
Answering Similarity Queries in Peer-to-Peer

Networks ?

Panos Kalnis ∗ Wee Siong Ng Beng Chin Ooi Kian-Lee Tan

Department of Computer Science

National University of Singapore

3 Science Drive 2, 117543 Singapore

Abstract

A variety of Peer-to-Peer (P2P) systems for sharing digital information are currently
available and most of them perform searching by exact key matching. In this paper
we focus on similarity searching and describe FuzzyPeer, a generic broadcast-based
P2P system which supports a wide range of fuzzy queries. As a case study we
present an image retrieval application implemented on top of FuzzyPeer. Users
provide sample images whose sets of features are propagated through the peers.
The answer consists of the top-k most similar images within the query horizon. In
our system the participation of peers is ad-hoc and dynamic, their functionality is
symmetric and there is no centralized index.

In order to avoid flooding the network with messages, we develop a technique
that takes advantage of the fuzzy nature of the queries. Specifically, some queries
are “frozen” inside the network, and are satisfied by the streaming results of similar
queries that are already running. We describe several optimization techniques for
single and multiple-attribute queries, and study their tradeoffs. We evaluate the
performance of our algorithms by a prototype implementation on our P2P platform
and a simulated large-scale network. Our results suggest that by reusing the existing
streams, the scalability of the system improves both in terms of number of nodes
and query throughput.
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1 Introduction

Peer-to-Peer (P2P) technology has recently attracted a lot of attention, since
it allows the implementation of large distributed repositories of digital infor-
mation. In a P2P system numerous nodes of equal roles are connected through
an arbitrary network and exchange data or services directly with each other.
Many P2P systems follow a semi-centralized (or hybrid [23]) architecture (e.g.,
Napster [3]), where queries are posed to a centralized index although the data
and services are distributed. Despite their advantages, hybrid systems inherit
the drawbacks of centralized architectures.

As an alternative, several fully distributed (or pure P2P) systems have been
proposed. In this case there is no centralized catalogue or functionality; in-
stead, peers are individually contacted and return the results they contain.
There are two major subcategories of pure P2P systems: (i) Hash-based sys-
tems (e.g. Chord [20], CAN [17] and Pastry [18]), which assign a unique key
to each file and forward queries to specific nodes based on a hash function.
Although they guarantee the location of content within a bounded number
of hops, they require tight control of the data placement and the topology
of the network. (ii) Broadcast-based systems (e.g., Gnutella [1]), which use
message-flooding to propagate queries. There is no specific destination; hence
every neighbor peer is contacted and forwards the message to its own neigh-
bors until the message’s lifetime expires. Such systems have been successfully
employed in practice to form large-scale ad-hoc networks. Here we assume a
pure P2P, broadcast-based architecture.

Most existing systems support only boolean query evaluation. Each file is
characterized by its metadata (i.e., a set of keywords) and queries ask for
combinations of keywords. Consider for instance a music sharing system. Users
ask for a song title, or a combination of an artist and album name. Such queries
can be unambiguously evaluated as “found” or “not found” by searching the
metadata for matching keywords.

In this paper we investigate a different problem: Users ask fuzzy queries like
“find the top-k images which are similar to a given sample”. Such queries are
common in image retrieval systems (e.g., QBIC [14]) because it is difficult
for humans to express precisely an image’s content in keywords. Since there
is no centralized index, each peer within the query horizon is contacted and
returns k results (i.e., the top-k local images) to the initiator, which, in turn,
computes the global result. Unfortunately, the extremely low selectivity of
such queries floods the network with useless messages. An alternative solution
is to set a threshold similarity and accept answers only above this value. The
issue in this case is how to select the query-dependant threshold given that the
interpretation of an image depends on the user’s perception; if the threshold
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is too low, there is no benefit in terms of transmitted messages while, if it is
too high, there is the risk of wasting the query messages without locating any
satisfactory answer. Moreover, this method would not reduce the number of
query messages which grows exponentially with the number of hops.

Observe, however, that due to the fuzzy nature of the queries, the answers
are always approximations. As a result, if two queries are similar, the top-
k answers for the first one may contain (with high probability) some of the
answers for the second query. In addition, in P2P networks each peer can ex-
amine the messages that pass through it. Motivated by these observations, we
developed FuzzyPeer, a generic P2P system which supports similarity queries.
In FuzzyPeer some of the queries are paused (i.e., they are not propagated fur-
ther) and stay resident inside a set of peers. We use the term frozen for such
queries. The frozen queries are answered by the stream of results that passes
through the peers, and was initiated by the remaining running queries. By
carefully selecting the set of queries that will be answered from the streaming
data, the quality of the results and the response time remain at acceptable
levels even when the system is overloaded. Additionally, the number of mes-
sages drops considerably, thus improving the scalability and the throughput of
the network. Moreover, our optimization algorithms do not pose any overhead
due to synchronization messages.

Although throughout this paper we focus on image retrieval, our methods
are applicable to other domains where similarity searching is performed in
P2P networks; as an example, consider the case of text retrieval. Moreover,
the network topology does not need to be flat. For instance, given a two-level
super-peer organization (e.g., Morpheus [2]) we can apply the same techniques
at the upper level which contains the index of its clients, rendering the entire
system more scalable.

The rest of the paper is organized as follows: Section 2 contains some essential
background. In Section 3 we describe the architecture of our prototype, while
in Section 4 we analyze our proposed techniques. Section 5 presents an ex-
tensive experimental evaluation of the system and Section 6 summarizes the
paper.

2 Related Work

Research in the P2P area was triggered by the apparent success of systems like
Napster [3], Gnutella [1] and Freenet [6]. Napster is a hybrid system since it
maintains a centralized index which is used for searching; a detailed evaluation
of various hybrid architectures can be found in Ref. [23]. Gnutella, on the other
hand, is a pure P2P system and performs searching by Breadth-First-Traversal
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(BFT ) of the nodes around the initiator peer. Each peer that receives a query
propagates it to all of its neighbors up to a maximum of d hops. The advantage
of BFT is that by exploring a significant part of the network, it increases the
probability of satisfying the query. The disadvantage is the overloading of the
network with unnecessary messages. Alternatively, Freenet uses Depth-First-
Traversal (DFT ) up to depth d. Each node forwards the query to a single
neighbor and waits for a response before contacting the next one. DFT saves
messages, but increases the response time (i.e., exponential to d in the worst
case).

Yang and Garcia-Molina [24] observed that the Gnutella protocol could be
modified in order to reduce the number of nodes that receive a query, with-
out compromising the quality of the results. They proposed three techniques:
(i) Iterative Deeping 1 , where multiple BFTs are initiated with successively
larger depth di. (ii) Directed BFT, where queries are propagated only to a
beneficial subset of the neighbors of each node. This method is extended in [7]
by maintaining summarized information of the neighbors’ contents. A similar
approach [13], [10] reconfigures dynamically the structure of the network, in
order to create clusters of compatible nodes. (iii) Local Indices, where each
node maintains an index over the data of all peers within r hops of itself. An
analogous technique is used in Ref. [25], the only difference being that local
indices are kept only in a subset of powerful nodes called super-peers. All three
techniques are orthogonal to our methods and can be employed in our system
in order to further reduce the query cost.

Recently, there have been efforts to support complex queries in Distributed
Hash Table systems. In Ref. [19] the authors describe a distributed cache built
on top of CAN [17]; the system, however, is limited to range queries over a glob-
ally known schema. Closer to our work is the pSearch system [21] which sup-
ports similarity search for text files. Documents are characterized by feature
vectors which are stored in a CAN network as multi-dimensional points. CAN,
however, cannot handle efficiently high dimensional spaces; therefore, pSearch
uses several heuristics to decrease the dimensionality. Although hash-based
systems minimize bandwidth consumption during query processing, they re-
quire tight control on the contents of each peer and exhibit considerable over-
head when nodes enter and leave the network frequently. Therefore, they are
more suitable for intranets, where peers belong to the same organization and
are relatively stable.

Our work is also related to the optimization of continuous queries over stream-
ing data. Similar to the NiagaraCQ [5] and the CACQ [12] system, our goal is
to minimize the total cost by sharing the work of multiple concurrent queries.
These systems assume that there is an existing infinite data stream and all

1 In Ref. [24] the term “frozen queries” has different meaning.

4



the queries are processed at a centralized location. In our case the streams are
results from queries which have already been propagated. Therefore, we need
to optimize the number of streams we initiate, taking into consideration that
the lifetime of the queries is limited therefore the streams are finite. Moreover,
the optimization process is distributed over all peers within the query horizon.

In addition to single-feature searching, FuzzyPeer supports multiple feature
queries [8]. The intuition of processing such queries is that the answers are
constructed by combining sequential access to sorted single-feature streams
with random access to the original sources [4]. Here we also employ the idea
of random accesses; our problem is different, however, since we cannot assume
sorted data streams.

Since we study the special case of image retrieval, this work is also relevant
to centralized multimedia database systems like QBIC [14] and Photobook
[16], which use feature vectors to represent images. Here, we employ the
Daubechies’ wavelet feature vector [22], a compact representation of images
which is suitable for querying by example. Note that the Daubechies’ transfor-
mation was chosen for illustration purposes only. Other representations may
be more appropriate in different applications and can be easily incorporated
in our system.

3 System Description

Figure 1 depicts a typical FuzzyPeer network. It consists of 8 peers which
are connected through a set of links. Each link represents an active TCP/IP
connection and is independent of the physical network layer’s structure. Con-
nections are symmetric, meaning that if a peer Pi is a neighbor of Pj then
Pj is also a neighbor of Pi. Ideally, each peer P should be connected to all
others since this would maximize its search space. However, there is a tradeoff
because connections consume system resources and also cause more messages
to be processed by P . Since the system is heterogeneous both in terms of
bandwidth and processing power, powerful peers with fast links are typically
connected to more neighbors. This is common in most P2P systems. For ex-
ample, Gnutella implementations allow up to 4 neighbors for peers with slow
connections, while powerful peers may have tens of neighbors.

Participation in the network is dynamic; each peer can join or leave the sys-
tem at any time. When a peer enters the network, it contacts a location
independent global name lookup (LIGLO) server [13] to get a set of potential
neighbors; then it employs a Gnutella-like protocol [1] to connect. Except from
LIGLO servers, the system is fully distributed. Furthermore, LIGLO servers
are not involved in the query processing and can be completely eliminated if
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Fig. 1. A Typical FuzzyPeer network

the set of initial neighbors can be otherwise determined; for instance, peers
on the same segment of a LAN may connect to each other.

Let the user of P1 ask a query q: “find the top-10 images which are similar
to a given sketch”. P1 will broadcast q to P2 and P3. The receiving nodes will
search their databases and return the ids of the top-10 most similar images
together with a similarity measure to P1. At the same time they will broadcast
q to their neighbors. For example, P2 will send q to P3 (which will reject the
duplicate message) and P4. Notice that P4 will return the results through P2.
Queries can propagate for up to a maximum number of hops d. Assuming that
d = 3, the query cannot reach P6. P1 waits for up to MaxWaitT ime; during
this interval it receives the answers and continuously refines the result. After
MaxWaitT ime expires, any answer message that reaches P1 is rejected.

Assume now that soon after P1, P3 also submits a query q′ which is similar
to q. In a traditional P2P system q′ propagates through P2 the same way
as q. q′ causes messages to pass through P2 almost simultaneously with the
messages generated by q. Therefore, P2 is overloaded and all messages are
delayed. If the delay is long enough, MaxWaitT ime expires causing q and q′

to terminate before they receive enough useful results. Notice, however, that
we can do better: When q passes through P2 it initiates an answer stream
Streamq. All the answers from P4, P5, P7 and P8 will go through Streamq.
When q′ reaches P2 the system can identify that q and q′ are similar, so instead
of been propagated, q′ will freeze inside P2 and will be attached to Streamq. P2

will afterwards duplicate and sent to P3 all answers that reach Streamq. The
intuition is that since q and q′ are similar, their answers are also similar and
it is preferable to get some approximate answer than not getting any answer
at all. The rest of the paper presents the freezing technique in details.

3.1 Prototype Implementation

The low level network functionality of FuzzyPeer, such as connecting to other
nodes, message handling, etc., is provided by BestPeer [13], our Java based
generic P2P platform. A part of BestPeer also provides the LIGLO function-
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ality. All the FuzzyPeer-specific code resides in the Query Processing Applet.
This module coordinates the entire system and connects to the local database.
The details of the database are irrelevant to FuzzyPeer. The only requirement
is to support a Top-K operator. It is also desirable to provide a cost estima-
tion function. In our case study, the database was flat files. It consisted of
the original high-resolution images together with precalculated feature vec-
tors. We used Daubechies’ wavelets [22] to represent the visual features of the
images. In our experiments, the number of images in each peer was relatively
small, allowing us to keep all the feature vectors in memory and find the top-
k queries by performing sequential search. In practical situations, where the
image database is expected to be larger, we can employ a high-dimensional
index for k-Nearest-Neighbor search, like Ref. [26].

Note that for the rest of the paper we only consider the optimization of the
searching process. We assume that downloading the image is performed outside
the searching network (i.e., as a separate http connection).

4 Query Processing

In this section we analyze our freezing techniques. Although we employ the
Euclidian distance of image vectors as a similarity metric, the translation to
other domains is straightforward.

Users pose queries by means of a sample image imguser. We apply a Daubechies’
wavelet transformation DT (imguser) on the sample image and produce an m-
D feature vector f1, . . . , fm. This vector is the query q. The size of q is typically
much smaller than the size of the image. The similarity S(q, img) between a
query q and an image img is defined as the Euclidian distance between the
vector q and DT (img). In the same way, we define the similarity S(q, q′) be-
tween two queries q and q′ to be the Euclidian distance of the corresponding
vectors. Obviously, when S(q, q′) = 0 the vectors are identical.

When a peer receives a query q, it computes the k most similar images
img1, . . . , imgk from the local database, and returns a set of k pairs (idi, S(q, imgi)),
i = 1..k. Note that the answers do not contain the feature vectors of the im-
ages, but only the image id and the similarity measure. This is done in order
to reduce the size of the answer messages, since in some applications each
feature vector may be several KBytes.

In a traditional broadcast-based P2P system, when a query q is initiated at
peer P , it is propagated through all its neighbors until a maximum number of
hops d is reached. The peers that received the query, send their answer back
to P via the reverse path. We call this the Non-Freezing algorithm (nf).
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When a query q is propagated through a peer P , it creates an answer stream
Streamq. All the subsequent answers for q will go through Streamq. If P is
the peer which initiated q, the answers that arrive in Streamq are forwarded
to the User Interface module; else they are propagated to the previous peer
(i.e. the peer from where the query arrived). Obviously, there can be multiple
streams simultaneously active at P . For every stream, P maintains a data
structure containing the feature vector q together with various statistics.

There are several sources of delays in a message’s path, including the network
cost and the processing time. To facilitate our study, we use a simplified 2

model (Figure 2) which encapsulates all possible costs: Each peer P has a
Processing Unit with a FIFO queue attached to it. All incoming messages
M0,M1,M2, . . . enter the queue. When the processing unit is ready, it removes
the message M0 from the head of the queue and processes it for time T (M0, P ).
After processing is over, the message is transmitted to the next peer. The total
time a message Mi spends at P is:

Ttotal(Mi, P ) =
i−1∑

j=0

T (Mj, P ) + T (Mi, P ) (1)

where the first factor of the equation is the waiting time in the queue and the
second factor is the actual processing time.

Message Queue 

Incoming 
messages 

Processing 
Unit 

To other 
peers 

Peer boundaries 

 
Fig. 2. Message propagation model

For a given number of on-line peers, assume that the query rate is low. Then
the queues in all peers are empty, and from Equation 1, it follows that the only
delay of a query message is its own processing time. However, when the query
rate increases, the message queues become longer; therefore the delays for the
messages also increase due to the queue waiting time. Recall that users abort
the queries after MaxWaitT ime. If the delays are long, there is not enough
time for the query messages to reach many nodes before MaxWaitT ime ex-
pires. The number of answers that arrive at the initiating node decreases
rapidly; therefore, the probability of obtaining useful answers (i.e. the precision
of the results) also drops. This resembles the thrashing effect in time-sharing
systems. The freezing algorithm we describe below, attempts to minimize the
problem by decreasing the number of concurrent messages in the system.

2 This abstraction is only used to simplify the presentation of the algorithms; our
experimental results consider both the network congestion and the processing time
in the nodes.
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4.1 Static Query Freezing (SQF)

The intuition behind the Static Query Freezing algorithm is simple: some
queries are frozen (i.e. paused) inside the system, in order to reduce the total
workload. The result is that the waiting time in the queues decreases for
the remaining running queries, so they can retrieve enough answers before
MaxWaitT ime expires. The frozen queries attach to the streams of similar
running queries and receive the same results. There are several benefits of this
approach: (i) Thrashing is avoided (if enough queries are frozen). Instead of
not answering any query at all, with SQF a considerable percentage of the
queries can locate accurate answers. (ii) Excess queries are frozen instead of
aborted. Since all answers are approximations, there is a high probability for a
frozen query to receive accurate results if it attaches to a similar stream. This
is different from other systems (e.g. web search engines) where the probability
of finding a concurrent similar query is low. In such systems queries ask for
certain keywords and run in the server for a few msec, while in P2P systems
queries run for around 3 orders of magnitude more time (i.e., 100’s of sec) (iii)
Even if the results for the frozen queries are not accurate, users can utilize
them to refine their original query.

Algorithm 1 Static Query Freezing
On UserQuery(q)

With probability pf set q.frozen = true, q.f hops = hf

Initiate an answer stream Aq

Broadcast q
On QueryReceived(q) // query received from neighbor

q.traveled hops++
If q.frozen==true and q.f hops == q.traveled hops then

Freeze q
Attach q to a beneficial answer stream, if such stream exists

Else
if q.frozen == false then calculate answer and send it back
if q.traveled hops < max Hops then broadcast q

On ResultReceived(rq) // result received from neighbor
For each query q’ attached to q do

If there is no cycle due to frozen queries then
Duplicate rq to generate rq′
Propagate rq′ backwards as a result for q’

If current peer is the initiator of q then
Add rq to answer stream Aq

Else propagate rq backwards

Algorithm 1 presents SQF which takes two parameters: the probability pf

to freeze a query and the number of hops fhops that q must travel before it
freezes. The initiator peer decides with probability pf if the new query is going
to freeze. Then q is propagated as usual. Assume that q was selected to freeze
and after fhops reaches peer P ′. SQF pauses q (i.e., q will not propagate further
through that path), checks all the active streams at P ′ and attaches q to the
most beneficial one. If no stream exists at P ′, q is just paused. Observe that
q will freeze in all peers which are fhops hops away from P . Also notice that
the Non-Freezing algorithm (nf) is a special case of SQF where pf = 0.
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When an answer comes for a stream, SQF searches whether there are any
attached queries to it. For every attached query q, a duplicate answer is gen-
erated and returned to the query initiator. Notice that since the answer mes-
sages do not contain any feature vectors, we cannot perform any filtering for
the attached queries.

The freezing technique has the additional benefit of increasing the query hori-
zon of the frozen queries. Consider again the example of Figure 1 assuming
that there is no link between P2 and P3. P1 initiates a query q which propa-
gates to all nodes except P6 (recall that the maximum number of hops d = 3).
P3 also initiates q′ which, if not frozen, will reach only P1, P2 and P4. On
the other hand, if q′ freezes in P1 and attaches to q, the answers from P5, P7

and P8 will also be forwarded to P3. Therefore, the probability of locating an
accurate result for q′ increases.

The method of selecting a beneficial stream needs further clarification. Each
stream st has a lifetime lt which is the same as the expiration time of the query
that created it. A query queue will benefit by attaching to st only if there is
enough time left for many results to propagate through it. Therefore, recent
streams are more beneficial. Also the benefit is proportional to the similarity of
q with the query that initiated st. Notice that we can calculate this similarity,
since we have the feature vectors for both queries. In our implementation we
use a combined benefit, giving more weight to the similarity criterion.

In the experimental section we show that SQF improves significantly the
throughput and the scalability of the system. Its applicability however is lim-
ited in practice, since the user must provide for each query an appropriate set
of parameters for the current condition of the network. Below we describe an
alternative freezing algorithm which adapts dynamically to the workload of
the system.

4.2 Adaptive Query Freezing (AQF)

The drawback of SQF is the need to set accurately the parameters. If the
freezing probability pf is too low the system will enter the thrashing region.
On the other hand, if pf is too high there are not enough running queries;
consequently, the probability of a frozen query to locate a similar answer
stream will decrease and the precision of the results will drop.

pf depends on two major factors 3 : (i) The number |Q| of concurrently active
queries in the system. Obviously, the load of the system is proportional to

3 Other factors include the transfer rate of the links, the speed of the peer comput-
ers, the indexing structures, etc.

10



|Q|, therefore when there are more active queries pf must increase. |Q| can be
analyzed as |Q| = Qus · |P |, where Qus is the number of queries per user per
second and |P | is the number of active peers (i.e., users). (ii) The topology
of the network. P2P systems typically exhibit power-law topology. Some hub
nodes (e.g., P4 in Figure 1) receive more messages and become the bottleneck,
even if the average load of the system is moderate. Since the system is dis-
tributed and dynamic, it is difficult to gather information about these factors.
Notice, however, that the effect of varying |Q| or altering the topology is that
the waiting time in the queues changes.

The Adaptive Query Freezing (AQF) algorithm controls the waiting time in
the queues. Intuitively, if the waiting time is such that there is no time for
a query to be forwarded and the answer to come back before the query is
aborted, there is no benefit of propagating the query message. Instead there is
a penalty, since the message will put additional load to the subsequent peers.
In such case, it is better to freeze the query in order to prevent thrashing.
On the other hand, if the queues are short it is beneficial to propagate the
query in order to improve accuracy. Algorithm 2 presents the details; the On-
ResultReceived method is the same as in SQF. In contrast to SQF, however,
the initiator peer does not need to decide if the new query will freeze. The
query is propagated inside the network and each receiving peer decides inde-
pendently. Notice that AQF is general and versatile since it does not depend
on any application-specific criterion.

Algorithm 2 Adaptive Query Freezing
On UserQuery(q)

Initiate an answer stream Aq

Broadcast q
On QueryReceived(q) // query received from neighbor

q.traveljd hops++
calculate answer and send it to the previous peer
If q.traveled hops < max Hops then

If checkFreezeCriteria(q) == true then
q’ is a running query which is similar to q
// checkFreezeCriteria ensures that such q’ exists
Freeze q
Attach q to q’

Else broadcast q

For an incoming query message MQ at P , the checkFreezeCriteria() function
returns true, if:

Ttotal(KQ, P ) > aq ·MaxWaitT ime (2)

where Ttotal is defined by Equation 1 and aq is a system-wide parameter. The
accurate evaluation of Ttotal is difficult. The reason is that T (·) depends on
the message type. For example, a query message needs more processing time
than an answer, since the former requires an expensive search in the local
database, while the latter just needs to be propagated. Even if we have an
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accurate estimation for each message type we still cannot evaluate Ttotal; the
exact processing time will be known when all messages in the queue enter the
Processing Unit, since some of them might get frozen.

MaxWaitT ime is also an estimation, since each user decides independently
when to abort a query. In practice, we expect to get a quite accurate estimation
for this parameter by observing the behavior of users over a period of time
(i.e., most users would wait for a couple of minutes before aborting and refining
their query).

The value of the parameter aq should be such that it allows enough time for
query processing and for answer messages to return to the initiator before the
query is aborted. Formally, aq depends on the query path:

aq(P0, . . . , Pi) =

∑i
j=0 Ttotal(MQ, Pj)

MaxWaitT ime
(3)

where P0 is the initiating peer and Pi is the current peer. Nevertheless, this
formula assumes that every peer has knowledge about the queue waiting time
at the other peers in the query path, which is unrealistic. In practice, the exact
value of aq is not critical, as long as it prevents the queues of growing expo-
nentially. By gathering statistics of the queue lengths over a period of time, aq

can be set as a system-wide constant. For our settings we found that aq = 1
provided the best results; however varying it for almost an order of magnitude
did not affect considerably the performance, indicating the robustness of AQF.

4.3 Similarity Query Freezing (simQF)

AQF bases its decisions solely on the size of the message queues. While it is
a general algorithm, it does not employ any application-specific knowledge to
enhance its performance. Since our queries ask for similar images, we developed
the simQF freezing algorithm which uses the query similarity as the freezing
criterion. The algorithm is the same as AQF, except that a query q is frozen
at a peer P if there is an answer stream whose distance to q is less than a
threshold %.

Our experiments revealed that simQF produces good results if the thresh-
old % is set correctly; else the behavior resembles the Static Query Freezing
technique.
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4.4 Multiple-feature queries

One of the major challenges in multimedia retrieval systems is that the sim-
ilarity between objects cannot be defined precisely with a simple description.
For instance, an orange image can be best described by a combination of a
color feature similar to yellowish, round shape and possible contents text de-
scription like “fruit or orange”. Multimedia repositories combining multiple
atomic subqueries are called Multiple-feature query systems [8].

FuzzyPeer supports multiple-feature queries and integrates them into the
query freezing framework. Assume that an object is characterized by n fea-
ture vectors v1, . . . , vn. Then there are 2n − 1 possible query types for every
combination of features. We support two methods for processing such queries:
serial and random.

4.4.1 Multiple-attribute Random processing (maR)

This algorithm is inspired by the Fagin’s Algorithm (FA) [8]. Queries that
have some common subset of features are considered compatible. For example
the query “Color = yellowish and Shape = round” is compatible with “Color
= orange and Type = fruit” because they contain the same feature “Color”.
The algorithm works in two phases. In the first phase, it runs exactly like AQF
with the additional characteristic that compatible queries can attach to each
other. Because of this, some of the results that arrive from frozen queries are
not complete (i.e., they answer only some of the features). In the second phase,
the algorithm sorts the incomplete results and selects the top-k according to
the similarity metric. For these k objects, it performs direct access to the
remote peers that contain them, and receives the complete answers. As we
show in the experimental section, this algorithm is beneficial when the data
are clustered.

4.4.2 Multi-attribute Sequential processing (maS)

In contrast yo the previous method, this algorithm considers different query
types as incompatible, even if they share some features. Therefore, it does
never attach a query to an answer stream of a different type. The result is
that there are no incomplete answers so there is no need for a second phase.
Our experiments revealed that this algorithm is more suitable for uniform
datasets.
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Fig. 3. Cycles due to frozen queries. qx is attached to qy while qy is attached to qx.

4.5 Dealing with Cycles

Connections among peers are arbitrary, resulting to network graphs that con-
tain cycles. The existence of cycles generates unnecessary messages both dur-
ing query propagation and in the process of answering frozen queries. The first
case is easier to manage: If the cycles are longer than the maximum number
of query hops d, there is no overhead. Else, if a peer receives a message that
has passed before 4 , it simply drops it. The overhead is one extra message per
cycle.

The effect of cycles on frozen queries is more complex. To illustrate this,
assume the network topology of Figure 3.a, where P1 initiates query qx and
P3 initiates qy. Let qx reach P3 faster through P2 and qy reach P1 through P4,
as shown in Figure 3.b (the exact route is not important). P3 realizes that qx

is similar to qy, which is already running, so it freezes qx and attaches it to
qy. In the same way, P1 freezes qy since it is similar to qx. Now, assume that
P3 receives a result ry from P5 that answers qy. Since qx is attached to qy, P3

labels the result as rx = F (ry) and propagates it to P1. There rx answers qx

that has qy attached, so it changes again the label to ry = F (rx) and sends it
to P3 (Figure 3.c). Obviously, P3 detects the duplicate answer and rejects it.
This kind of cycle, however, creates considerable overhead; up to O((c−1)·Nd)
unnecessary messages are propagated, where c is the length of the cycle and
N is the maximum degree of the nodes that receive qy.

In order to break such cycles, we append each answer with information about
the transformations that have taken place in the return path. In our example,
rx carries a tag indicating that its original label was ry; therefore, P1 will
not use rx to answer qy. Notice that there may exist cycles with up to l
transformations, where l is not bounded by d. Nevertheless, in practice l is
expected to be moderate. Long cycles are rare, because the original queries
expire causing their attached queries to expire too, before the messages manage
to travel all the hops around the cycle. In our experiments, for example, queries

4 Peers maintain a list with the IDs of messages that have passed recently through
them. Each message has a unique ID, consisting of the IP address of the initiating
peer and a unique local key.
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were expiring within 60sec in networks with 1000 nodes; the resulting cycles
contained at most 3 transformations.

More sophisticated solutions are also possible. For instance, the system can
implement a cycle avoidance algorithm when propagating the queries, in order
to prevent the forming of cycles. Alternatively, we could run a cycle detection
and recovery algorithm to un-freeze some of the queries after a cycle is formed.
However, both methods would add complexity to the system and introduce
overhead due to control messages, while the simple solution we described above
works acceptably well.

5 Experimental Evaluation

We employed two implementations to evaluate our methods. The first one is
a JAVA prototype based on our BestPeer platform which runs on Pentium III
PCs with 256MB RAM and Windows 2000; it was used to derive the basic
parameters of the system (see the full paper for details [11]). The parameters
were used in our simulator which run on a 2-CPU Ultra-SRARC III server
with 4GB RAM. We employed a simulator since it was otherwise impractical
to set up large networks, while the benefits of our methods become significant
when there are many participating nodes.

Since there is no similar system in use, we did not have any information about
the network topology or the users’ behavior. As an approximation, we adopted
the parameters of existing broadcast-based content-sharing systems which are
presented in Ref. [24]. We generated two network topologies for the simulation:
(i) Uniform, where the average number of neighbors per node il 3.5, and (ii)
Power Law [9]; we employed the PLOD algorithm [15] and set α ∈ [0.85, 0.99],
β ∈ [96, 355], resulting also to 3.2 neighbors per node in average. Nodes are
connected either through a slow (WAN 5 ) or a fast (LAN) line to the network.
A node which is connected through a slow link can support up to 4 concurrent
neighbors (this is the default value in Gnutella). The number of nodes which
were simultaneously active varied from 100 to 1000. Since in practice only
around 5% of the users are active at any given time [23], our results are
representative for populations of up to 20000 users.

We used three image datasets in our experiments. The first one, REAL48

consists of a library of 10504 high resolution images. We used a vector of 48
coefficients from the Daubechies’ wavelet transformation [22] to represent the

5 In the prototype, LAN nodes were physically connected to a 10Mbps local net-
work, while WAN means that one node was in Singapore and the other in Hong
Kong.
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visual features of each image. The second dataset, REAL191, consists of the
same set of images but for each one we extracted two feature vectors. The
first is a 32-D vector which is the prefix of the REAL48 values. The second
vector has 159 dimensions and encodes information about the texture. Our
third dataset is SY NTH200. It consists of 10000 pairs of feature vectors, one
with 32 and the other with 168 dimensions, and was generated synthetically.
There are 100 clusters of vectors around 100 random points. The vectors inside
each cluster follow a Gaussian distributions, where σ = 0.2.

5.1 Static Query Freezing

In the first set of experiments we compare a broadcast-based system that
does not support frozen queries (denoted as nf ) against our static freezing
algorithm. There are 100 peers simultaneously on-line and for each setting
we calculate the average results over 1000 queries; these are images selected
from our dataset with uniform distribution. The peer which initiates each
query is also randomly chosen. For every possible query we precalculated the
Global-top-k which is the set of the top-k images from the entire dataset.
k was fixed to 10 for all the experiments in this section. The performance
results of our algorithms are presented in Figure 4. In the first row, we draw
the FirstDelay which is the average delay in seconds for obtaining the first
image which belongs to the Global-Top-k. Intuitively, this measure indicates
how long the user must wait until the arrival of the first useful result. If no
useful result has arrived before the query is aborted, FirstDelay is set to
MaxWaitT ime. The second row of Figure 4 presents the average precision of
the results. Precision is defined as the percentage of results that belong to
Global-top-k.

Qus is the number of queries that each user initiates per second. It follows a
Gaussian distribution, where µ ∈ [4 ·10−3, 16 ·10−3] and σ = 5% ·µ. The x-axis
in the graphs represents the mean value of Qus; the maximum and minimum
value correspond to one query per user every 60 to 250sec, respectively. For
the static freezing algorithms 10, 30, 50 and 70% of the queries are selected
randomly to freeze 1 hop away from their origin.
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In Figure 4.a we set MaxWaitT ime = 30sec in a power-law network and
allow each query to propagate for up to 7 hops. When Qus is low there is
no congestion in the network. The best results both in terms of FirstDelay
and Precision are achieved by nf, since a large number of peers is exploited.
If there is an attempt to freeze a query q at a peer P , there is only a low
probability that q′ exists or q and q′ are similar enough, so most of the results
will be useless.

When the query rate Qus increases, however, the performance of nf deterio-
rates rapidly. Due to congestions, messages take longer to propagate; therefore
FirstDelay increases. Moreover, since there is not enough time to contact
many nodes before the queries expire, Precision decreases. Assume now that
we freeze 10% of the queries, causing the number of concurrent messages inside
the network to decrease. Although both FirstDelay and Precision deterio-
rate, this occurs at a slower rate than the nf case. The result is that for large
values of Qus (greater than 8 ·10−3 for this setting) Frozen10% performs better
than nf. Performance can be further improved by freezing more queries. For
example, freezing 70% of the queries produces better results than Frozen10%

for Qus ≥ 10−2. The tradeoff is that for smaller values of Qus the Frozen70%

case performs considerably worse.

Figure 4.b depicts the results for the same settings except that MaxWaitT ime
is fixed to 60sec 6 . Observe that while the trend is the same as before, the
absolute values are higher. This is due to the fact that queries are allowed more
time to propagate; therefore, they explore a larger part of the network and
the relative performance of the algorithms changes. For example, Frozen10%

is now better than Frozen30% and Frozen50% for Qus = 10−2, because even
if there are congested points in the network, there is enough time for the
messages to pass through.

In the experiment of Figure 4.c we set again MaxWaitT ime to 60sec but
we changed the network structure from Power-Law to Uniform. Although the
behavior is similar to the previous cases, the performance of Frozen70% is al-
ways worse. This is justified as follows: In a power-law network there are some
nodes that receive exponentially more messages that the others. By freezing
more queries, such nodes are benefited because they become less congested.
In a uniform network, on the other hand, the variation of the peers’ work-
load is not so significant. By freezing 50% of the queries, almost no node is
overloaded anymore. If more queries are frozen, there do not remain enough
running queries to provide answer streams; therefore, the performance does
not improve.

We also tested the behavior of the system for larger user populations. In

6 FirstDelay is not comparable for different values of MaxWaitT ime because of
the way it is calculated
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Fig. 5. Non-frozen vs. statically frozen queries. 1000 peers, MaxWaitT ime = 60sec,
Power Law Network

Figure 5 we show the results for a power-law network with 1000 simultaneously
active users. The trend of the algorithms is the same, although the results were
obtained for lower values of Qus. The maximum and minimum value of the x-
axis correspond to a range of one query per user every 12 to 83min. Notice that
the absolute number of concurrent queries that the network supports, remains
roughly the same as the previous experiments (i.e., the number of nodes is
increased and Qus decreased by one order of magnitude). Also observe that
the best value for Precision drops to 0.75 compared to 0.98 for the previous
experiments. This happens because the radius of the query horizon (i.e., the
maximum number of hops) does not cover the entire network.

The effect of the active users’ population size was further investigated by
running experiments with variable number of peers. The results verified that
increasing the number of active peers has the same effect as increasing the
query rate. Therefore, our freezing technique can be successfully employed
to improve the scalability of the system both in terms of throughput and
number of active users. Also note that in all cases so far, the frozen query
was attached to the most beneficial stream. We also tried attaching queries to
multiple streams, but there were no significant differences.

5.2 Adaptive Query Freezing

In the following, we evaluate our adaptive freezing algorithm AQF. Figure 6.a
presents the results for a power-law network with 100 peers and MaxWaitT ime
= 30sec. For every value of Qus, we compute the maximum (Upper Bound UB)
and the minimum (Lower Bound LB) of the metrics from all the algorithms
presented in Figure 4.a (including nf). The adaptive algorithm is compared
against the best and worst performance achieved by the static methods. Re-
call that AQF has only one system-wide parameter aq (see Equation 2). We
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present the results for three values of aq: (i) aq = 4, which produces long mes-
sage queues qL, (ii) aq = 1, which corresponds to medium queues qM and (iii)
aq = 1

16
for short queues qS.

Consider the qL case first; for Qus ≤ 6 · 10−3 there are relatively a few queries
propagated simultaneously in the network. Consequently the waiting time at
the message queues at most peers is less than 4 ·MaxWaitT ime, so AQF does
not freeze any queries; thus AQF behaves like nf. When Qus increases, longer
message queues appear. AQF starts freezing some queries and outperforms nf.
Nevertheless, the results are still worse than the best static freezing algorithm.

The qM case, on the other hand, prohibits the generation of long queues by
freezing more queries. Notice that qM also behaves like nf for Qus ≤ 6 · 10−3

and beyond this it follows closely the best static result in terms of FirstDelay.
Precision is also improved compared to qL, but still it is not as good as UB.
We investigated further this issue and observed that for uniform networks qM
was closer to the best static results. The problem with the power-law network
is that the length of the queues may be much larger in some peers (i.e., the
may differ up to 2 orders of magnitude for our settings). In such peers most
of the queries are frozen even if the similarity with the attached streams is
low, leading to low Precision. Improving this aspect of AQF is part of our
on-going work.

We also tested the qS case which results to shorter message queues. An in-
teresting observation is that the results for FirstDelay are better than the
best case of all static alternatives. This illustrates that the static algorithms
are not optimal for any percentage of frozen queries, since they do not con-
sider the different conditions at each peer. Notice that qS outperforms qM in
terms of FirstDelay because the waiting time of the messages in the queues is
shorter. However, qS freezes too many queries so the number of useful answers
that reach the initiating peers, drops; therefore, qS is worse than qM in terms
of Precision. We also experimented with smaller values of aq. In those cases
both FirstDelay and Precision deteriorated since many queries were expir-
ing prior to receiving any useful answer. The above results were also verified
by the experiment of Figure 6.b, where MaxWaitT ime is set to 60sec.

Finally, we tested AQF for larger user populations. In Figure 6.c we set Qus =
14 · 10−4 and varied the number of users from 100 to 1000 in a power-law
network; the results support our previous observations. Summarizing, AQF is
a practically useful algorithm since it achieves good performance with minimal
parameter tuning. The best results were obtained for aq = 1; our experiments,
however, revealed that AQF is robust so the exact value of aq is not critical.
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Fig. 7. Similarity Query Freezing. 100 peers, MaxWaitT ime = 60sec, Power Law
Network.

5.3 Similarity Query Freezing Algorithm

This section evaluates the performance of our alternative freezing algorithm
simQF. In Figure 7 we present the results for three similarity thresholds: (i)
a low similarity case sL where % = 4, (ii) medium similarity sM with % = 3
and (iii) high similarity sH, where % = 1. There are 100 peers in a power-
law network; UB and LB are copied from Figure 6.b. For low query rates,
the sH case performs better since it does not freeze many queries due to the
tight similarity threshold. For the same reason however, sH deteriorates fast
as Qus increases. Notice that this behavior is similar to nf. Also observe that
sM and sL freeze gradually fewer queries; therefore their relative performance
compared to sH is low for slow query rates and improves as Qus increases. This
behavior is identical to static query freezing, where a tight similarity threshold
% corresponds to low percentage of frozen queries. Since the performance of
simQF is tightly coupled to %, the algorithm is useful in practice only if there
is prior application-specific knowledge for the expected similarity.

5.4 Multiple-feature Queries

In our final set of experiments, we test the performance of AQF for multiple-
feature queries. We employed the SY NTH200 dataset in a power-law network
with 100 peers. Since SY NTH200 has 2 feature vectors, there are 3 possible
types for every query (i.e., qf1, qf2 and qf1,f2). The query type was selected
with uniform distribution.

The results are presented in Figure 8. nf is the traditional non-freezing broadcast-
based algorithm. It does not consider the similarities among query types; qf1

and qf1,f2 for instance, are treated as different queries. Our multiple-feature
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 Fig. 8. Multiple-feature Queries. 100 peers, MaxWaitT ime = 60sec, Power Law
Network, aq = 1, SY NTH200 dataset.

serial algorithm maS also considers such queries as different. Therefore the im-
proved performance of maS is due to adaptive query freezing. The trends of
the results are the same as these presented in Figure 6.b, although the absolute
values fluctuate due to the different dataset. The results of the multiple-feature
random algorithm maR are more interesting. Compared to maS, FirstDelay
does not improve significantly. This is expected since the refinement step of
maR is initiated at the second step. On the other hand, there is a more obvi-
ous improvement in terms of Precision, since direct accesses can fetch useful
results which would be otherwise inaccessible.

The good performance of maR is partially due to the fact that the SY NTH200

is clustered. We also run the same experiments with the unclustered REAL181.
In this case, maR performed almost identically to maS. Actually, for some
settings maR was slightly worse that maS due to the overhead of initiating
new connections. Nevertheless, in practice this overhead is not significant and
since we do not assume any knowledge about the dataset’s properties, the
possible benefits of maR justify its employment.

6 Conclusion

In this paper we dealt with the problem of retrieving information from large
repositories built on top of ad-hoc P2P networks. While most existing ap-
proaches are limited to exact key matching, we developed FuzzyPeer which
supports content based similarity queries. Due to the absence of centralized
indexing, such queries are challenging; the difficultly of defining an appli-
cation independent terminating criterion in addition to their extremely low
selectivity, overload the system with useless messages and cause thrashing.
We addressed this issue by introducing the freezing technique: some queries
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are paused and attached to answer streams from similar concurrently running
ones, since the answer for both queries is expected to overlap. We proposed
AQF, a simple yet efficient distributed optimization algorithm which improves
the scalability and the throughput of the system. Numerous applications, in-
cluding full-text searching in large archives or fuzzy queries in distributed
multimedia repositories, can benefit from our techniques as we demonstrated
by an image retrieval case study.
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