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ABSTRACT
Huge amounts of data are being generated by sensing de-
vices every day, recording the status of objects and the en-
vironment. Such observational data is widely used in scien-
tific research. As the capabilities of sensors keep improv-
ing, the data produced are drastically expanding in pre-
cision and quantity, making it a write-intensive domain.
Log-structured storage is capable of providing high write
throughput, and hence is a natural choice for managing
large-scale observational data.

In this paper, we propose an approach to indexing and
querying observational data in log-structured storage. Based
on key traits of observational data, we design a novel index
approach called the CR-index (Continuous Range Index),
which provides fast query performance without compromis-
ing write throughput. It is a lightweight structure that is
fast to construct and often small enough to reside in RAM.
Our experimental results show that the CR-index is superior
in handling observational data compared to other indexing
techniques. While our focus is scientific data, we believe
our index will be effective for other applications with similar
properties, such as process monitoring in manufacturing.

1. INTRODUCTION
Humankind has a rapidly growing ability to digitize the

real-world. The variety of entities whose state can be mon-
itored continuously is ever increasing, and spans from mi-
croscopic to macroscopic scales: individual molecules, single
cells, electronic devices, wild life, automobiles, dams, oceans
and even distant stars. More and more sensors are gath-
ering continuous observations of physical variables such as
temperature, humidity and velocity. Such data collection is
now ubiquitous in many fields of scientific research.

Multiple trends contribute to increases in sensor data rates.
Sensors are increasing in resolution temporally, spatially and
the bits of precision captured. Hence individual sensors gen-
erate data at higher rates. Further, instrument packages are
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carrying more kinds of sensors, as devices appear for mea-
suring a broader range of physical quantities. Finally, de-
creasing price and increasing power efficiency means more
sensors can be deployed in more places for longer periods of
time. These trends make observational data management
write-intensive, demanding data storage with high write-
throughput, to capture these records in a timely manner. An
additional challenge is indexing newly arrived data quickly
while providing efficient querying.

Log-structured storage (log-store) is amenable to han-
dling such write-intensive scenarios. A log-store appends
newly arrived data to the end of a log file, rather than seek-
ing specific positions on disk for each record. Compared
with in-place-update storage, log-store provides higher write
throughput by avoiding random I/Os.

This work focuses on storing observational data in log-
store and indexing it efficiently by exploiting its traits, in-
cluding:

• No update. An observational record is inherently
immutable. Each record has an unique observation
time attribute. Complete historical data are required
for diverse analysis tasks.

• Continuous change. Most physical variables have
values that change continuously at some maximal rate.
If frequent observations are taken, we expect successive
readings to be bounded by some maximal change.

• Potential discontinuities. Though ideal data should
be continuous, gaps could arise from noise, data loss,
or combining readings from multiple sensors.

Index structures play an important role in supporting
queries. Traditional record-level indexes, such as B+-trees [10]
and LSM-trees [17], incur significant index maintenance cost.
The random I/Os due to updates render B+-trees impracti-
cal for write-intensive workloads. Although LSM-trees avoid
random I/Os, the cost of maintaining a large number of in-
dex entries is still considerable. Since these structures have
not been designed to exploit the characteristics of observa-
tional data and its applications, they may not scale up well.

Current state-of-the-art techniques for storing observa-
tional data do not take high-throughput workloads into ac-
count. Some real data observation systems such as CMOP [2]
utilize a combination of RDBMS and netCDF [6] data files
to manage data. Our approach stores the observational data
in log-store, which provides superior performance for write-
heavy workloads. In log-store, records are ordered by arrival
time, which correlates strongly with observation time. Thus,
for queries on observation time, access methods based on



physical order perform well (and can be further improved
through off-line reorganization [20]). However, queries on
observational data will often include conditions on the mea-
sured variables. Because of the data continuity, their val-
ues are locally correlated with observation time (and hence
with arrival time). Our approach exploits this correlation to
provide lightweight indexing on observational data as it is
stored. We group successive records into blocks. Each block
is summarized by a value range, which is compact and can be
computed quickly. We accommodate the inevitable gaps by
detecting them during query processing and avoiding them
on subsequent queries.

Another trait of observational data that we can exploit
is spatial correlation of two readings. The same physical
variable sensed in two nearby locations is likely to be similar.
For example, two temperature sensors at the same point in
a river, but at different depths, are likely to report similar
readings (or at least increase and decrease together). Given
the large number of sensors in some deployments, it could
negate some of the benefits of log-store if readings for each
are stored in a separate file. Our method gives reasonable
performance if readings from correlated sensors are merged,
with gap-detection methods handling periods of divergence.

Our contributions include

• A scheme for storing observational data in log-store
that preserves data locality to facilitate indexing. The
data organization provides optimization opportunities
for reducing both write and read I/O costs.

• A novel, lightweight pruning-based index structure for
range queries, tailored for log-store, supporting effi-
cient sequential I/Os. It lowers maintenance costs by
taking full advantage of observational-data traits.

• An extensive experimental evaluation on two real-world
observational datasets that compares our solution to
traditional record-level indexes. The results confirm
both low write overhead and query efficiency.

The rest of this paper is organized as follows. In Section 2,
we provide background on observational data and storage
choices. Section 3 presents a scheme for storing data. In
Section 4, we present the design of our indexing structure.
We evaluate the performance in Section 5. Related work
and conclusions are given in Sections 6 and 7.

2. PRELIMINARIES
This section presents some characteristics and applica-

tions of observational data and common query types. We
introduce an open source system, LogBase [20], which is the
choice of storage in our implementation.

2.1 Scientific Data Analysis
Many scientific analysis applications entail monitoring of

correlations among multiple physical variables using diverse
sensors. For example, coastal-margin observation deploys
multiple underwater sensors at different sites and depths,
gathering information such as water temperature, salinity
and oxygen saturation. Scientific data captured in this man-
ner, which we call observational data, have special traits
mentioned previously. Its most distinctive characteristic is
that records’ values are changing continuously. The inherent
continuity can be captured by two key concepts: continuous
variable and continuous measurement.

Figure 1: CMOP SATURN-01 salinity trend

Continuous variable. An observational variable can be
expressed as a function f(x) with respect to time x. If the
function f(x) is continuous, for any value v where f(x1) ≤
v ≤ f(x2), there exists an x′, x1 ≤ x′ ≤ x2, where f(x

′) = v,
by the Intermediate Value Theorem.

Continuous measurement. Continuous measurements
are a series of frequent observations on a continuous vari-
able. If the change rate of the variable is bounded by R and
samples are taken every U time units, consecutive measure-
ments will differ by no more than mx = U · R. Thus, if we
have measurements m1 and m2, we expect to have at least
|m1−m2|

mx
intermediate values measured between them.

These two conditions often hold for observational data
from the natural world, though our index method does not
depend on these assumptions for correctness. As long as
jumps and gaps are not too frequent, we maintain efficiency.

2.1.1 Basic Query Formats
We provide SQL expressions for the basic query formats

we address. A time-range query specifies a time period in
which some attributes are requested, for example:

SELECT T.A FROM Table T
WHERE T.t ≥ startT ime and T.t ≤ endT ime
ORDER BY T.t

Here A is the set of requested attributes and T is the logical
table. The result set provides the trends for observed vari-
ables, such as the salinity versus time plot in Figure 1 (from
observation station SATURN-01 in the CMOP [2] observa-
tory). Data might be used for other kinds of analysis, e.g.,
correlation tests between two variables.

A value-range query specifies a value range on an at-
tribute, for example:

SELECT T.A FROM Table T
WHERE (T.a ≥ minV and T.a ≤ maxV )
ORDER BY T.t

Here a is the constrained attribute in A. Such a query can
be used to monitor a variable for abnormal ranges, then
collect other values from the same periods. For instance, we
can monitor the sensor in Figure 1 for salinity above 32.0,
then analyze how such periods of high salinity correlate with
oxygen saturation and acidity.

Our work focuses on supporting basic query types. Most
complicated multi-attribute queries are extensions and com-
binations of basic queries. We will discuss them in Sec-
tion 4.6.

2.1.2 Secondary Indexes on Observational Data
A typical observational record has a set of attributes rep-

resenting different physical variables, in addition to an obser-
vation timestamp. In order to provide good performance for



a variety of complicated queries, most attributes should be
indexed. However, maintaining multiple conventional sec-
ondary indexes is costly. We expect our lightweight index-
ing mechanism to be a superior choice for keeping a large
number of secondary indexes, as it will not consume much
time nor space, while providing significant query acceler-
ation. We also accommodate joint indexing of correlated
sources.

2.2 Log-structured Storage
In a typical log-store, log files are the only repository for

upper-layer application data. Arriving data are simply ap-
pended to log files, rather than written to specific locations,
thus improving write throughput. There are two types of
log-store: ordered log-store and unordered log-store.

2.2.1 Storage Types
In ordered log-store, such as HBase [1], data are first writ-

ten to buffers in RAM. Periodically, they are sorted by key
and flushed to disk. Therefore, the keys of the records stored
on disk are batch-increasing, which facilitates subsequent
search for a requested key.

In contrast, unordered log-store never sorts the data, ap-
pending them immediately. No separate log is required for
recovery, since the application-data file itself is a log. The
improvement of write throughput compared to ordered log-
store can hurt read performance, as the results for a query
may be scattered through files. It is challenging to support
efficient range queries on unordered log files. However, the
characteristics of observational data mean that unordered
log-store could provide good read performance.

2.2.2 LogBase
For implementing data storage and indexing, we start with

LogBase [20], an open-source unordered log-store. Our CR-
index is proposed as part of LogBase project. Each machine
in the system is a tablet server, responsible for one or more
partitions of a table. Its data model is basically relational,
where each record has a primary key and several attributes.
Physically, each record is decomposed as a set of cells. A
cell is the basic writable unit, structured as:

( KEY, ATTRIBUTE, VALUE, TIMESTAMP )

The key, attribute and value fields describe one attribute
of a record. When a record arrives, its attributes are divided
into separate cells and appended to the file. When part of a
record is requested, LogBase fetches relevant cells via an in-
memory primary index on the key field and combines them.
The timestamp field is hidden and set by the system for
recovery and multi-version control.

In addition, LogBase is column-oriented by providing a
logical field group. Attributes in different groups will be
stored in different machines or log files.

3. STORING OBSERVATIONAL DATA
We first present the logical view of observational records

in storage, then their physical organization in files and the
benefits of that organization.

3.1 Logical View
Observational data in different scenarios might vary in

many aspects, such as the number of variables and active
sensors. Figure 2 shows an instance of a generic schema,

TIME SENSOR ID GROUP Water GROUP Air

ATTRIBUTE

Salinity

ATTRIBUTE

Oxygen

ATTRIBUTE

Air 

temperature

9:01 depth 0m 16.32 3.36 7.05

9:01 depth 2.4m 22.38 3.28

9:02 depth 0m 16.14 6.98

9:02 depth 8m 29.01 2.97

Figure 2: Schema logical view

describing coastal data for a fixed station with sensors at
several depths. The whole data set is viewed as a flat table
in which all records are ordered by observation time. The
primary key is the combination of sensor ID and time. The
sensor ID indicates the device from which the record is col-
lected, distinguishing records from different sensors. In the
example, we identify sensors by depth. Sensors are free to
join or leave the system without affecting the schema.

Records with same sensor ID are identified by the time,
which indicates when they were collected. Thus, a record is
the ensemble of all observed variables for a sensor at a time.
In Figure 2, some cells are empty. Empty cells are common,
as values could be missing due to environmental conditions
or device failures. For example, a sensor under water cannot
detect air temperature.

The group is optional for column-oriented storage and re-
flects a column partition. For example, Salinity and Oxygen
might be in the same group, since they are often queried to-
gether. In fact, our index is not limited to such storage. In
record-oriented storage, if only a column subset is involved,
the system can materialize part of the data to optimize ac-
cess cost. The only worry is that if record size keeps grow-
ing, the access cost might be high. Our goal is to reduce
index-maintenance cost compared to conventional methods.
In the case that the record size is extremely large, the index
cost will be relatively lower, and hence conventional record-
level indexes are efficient enough. This situation is not the
application scenario we target.

3.2 Physical View
Recall that LogBase splits records into attribute cells be-

fore appending them to the log files, with different groups
in different files. Figure 3 shows the physical organization
of the records in Figure 2, for the Water group.

The four fields in a cell make it self-contained, allowing
multiple sources stored in one file. All cells of a record are
stored contiguously in one atomic operation. Thus, it is
simple to reassemble a record from its cells if immutable.

Since observational data has a time field and the storage
system provides a similar timestamp component, we extend
this component to keep two versions for each cell: a physical
version and a logical version. The physical version keeps the
system time for failure recovery, while the logical version
keeps the observation time from the sensor side. They have
different meanings, but are closely correlated. Assuming
records from the same senor always arrive in order, for two
records r1,r2 that have r1.logicalT ime < r2.logicalT ime,
we have r1.physicalT ime < r2.physicalT ime.

Data from different sources might not strictly adhere to
this property. However, we can still expect them to be



KEY ATTRIBUTE VALUE TIMESTAMP

depth 0m Salinity 16.32 9:01

depth 0m Oxygen 3.36 9:01

depth 2.4m Salinity 22.38 9:01

depth 2.4m Oxygen 3.28 9:01

depth 8m Oxygen 2.97 9:02

depth 8m Salinity 29.01 9:02

depth 0m Salinity 16.14 9:02

Figure 3: Schema physical view

roughly ordered. Data disorder will be discussed in Sec-
tion 4.3.

3.3 Observational Data Locality
In general, the append-only strategy hurts read perfor-

mance, as no data locality exists. In observational data anal-
ysis, however, the data-access pattern has inherent proper-
ties that provide considerable data locality in log-store.

The time-ordered property says that when a record is ac-
cessed, the succeeding records are likely to be requested in
(logical) time order. It is implicit in time-range queries. In
log-store, since records are in insertion order, once the first
record is located, the following results will be in subsequent
physical disk blocks. A sequential scan is sufficient to access
the entire result set. Sequential scan is an efficient process,
as it eliminates disk-seek and exploits high bandwidth.

The value-correlated property states that when a record is
accessed, the records whose values are close to this record’s
might also be requested. As observational data is seldom
retrieved by exact equality (because they are floating-point
numbers), we expect values to be returned by range, as in
value-range queries. Due to the continuity trait, once a
record is inside the range, surrounding records will also lie in
the range with high probability. Therefore, a log-store pro-
vides partial data locality for such range queries. Although
the results are not entirely located together, they are likely
clustered into sequences on the disk.

4. INDEXING OBSERVATIONAL DATA
This section presents our indexing method for range queries

on attributes of observational data in a log-store.
First, we introduce the idea of a pruning-based indexing

structure, which locates data blocks that may contain data
of interest. After that, we propose optimization on the basic
structure. At last, we discuss the extensions for processing
multi-attribute queries.

4.1 The CR-index Structure
The advantage of log-store is its excellent write perfor-

mance. Therefore, heavy index maintenance works against
the goal of supporting write-intensive workloads. To reduce
the index cost, we propose a pruning-based index method,
called the Continuous Range Index (CR-index). This light-
weight index exploits the traits in observational data.

The value-correlated property implies that a seek in the
log can potentially yield many results. Therefore, we do not
need to locate qualifying records individually, as long as we
can identify regions containing results. Our main idea is to
group successive records into blocks, which are the atomic
units for indexing and retrieval. Each block is summarized
by a value range using a boundary pair. When the value

Interval Indexes

CR Log

Log File

Log-structured Storage

Sequence ID:  sid

Boundary Pair: [2.73, 4.21]

Length:  6

Location:  (File, Offset)

Next Record :  p_next

Hole Information:

Hole 1 (from 2.90 to 3.97)

CR-record

B+Tree Interval Tree

Group A Group B

Candidate CR-record Set

Data Block

KEY       VALUE

R1         2.73

R2         2.86

R3 2.90

R4         4.21

R5         4.08

R6         3.97

Figure 4: The CR-index structure

range of a block intersects with a query range, there is high
likelihood of results in the block based on the continuous-
change trait of observational data. In that case, the whole
block will be fetched and scanned.

Figure 4 shows the CR-index structure for indexing a sin-
gle attribute. The lowest level is the abstraction of data
blocks in the log file. In the middle level, we generate a
record, called a CR-record, containing brief description for
each block, which we use to prune blocks. CR-records are
appended to the CR-log. The CR-log is much smaller than
original data file and may fit in main memory in most cases.
The upper level is optional and provides interval indexes to
improve the retrieval in disk-based CR-log.

4.1.1 Determining Data Block Size
Data blocks are disjoint groups of successive records in the

file. The abstraction of blocks reduces the number of disk-
seeks and utilizes high disk bandwidth. The CR-index only
captures whether some records in a block might be in a query
range, but not the location or identity of such records. Thus,
even if only one record satisfies the query range, the en-
tire block will be fetched and scanned. Consequently, block
length – the number of records in the block – has important
influence on index performance. Intuitively, a larger block
length will make the CR-log smaller (and fit it in memory),
but raises the cost of fetching and scanning a block. Our
analysis in Section 4.5.3 will show that query performance
degrades sub-linearly with increasing block length.

4.1.2 Describing Data Blocks
In the CR-log, one CR-record describes a block containing

possibly hundreds of records. It is challenging to describe
the contents of so many records using a small descriptor.
Hash-based approaches, such as Bloom Filters [7], provide
a compact means for membership testing. However, hash-
based approaches do not support range conditions naturally.

Our approach exploits the continuous nature of observa-
tional data. Referring back to Section 2.1, we expect to find
records at a certain maximum spacing between two distinct
values. Therefore, a pair of bounding values is reasonable to
represent block content. Figure 5 shows such abstraction at
the block level. In this figure, each block is abstracted as a
range of values from minimum to maximum, represented as
a boundary pair [min,max]. Although we cannot have every



blocks containing results

range boundary of a query

Figure 5: Abstraction of continuous data in blocks:
original data on the left and block representation on
the right.

value between the pair, it is highly likely that we will find
values in a range that overlaps [min,max]. Conversely, if
the query range is disjoint from [min,max], that block will
have no valid records. The boundary pair can be computed
quickly during insertion. Note that if the data source is
not strictly continuous or the query range very small, the
boundary pair can cause false positives.

A CR-record contains several fields, as shown in Figure 4:

• Block ID indicates the sequence order of data block.

• Boundary pair abstracts the content of the indexed
attribute for records in the block.

• Block length is the number of records in the block.

• File position indicates the offset of the block location.

• Hole information is maintained for discontinuity op-
timization. The details are discussed in Section 4.2.

4.1.3 Indexing Data Blocks
Each boundary pair can be treated as an interval. A

range query can therefore be transformed to an intersection-
checking problem, i.e., finding all CR-records that overlap
a given interval, then fetching and scanning corresponding
data blocks. The efficiency of intersection-checking is im-
portant. If the CR-log fits in memory, a scan of the entire
CR-log may give reasonable performance. However, if it
requires disk storage, we need to index it.

Intersection queries are well studied in the literature and
diverse index structures have been proposed, such as interval
trees and segment trees [11]. However, the query cost using
such structures depends heavily on the size of the query
ranges: The larger the range is, the more branches in the
tree need to be traversed, hurting performance.

To solve this problem, we partition the result set into two
disjoint groups, which we retrieve separately but combine
before data-block access:

• Group A: CR-records that have at least one endpoint
inside the query range [a, b].

• GroupB: CR-records that completely contain the query
range.

We retrieve Group A using a point-tree structure, such as
a B+-tree. For each CR-record, two entries are inserted into
the B+-tree, one for each endpoint of its boundary pair. The
endpoint serves as a key, while the associated value is the
CR-record’s reference. For a CR-record in A, at least one
endpoint can be found by a range query on the B+-tree: find
the node containing the query’s left endpoint and traverse

(a) (b)

(d)(c)

Previous Interval Current Interval Inserted Intervals

Figure 6: Cases of Delta Intervals

the successive nodes up to the one with the right endpoint.
The number of entries in the B+-tree is equal to twice the
number of CR-records in the CR-log.

For retrieving Group B, we need a completely different
structure. Recall that CR-records in B entirely contain the
query range. We can simply pick any point d in the query
range to represent the whole query. Hence, we have trans-
formed an intersection query into a stabbing query, i.e., the
queried range is just a point. (The transformed query might
also find CR-records in Group A.) A stabbing query is fast
in interval structures, as it only involves one path in the
tree. Though both segment trees and interval trees are suit-
able for stabbing queries, we prefer latter because of the
low space demand, enabling us to cache a large part of the
structure in memory.

In summary, a range query will be transformed into two
sub-queries: a range query on the B+-tree and a stabbing
query on the interval tree. Each sub-query traverses only one
tree-path, thus minimizing the number of accessed internal
nodes. Sub-query results are combined to remove duplicates.
Sfakianakis et al. apply a similar idea to index intervals
using a key-value cloud store [19].

4.2 Index Optimization
There are several critical issues when using CR-index in

real applications.

• How to make interval indexes small to cache them.

• How to handle occasional discontinuities in the data.

This section presents optimization mechanisms to handle
these issues while preserving index performance.

4.2.1 Index with Delta Intervals
The value of an observational record is expected to be

close to that of the previous one. Therefore, boundary in-
tervals of consecutive blocks might well overlap. If a query
range intersects a block, there is a high chance that it will
intersect following blocks. (We verify this statement us-
ing real-world datasets in Section 5.) This observation sug-
gests we need not insert the entire interval of each CR-record
into the interval indexes. We can instead index only non-
overlapping parts of CR-records’ intervals.

We define the delta interval of a block to be its non-
overlapping part with previous one’s interval. Only delta
intervals are inserted in interval indexes. Figure 6 shows
four cases of delta intervals, indicated using red segments.
The use of delta intervals can significantly reduce the space
consumption of interval indexes (B+-tree and interval tree).
Instead of inserting two endpoints, only the uncovered end-
points are inserted in the B+-tree. In particular, in Case
(c) no entries are needed. For the interval tree, the lengths



Figure 7: Multiple temperatures in a beehive

of inserted intervals are reduced. Smaller intervals will be
pushed closer to the leaf nodes, thereby reducing the size of
upper-level nodes cached in memory. Although in case (d)
two intervals are inserted, the total length becomes smaller.

Algorithm 1 resolveDelta(List entries, Integer K,

Range range)

1: Set result;
2: Scanner CRlog;
3: for each entry e from entries do
4: Int counter = 0;
5: CRlog.seek(e.position);
6: while counter < K do
7: counter++;
8: Record next = CRlog.next();
9: if next overlaps range then
10: result.add(next);
11: counter = 0;
12: return result;

To further reduce index size, we extend the delta inter-
val to length k: the portion of the interval not covered by
the previous k blocks. This reduction on index size comes at
the cost of accessing at most k additional CR-records after a
qualifying CR-record. The CR-log is organized sequentially
on disk, therefore accessing additional records is fast. Al-
gorithm 1 shows how to resolve the complete CR-record set
for a query, using the length-k delta intervals. The list en-
tries identify all CR-records found in interval indexes. For
each such entry, we locate it in the CR-log and set up a
counter (lines 3-5). We keep reading the CR-records un-
til the counter reaches the threshold (lines 6-8), reset the
counter if we find a qualifying record (lines 9-11).

4.2.2 Hole Skipper
CR-indexes exploit data continuity. There are reasons

that the continuity assumption might be violated:
Data loss because of sensor failures or network break-

downs, giving a jump for the missing period.
Abnormal values arising from a natural or man-made

disturbance in the environment, such as sensor fouling or a
passing vessel.

Multiple data sources in a single file. Figure 7 shows
a multi-sensor data source1, the temperatures at different
locations in a beehive. As can be seen, there are gaps or
“holes” between boundary pairs.

Due to such issues, a boundary pair might not accurately
describe block’s content: sub-ranges with no data may ex-
ist. Any query on those sub-ranges will fetch false-positive
blocks.

1http://openenergymonitor.org/emon/buildingblocks/sd-
card-logging

W
id

th

Length

Figure 8: Holes in continuous ranges

A hole is a sub-range that contains no actual values. We
are concerned with holes whose widths are larger than query
ranges. Depending on the cause of the hole, there might be
similar holes in adjacent blocks. Thus, we allow a hole to
have a length, measured in blocks. (Note that if we extend
the length of a hole, its width may shrink.) Figure 8 shows
three holes over a sequence of 11 data blocks. If a query
falls in a hole, we can skip blocks for the length of the hole.
Hole skipper (HS) is a mechanism that tracks a number of
holes inside each CR-record. To limit the space for hole
information, HS only keeps the k largest holes in each CR-
record. The size of a hole is defined as width · length. The
larger the hole size is, the higher probability of skipping
blocks it will have.

We concern the cost of finding largest holes. While there
is little overhead in creating the boundary pair when initially
writing a block, detecting holes incurs more cost. Therefore,
HS applies an adaptive strategy to detect holes during query
processing and keep them for future queries. Scanning a
false-positive block means a new hole is detected. This hole
is a candidate added to the corresponding CR-record.

Algorithm 2 detectHole(List CRrecords, Range

range)

1: Hole currentHole;
2: CRrecord firstR;
3: Scanner logF ile;
4: for each record r in CRrecords do
5: logF ile.seek(r.position);
6: logF ile.readNextBlock();
7: if no results inside range then
8: if r not next to currentHole then
9: firstR.addHole(currentHole);
10: currentHole = new Hole();
11: firstR = r;
12: else
13: currentHole.extendLength();
14: else
15: firstR.addHole(currentHole);
16: currentHole.clear();

Algorithm 2 shows the details of hole detection. Data
blocks are scanned in order (lines 4-6). If a false positive
block is detected (line 7), we extend the length of current
hole (lines 8-13).An extension could make the hole smaller
because the width might decrease2. Once a hole is completed
and in top-k, it will be attached into the first CR-record that
contains it (lines 8-10, 14-16).

The major advantage of applying the adaptive strategy is
that it does not affect throughput in the write phase. In
addition, the maintained holes only involve queried data. It
avoids capturing holes that are not of interest to the users.

2We actually find the largest empty interval around the
query range in each scanned block.



4.3 Dealing with Disordered Records
We expect that arriving records are ordered on timestamp,

but disordered records can arise due to the network delays.
We have to append such records as they arrive. It could
pose problems with respect to data-continuity assumption.

Our approach tolerates a certain amount of disorder. The
CR-index does not care about orders inside a block. On the
other hand, disorder between blocks can extend the scope
of boundary pairs, if the delayed record has a value beyond
the range of the block. This will be managed by HS.

For time-range query, the existence of disorder extends
the number of blocks to cover that range. We maintain a
checkpoint list to help determine which parts of the file are
involved. The system periodically adds time points to the
list. For each checkpoint, it maintains: (1) the smallest
block id that contains records later than that time; (2) the
largest block id that contains records earlier than that time.
The CR-records will be filtered by the block id range before
actually fetching the corresponding blocks. The checkpoint
list is a memory-based structure, therefore it can be easily
updated when a delayed record arrives.

4.4 Evaluating Range Queries
Consider executing a query with conditions on both time

and value. The value condition is used at both the interval-
index level and the CR-log level , while the time condition
is used at the CR-log via the checkpoint list. In addition,
hole information will both be consulted and updated. The
following are the main steps in evaluating a query:

1. Access the interval indexes to get CR-records ids: Group
A from B+-trees and Group B from interval trees.

2. Locate each identified record in the CR-log. Scan the
log for additional CR-records if using delta intervals.

3. Filter CR-records using checkpoint list and hole infor-
mation.

4. Fetch and scan the data blocks for remaining CR-
records. Extract and return all qualifying results.

5. For any detected false-positive blocks, track the holes
and update the hole information in CR-records.

4.5 Analysis of Index Behavior
The effectiveness of the CR-index depends on the data-

continuity. To analyze index behavior, we first introduce
metrics to quantify the continuity of a dataset. With these
metrics, we can derive mathematical estimates of index per-
formance. Finally, the tradeoff between index-maintenance
cost and query cost is discussed.

4.5.1 Continuity of Observational Data
Consider an observational dataset D with ND records,

arranged in temporal order. For each record ri (1 ≤ i ≤
ND), vi denotes the value of the indexed attribute. We
define the continuity distance (dis) for D as:

dis(D) =
1

ND − 1

ND∑
i=2

disi

disi = |vi − vi−1|

The disi represent the numerical distance between two ad-
jacent records.

The more continuous D is, the lower the dis(D) will be.
To calibrate the continuity distance, the expected range size
of queries should also be considered. For example, suppose
the dis(D) is 0.1. D has good continuity when the query
range is [23.2, 25.8], but not if the range is [23.256, 23.259].
Therefore, for any query Q with range [a, b], we define the
degree of continuity (doc) as:

doc(Q,D) =
|b− a|

dis(D)

The larger the doc(Q,D) is, the better continuity quality
the dataset possesses for the given query.

4.5.2 Query Cost
Now we analyze the cost of executing a query Q with

range [a, b] and degree of continuity doc(Q,D). Suppose the
result set is R. Since the data values are continuous, we can
expect R to be consist of sequences of contiguously stored
records, whose values in the range [a, b].

Using doc we can estimate the number of sequences in R.
We start by randomly choosing a record in R and estimating
the number of records in the sequence it belongs to. Suppose
the chosen record has value x ∈ [a, b]. The shortest path for
a continuous source to enter the query range, reach this value
and then leave the range is when it both enters and exits
from the nearer side, e.g., from point a if |x − a| ≤ |x − b|.
Therefore, the shortest path for reaching x in the range is:

path(x) = 2 ·min (|x− a|, |x− b|)

We obtain the expected distance of the path by considering
all values for x:

path =

∫ b

a

path(x)dx =
|b− a|

2

Thus we can expect path/dis(D) = doc(Q,D)/2 points in
the same sequence as x. Therefore, the number of disjoint
sequences Nseq in the result set can be estimated as:

Nseq = ⌈
2|R|

doc(Q,D)
⌉

Note that this estimate is likely to be on the high side as
paths through x are always larger than the minimum. Let
the block length (Lblock) be the number of records in each

data block. For each sequence, at most ⌈ doc(Q,D)
2Lblock

+1⌉ blocks

are needed to cover it. The total number of records accessed
is bounded by:

B ≤ Nseq · Lblock · ⌈
doc(Q,D)

2Lblock

+ 1⌉

Only Nseq disk seeks are executed while accessing these
records. The overall disk cost of executing query Q is:

COSTQ = Tseek ·Nseq + Ttrans ·B

Here Tseek is the time of executing a disk seek and Ttrans is
the time of transferring a single record.

Unlike other indexing methods whose costs are defined in
terms of the number of I/Os and how close it is to the opti-
mal I/O O(log n + #results), our index separate disk-seek
cost and data-transfer cost. The CR-index tries to reduce
costly seeks for a better utilization of disk bandwidth.



4.5.3 Storage Cost versus Query Performance
The key parameter that tunes the trade-off between CR-

index storage cost and query performance is the block length
Lblock. The main contribution to the storage cost is the
space for the CR-log. The size of CR-log varies inversely
with Lblock. With the query cost model in Section 4.5.2,
disk seek cost is not affected much by Lblock. By increasing
Lblock to Lblock +∆L, only Nseq ·∆L additional records are
accessed. Thus we can trade a reduction in index size for a
marginal increase in query time. Suppose Lblock is 100 and
Nseq for a given query is 5. If we increase Lblock to 200, CR-
log will consume half the space, at a cost of possibly reading
500 additional records. The amortized index size for each
record can be just 1 − 5 bytes. Hopefully, tens of MB of
space are adequate for handling observational data on the
scale of GB.

4.6 Multi-Attribute Queries
In previous sections, we present the details of execut-

ing single-attribute range queries using CR-indexes. Here
we discuss the feasibility of utilizing CR-indexes on multi-
attribute range queries as might arise in applications.

4.6.1 Multiple Continuous Attributes
We have argued that CR-index is lightweight in terms of

both time and space cost. The overhead of maintaining sec-
ondary indexes on many attributes should be acceptable. As
a result, the set of available indexes can facilitate the pro-
cessing of complicated queries involving multiple attributes.
Conceptually, the idea of the CR-index is easy to extend to
multi-attribute cases. On the other hand, the conventional
indexes, such as B+-tree, cannot efficiently handle queries
with range conditions on more than one attributes.

In detail, the strategy is to break a multi-attribute query
into several single-attribute sub-queries. Each sub-query ac-
cesses a CR-index instance and the returned entries indicate
the scope of sub-query results. It is possible to merge mul-
tiple scopes, depending on the OR and AND connectives in
query expressions, before we fetch data blocks. For example,
we have two blocks from different CR-indexes: one involving
file offsets from 10 to 30 and the other from 20 to 40. After
examining the query, we can directly extract results from
[10,40] or [20,30] for OR or AND respectively. The system
thus avoid accessing redundant and non-satisfying items.

In order to coordinate indexes and provide better effi-
ciency, global data partitions can be applied for all indexes
in the same table, i.e. the block partitions are common
among all index instances and using global block ids. Com-
pared to local data partitions in each index, a global par-
tition could significantly reduce the index space and com-
putations. The merge of results in multi-attribute queries
could be processed at the level of block id, making merge
operations much more efficient.

We note that there are inherent holes in multi-dimensional
data, even when each dimension is ideally continuous. In
Figure 9, we show two sources that are ideally continuous
over time, but where there exist large holes.

4.6.2 Primary-Key Attributes
There is a second type of multi-attribute query, which

includes a constraint on primary-key attributes, e.g., the
retrieval of data from a specific sensor for a time period be-
sides a range of salinity. If the number of distinct keys that

Xmin Xmax

Ymin

Ymax

Figure 9: Inevitable holes (dashed-rectangles) in 2-
dimensional continuous data sources

will be retrieved is limited, an additional boundary-pair can
be added for each such key. They further filter CR-records
before fetching blocks. In the worst case where there are an
excessive number of distinct keys, we still have two choices in
execution: (1) get records using the primary index and filter
them by value-conditions; (2) fetch data blocks by secondary
CR-indexes and extract the results using key constraints.
Since the index-lookup cost of CR-index is extremely cheap,
we can get the CR-records before actually making the deci-
sion. Choice (2) is preferred when the number of returned
CR-records is small, which means only a few blocks need to
scan. We test such queries in Section 5.6.

5. EXPERIMENTAL RESULTS
This section presents an experimental study on index-

ing and querying observational data with the CR-index.
Our objective is to demonstrate the feasibility of using this
lightweight index to provide good query performance, com-
pared to that of conventional record-level indexes. In addi-
tion, we will demonstrate its high write throughput, which
makes it an excellent choice for write-intensive applications.

We compare the CR-index with two conventional index
structures: B+-trees and LSM-trees. We use open-source
implementations for these alternatives, namely JDBM3 for
B+-tree [4] and LevelDB [5] for LSM-tree. In order to show
the effect of design choices, we also compare variants of the
CR-index. The variants consider the choices of CR-log stor-
age types (disk-based or memory-based) and access types
(interval indexes or brute-force scan).

5.1 Data Sets
We use two real sensor datasets for our test, one from sci-

entific observations, the other from an instrumented sports
game. The first dataset is strongly continuous, while the
second one has numerous holes.

5.1.1 CMOP Coastal Margin Data
This dataset contains coastal margin data collected from

the CMOP [2] SATURN Observing System. The data were
collected between April 2011 and August 2012 from an ob-
servation station in SATURN. It contains diverse physical
variables reflecting ocean and river status, including salin-
ity, temperature and oxygen saturation. We transform the
raw data files into records, each of which contains values
collected at the same time.

5.1.2 Real-time Soccer Game Data
The second dataset is from the DEBS 2013 Grand Chal-

lenge [3]. This high-resolution data was collected from sen-
sors embedded in balls during a soccer game. Each sensor
produces records at 2000Hz. Each record contains sensor id,
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timestamp, position, speed as well as velocity and acceler-
ation in 3 dimensions. The data is the combination of the
readings from four balls, used alternately during the game.
The original stream also contained lower-frequency readings
for the players, which we removed in our test.

5.2 Experimental Setup
All experiments were performed on an in-house cluster,

where each machine has a quad-core processor, 8 GB physi-
cal memory and 500GB disk capacity. All indexes (including
CR-index, B+-tree and LSM-tree) are implemented in JAVA
and embedded into the LogBase system.

We use default settings for both B+-tree and LSM-tree as
given in the open source code. In the CR-index configura-
tion: the data-block length is 64 records; the CR-log is on
disk and indexed by in-memory interval indexes; the delta-
interval length is 1; each CR-record holds up to 5 holes.

The secondary index is built on single attributes in both
datasets: salinity in the ocean data (CMOP) and speed in
the soccer data (GAME). The CMOP data has better con-
tinuity, since the salinity of water changes slowly while the
speed of balls can change suddenly. The query set contains
queries that retrieve records whose indexed attribute lies in
specified value ranges, with no restriction on time.

In each test, the client uploads a number of records into
the system: 13 million for CMOP and 25 million for GAME.
Records are managed by a single tablet server. The length of
raw records are around 200 bytes and 100 bytes, respectively.
After each fifth of the records is inserted, 10 queries are
issued from the query set. The average result selectivity of
queries is 8.4% for CMOP and 6.3% for GAME.

5.3 Write Performance
This subsection focuses on the data-insertion performance.

We compare different index approaches on both time and
space consumption.

5.3.1 System-Load Time
Figure 10 illustrates the write time in loading data, ex-

cluding the time of executing queries. As can be seen, the

CR-index (CRI) is extremely lightweight and raises system
time only slightly, by no more than 8%. This low overhead is
suitable for write-intensive scenarios and allows maintaining
many secondary indexes on a table. In contrast, both LSM-
tree (LSM) and B+-tree (B+) cause significant performance
reductions. The write-optimized LSM-tree has 45-77% ex-
tra system cost, while the read-optimized B+-tree’s extra
cost is 78-124%. Since the B+-tree is update-in-place, its
split operations bring random I/Os and thereby make the
maintenance not scalable. Note that the GAME data was
collected from an 1-hour game and our system is capable of
processing the data in real-time.

5.3.2 Index-Update Time
Figure 11 presents the index-only cost. We observe that

the index update cost of the CR-index is about an order of
magnitude lower than conventional index structures. The
total cost is only 15% of LSM-tree and 9% of B+-tree. The
reduction in index update time comes from the boundary-
pair abstraction. Each block generates only one index entry,
much less than in other approaches.

Figure 12 provides the detailed index-update overhead
of CR-index variants. The most lightweight variant uses
a memory-based CR-log without interval indexes (mCRL),
which incurs no I/O. The interval indexes can still be con-
structed on a memory-based CR-log (mCRL + index), but
updating indexes add cost. The disk-based CR-log (dCRL)
has minimal memory consumption, at the cost of sequen-
tial I/Os. Although the maintenance cost is much higher
than for in-memory variants, it is still an order of magnitude
smaller than data-load time. The most versatile variant is
the disk-based CR-log with memory-based interval indexes
(dCRL + index), which is the default variant in other tests.
The interval indexes raise the index cost by up 20-70% than
disk-based approach but consume much less memory than
memory-only variants.

5.3.3 Index-Space Consumption
Figure 13 summarizes the disk-space consumption of dif-

ferent indexes. We only sum up the disk space, ignoring any
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memory usage. In the figure, we can see that the size of
the CR-index is only 10-12% of the LSM-tree and 4-6% of
the B+-tree. We expect that the B+-tree uses more space
than the LSM-tree, since its disk pages are often partially
full. With default data-block length, the number of entries
in the CR-index is only 1/64 of that for the record-level in-
dexes. However, since each entry (CR-record) keeps several
fields, such as hole information, the entry size is larger.

5.4 Query Performance
This subsection focuses on the response time of range

queries. We consider both overall response time and sub-
phase execution time.

5.4.1 Query-Response Time
Figure 14 shows the overall query response time with dif-

ferent approaches. As can be seen, the response time of the
CR-index is comparable to that for the LSM-tree and B+-
tree. It performs better on CMOP data, since the ocean’s
salinity provides stronger continuity than the mixture of four
balls’ speeds. The results from both datasets show that the
CR-index can replace conventional indexes on observational
data while preserving similar query performance.

Since all these are secondary indexes, they all employ two
steps to process a query: the index-lookup phase accesses the
index to get record references (in B+-tree and LSM-tree) or
block references (in CR-index); the data-access phase reads
records or blocks from data files. For both LSM-trees and
B+-trees, the lookup cost is significant. After a record is
identified, they access it efficiently using accurate positional
information. On the other hand, the lookup cost on small-
sized CR-index is negligible. Most of the cost is incurred in
fetching and scanning data blocks.

5.4.2 Index-Lookup Cost versus Data-Access Cost
Figure 15 examines the index-lookup cost. As can be ob-

served, the CR-index spends much less time than other ap-
proaches in this phase. The total cost is only 3-7% of that
of the LSM-tree and 4-9% of the B+-tree. These values are
not surprising, since the number of entries in the CR-index

Table 1: Result Sequences in Datasets
Query CMOP1 CMOP2 GAME1 GAME2

# Results 503K 1217K 1075K 1595K
# Blocks 13815 29524 60754 95142

# Sequences 2991 6176 2249 5821
Nseq 28367 62380 6096 18087

Res/Blk 36.4 41.2 17.7 16.8
Blk/Seq 4.62 4.78 27.01 16.34

is only 1/64 that of the other two. Although the efficient
lookup comes at the cost of increasing data-access time, the
overall cost of these two phases is still low.

Figure 16 shows the lookup cost of different CR-index
variants. Since scanning a disk-based CR-log takes about
five times longer than using interval indexes, we discard that
variant from the figure. Memory-based variants (mCRL and
mCRL+Index) have excellent lookup performance. Note
that using the interval indexes with a memory-based CR-
log actually incurs a performance penalty. However, for a
disk-based CR-log (dCRL+Index), the interval indexes are
necessary to reduce I/Os.

Figure 17 shows the data-access cost. The LSM-tree and
B+-tree have the identical set of record references. The time
of accessing records in data files is therefore similar. How-
ever, for the CR-index, the data-access cost is higher, be-
cause data blocks are fetched. The block length used in our
test is 64, but the data-access time is not 64 times longer.
The block-scan only increases the time by 26-34%, as an ac-
cessed block always contains many results and most blocks
are read as part of sequences. Table 1 shows the statistics
for accessing blocks in different queries. In GAME data,
since the records are from four balls, the results are diluted
by noises from other readings. Hence, the number of blocks
in a sequence is larger while the number of results in a block
decreases. Nseq is the estimated number of sequences, using
the analysis in Section 4.5.2, which is pessimistic. In real
datasets, the number of seeks performed is much less than
the theoretical bound.
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Figure 18: CR-index performance affected by different factors

5.5 Influencing Factors
This subsection covers several factors that influence index

performance and allow tuning the trade-off between write
and query cost. The data size in following tests used the full-
size configuration (12.9M for CMOP and 25M for GAME).

5.5.1 Block Length
Block length dominates both the number of generated CR-

records and the block-scan cost. Figure 18(a) shows the
index-lookup cost with different block lengths. The lookup
time appears proportional to O(n log n), where n refers to
the number of index entries. This pattern is expected due
to the retrieval cost on tree-structured interval indexes.

The data-access time intuitively rises with increasing block
length. Figure 18(b) presents this trend. From this figure,
we observe that scan cost increases linearly but slowly with
block length. This phenomenon coincides with the mathe-
matical analysis in Section 4.5 and supports our point that
index size and update cost can be reduced significantly with
only a moderate effect on query performance.

5.5.2 Effect of Hole Skipper
Potential discontinuities occur for many reasons. In the

GAME dataset, the gaps in ball speed are produced by na-
ture of the game: only one ball is in play alternately. There-
fore, there are inherent gaps between the speed of the ac-
tive ball and that of the other balls. Figure 18(c) shows
the improvement in query response time that Hole Skipper
provides for GAME data. As can be observed, it improves
the performance by about 40%. HS only helps slightly for
CMOP data because of its good continuity, and we omit the
comparison here.

5.5.3 Query Selectivity
Figure 18(d) shows the query response time with differ-

ent query selectivities on the CMOP dataset. As can be
seen, when the selectivity is low, e.g. 3.9%, all indexes per-
forms well. However, as the range increases, the CR-index
scales well. In B+-trees, split pages might not be physically
contiguous. Therefore, for large-range queries, randomly lo-
cated pages are accessed, hurting performance. In contrast,
the CR-index only execute sequential I/Os in both index-
lookup and data-access phases, accessing the CR-log and
data files. Therefore, the CR-index is more scalable than
record-level indexes, both in terms of dataset and result size.

5.6 Multi-Attribute Queries
This subsection verifies the feasibility of extending the

CR-index to handle complex multi-attribute queries. The
data size is still the full-size configuration.
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5.6.1 Queries on Multiple Observational Attributes
We first consider a 2-attribute range query: retrieval of

CMOP records whose salinity and temperature are in spe-
cific ranges. Having an index on only one attribute results in
further filtering of returned records. The query selectivity is
varied by changing the salinity-range while the temperature-
range is fixed. As can been seen in Figure 19(a), the response
time of indexing salinity(CRI s) is influenced severely by
query selectivity as the number of candidate blocks increase,
compared to indexing temperature(CRI t). When both CR-
indexes are available, the pre-filtering of CR-records pre-
vents fetching most of the nonsatisfying data blocks and the
consequent improvement is significant (CRI 2d). The pro-
posed technique is extensible for more than 2 attributes.

5.6.2 Queries with Equality on Primary Key
Second, we consider queries with select-conditions on both

key and attributes: retrieval of GAME records whose veloc-
ity is in a specified range and from a specified sensor. The
query selectivity is varied by changing the range while fix-
ing the key. LogBase provides the key-based primary in-
dex, which we can use to fetch records and then filter by
range-conditions. As can be seen in Figure 19(b), this plan
(Primary) is not affected by query selectivity. On the other
hand, the CR-index (CRI) on velocity is sensitive to query-
range and could be outperformed by the primary index at
some point of selectivity. This point could be considered
as the watershed for the choice of query plan. Following
our discussion in Section 4.6.2, with the improvement where
the key has its own boundary-pair (CRI key), the overall
response time could be much lower.

6. RELATED WORK

6.1 Storage Systems
Data and streaming warehouses are a major group of

storage systems, some of which collect observational data.



DataDepot [12] is a tool for building and managing stream-
ing warehouses in an RDBMS, providing fast data loading,
automated view maintenance and data consistency control.
SDAF [9], a data warehouse framework for sensor data, sup-
ports spatial queries over objects relating to location and
time. A cloud-based sensor data warehouse method [13]
was proposed on top of the distributed NoSQL database
HBase [1]. It provides a simple key-value data model to
manage sensor data in the column-oriented paradigm.

NoSQL systems, such as BigTable [8], HBase [1] and Cas-
sandra [15], are widely used for distributed storage. One
advantage of NoSQL systems is their high write throughput.
In contrast to RDBMS, the data are simply represented as
a set of key-value pairs. Since the data models and schema
are more flexible and impose fewer constraints, the writing
cost is substantially reduced. However, a drawback of such
systems is the simple key-based interface, which does not
support range retrieval on values.

6.2 Index Structures
Index structures play an important role in supporting

searches. For example, the classic B+-tree [10] only needs a
few I/Os for locating a search value, and it also supports effi-
cient range queries. However, in large-scale, write-intensive
applications, the required random I/Os for index updating
are detrimental to write throughput.

In order to support indexing in write-intensive scenarios,
a variety of log-structured indexes have been designed as al-
ternatives to B+-trees. An early log-structured index, the
LSM-tree [17], makes use of exponential-sized subcompo-
nents and merges them periodically using sequential I/Os. It
significantly improves write throughput by avoiding random
seeks during updates. However, its read performance is com-
promised, since all sub-components need to be consulted in
an index access. Several variants of the LSM-tree have been
proposed, such as the SSD-optimized FD-tree [16]. Many
systems, such as LevelDB [5], HBase[1] and TokuDB [14],
also incorporate log-structured indexes. Recently, a general
purpose LSM-tree, bLSM [18], was proposed that gets near-
optimal read performance by employing Bloom Filters [7].
The bLSM index outperforms B+-trees in almost all scenar-
ios. However, all these record-level indexes have to reside on
disk with the data volumes we consider, because information
is captured at per-item level.

7. CONCLUSION
Log-structured storage is a natural choice for storing ob-

servational data that arrives as streams. We designed a
novel lightweight index structure called the CR-index, which
is small enough to reside in main memory and is fast to
construct. It avoids indexing each item, as in conventional
indexes, and therefore achieves high write throughput in
write-heavy applications. The index supports fast location
of potential results, followed by a data-scan. The index ex-
ploits several key properties of observational data, most im-
portantly, continuity. The experimental analysis verifies the
feasibility of the CR-index and confirms that it can pro-
vide good query performance compared to existing indexing
strategies, while achieving high write throughput. For other
application areas where data is not strictly continuous but
values are correlated between successive records, for exam-
ple stock prices, our index might also be effective.
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