularization strength on more sig-
nificant connections. As a consequence, neurons attend to
more informative input features and thus learn more diversi-
fied and discriminative representation. We derive CORR-Reg
with the Bayesian inference framework and propose a novel
optimization algorithm with the Lagrange multiplier method
and Stochastic Gradient Descent. Extensive evaluations on di-
verse benchmark datasets and neural network structures show
that CORR-Reg achieves significant improvement over state-
of-the-art regularization methods.

1 Introduction
Recent years have witnessed significant improvements in
machine learning and data mining technology (Zhang, Ku-
mar, and Ré 2014; Goodfellow et al. 2014; He et al. 2015;
Ooi et al. 2015; Veit, Wilber, and Belongie 2016; Wang et al.
2016). In particular, deep neural networks produce record-
breaking results for a wide range of applications (Wang et al.
2015; He et al. 2016a; Zhang et al. 2018; Yang et al. 2018;
Tay et al. 2018; Luo et al. 2019) due to their unprecedented
model capacity and representation power. The success of
deep neural networks is highly dependent on the availabil-
ity of large amounts of training data (Deng et al. 2009;
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Krizhevsky, Sutskever, and Hinton 2012; Russakovsky et al.
2015). However, in many real-world applications, the train-
ing data is generally limited (Che et al. 2015; Luo et al.
2018). This causes over-fitting and greatly affects the model
performance.
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Figure 1: Significance weight for adaptive regularization.

Regularizing training by integrating auxiliary knowl-
edge (Mesnil et al. 2013; Lample et al. 2016) into the train-
ing of deep neural networks is widely adopted to alleviate
the issue of training with insufficient data. Different tech-
niques of injecting external knowledge into networks have
been proposed, e.g., into the first or the last layer (Srivas-
tava and Salakhutdinov 2013; Che et al. 2015; Tran et al.
2015; Brust and Denzler 2018). These methods are proposed
based on the observation that the meanings of the neurons
of these layers can be linked to external knowledge. While
these methods have been proven to be effective in improv-
ing model training, external knowledge is typically difficult
to obtain, and it requires domain knowledge to transfer such
knowledge to guide the network training.

In the connectionist viewpoint (He et al. 2016b; Ren et al.
2015; Simonyan and Zisserman 2014), neurons are the basic
components in the network to extract features and build up
representation, although the exact interpretation of the ex-
tracted features is intractable. Further, the relation between
neurons pairs, e.g., their correlation, is a strong indicator
of the representation learning process and can be obtained
and exploited during training. This leads us to the following
question: Can we exploit internal knowledge of the network
during the training process to regularize training?

To answer this question, we examine the interaction be-



tween neurons in the network and based on the correlation
of the neuron connection, we propose CORR-Reg, an adap-
tive knowledge driven regularization method, to adaptively
integrate such internal knowledge into the model to regular-
ize training. The proposed regularization method is derived
from the Bayesian inference framework by introducing the
correlation knowledge to the prior distribution of the con-
nection weights.

The effect of CORR-Reg is illustrated in Figure 1. We
introduce the significance weight, which is positively cor-
related with the absolute value of the correlation between
neurons, to discriminate the importance of incoming con-
nections for each neuron. On the left of Figure 1, each row
shows the relative significance weights of the four input neu-
rons for a given output neuron of the current layer. The key
idea of CORR-Reg is to impose weaker regularization on
connections of a higher significance weight, so that neu-
rons can attend to more important input features adaptively
and thus extract more diversified and discriminative features.
We illustrate the adaptive regularization with CORR-Reg on
the right side of Figure 1, where a thick connection indi-
cates a higher significance weight and weaker regularization
strength correspondingly.

The benefits of CORR-Reg can be understood from the
perspective of representation learning (Bengio, Courville,
and Vincent 2013). During the model training process, each
neuron performs feature extraction and learns higher-level
representation from input neurons in the preceding layer.
Correlation measures the degree of the dependence of the
neuron on its input neurons. Consequently, discriminating
the strength of regularization based on such correlation
guides neurons in learning more discriminative representa-
tions by focusing on those more informative neurons. Mean-
while, the adaptive regularization strength help neurons at-
tend to different subsets of input neurons, which prevent
neurons from learning redundant representation (Srivastava
et al. 2014; Cogswell et al. 2015; Zhu, Zhou, and Li 2018).

We derive CORR-Reg with the Bayesian inference frame-
work and propose a novel optimization algorithm with the
Lagrange multiplier method and Stochastic Gradient De-
scent (SGD). Extensive evaluations on diverse benchmark
datasets and neural network structures show that CORR-Reg
achieves significant improvement over existing regulariza-
tion methods. We summarize our contributions as follows:

• We propose a general adaptive knowledge driven regular-
ization method based on correlation, CORR-Reg, to inte-
grate internal knowledge into neural networks for better
representation learning.

• We design an efficient algorithm to update significance
weights by applying the Lagrange multiplier method and
update the model parameters via SGD. The proposed al-
gorithm effectively updates the two sets of parameters al-
ternately.

• We conduct extensive experiments on real-world bench-
mark datasets and various neural network structures. Re-
sults show that our proposed CORR-Reg regularization
achieves consistently better performance than state-of-
the-art regularization methods.

2 Related Work
2.1 Regularization Methods for Neural Networks
The most representative regularization method is weight de-
cay (Wang, Sun, and Liu 2016) that corresponds to the Gaus-
sian prior on model parameters (Williams 1995; Kneib, Kon-
rath, and Fahrmeir 2011), which imposes L2 norm regular-
ization on model parameters (Krogh and Hertz 1991). An-
other common regularization method is L1-norm regular-
ization (Williams 1995; Meinshausen and Bühlmann 2006),
which corresponds to a Laplacian prior on model param-
eters and leads to sparse models. Max-norm regulariza-
tion (Srebro, Rennie, and Jaakkola 2005; Lee et al. 2010;
Srebro and Shraibman 2005) regularizes the values of the
model parameters similar to L1-norm and L2-norm regular-
ization by constraining the norm of model parameters to be
bounded by a constant. Dropout (Hinton et al. 2012; Srivas-
tava et al. 2014) regularizes the neural networks by chang-
ing the model architecture instead of constraining the val-
ues of the model parameters. Dropout is arguably the most
effective and widely adopted regularization method for neu-
ral networks. These regularization methods impose the same
regularization strength over the model parameters. In con-
trast, our proposed CORR-Reg imposes customized regu-
larization strengths on different model parameters by taking
account of the correlation knowledge.

2.2 Incorporating Knowledge for Regularizing
Neural Networks

One of the first methods that incorporate knowledge to reg-
ularize deep neural networks is introduced in (Srivastava
and Salakhutdinov 2013), where tree hierarchy knowledge
is used to impose a prior regularization over the model pa-
rameters of the topmost layer of the deep neural network.
Similarly, (Che et al. 2015) makes use of medical ontology
knowledge to regularize the model parameters of the top-
most layer. Different from (Che et al. 2015), (Tran et al.
2015) introduce knowledge to the first layer of the deep
neural network for healthcare applications. These methods
make use of knowledge which is limited to specific applica-
tion domains, e.g., healthcare or image recognition. In (Che
et al. 2015), a Laplacian graph-based prior framework is de-
signed to incorporate any relational information that can be
represented as a weighted graph, e.g., co-occurrence, which
is general to different application domains. (Brust and Den-
zler 2018) makes use of WordNet and encodes the properties
of class hierarchy into a probabilistic model for regularizing
the deep neural network. Since WordNet is a general lexical
database for English, this method is also general to different
application domains.

Existing methods incorporate knowledge into either the
first or the topmost layer of the deep neural networks be-
cause the neurons of these two layers can be linked to the
knowledge. For hidden layers, since the neurons are higher-
level abstractions of preceding layers, the existing methods
can not be readily used to incorporate knowledge. Also, ex-
ternal knowledge is typically difficult to obtain and these
methods require domain knowledge to transfer such knowl-
edge to guide the model training. Different from existing



methods, the adaptive knowledge driven regularization in
our paper is designed to integrate internal knowledge into
the hidden layers of the network as a general regularization
method.

3 Bayesian Interpretation of Regularization
In this paper, we propose to exploit correlation knowl-
edge by integrating it into the model regularization dur-
ing training based on the Bayesian inference framework.
Before introducing our approach, we first briefly describe
the Bayesian viewpoint of understanding of the regulariza-
tion. In Bayesian inference, regularization corresponds to a
prior distribution over the model parameters w. According
to Bayes’ theorem, the posterior probability of model param-
eters w is p(w|D) = p(D|w)p(w)/p(D). Here, D denotes
the observed data, w denotes the model parameters, p(D|w)
is the likelihood function and p(D) is a constant. Model pa-
rameters w are typically estimated via maximum a posteri-
ori (MAP) estimation (Kneib, Konrath, and Fahrmeir 2011),
which is formulated as wMAP = argmin

w
(− log p(D|w)−

log p(w)). The term log p(w) is the log of model param-
eter prior distribution, and it is typically interpreted as the
regularization term. In our work, we assume p(w) is re-
lated to the correlation between neuron pairs, and based on
this assumption, we derive a knowledge driven regulariza-
tion method with correlation as the internal knowledge.

4 Adaptive Knowledge Driven
Regularization

Our main intuition is that the correlation of activation values
of neurons from adjacent transformation layers can be in-
terpreted as the relative importance of their connection. The
rationale to exploit the correlation as a regularization term is
that a higher correlation of the connection between neuron
pairs indicates that the output neuron is more dependent on
the corresponding input neuron, and thus a relatively smaller
regularization strength should be imposed.

To exploit the correlation as the internal knowledge to reg-
ularize training, we introduce a variable significance weight
to the prior distribution of the model parameters. The sig-
nificance weight θi,j between the i-th output neuron Oi in
the current layer and the j-th input neuron Ij in the pre-
ceding layer represents the importance of Ij to Oi. During
the model training process, each output neuron Oi extracts
higher-level representations from the J input neurons, i.e.,
the J input neurons contribute as a group to the learning
of neuron Oi. Based on this observation, we place the con-
straints of θi,j ≥ 0 and

∑J
j=1 θi,j = 1 to discriminate the

relative importance of different input neurons adaptively.
Therefore, significance weights correspond naturally to the
parameters of Multinomial distribution.

Since correlation captures the importance between neu-
rons of adjacent layers, it can be informative to learn the
significance weights

−→
θ i for each neuron Oi. In order to in-

corporate correlation knowledge for learning
−→
θ i, we pro-

pose to take advantage of the conjugate prior for θi,j , i.e.,

Dirichlet distribution Dir(
−→
θ i|−→α i), by setting the hyperpa-

rameters −→α i with the correlation information adaptively.
In the remainder of this section, we will introduce the de-

signed prior distribution for model parameters and the resul-
tant overall loss function in detail.

4.1 Correlation Regularization Term
Prior Distribution for Model parameters The prior dis-
tribution is designed to capture the relation between neurons
from adjacent layers via the significance weight. Given the
significance weight θi,j and the model parameter wi,j that
connects the output neuron Oi with the input neuron Ij , we
define the generation probability of model parameters −→w i

that connect Oi with all the J input neurons as follows:

p(−→w i|
−→
θ i) = C

J∏
j=1

{θ
λw2
i,j

i,j }, (1)

where C is the normalization coefficient, and λ is the hy-
perparameter that controls the regularization strength of
model parameter wi,j . This equation can be written as
C
∏J
j=1{exp(− 1

2 (
wi,j

1√
−2λ log (θi,j)

)2)}, which shows the prior

distribution for model parameter wi,j is a Gaussian distribu-
tion with variance 1

−2λ log (θi,j)
. Note that the variance of the

Gaussian distribution is different for different model param-
eterswi,j , depending on the significance weight θi,j , leading
to the adaptive Gaussian distribution. To be specific, if Ij is
significant to Oi, which is indicated by a larger significance
weight θi,j , the variance of the Gaussian prior distribution,
namely, 1

−2λ log (θi,j)
, is relatively larger.

To incorporate correlation for learning θi,j , Dirichlet dis-
tribution, which is the conjugate prior for θi,j is employed
and the joint distribution for −→w i,

−→
θ i of Oi then can be for-

mulated as:

p(−→w i,
−→
θ i|−→α i) = p(−→w i|

−→
θ i)p(

−→
θ i|−→α i), (2)

where p(
−→
θ i|−→α i) is the Dirichlet distribution Dir(

−→
θ i|−→α i).

The hyperparameter −→α i is designed to integrate the correla-
tion knowledge via:

−→α i = 1 + λβ−→r i, (3)

where β is used to trade off between correlation −→r i and
model parameters −→w i, which will be explained in the fol-
lowing sections. Thereby, correlation −→r i is designed to be
positively correlated with both −→α i and therefore

−→
θ i. To be

specific, a larger value of a specific dimension in −→r i leads
to a larger value in the corresponding dimension in −→α i and
further

−→
θ i. The intuition of integrating the internal corre-

lation knowledge in such a way is that we want to impose
weaker regularization on the model parameter wi,j if the
corresponding connection is more important, which is mea-
sured by the significance weight θi,j .



Calculation of Correlation For −→r i of neuron Oi, each
dimension is a normalized correlation value, and each ri,m
is calculated by:

ri,m =
|corri,m|∑J
j=1{|corri,j |}

, (4)

where corri,j is the Pearson correlation value between Oi
and Ij . In CORR-Reg, correlation is calculated batch-wise.
We use N to denote the batch size, for each mini-batch,
we obtain N pairs of activation values for neurons Oi and
Ij . Thus, the correlation between Oi and Ij can be calcu-
lated using the N pairs of activation values. However, cal-
culating the correlation batch-wise is not stable. To allevi-
ate this issue, we propose to use the exponential moving
average: corri,j = γcorri,j + (1 − γ)corr curri,j , where
corr curri,j is the correlation value calculated by using the
current mini-batch. corri,j is initialized to zero and accu-
mulates the correlation values calculated from each mini-
batch. Empirically, we set γ to a large value, e.g., 0.9, so
that corri,j is less sensitive to recent changes and returns
relatively stable values.

Overall Loss Function Deriving the loss function from
the MAP estimation over model parameters w, we obtain:

G = − log p(D|w)−
I∑
i=1

{log p(−→w i,
−→
θ i|−→α i)}, (5)

where I is the number of all output neurons. For Equation 5,
the first term is the negative log-likelihood function, and the
second term is the correlation regularization term.

4.2 Optimization for CORR-Reg
For CORR-Reg method, both model parameters w and sig-
nificance weights

−→
θ i of Oi need to be updated. We propose

to update both of them jointly from the joint distribution de-
fined in Equation 5. Specifically, given the updated value of
the model parameters w, by maximizing the joint distribu-
tion with respect to significance weights

−→
θ i, we can obtain

the updated value for
−→
θ i. Subsequently, we can use the up-

dated
−→
θ i to further optimize the model parameters w. This

process suggests a natural alternate update algorithm over w
and
−→
θ i until convergence.

For model parameters, SGD is used as the update method,
which is a conventional method for updating parameters of
different models; for significance weights, since the condi-
tion

∑J
j=1 θi,j = 1 must be satisfied, Lagrange multiplier

method is therefore adopted. In this section, we introduce
the calculation of the model parameter gradient and the up-
date equations for significance weights.

Gradient Descent for Model Parameters When signifi-
cance weights

−→
θ i of Oi are fixed, gradient descent method

is adopted to update model parameters w. According to
Equation 5, the gradient for wi,j with respect to loss G is

∂G

∂wi,j
=
∂ − log p(D|w)

∂wi,j
− 2λ log(θi,j)wi,j . (6)

Equation 6 shows CORR-Reg imposes a regularization
similar to L2-norm regularization. Since θi,j indicates the
importance of Ij to Oi, the strength of the regularization on
wi,j is thus related to the importance weight. Specifically,
the larger the significance weight θi,j is, the weaker the reg-
ularization for wi,j . In other words, CORR-Reg tends to im-
pose weaker regularization on the model parameter wi,j for
more important input neurons.

Update for Significance Weights After the model param-
eters are updated, the significance weights

−→
θ i of Oi are

updated in turn. Since the condition
∑J
j=1 θi,j = 1 must

be satisfied, Lagrange multiplier is introduced to the overall
loss function. We introduce µi as the Lagrange multiplier for
−→
θ i. The Lagrangian of the loss function is

L = G+

I∑
i=1

{µi(
J∑
j=1

θi,j − 1)}. (7)

After setting the gradient of θi,m and µiwith respect to L to
zero, we can get

θi,m =
(αi,m − 1) + λw2

i,m∑J
j=1{(αi,j − 1) + λw2

i,j}
. (8)

Equation 8 shows the significance weight of Im to Oi is
determined by two factors. The first is αi,m, which is posi-
tively correlated with the absolute value of the correlation
between Im and Oi. The second is the model parameter
wi,m. Specifically, a larger value of w2

i,m leads to a larger
value of θi,m, which indicates that Im is more significant to
Oi. θi,m is then used to determine the strength of regulariza-
tion.

4.3 Lazy Update for CORR-Reg
The update of significance weights is time-consuming be-
cause it involves calculation of correlation values. In order
to reduce the overall computational costs, we devise a lazy
update algorithm. The key idea is that both correlation val-
ues and significance weights do not change too much after
the first few epochs. As a result, they do not need to be cal-
culated every epoch after the first few epochs. Algorithm 1
shows the overall procedure for updating model parameters
and significance weights with lazy update.

A denotes the Dirichlet hyperparameters for all the hid-
den neurons, which is related to the correlation knowledge.
Θ denotes the significance weights for all hidden neurons
and is uniformly initialized. lr is the learning rate for SGD.
E is the number of the first few epochs without lazy update,
and B is the number of mini-batches in the training dataset.
Ts is the update interval for updating significance weights
and it trades off between computational time and model per-
formance. A larger Ts decreases the overall computational
time while typically leads to lower model performance. Em-
pirically, E is set to 3 and Ts is set to 10.

Algorithm 1 first calculates the gradients for model pa-
rameters using Equation 6 and updates Θ using Equation 8.
SGD is then used to update the model parameters w of the
neural network by backpropagation. Note that in line 6, the
update of significance weights Θ, which involves the calcu-
lation of correlation values, is carried out every Ts iterations
instead of each iteration to reduce the computational cost.



Algorithm 1 Lazy Update for CORR-Reg
Input: w, A, Θ, lr,E,B, Ts

1: initialize: it← 0, epoch it← 0

2: while not converged do
3: Compute ∂−log p(D|w)

∂w

4: Compute ∂G
∂w based on Equation 6

5: if epoch it < E or it mod Ts = 0 then
6: Compute Θ for all hidden neurons based on Equation 8
7: end if

/* SGD step */
8: w(it+1) ← w(it) − lr ∂G∂w
9: it← it+ 1

10: if it mod B = 0 then
11: epoch it← epoch it+ 1

12: end if
13: end while

4.4 Analysis and Discussion
In each iteration, with fixed significance weights Θ, CORR-
Reg reduces to L2-Reg with different customized regular-
ization strengths for different model parameters. But instead
of manually designing the regularization strength for each
model parameter prior to training, we propose to learn an
adaptive regularization strength for each model parameter
using the correlation knowledge during training.

In terms of efficiency, compared with L2-Reg, the ma-
jority of the extra computational overhead of CORR-Reg
comes from the calculation of correlation. With lazy up-
date, the overall computation time is on par with other ex-
isting regularization methods. During inference, CORR-Reg
incurs no additional computational overhead.

Layer Name 25% ofE 50% ofE 75% ofE 100% ofE
MNIST-AE-1 96.59% 95.76% 95.91% 95.47%
MNIST-AE-3 97.27% 95.70% 95.31% 96.68%
MNIST-AE-5 96.83% 97.17% 97.02% 96.68%

MIMIC-III-MLP-0 94.28% 92.87% 91.20% 90.71%

Table 1: Ratio of pairs of neurons with t-values exceeding
the critical values.

5 Experiments
This section evaluates the effectiveness of our CORR-
Reg with diverse benchmark datasets and neural networks.
The baseline regularization methods include L1-norm reg-
ularization (L1-reg) (Williams 1995), L2-norm regular-
ization (L2-reg) (Hastie, Tibshirani, and Friedman 2001),
Maxnorm (Srebro, Rennie, and Jaakkola 2005; Lee et al.
2010; Srebro and Shraibman 2005) and Dropout (Hinton
et al. 2012; Srivastava et al. 2014). To understand the adap-
tive regularization of CORR-Reg, we also visualize the
model parameter distribution during training.

5.1 Datasets
• MNIST Dataset 1: This is a public database of handwrit-

ten digits which consists of 70000 28 × 28 images in 10

1http://yann.lecun.com/exdb/mnist/

classes. The training and test datasets contain 60000 and
10000 images respectively.

• CIFAR-10 Dataset2: This is a public benchmark image
classification dataset which consists of 60000 32 × 32
colour images in 10 classes, with 6000 images per class.
There are 50000 training and 10000 test images.

• MIMIC-III Dataset (Johnson et al. 2016): This is a pub-
lic benchmark dataset that includes various types of med-
ical features of the patients. We study an 80-class classi-
fication problem that predicts the diagnoses of a patient
given the medical history of 90 days. This dataset con-
sists of 16248 samples, which we divide into 12379 sam-
ples for training and 3869 samples for testing. Each of
the samples has 4351 features. We transform the irregular
medical time series data into a regular one through resam-
pling the data into 9 disjoint windows, taking the counts
of the features within each 10-day window.

• Sentence Polarity Dataset (Pang and Lee 2005): This
is a public benchmark dataset for sentiment analysis. It
includes both positive and negative processed sentences,
where each sentence is labeled with its overall sentiment
polarity. We perform a binary classification task of senti-
ment analysis on this dataset. Each sentence is a sample
with 5229 features and there are 5788 training samples
and 1809 test samples.
Among the four datasets, MNIST and CIFAR-10 are stan-

dard benchmark image datasets on which mainstream NNs
are evaluated. MIMIC-III and Sentence Polarity are datasets
of real-world healthcare and natural language processing ap-
plications, which consist of complex raw features and re-
quire sophisticated NNs that are prone to overfitting.

5.2 Neural Network Configurations
Four types of neural network models are employed in the
experiment. The first type is a simple Multilayer percep-
tron (MLP) model with two hidden layers of size 128. The
second type is a Long short-term memory (LSTM) model
with two hidden layers of size 128. The third type is a com-
plex deep AutoEncoder (AE) with hidden layers of size 256,
128, 64, 32, 16, 32, 64, 128, 256. The last type corresponds
to deep convolutional neural networks including LeNet and
VGG. For LeNet, we construct a seven layer neural network
according to (LeCun et al. 1998). The VGG model adopted
has 16 weight layers (i.e., configurations D in (Simonyan
and Zisserman 2014)). CORR-Reg is imposed on the model
parameters between the hidden fully-connected layers.

In all experiments, the optimizer is SGD with a momen-
tum of 0.9. The batch size is 128. We adopt training epochs
500 for MLP and LSTM, 200 for autoencoder and LeNet,
and 300 for VGG.

5.3 Evaluation Metrics
For classification tasks on MNIST and CIFAR-10 datasets,
we use error rate, the ratio of incorrect predictions, to mea-
sure the model performance. For the unsupervised learn-
ing task on MNIST dataset, we use mean squared error as

2https://www.cs.toronto.edu/∼kriz/cifar.html



Model Metric L1-Reg L2-Reg Maxnorm Dropout CORR-Reg
MNIST-MLP Error Rate (%) 1.95± 0.01 1.95± 0.01 1.94± 0.01 1.90± 0.03 1.74± 0.01
MNIST-LeNet Error Rate (%) 0.88± 0.01 0.80± 0.01 0.80± 0.01 0.67± 0.02 0.59± 0.01

MNIST-AE Reconstruction Error 8655.21± 2.69 8648.91± 1.81 8650.00± 3.76 8637.92± 2.58 8619.99± 0.93
CIFAR-10-VGG Error Rate (%) 6.32± 0.04 6.21± 0.03 6.29± 0.06 6.23± 0.07 5.77± 0.05

Table 2: Performance comparison on benchmark image datasets.

Model Metric L1-Reg L2-Reg Maxnorm Dropout CORR-Reg
MIMIC-III-MLP AUC (%) 86.19± 0.03 85.90± 0.01 86.22± 0.07 86.32± 0.02 86.92± 0.04

MIMIC-III-LSTM AUC (%) 86.10± 0.05 86.05± 0.02 85.95± 0.06 86.19± 0.05 86.60± 0.02
Sentence-Polarity-MLP AUC (%) 83.27± 0.05 82.42± 0.01 83.22± 0.06 83.14± 0.01 83.55± 0.03

Sentence-Polarity-LSTM AUC (%) 83.47± 0.13 83.38± 0.08 83.08± 0.12 84.06± 0.13 84.56± 0.07

Table 3: Performance comparison on real-world applications.

the Reconstruction Error (RE) to measure the model perfor-
mance. For both error rate and reconstruction error, smaller
values indicate better performance. While for MIMIC-III
and Sentence Polarity datasets, AUC (Area Under the ROC
Curve) computed across all outputs is used as the evaluation
metric, and larger AUC values indicate better performance.
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Figure 2: The distribution of VPR for bottom and top model
parameters in MNIST-AE-7 and MIMIC-III-MLP-0.

5.4 Stability of Correlation Knowledge
Firstly, we conduct experiments to show that throughout the
training process the correlation values between hidden lay-
ers are stable. At every quarter of the total training epochs
E, we fix the trained model and feed the training data to the
fixed trained model batch-wise. For each mini-batch, we can
calculate a correlation value, corr curri,j , for each pair of
the neurons. Denoting B as the number of mini-batches in
the training set, for each pair with Oi and Ij , we can obtain
B correlation values. Then, we perform a hypothesis test-
ing on these B number of correlation values, to show that
the correlation values are statistically significant instead of
noises centered at zero.

The null hypothesis is that the mean of the B correla-
tion values is zero. The significance level is set to 5%. We
use t-values for the B correlation values for each neuron
pair. Table 1 shows the ratio of pairs of neurons whose
t-values exceed the critical values, i.e., whose correlation
values’ mean is significantly non-zero, on two representa-
tive models, namely deep autoencode on MNIST dataset

(MNIST-AE) and MLP on MIMIC-III dataset (MIMIC-III-
MLP). We denote the layers as ”<dataset name>-<model
name>-<layer number>”. From the table, we can observe
that throughout the training process, the correlation values of
most pairs of neurons are not zero mean noises. Further, the
ratio is stable. This confirms our assumption that correlation
values between neurons exist and are stable, which means
that such internal knowledge can be exploited to regularize
the model training.

5.5 Comparison on Benchmark Image Dataset
In this section, we compare our CORR-Reg method with
four state-of-the-art regularization methods, namely, L1-
Reg, L2-Reg, Maxnorm and Dropout, on MNIST and
CIFAR-10 datasets. For MNIST, we perform supervised
learning tasks using MLP and LeNet and an unsupervised
learning task using deep autoencoder. In this experiment,
for both error rate and reconstruction error, the smaller the
value, the better the performance. The results over three runs
are summarized in Table 2. In this table, the best results
are in bold and the second best results are underlined. As
shown in the table, L1-Reg and L2-Reg achieve similar re-
sults since both of these two regularization methods add a
regularization term which imposes the same strength of reg-
ularization for different model parameters prior to training.
Dropout performs the best among the baseline regulariza-
tion methods in three out of four models. CORR-Reg out-
performs dropout consistently in all the models. This result
confirms the superiority of our adaptive regularization which
incorporates correlation knowledge to impose adaptive cus-
tomized regularization on the model parameters.

5.6 Comparison on Real-World Applications
In this section, we compare different regularization methods
on two real-world applications, namely, disease prediction
and sentence polarity prediction. For these two applications,
the larger the AUC, the better the performance. The results
are summarized in Table 3. For the LSTM model, the in-
put sequence lengths for MIMIC-III dataset and Sentence
Polarity datasets are 9 and 25 respectively. As can be ob-
served from the table, LSTM performs better than MLP in
the sentence polarity dataset. The reason is that the sentence
polarity prediction task aims to predict the sentiment label of



CORR-Reg L2-Reg

Layer Name Bottom Avg VPR Top Avg VPR Avg VPR Dist Bottom Avg VPR Top Avg VPR Avg VPR Dist
MNIST-AE-1 40.28% 61.43% 21.15% 41.82% 58.58% 16.76%
MNIST-AE-3 31.27% 76.95% 45.68% 31.62% 75.14% 43.52%
MNIST-AE-5 36.40% 66.44% 30.04% 37.58% 65.44% 27.86%
MNIST-AE-7 43.46% 57.29% 13.83% 45.70% 55.54% 9.84%

MIMIC-III-MLP-0 37.34% 68.08% 30.74% 44.02% 60.64% 16.62%

Table 4: Average VPR for bottom and top model parameters.

a sentence according to the word sequence of the sentence.
As a result, LSTM, which is designed for dealing with se-
quential data input, performs better in such a learning task.
In terms of the comparison among different regularization
methods, we observe a consistent improvement of CORR-
Reg over the other four state-of-the-art regularization meth-
ods, which is in line with the observations in Table 2 and
again confirms the effectiveness of our knowledge-driven
adaptive regularization method.

5.7 Effects of Adaptive Regularization
To verify that CORR-Reg imposes adaptive customized reg-
ularization on the model parameters during training, we vi-
sualize the model parameter distribution for MNIST-AE and
MIMIC-III-MLP. At the last epoch of training, we take out
the model parameters and the correlation values between the
hidden layers. For each model parameter, there is a corre-
sponding correlation value, defined in Equation 4, between
the two neurons it connects. For the model parameters from
the same layer, we obtain two percentile ranks for each of
them. The first, denoted as Value Percentile Rank (VPR),
is the percentile rank of the absolute value of the model pa-
rameter. The second, denoted as Correlation Percentile Rank
(CPR), is the percentile rank of the corresponding correla-
tion value. In each layer, we denote the model parameters
that fall in the bottom 25% CPR as bottom model parame-
ters and the top 25% as top model parameters. For the bot-
tom and top model parameters, the distribution of their VPR
for two representative layers is shown in Figure 2. In this
figure, we divide VPR, which ranges from 0 to 1, into 20
bins. Each point shows the percentage of model parameters
whose VPR values fall into the corresponding bin. We first
focus on the VPR distributions of bottom model parameters.
As can be observed, the percentage of model parameters de-
creases quickly as VPR increases. This is expected since for
the bottom model parameters, their corresponding correla-
tion values are smaller and thus they are imposed stronger
regularization. As a consequence, most of the bottom model
parameters have small VPR. The distribution of top model
parameters shows a reversed trend, and the explanation is
the opposite.

To further verify the effects of the correlation-based
regularization, we show in Table 4 the average VPR
for bottom and top model parameters, denoted as
Bottom Avg VPR and Top Avg VPR respectively, and their
distance (i.e., Top Avg VPR - Bottom Avg VPR), denoted
as Avg VPR Dist, for both neural networks with CORR-
Reg and neural networks with L2-Reg that imposes the

same regularization strength on all model parameters. As
can be observed from Table 4, one key observation is that
the Avg VPR Dist of CORR-Reg is significantly larger than
that of L2-Reg. This can be attributed to the fact that with
CORR-Reg, bottom model parameters receive stronger reg-
ularization whereas top model parameters receive weaker
regularization, which further confirms that the correlation
knowledge is exploited to impose customized regularization
on model parameters.
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Figure 3: Performance for different λ and β values.

5.8 Effectiveness of Hyperparameters
As shown in Equations 3 and 8, both λ and β controls the
learning of significance weights. In this section, we investi-
gate the effect of λ and β on the model training. Figure 3
shows the performance for different combinations of λ and
β values on MNIST-AE and MIMIC-III-MLP. We can ob-
serve that CORR-Reg with smaller λ values performs better
than the one with larger λ values. While a large λ, e.g., 100
and 1000, also hurts the model’s performance. This is due to
the fact that a larger λ incurs excessive regularization, which
restricts model capacity and representation learning. While
for β, we can observe that as long as the value is between
0.001 and 10, the results are promising.

6 Conclusion
In this paper, we propose an adaptive knowledge driven reg-
ularization method based on correlation, called CORR-Reg,
to incorporate internal knowledge into deep neural networks.
An efficient algorithm is designed to update significance
weights by applying the Lagrange multiplier method and up-
date model parameters via SGD. Experiments show that our
CORR-Reg regularization achieves consistently better per-
formance than existing state-of-the-art regularization meth-
ods for diverse neural networks.
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