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ABSTRACT
Machine learning (ML) is an important part of modern data science
applications. Data scientists today have to manage the end-to-end
ML life cycle that includes both model training and model serving,
the latter of which is essential, as it makes their works available to
end-users. Systems of model serving require high performance, low
cost, and ease of management. Cloud providers are already offering
model serving choices, including managed services and self-rented
servers. Recently, serverless computing, whose advantages include
high elasticity and a fine-grained cost model, brings another option
for model serving.

Our goal in this paper is to examine the viability of serverless
as a mainstream model serving platform. To this end, we first con-
duct a comprehensive evaluation of the performance and cost of
serverless against other model serving systems on Amazon Web
Service and Google Cloud Platform. We find that serverless outper-
forms many cloud-based alternatives. Further, there are settings
under which it even achieves better performance than GPU-based
systems. Next, we present the design space of serverless model
serving, which comprises multiple dimensions, including cloud
platforms, serving runtimes, and other function-specific paramet-
ers. For each dimension, we analyze the impact of different choices
and provide suggestions for data scientists to better utilize server-
less model serving. Finally, we discuss challenges and opportunities
in building a more practical serverless model serving system.
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1 INTRODUCTION
Machine learning (ML) has transformed data science [25, 28, 51].
Figure 1 illustrates the changes. Until recently, a typical data science
pipeline consists of data collection, cleaning and integration, data
analytics, and visualization. Now, the pipeline includes the full ML
life cycle: feature engineering, model training, and model serving,
turning data scientists into end-to-end data engineers [35]. Consider
a nutrition analysis application, FoodLG1, as an example. A data
scientist first collects a set of labeled food images from nutritionists,
transforms the data, and builds a deep learning model [41, 54] that
classifies food images and analyzes the nutrition according to a food
knowledge base (e.g., CalorieKing [8]). After that, the data scientist
deploys the model and makes it available to users’ mobile apps.
Then a user sends food images as requests to the deployed model
and receives the predicted food nutrition (e.g., calorie, protein). The
application can record the user’s daily intake, analyze her eating
habit, and provide suggestions for healthy dietary intake. New data
is collected and fed back to the pipeline to improve model accuracy.
In real-world applications, model serving plays a crucial role in
bringing the works of data scientists to the end-users.
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Figure 1: A typical data science pipeline.

Model serving systems are interactive, that is, they handle infer-
ence requests from users in near real-time. As a result, their design
goals differ from those of model training systems that focus on
maximizing throughput. The first goal is high performance, which
means that the system can process requests fast, even under bursty
1http://www.foodlg.com/
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workloads. The second goal is low cost, which means that the sys-
tem is cost-effective when handling a large number of requests.
The third goal is ease of management, which means that the sys-
tem allows data scientists to quickly deploy ML models without
worrying about low-level details such as resource management.
Existing cloud providers are offering several model serving choices,
including managed ML services and self-rented servers [7, 17, 38].
These options, however, do not meet all three goals.

Serverless computing [26, 31], an emerging cloud computing
paradigm, brings another option for model serving, and it has the
potentials to achieve the three goals above. Figure 2 shows how
serverless can support model serving for the aforementioned ap-
plication. The data scientist first uploads a trained model to the
cloud storage, then writes and deploys a function for executing
model inference. The cloud provider creates an invokable endpoint
(e.g., a URL) for the function, to which users can send their requests
and receive inference results. The serverless platform takes care of
provisioning computation instances to execute the function, and of
scaling the number of instances according to the request workload.
The data scientist is charged by the actual amount of consumed
resources, instead of the time of reserved resources.

Serverless can achieve the first goal of model serving, i.e., high
performance, because it adaptively scales to multiple instances
very fast so that it can handle the requests timely. It can meet the
second goal, i.e., low cost, because billing is only based on the actual
resource consumption. This means that the scientist does not have
to provision for peak load, which can be expensive, especially when
using GPUs. The last goal, ease of management, is also met since
provisioning and scaling of resources are handled automatically by
the cloud platform. Despite these potentials, there are challenges in
applying serverless to model serving. In particular, serverless has
several limitations, including small memory size, limited running
time, and lack of persistent states [26, 30, 32, 33, 40, 46, 49].

In this paper, we ask the following question: can serverless com-
puting be a mainstream model serving platform for data science
applications? To answer this, we conduct an extensive comparison
between serverless and other cloud-based model serving altern-
atives with respect to performance and cost. We consider eight
systems spanning two major cloud providers: Amazon Web Ser-
vice [3] (AWS) and Google Cloud Platform [19] (GCP). In particular,
we evaluate Lambda, Cloud Functions, SageMaker, AI Platform,
and self-rented CPU and GPU systems from AWS and GCP. We use
three deep learning models for the evaluation: MobileNet and VGG,
two image classification models, and ALBERT, a natural language
processing model. We evaluate these models on the eight systems
under three different workloads. We compare the systems in three
metrics: response latency, request success ratio, and cost.

Our results contain two surprising findings. First, while earlier
works claimed that serverless is not suitable for model serving [26],
we find that, in most cases, serverless outperforms managed ML
services such as SageMaker and AI Platform in both cost and per-
formance. Meanwhile, it has better performance than self-rented
CPU systems but with a higher cost; nevertheless, serverless can
be much faster if the cost is relatively comparable on AWS. Second,
while other works suggested that serverless should be used as a com-
plementary platform to a GPU-based system for handling excessive
load [57], we show that there are settings under which serverless
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Figure 2: Serverless model serving example.

could be a better choice than self-rented GPU systems. In particular,
on AWS, serving MobileNet with workload-200 (see Figure 4, which
consists of 86000 requests within 15 minutes) with serverless results
in an average latency of 0.097𝑠 and a cost of $0.186. In contrast,
doing the same using a GPU server results in 7.52𝑠 and $0.187, re-
spectively. With comparable cost, serverless achieves 77.5× latency
improvement. Importantly, we find that serverless is less sensitive
to changes in workloads or models, which means it can provide
consistent performance even under bursty workloads or given large
models. Our evaluation results provide an important insight, that
is, serverless is a viable and promising option for model serving.

Next, we describe the design space of serverless model serving,
which comprises multiple dimensions, including serverless plat-
forms, serving runtimes, and other function-specific parameters.
We further investigate the impact of each dimension on serverless’
performance and cost, and present suggestions for data scientists
to better utilize serverless model serving. In particular, we observe
that there is a gap in the cold start time between AWS and GCP
serverless functions. For instance, using the same serving envir-
onment, namely TensorFlow1.15 [22], AWS takes about 9.49𝑠 on
average to start an instance while GCP takes about 14.19𝑠 when
serving ALBERT with workload-120 (see Figure 4). Another inter-
esting finding is that a lightweight serving runtime could reduce
both latency and cost in most cases. For instance, if serving with
OnnxRuntime1.4 [39] instead of TensorFlow1.15, we can obtain up
to 3.61× latency speedup and 4.55× cost reduction.

In summary, we make the following contributions in this paper.
• We conduct an extensive cost and performance comparison of
serverless against other cloud-based systems for model serving.
Our analysis covers eight different systems on two major public
cloud providers, with three deep learning models and three
different workloads.

• We present interesting findings indicating that serverless is a
viable and promising option for model serving. We show that
it outperforms managed ML services and CPU-based systems
in most cases, and there are settings under which it can even
achieve better performance than GPU-based systems.

• We further explore the impact of its design space on serverless
model serving and present recommendations for data scientists
on how to better use serverless for model serving. In addition,
we discuss research challenges and opportunities in building a
more practical serverless model serving system.

2 BACKGROUND AND RELATEDWORK
2.1 Machine Learning Model Serving
Machine learning has shown great success in data science applica-
tions [25, 28, 51]. How to efficiently deploy the trainedMLmodels to



serve end-users with low latency becomes increasingly important.
Recently, there are a number of model serving systems [12, 23, 53]
that focus on improving cost-effectiveness or model accuracy while
meeting service level objective (SLO) on latency, by automatic-
ally selecting different configurations. However, these systems are
mainly based on server machines and do not work well for ML
model serving due to the mismatch of target workloads [57].

2.2 Serverless Computing
Serverless computing [13, 16, 31, 50] is a recent rise of cloud comput-
ing execution paradigm such that the cloud provider runs the server
and dynamically manages the allocation of resources. It can simplify
the deployment process of function code to the production stage.
Meanwhile, it can automatically increase and release resources
to adapt to the number of user invocations, making it elastic to
handle various workloads. Pricing is based on the actual amount
of resources consumed by the deployed function. Due to its high
elasticity and fine-grained cost model, serverless computing has
been adopted in many data science applications, such as database
analytics [30, 40, 43, 44, 47, 55], and model training [9, 14, 29, 52].

2.3 Serverless Model Serving
In particular, serverless computing can be seamlessly utilized for
model serving due to its stateless computations [24]. As mentioned
in Section 1, data scientists (aka. function developers) can deploy
a pre-trained model on the cloud via a function. For a deployed
function, once received an event from the serverless proxy, the
cloud provider will create a new instance or forward event to a
warmed instance for execution. If an instance is newly created, it
imports the serving dependencies, downloads the model (which
was uploaded by the data scientists) from cloud storage, and loads
the model into the serving runtime. Otherwise, the loaded model
already exists. As a result, the instance parses the input sample
from event, executes the inference, and returns the prediction.

The most related work to ours is MArK [57], which mainly
evaluates the cost of several model serving systems on the cloud
and proposes a serving system that combines self-rented servers and
serverless to reduce the cost. BATCH [2] also considers serverless
model serving, which designs a mechanism that batches requests
and dynamically chooses the resource configuration of invoked
serverless function, to satisfy latency constraints and minimize
cost. However, neither of them has a comprehensive investigation
of the performance of existing serverless systems for model serving.

Several other works [11, 36, 56] explore the characteristics of
serverless platforms based on various applications (e.g., image res-
izing). In essence, these applications follow the same stateless exe-
cution paradigm as model serving, which reads the data, performs
pre-defined calculations, and returns the results. However, they do
not cover two specific characteristics of serverless model serving:
it requires a much longer provisioning time to prepare for the
serving environment [23], and model serving workloads are often
unpredictable and highly bursty [57].

2.4 Model Serving Systems on the Cloud
Serverless model serving systems.We consider two serverless
platforms: AWS Lambda [6] and Google Cloud Functions (CF) [18].
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Figure 3: Evaluation framework.

On Lambda, model owners first package the serving environment
(e.g., TensorFlow1.15) into a zip file or a container image and upload
it to the cloud storage. Then, they create a function by specifying
the configuration (e.g., memory size) for each instance and deploy
the function based on the uploaded serving environment. We adopt
the container image method in our experiments, where the image
size is limited to 10GB. On CF, we can only specify the required
environment in the Requirement.txt, and the platform will build the
package automatically. Model owners are charged by the amount
of consumed resources, which mainly depends on the selected
memory size and the number of instances created at runtime.
Managedmachine learning (ManagedML) services.Most cloud
providers offer fully managed services for scientists to build, train,
and deploy MLmodels easily. These ManagedML services are natur-
ally applicable for model serving, with the ability to autoscale when
the workload is too heavy to be processed by existing instances.
In the experiments, we evaluate two ManagedML services: AWS
SageMaker [7] and Google AI Platform [17]. On both services, model
owners can create an endpoint by uploading a pre-trained model
to the cloud storage and specifying a serving runtime to execute
that model. The cost is computed based on the total execution time
of active instances.
Self-rented servers for model serving.With self-rented servers,
model owners can run virtual machines (VMs) with various config-
urations (e.g., vCPUs, memory, network, and storage) and deploy a
model serving service by themselves on the rented instances. Cloud
providers also provide flexible pricing options to the customers. In
this paper, we deploy model serving services on both CPU servers
and GPU servers on AWS EC2 [4] and Google Compute Engine [20].

Unless stated otherwise, we use AWS-Serverless, GCP-Serverless,
AWS-ManagedML, and GCP-ManagedML to denote Lambda, Cloud
Functions, SageMaker, and AI Platform, for better presentation.

3 EVALUATION METHODOLOGY
We design a benchmarking framework for understanding and com-
paring the performance of different model serving systems. It con-
sists of four main components as shown in Figure 3, namely a load
generator, a planner, an executor, and an analyzer. The framework
can be deployed over multiple nodes. It comes with default work-
loads and configuration, and it can be easily extended to support
new models and new platforms.
Load generator. At first, we generate workloads and requests for
the clients. We note that there are no publicly available workloads
for model serving [57]. Therefore, we use the Markov-Modulated
Poisson Process (MMPP) model [15, 45], also adopted in [2, 57], to
generate synthetic workloads with different arrival rates and num-
bers of requests. The generated workloads are highly unpredictable
as the occurrence and duration of demand surges are random.



0 200 400 600 800
time (sec)

0

50

100

150

200

250

re
qu

es
t r

at
e 

(#
re

q/
se

c)

w-40
w-120
w-200

Figure 4: Generated MMPP workloads.
We implement a workload splitter to evenly divide the workloads

such that we can employ multiple clients to send requests, and the
aggregated request rate matches the original workloads. Besides,
we implement a request generator that creates a pool of requests,
from which a client randomly selects one request to send, ensuring
that model serving systems do not cache the prediction results.

In this paper, we generate three workloads to simulate low, me-
dium, and high request rates, as shown in Figure 4. The numbers
40, 120, and 200 in the workloads represent the higher arrival rate
of the two Poisson processes we used in MMPP. Specifically, we
refer to the synthetic workloads in [2, 57] to select the higher ar-
rival rates. Meanwhile, the 40, 120, and 200 workloads consist of
15000, 51600, and 86000 requests, respectively (duration is about
15 minutes). Besides, the workloads are split for 8 clients, and the
request pool size is set to 200.
Planner. Before serving clients’ requests, we need to deploy the
serving services on the cloud. Specifically, the deployment is based
on three dimensions: model, runtime, and configuration, which ex-
actly define the environment on the instances to serve the requests.

In this paper, we consider two serving runtimes: TensorFlow (TF)
1.15 and OnnxRuntime (ORT) 1.4. The first is used for a fair com-
parison between serverless and other serving systems, as it is one of
the most popular deep learning frameworks and is well-supported
by ManagedML service and self-rented servers on both clouds. In
particular, GCP-ManagedML only supports TF for deep learning.
The second runtime (with smaller runtime size and optimized ex-
ecutions) is used for exploring the performance improvement on
serverless platforms, as will be discussed in Section 5.2.

Meanwhile, we use three deep learning models representing two
popular data science applications: MobileNet [27] and VGG [48]
for image classification, and ALBERT [34] for natural language
processing. The model sizes are 16MB, 51.5MB, and 548MB, respect-
ively. A noteworthy aspect is that there is a temporary directory
storage limitation (i.e., 512MB) on AWS-Serverless [5], whichmeans
we cannot download the VGGmodel from cloud storage as the other
two models. Therefore, we directly pack the VGG model into an-
other directory inside the uploaded image for serving this model.
By default, we use 2GB memory for both serverless platforms. We
apply ml.m4.2xlarge (with 8vCPUs and 32GB memory) on AWS-
ManagedML and n1-standard-8 (with 8vCPUs and 30GB memory)
on GCP-ManagedML. Besides, we use similar configurations for
self-rented CPU servers, while for GPU servers, we use g4dn.2xlarge
and n1-standard-8 with 1 Tesla T4 on AWS and GCP, respectively.
Executor. After a serving service is deployed, the clients can send
requests to the service according to the workloads. Specifically,
each client randomly picks one request from the pool, sends it
through designated APIs, and receives the response. We parse the
response and record it into a log file, including response status
and latency. For serverless serving and self-rented servers, we use
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Figure 5: Model serving systems’ performance comparison.

standard HTTP API to send the requests. While for ML services,
requests need to be sent through the API provided by the cloud
platform, e.g., Amazon Boto3 and Google API Client.

When receiving a client’s request, the model serving systems
allocate necessary resources to process the request, including pre-
processing the request (e.g., resizing the image, downloading the
required model), computing the model prediction, and retrieving
the label, before responding to the client. The cloud systems also
record the execution logs for further analysis.
Analyzer. After finishing the model serving for the workloads, we
collect the results from both clients and cloud serving services, and
analyze the systems using three main metrics.
• Response latency. We analyze the end-to-end response latency
for each request on the clients, report the average latency of
the successful requests, and measure the latency trends with
respect to timestamps in the workloads.

• Request success ratio (SR). When the request rate exceeds the
limit that a system can handle, some requests are dropped, or
errors are returned. We analyze the ratio of successful requests
over all the requests. The higher the ratio, the better.

• Cost. We analyze the charges for each experiment. For systems
charged hourly (e.g., self-rented servers), we estimate the cost
based on the actual execution time.

4 MODEL SERVING SYSTEMS COMPARISON
In this section, we compare the performance and cost of serverless
model serving with alternative systems, including ManagedML,
CPU server, and GPU server using serving runtime TensorFlow1.15.
Figure 5 and Table 1 summarize the overall comparison.

4.1 Summary of Key Findings
We summarize three key findings before presenting the details.
First, serverless has better performance and is more cost-effective
than ManagedML in most cases. Specifically, for MobileNet with



Table 1: Costs for evaluated model serving systems2

Model Serving Systems workload-40 workload-120 workload-200

AWS-Serverless
MobileNet $0.050 $0.117 $0.186
ALBERT $0.223 $0.665 $1.326
VGG $0.492 $1.134 $1.993

AWS-ManagedML
MobileNet $0.428 $0.610 -
ALBERT $0.445 - -
VGG $0.436 - -

AWS-CPU $0.089 $0.089 $0.092
AWS-GPU $0.181 $0.182 $0.187

GCP-Serverless
MobileNet $0.065 $0.279 $0.537
ALBERT $0.299 $0.887 $1.511
VGG $0.507 $1.438 $2.467

GCP-ManagedML
MobileNet $0.164 $0.313 -
ALBERT $0.468 - -
VGG $0.872 - -

GCP-CPU $0.092 $0.092 $0.094
GCP-GPU $0.176 $0.177 $0.182

workload-40, the average latency of AWS-ManagedML is 71.6×
slower than that of AWS-Serverless, while its cost is 8.56× higher.
Second, in general, serverless outperforms CPU servers but often
incurs a higher cost. However, on AWS, serverless can be better
in both performance and cost when serving a simple model under
a low workload. For instance, for MobileNet with workload-40,
AWS-Serverless is 104.5× faster than CPU server and also 1.78×
lower in cost. Third, under a low workload, GPU servers are usually
better than serverless. While under a high workload, serverless is
more stable and could be a better choice than GPU servers. For
instance, for MobileNet with workload-200, AWS-Serverless results
in an average latency of 0.097𝑠 and a cost of $0.186, while those
for a GPU server are 7.52𝑠 and $0.187, respectively. In other words,
AWS-Serverless is 77.5× faster given comparable cost.

4.2 Serverless vs. ManagedML Service
We first compare serverless against managed ML services. For man-
aged ML services, autoscaling is enabled, and the minimum number
of running instances was set to 1.
AWS-Serverless vs. AWS-ManagedML Figure 5a-5c show the
comparison between AWS-Serverless and AWS-ManagedML for
the MobileNet, ALBERT, and VGG models, respectively. The aver-
age latency of AWS-Serverless is two orders of magnitude lower
than that of AWS-ManagedML. Furthermore, there are almost no
failed requests in AWS-Serverless, but there are many in AWS-
ManagedML, especially when the request rate is high or the model
is complex. For example, the success ratio for MobileNet drops from
82% (workload-40) to 36% (workload-120). For ALBERT and VGG,
even with workload-40, the success ratios are only 27% and 17%,
respectively, rendering the service unusable.

Figure 6a shows a detailed comparison for MobileNet under
workload-40, where solid lines denote latency and dotted lines de-
note success ratio. At first, the average latency of AWS-Serverless
(about 10 seconds) is higher than that of AWS-ManagedML. This
is due to the cold-start time. However, as the system is warming
up , AWS-Serverless performs better and is more stable than AWS-
ManagedML. When the request rate becomes high (e.g., starting
at around timestamp 100), AWS-ManagedML is unable to keep
up, resulting in high latency and request failure. In fact, AWS-
ManagedML’s autoscaling takes several minutes to start new in-
stances, leading to a large number of queued requests and thus
delayed responses. Figure 7a shows the number of active instances
2The costs are the absolute values for the evaluated experiments.
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Figure 6: Serverless and ManagedML comparison.
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Figure 7: The number of instances on ManagedML services.

on AWS-ManagedML under workload-40. We can observe on the
platform that it desires about 5 instances at timestamp 7 minutes.
However, the instances are ready and in service at timestamp 11
minutes. While as will be shown in Figure 11a, AWS-Serverless can
spawn new instances (e.g., tens or even a hundred of instances)
quickly under the same workload for its high elasticity.

Regarding cost from Table 1, we can see that AWS-Serverless
is more cost-efficient than AWS-ManagedML. The reason is that
AWS-ManagedML needs several minutes to start new instances, and
the evaluated workloads are relatively short. Most of the costs are
spent on autoscaling instances rather than on doing the prediction.
GCP-Serverless vs. GCP-ManagedML. Figure 5d-5f show the
results for Google systems under the same settings. For MobileNet
under workload-40, there are no failed requests for both systems,
but GCP-Serverless is slightly worse than GCP-ManagedML regard-
ing latency, which is different from the comparison on AWS. The
reason may be two-fold. One is that GCP-Serverless performs relat-
ively worse than AWS-Serverless, which will be explored in detail
in Section 5.1. The other is that GCP-ManagedML scales slightly
better than AWS-ManagedML in the experiments. As shown in
Figure 7b, GCP-ManagedML can scale to 2 instances at timestamp 6
minutes, which is earlier than AWS-ManagedML. Therefore, GCP-
ManagedML can process the requests relatively faster, which res-
ults in better performance. However, when serving a larger model
or with a higher workload, both latency and success ratio of GCP-
ManagedML deteriorate significantly, while those of GCP-Serverless
are stable and better. Figure 6b details the comparison for ALBERT
with workload-40. Similarly, once the number of queued requests
reaches a threshold, its performance degrades quickly.

For the cost, GCP-Serverless is slightly more efficient, but the
advantage is not significant as the comparison on AWS. This is
mainly because GCP-Serverless does not perform as well as AWS-
Serverless. Nevertheless, if considering both performance and cost,
GCP-Serverless is still a preferable choice over GCP-ManagedML.

4.3 Serverless vs. CPU Server
AWS-Serverless vs. CPU server. From Figure 5a-5c, we observe
that for all models, the average latency of AWS-Serverless is always
smaller than CPU server, and the advantage is more pronounced
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Figure 8: Serverless and CPU server comparison.

when the workload is higher or when the model is larger. For ex-
ample, for the CPU server, the success ratios of MobileNet are 100%,
44%, and 27% with workloads 40, 120, and 200, respectively; mean-
while, under workload-40, the success ratios for MobileNet, AL-
BERT, and VGG are 100%, 53%, and 6%, respectively. This is because
the CPU server is overloaded such that more requests are queued
up under higher load or the execution time per request is longer,
leading to increased latency and failure requests. Figure 8a details
the performance of ALBERT with workload-120, from which we
see the latency goes up sharply at the first request peak (timestamp
100) and stays at a high level. In contrast, AWS-Serverless’ latency
remains consistently low for its superior elasticity.

AWS EC2 also provides autoscaling for self-rented servers; thus,
we create an autoscaling group for each serving model, such that
new instances will be started and added in the group given a pre-
defined template. Then, we create a load balancer for the group to re-
ceive clients’ requests and forward the requests to existing instances.
Nonetheless, similar to what we observed on AWS-ManagedML, it
takes several minutes (i.e., 3 to 5 minutes) to start a new instance,
making the service less reactive to bursty requests. Besides, there
was no direct way to collect the cost of autoscaled instances on
AWS EC2; thus, we do not report the results in this paper.

For the cost, AWS-Serverless is higher in most cases. However,
we note that the average latency and success ratio of the CPU server
are extremely low. A comparable situation is for MobileNet with
workload-40, where AWS-Serverless is cheaper (i.e., $0.065) than
CPU server (i.e., $0.089) while delivering better performance.
GCP-Serverless vs. CPU server. Figure 5d-5f illustrate a sim-
ilar pattern to the comparison between GCP-Serverless and GCP-
ManagedML. In particular, for MobileNet with workload-40, CPU
server is slightly faster than GCP-Serverless. However, when the
workload increases, the performance of CPU server degrades greatly,
as shown in Figure 8b. At the two request peaks (timestamps 100 to
250 and 500 to 800), the average latency grows tens of seconds. For
the cost, GCP-Serverless is more expensive. However, as mentioned
above, CPU server cannot handle bursty requests effectively.

4.4 Serverless vs. GPU Server
AWS-Serverless vs. GPU server. Figure 5a-5c show that under
workload-40, the GPU server’s average latency is always lower
than that of AWS-Serverless for the three models. Figure 9a gives a
detailed comparison for the VGG model. That is because the GPU
server can process each request quickly (e.g., about 0.02 seconds
per request in our experiments). However, when given a higher
workload, more requests are queued up, as shown in Figure 9b
for VGG with workload-200. The results can be analyzed in three
stages. First, at the beginning, the GPU server performs better than
AWS-Serverless since the latter incurs cold-start overhead. Second,
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Figure 9: Serverless and GPU server comparison.

once AWS-Serverless instances are warmed up, AWS-Serverless
outperforms the GPU server when the request rates are high. The
rationale is that the request rate exceeds GPU server’s capacity; thus,
the request queue grows and leads to higher latency. Third, when
the request rates are reduced, GPU server regains its advantage (e.g.,
around timestamp 600). However, in most periods, AWS-Serverless’
latency is less than GPU server, resulting in lower average latency.

Regarding the cost, there are two main observations. First, for
the MobileNet model, GPU server has better performance under
workload-40 and workload-120, but its cost is also higher because
the GPU server is under-utilized while still being charged. While for
large models, e.g., ALBERT and VGG, GPU server is cheaper. The
reason is that AWS-Serverless is charged by the number of requests
and duration for processing each request. The execution time for
these two models is relatively expensive, leading to a higher cost.
Second, under a low workload, GPU server is better in both cost
and performance in most cases, demonstrating its superior ability
for model serving. However, under a high workload, GPU server
has higher latency and request failures, and AWS-Serverless can
be a better choice as its latency is less sensitive to the workloads
and models, demonstrating its high elasticity. For example, for
MobileNet with workload-200, AWS-Serverless is 77.5× faster than
GPU Server given comparable cost. In addition, as mentioned in
Section 4.3, it does not perform well to use autoscaling on CPU
servers. More severely, we observe that when using autoscaling on
GPU servers, it takes 8 to 10 minutes before a new instance can
serve requests, rendering autoscaling useless in our workloads.
GCP-Serverless vs. GPU server. The comparison is similar to
that on AWS. We omit the description due to the space limitation.

5 DESIGN SPACE OF SERVERLESS SERVING
So far, we have shown that serverless is a viable and promising
option for model serving.In this section, we further investigate
the impact of serverless serving’s design space on its perform-
ance, including serverless platforms, serving runtimes, and various
function-specific parameters.

5.1 Serverless Platforms
We first compare the performance and cost of serverless platforms,
as shown in Figure 5 and Table 1. We observe that AWS-Serverless
is always better for the three metrics. For instance, given Mobile-
Net under workload-200 (see Figure 5c and Figure 5f), the average
latency, success ratio, and cost on AWS-Serverless are 0.097s, 100%,
and $0.186, while those on GCP-Serverless are 0.422s, 99.94%, and
$0.537, respectively. There are two main reasons.

First, one contributing factor is the instance’s cold-start time. In
particular, GCP-Serverless takes a longer time to execute the cold-
start requests, for example, around 11.71𝑠 and 14.19𝑠 for MobileNet
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Figure 10: Breakdown comparison of serverless platforms,
where "cs" and "wu" denote "cold-start" and "warm-up".
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Figure 11: The number of instances on serverless platforms.

and ALBERT under workload-120, respectively. In contrast, AWS-
Serverless takes only 9.08𝑠 and 9.49𝑠 , respectively. To attribute the
difference, we break down the latency into cold-start and warm-up
requests with sub-stages. For cold-start requests, we report: end-to-
end (i.e., E2E) latency that between sending a request and receiving
the result on each client; import time for importing the serving
dependencies (e.g., TF1.15), download time for downloading the
model (e.g., MobileNet) from cloud storage, load time for loading
the model into the serving runtime, and predict time for calculating
the model inference. For warm-up requests, we only report the E2E
latency and predict time as the other sub-stages are not executed.

Figure 10 shows the breakdown comparison between the two
serverless platforms given MobileNet and ALBERT with workload-
120. We observe that the import sub-stage takes around 4-5 seconds
and dominates the E2E cold-start latency for the two models on
both platforms. Meanwhile, AWS-Serverless is faster than GCP-
Serverless for all sub-stages (e.g., 1.89𝑠 and 1.34𝑠 faster for ALBERT
w.r.t. the download time and load time, respectively), which demon-
strates the AWS-Serverless’ superior performance. Besides, the pre-
dict time of cold-start requests is much longer than that of warm-up
requests on both platforms. This may be because the TensorFlow
runtime has components that are lazily initialized, which can cause
a higher latency for the first request sent to a loaded model [21].

Second, the long cold-start time also leads to over-provisioning
problem [57], i.e., more instances are created than needed, as the
service is still insufficient during the instance creation process, so
that serverless platforms keep starting instances until the service is
available. Figure 11 compares the number of active instances for the
three models under workload-40. We observe that both platforms
can scale very fast (i.e., up to hundreds of instances in one minute)
to handle the bursty requests. However, GCP-Serverless always
creates much more instances than AWS-Serverless. For example,
for VGG on GCP-Serverless, we see around 100 instances created
during the first request peak, while only 50 instances are needed
during the second request peak (i.e., timestamp 5-6 minutes). In
other words, many instances are over-provisioned. This problem is
moderate on AWS-Serverless. Hence, the cost of AWS-Serverless is
lower, and the advantage is more obvious when the model is more
complex, or the workload is higher.
In-depth analysis. We further conduct a set of micro-benchmark
experiments with workload-120 to study the behaviors of serverless
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Figure 12: In-depth analysis with workload-120.

platforms. Specifically, we fix other sub-stages whenever possible
and tune various inputs that may affect the performance.

First, Figure 12a shows the results for varying container sizes.
We inject dummy files or dependencies with different sizes into the
base images on both platforms. The base images are 1238MB on
AWS-Serverless and 920MB on GCP-Serverless. We find that con-
tainer size does not affect the E2E cold-start latency significantly.
For instance, for MobileNet on GCP-Serverless, if we eliminate the
impact of other sub-stages (i.e., import, download, load, and predict),
the average remaining time of the base, base+0.5GB, base+1.0GB,
and base+1.5GB containers are 1.213𝑠 , 1.303𝑠 , 1.267𝑠 , and 1.386𝑠 ,
respectively. This time includes the request and result transmission
through the network and running the instance via the docker con-
tainer. Nevertheless, the change is only 0.1𝑠-0.2𝑠 on average. After
careful analysis, we found that only around 1%-2% E2E cold-start
latency is much larger than the others. For example, 9 out of 738
cold-start requests consume more than 20𝑠 for MobileNet with the
base image. We speculate that the reason could be similar to that
on OpenWhisk [42]. That is, the platform takes longer to run the
first instance on a physical machine, i.e., it needs to pull the image
from cloud storage. While for subsequent instances started on the
same machine, the platform can run directly without pulling [56].

Second, we evaluate the impact of downloaded size by down-
loading extra dummy data besides the serving model, as shown in
Figure 12b. The E2E cold-start latency goes up as the downloaded
size increases on both platforms. However, AWS-Serverless is much
faster than GCP-Serverless regarding the download time, and the
gap is more significant given larger dummy data. For instance,
AWS-Serverless takes an extra 2.39𝑠 to download 300MB of dummy
data besides the ALBERT model, while GCP-Serverless takes 10.06𝑠 .
This shows AWS-Serverless’ higher downloading performance.

Third, Figure 12c illustrates the results for varying input sizes.
Specifically, we pack more samples in each client request but only
predict one sample inside the function (i.e., fix the prediction sub-
stage). We can see that a larger input size can slightly increase
the E2E warm-up latency as more data is transmitted through the
network. However, its effect on the E2E warm-up latency is minor.

Fourth, we evaluate the impact of the predict sub-stage. We
fix one sample in each request but execute the inference multiple
times inside the function. Figure 12d reports the results. We observe
that the overall latency grows significantly when the number of
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Figure 14: Breakdown comparison of different runtimes.
inferences increases. This is expected because the prediction sub-
stage affects both cold-start andwarm-up requests, and it dominates
the overall latency when the predict time is large.
Takeaway: currently, AWS-Serverless’ performance is better than
that of GCP-Serverless. Data scientists could select AWS-Serverless
as the primary platform for performant and cost-effective serving,
especially with a complex model or under a high workload. Further-
more, among the factors that may affect the platforms’ performance,
the downloaded size and predict time are more significant.

5.2 Serving Runtime
Then, we evaluate the impact of serving runtime. Specifically, we
compare OnnxRuntime1.4 (ORT1.4) with TensorFlow1.15 (TF1.15).
Figure 13 and Table 2 report the average overall latency and cost for
MobileNet and VGG, respectively. There are two main observations.

First, model serving with ORT1.4 is more efficient than with
TF1.15 on both platforms. It has up to 2.51× lower in latency and
4.55× lower in cost for AWS-Serverless, and 3.61× and 1.97× for
GCP-Serverless, respectively. The reason is two-fold. One is that the
E2E cold-start latency is significantly reduced. Figure 14 details the
breakdown comparison between the two runtimes for MobileNet
with workload-120. Specifically, the E2E cold-start latency drops
from 9.08𝑠 to 2.775𝑠 on AWS-Serverless, and from 11.71𝑠 to 2.917𝑠 on
GCP-Serverless. Note that the container size for ORT1.4 is 391MB
for MobileNet on AWS-Serverless, compared to 1238MB for TF1.15.
Though the container size has little effect on the cold-start latency
(as discussed in Section 5.1), we observe that using ORT1.4 greatly
reduces the import time and load time. The other reason is that
ORT1.4 is optimized for improved model inference, whereas TF1.15
is the standard runtime with a relatively longer execution time
per request. For example, if analyzing the predict time of warm-up
requests for MobileNet on GCP-Serverless, the average predict time
is 0.061𝑠 for TF1.15, while that for ORT1.4 is 0.043𝑠 .

Second, the improvement for using ORT1.4 on MobileNet is
more significant than on VGG. For instance, for MobileNet on GCP-
Serverless, ORT1.4 is up to 3.61× faster than TF1.15 and 1.97× lower
in cost, while for VGG, the improvements are 1.47× and 1.32×, re-
spectively. The rationale is that the cold-start time dominates the
average latency and cost for the MobileNet model as the actual exe-
cution time per request is very short. While for the VGG model, the

Table 2: Costs for serverless serving with ORT1.4
Serving Services workload-40 workload-120 worload-200

AWS-Serverless MobileNet $0.011 $0.037 $0.062
VGG $0.322 $0.931 $1.644

GCP-Serverless MobileNet $0.047 $0.160 $0.272
VGG $0.383 $1.108 $2.455

actual execution time is longer, which has a relatively large impact
on the performance and cost, leading to a moderate improvement.
Takeaway: data scientists should consider a smaller and faster
serving runtime (e.g., ORT) on serverless platforms as the first
choice as long as that runtime supports the desired model. This can
greatly improve the performance and save cost.

5.3 Memory Size
Next, we investigate the impact of several function-specific para-
meters on the performance of serverless model serving on AWS-
Serverless. The first is memory size. Figure 15 shows the aver-
age latency and cost of MobileNet and VGG using TF1.15 and
ORT1.4 with workload-120. For both models, the latency decreases
as memory size increases because each request can be processed
faster. Besides, the latency decrease of the VGG model is sharper
than that of MobileNet as the memory size goes up. This is because
the two runtimes already execute MobileNet very fast given 2GB,
so that increasing memory cannot improve the performance as
significantly as the VGG model. In addition, the predict time is less
dominant in the end-to-end latency, e.g., for MobileNet served with
ORT1.4, the average predict time is about 0.012𝑠 given 2GB, whereas
the overall latency is about 0.047𝑠 , rendering its improvement (e.g.,
0.009𝑠 given 4GB) insignificant to the overall performance.

Another interesting phenomenon is that a larger memory does
not always increase the cost. For example, for the VGG model in
Figure 15b, we observe that the 4GB memory can even slightly
reduce the cost. There are two reasons. One is that a larger memory
decreases the execution time per request due to the improved pro-
cessing capacity (as discussed above). The other is that it also re-
duces the number of cold-started instances. For instance, by increas-
ing 2GB to 4GB for VGG with ORT1.4, the number of cold-started
instances is decreased from 408 to 37 in our experiment. How-
ever, when we keep increasing the memory size to 6GB or 8GB,
the cost does not reduce further as the two improvements cannot
compensate for the additional cost charged for larger memory.
Takeaway: if latency is the primary consideration, data scientists
should choose a large memory. Besides, data scientists could run
several warm-up requests beforehand and check the proportion of
predict time to end-to-end latency. If the proportion is minor, they
can use a small memory; otherwise, they could select a relatively
large memory. A more sophisticated way is to use a memory tuning
tool (e.g., [10]) to find an optimized size; nevertheless, it requires
data scientists to have a better understanding of the workload.

5.4 Provisioned Concurrency
We now study the impact of provisioned concurrency on AWS-
Serverless, i.e., a number of instances are always keeping warm
during the workload. Basically, this is a hybrid approach that com-
bines serverless and server-based model serving. Figure 16 reports
the performance and cost for MobileNet and VGG with workload-
120. We observe that provisioned concurrency does not necessarily
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Figure 15: Vary memory size on AWS-Serverless.
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Figure 16: Vary provisioned concurrency on AWS-Serverless

reduce average latency, and for the VGG model, the latency is
even higher in some cases. This seems counter-intuitive as a por-
tion of the requests can be forwarded to the provisioned instances
and processed quickly, which should reduce the average latency.
However, we found that the number of cold-started instances some-
times increases given provisioned concurrency. For example, for
VGG serving with TF1.15, the number of cold-started instances are
614, 640, and 478, for provisioned concurrency 8, 16, and 32, re-
spectively, compared to 409 for no provisioned concurrency. Since
AWS-Serverless’ scaling strategy is a black-box to users, we spec-
ulate that it adopts a more aggressive scaling policy when using
provisioned concurrency, i.e., once it finds that the provisioned
instances are insufficient, it scales more instances to handle the rest
of requests than that without provisioned concurrency.
Takeaway: the current provisioned concurrency method may not
be a good choice for serverless model serving. A related suggestion
to cloud providers is to publicize their autoscaling policy so that
users can better utilize it to improve performance and cost.

5.5 Batch Size
Finally, we investigate the impact of batch size on the performance
and cost of AWS-Serverless. Given a batch size, each client sends
an invocation to the serverless function only when the number of
requests matches the batch size or reaches the end of the work-
load. Figure 17 presents the results for MobileNet and VGG with
workload-120. There are two main observations. First, the average
latency is approximately doubled when the batch size doubles. This
is because most requests are delayed, and the execution time on
serverless (i.e., response to the batched requests) grows, which in-
creases the latency. Second, in most cases, batching could reduce
the cost because: (1) the number of invocations is reduced; and (2)
the request rate is reduced, resulting in a fewer number of cold-
started instances. However, for MobileNet with ORT1.4, the cost
reduction is insignificant since the model is simple and ORT1.4 is
already able to handle requests effectively with very few instances.
Takeaway: if cost is the primary concern, data scientists could
batch requests; otherwise, batching is not suggested as the response
latency will increase significantly. A better way is to apply an
adaptive batching strategy given the cost and latency constraints [2],
but it requires a careful design to predict the request rate.
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Figure 17: Vary batch size on AWS-Serverless.

6 CHALLENGES AND OPPORTUNITIES
Though existing serverless platforms have provided full-fledged
functionalities that make serverless a viable model serving option
for data science applications, there are still several research chal-
lenges and opportunities for serverless model serving.

The first challenge is how to address the over-provisioning prob-
lem [16, 50], which can greatly increase average latency and cost
(see Section 5.1). This problem can be exacerbated when serving
increasingly larger models or under higher workloads. Therefore,
designing new scaling policies for serverless model serving is an
important and promising research direction. Efficient policies may
monitor the requests’ execution time, predict the subsequent re-
quest rate, and allocate the needed instances precisely.

The second challenge is the protection of data security. With
strict privacy regulations [1], data scientists now need to consider
user’s data security. A possible solution is based on trusted hard-
ware [37, 58], to ensure secure computation. Unfortunately, most
existing serverless platforms do not support this functionality. Be-
sides, the data protection should be supported in a scalable manner
to accommodate serverless model serving. Thus, more research
work could be conducted to make serverless secure and efficient.

The third challenge is the complexity of the design space for
serverless model serving. As investigated in Section 5, many factors
affect both the performance and cost. The consequence is that the
data scientists have more decisions to make, which affects their
productivity. A potential direction is to build a navigation tool that
automatically searches the design space for serverless deployment,
and finds the best configuration under pre-defined constraints, such
that data scientists can adopt serverless model serving effectively.

7 CONCLUSIONS
In this paper, we conduct a comprehensive comparison of serverless
against other model serving systems from AWS and GCP. The eval-
uation results demonstrate that serverless is a viable and promising
option for model serving. We further investigate the design space
of serverless model serving regarding various choices and present
recommendations for data scientists to better utilize serverless. Fi-
nally, we discuss challenges and opportunities in building a more
practical serverless model serving system.
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