
Indexing High-Dimensional Data
for Efficient In-Memory Similarity Search

Bin Cui, Beng Chin Ooi, Member, IEEE, Jianwen Su, Senior Member, IEEE, and

Kian-Lee Tan, Member, IEEE Computer Society

Abstract—In main memory systems, the L2 cache typically employs cache line sizes of 32-128 bytes. These values are relatively

small compared to high-dimensional data, e.g., > 32D. The consequence is that existing techniques (on low-dimensional data) that

minimize cache misses are no longer effective. In this paper, we present a novel index structure, called �-tree, to speed up the high-

dimensional query in main memory environment. The �-tree is a multilevel structure where each level represents the data space at

different dimensionalities: the number of dimensions increases toward the leaf level. The remaining dimensions are obtained using

Principal Component Analysis. Each level of the tree serves to prune the search space more efficiently as the lower dimensions can

reduce the distance computation and better exploit the small cache line size. Additionally, the top-down clustering scheme can capture

the feature of the data set and, hence, reduces the search space. We also propose an extension, called �þ-tree, that globally clusters

the data space and then partitions clusters into small regions. The �þ-tree can further reduce the computational cost and cache

misses. We conducted extensive experiments to evaluate the proposed structures against existing techniques on different kinds of

data sets. Our results show that the �þ-tree is superior in most cases.

Index Terms—High-dimensional index, main memory, similarity query.

�

1 INTRODUCTION

WITH an increasing number of new database applica-
tions, such as multimedia content-based retrieval,

time series, and scientific databases, the design of efficient
indexing and query processing techniques over high-
dimensional data sets becomes an important research area.
These applications employ the so-called feature transforma-
tion, which transforms important features or properties of
data objects into high-dimensional points, i.e., each feature
vector consists of d values, which correspond to coordinates
in a d-dimensional space. Searching for objects based on
these features is, thus, a search of points in this feature
space. In these high-dimensional databases, indexes are
required to support either or all of the following frequently
used queries:

. K-nearest neighbor ðKNNÞ queries: find the K-most
similar objects in the database with respect to a given
object,

. similarity range queries: find all objects in the
database which are within a given distance from a
given point,

. window queries: find all objects whose attribute
values fall within certain given ranges. We can
regard the window query as a similarity range query
around the center point of the given query range.

There is a long stream of research on solving the

similarity search problem and many multidimensional

indexes have been proposed [3], [6], [7], [14], [18], [23].

However, these index structures have largely been studied

in the context of disk-based systems where it is assumed

that the databases are too large to fit into the main memory.

This assumption is increasingly being challenged as RAM

gets cheaper and larger. This has prompted renewed

interest in research in main memory databases [5], [9],

[12], [19], [21].
As random access memory gets cheaper, it becomes

increasingly affordable to build computers with large main

memories, but main memory data processing is not as

simple as increasing the buffer pool size. In main memory

systems, minimizing L2 cache misses and computation cost

has been an active area of research. Several main memory

indexing schemes have been designed to be cache conscious

[12], [19], [21], i.e., these schemes page the structure based

on cache blocks whose sizes are usually 32-128 bytes.

However, these schemes are targeted at single or low-

dimensional data (that fit in a cache line) and cannot be

effectively deployed for high-dimensional data. First, for

high-dimensional data, the query processing is computa-

tionally expensive, which involves large amounts of

distance calculation [7]. Second, the size of a high-

dimensional point (e.g., 256 bytes for 64 dimensions) can

be much larger than a typical L2 cache line size. Actually,

[19] shows that, even for 2-dimensional data, the optimal

node size for a similarity search can be up to 256-512 bytes

and increases as the dimensionality increases. Therefore, an

efficient main memory index should minimize the distance

computation to improve the performance and also exploit

the L2 cache effectively as well.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005 1

. B. Cui, B.C. Ooi, and K.-L. Tan are with the Department of Computer
Science, and Singapore-MIT Alliance, National University of Singapore, 3
Science Drive 2, Singapore 117543.
E-mail: {cuibin, ooibc, tankl}@comp.nus.edu.sg.

. J. Su is with the Department of Computer Science, University of California,
Santa Barbara, CA 93106-5110. E-mail: su@cs.ucsb.edu.

Manuscript received 6 Oct. 2003; revised 14 May 2004; accepted 25 Aug.
2004.
For information on obtaining reprints of this article, please send e-mail to:

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

Our proposed novel multitier index structure, the �-tree,
can facilitate efficient KNN searches in a main memory
environment. Each tier in the �-tree represents the data
space as clusters in a different number of dimensions and
tiers closer to the root partition the data space using fewer
number of dimensions. The numbers of tiers and dimen-
sions are obtained using the Principal Component Analysis
(PCA) technique [17]. After PCA transformation, the first
few dimensions of the new data space generally capture
most of the information and, in particular, two points that
are distance di apart in i dimensions have the property that
di � dj if i � j. More importantly, by hierarchical clustering
and reducing the number of dimensions, we can decrease
the distance computation and better utilize the L2 cache. An
extension of the �-tree, called �þ-tree, is also proposed to
further reduce the search space. The �þ-tree globally
clusters the data space, partitions clusters into small
regions, and, finally, builds a subtree for each region. The
global clustering and cluster partitioning can significantly
reduce the search space. Additionally, the PCA transforma-
tion is applied on each cluster separately and, hence, the
reduced dimensions can represent the data point more
precisely. We also present the tree construction, KNN
searches, range query, and insertion and deletion algorithm
for the �-tree. We compare the proposed schemes against
other known schemes, including the TV-tree [20], iDistance
[23], Slim-tree [18], Omni-technique [14], Pyramid-tree [3],
and Sequential Scan. Our experimental study shows that
the �þ-tree is superior to the other indexes.

A preliminary version of this paper appeared in [11],
where we presented the basic idea of the �þ-tree. In this
paper, we make the following additional contributions:
First, we provide a more detailed description of the index
method. Second, we extend the algorithms to support
insertion, deletion, and different kinds of queries. Third, we
run a comprehensive set of experiments to demonstrate the
effectiveness of the �þ-tree, such as parameter tuning,
KNN, and range query performance. Furthermore, we
evaluate �þ-tree against a large number of competitive
index structures.

The remainder of this paper is organized as follows: In
the next section, we provide some background of our work.
In Section 3, we introduce the structure and algorithms of
our newly proposed �-tree and �þ-tree. Section 4 reports
the findings of an extensive experimental study conducted
to evaluate the proposed schemes and, finally, we conclude
in Section 5.

2 PRELIMINARY

2.1 Multidimensional Index

Multidimensional access methods can be classified into two
broad categories based on the data type that they have been
designed to support: Point Access Method (PAM) and
Spatial Access Method (SAM). While PAMs have been
designed to support queries on multidimensional points,
SAMs are designed to support multidimensional objects
with spatial extends and can function as PAMs. Many
multi/high-dimensional index structures have been pro-
posed to support applications in spatial and scientific

databases, such as the M-tree [10], the VA-file [22], the
CR-tree [19], etc. In this section, we will introduce and
briefly discuss the index structures that are used for
comparison in our experimental study.

2.1.1 The TV-Tree

In [20], the authors proposed a tree structure that avoids the
dimensionality curse problem. The idea is to use a variable
number of dimensions for indexing, adapting to the number
of objects, and to the current level of the tree. The TV-tree
structure bears some similarity to the R-tree, but defines
inactive dimensions and active dimensions. The TV-tree
only indexes the active dimensions and the number of
active dimensions is usually small, thus, the method saves
space and leads to a larger fanout. As a result, the tree is
more compact and performs better than the R�-tree.
Although our proposed approaches also employ fewer
dimensions in the internal node, they differ from the
TV-tree in several ways. First, the TV-tree uses the same
number of active dimensions at every level of the tree, while
our schemes use a different number of dimensions at
different levels and always employ few dimensions in the
upper levels. Second, the TV-tree exploits the same value in
a dimension in picking the active dimension and it is
designed for string data sets (as demonstrated in the paper).
Third, even though the TV-tree’s internal nodes have fewer
dimensions, the algorithm is the same as the R-tree-based
algorithm. On the other hand, our proposed schemes
exploit clustering to construct the tree and take advantage
of PCA to prune the search space more effectively.

2.1.2 The Slim-Tree

In [18], the authors proposed a new dynamic tree for
organizing metric data sets, named Slim-tree. The Slim-tree
uses the triangle inequality to prune distance calculations
needed to answer similarity queries over objects in metric
spaces, which is similar to the M-tree. The proposed
insertion algorithm uses new policies to select the nodes
where incoming objects are stored. When a node overflows,
the Slim-tree uses a Minimal Spanning Tree to help with the
split. The new insertion algorithm leads to a tree with high
storage utilization and improved query performance. The
Slim-tree tackles the overlap problem between nodes and
proposes “fat-factor” method to minimize it. The authors
also presented a new visualization tool for interactive data
mining and for the visual tracking of the behavior of a tree
under updates. Although the Slim-tree performs similarly
for distance calculations compared with the M-tree, it
reduces the number of node accesses and, hence, has better
performance.

2.1.3 The iDistance

The iDistance [23] was presented as an efficient method for
KNN searches in a multidimensional space. iDistance
partitions the data and selects a reference point for each
partition. The data points in each cluster are transformed
into a single-dimensional space based on their similarity
with respect to a reference point. It then indexes the
distance of each data point to the reference point of its
partition. Since this distance is a simple scalar, with a small
mapping effort to keep partitions distinct, it is possible to

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

use a standard Bþ-tree structure to index the data and the
KNN search can be performed using a one-dimensional
range search. The choice of partition and reference point
provides the iDistance technique with degrees of freedom
most other techniques do not have. The iDistance technique
can permit the immediate generation of a few results while
additional results are searched for. In other words, it is able
to support online query answering, an important facility for
interactive querying and data analysis. Since the cache
conscious Bþ-tree has been studied [21], and distance is a
single-dimensional attribute (that fits into the cache line),
iDistance is expected to be a promising candidate for main
memory systems.

2.1.4 The Pyramid-Tree

The basic idea of the Pyramid Technique [3] is to transform
the D-dimensional data points into 1-dimensional values
and then store and access the values using a conventional
index, such as the Bþ-tree. It splits the data space into 2D
pyramids, which share the center point of the data space as
their top and have a (D-1)-dimensional surface of the data
space as their base. The location of a point within its
pyramid is indicated by a single value, which is the distance
from the point to the center point according to dominant
dimension. To perform a range query, the pyramids that
intersect the search region are first obtained and, for each
pyramid, a subquery range is worked out. Each subquery is
then used to search the Bþ-tree. For each range query, 2D
subqueries may be required, one against each pyramid.

2.1.5 The Omni-Technique

The Omni-technique [14] was proposed to be used with
existing index structures and reduce the distance computa-
tional cost. The Omni-technique chooses a number of
objects from the data set as “foci,” from which distance
calculations to answer queries can be pruned. The foci can
be used as global reference points to any object in the
database and improve any underlying index structure. The
authors also proposed a method to define and select an
adequate number of objects to be used as Omni-foci, with
the best tradeoff between increasing memory requirements
and decreasing distance computations. By applying the
Omni-concept with sequential scan and R-tree, they can
achieve up to 10 times fewer calculations, disk accesses, and
overall time.

2.2 Principal Component Analysis

The Principal Component Analysis (PCA) [17] is a widely
used method for transforming points in the original (high-
dimensional) space into another (usually lower-dimen-
sional) space [8], [16]. It examines the variance structure
in the data set and determines the directions along which
the data exhibits high variance. The first principal compo-
nent (or dimension) accounts for as much of the variability
in the data as possible and each succeeding component
accounts for as much of the remaining variability as
possible. Using PCA, most of the information in the original
space is condensed into a few dimensions along which the
variances in the data distribution are the largest. A single
example is illustrated in Fig. 1 where a single dimension
(the first PC) can capture the variation of data in the 2D
space after PCA processing. In such cases, it is possible to

eliminate some dimensions (the later PCs) with little loss of
distance information.

We briefly review how the principal components are

computed. Let the data set contain N D-dimensional points.

Let A be the N �D data matrix where each row

corresponds to a point in the data set. We first compute

the mean and covariance matrix of the data set to get the

eigenmatrix, V , which is a D�D matrix. The first principal

component is the eigenvector corresponding to the largest

eigenvalue of the variance-covariance matrix of A, the

second component corresponds to the eigenmatrix with the

second largest eigenvalue, and so on.
The second step is to transform the data points into

the new space. This is achieved by multiplying the

vectors of each data point with the eigenmatrix. More

formally, a point Pðx1; x2; . . . ; xDÞ is transformed into

V � P ¼ ðy1; y2; . . . ; yDÞ. To reduce the dimensionality of a

data set to k, 0 < k < D, we only need to project out the

first k dimensions of the transformed points. The

mapping (to reduced dimensionality) corresponds to the

well-known Singular Value Decomposition (SVD) of data

matrix A and can be done in OðN �D2Þ time [15].
Suppose we have two points, P and Q, in the data set in

the originalD-dimensional space. Let Pk1 and Pk2 denote the

transformed points of P projected on k1 and k2 dimensions,

respectively (after applying PCA), 0 < k1 < k2 � D.Qk1 and

Qk2 are similarly defined. The PCA method has several nice

properties:

1.

distðPk1; Qk1Þ � distðPk2; Qk2Þ0 < k1 < k2 � D;

where distðp; qÞ denotes the distance between two

points, p and q (see [8] for a proof).
2. Because the first few dimensions of the projection

are the most important, distðPk;QkÞ can be very
near to the actual distance between P and Q for
k � D [8].

3. The above properties also hold for new points that
are added into the data set (despite the fact that they
do not contribute to the derivation of the eigenmatrix)
[8]. Thus, when a new point is added to the data set,
we can simply apply the eigenmatrix and map the
new data from the original space into the new PCA-

CUI ET AL.: INDEXING HIGH-DIMENSIONAL DATA FOR EFFICIENT IN-MEMORY SIMILARITY SEARCH 3

Fig. 1. Illustration of PCA.

space. Note that the effectiveness of the eigenmatrix
may degrade after a large number of insertions.

In [8], PCA is employed to organize the data into clusters
and find the optimal number of dimensions for each cluster.
Our work applies PCA differently. We use it to facilitate the
design of an index structure that allows pruning at different
levels with different number of dimensions. This can reduce
the computational overhead and L2 cache misses.

3 THE �-tree

Handling high-dimensional data has always been a
challenge to the database research community because of
the dimensionality curse. In main memory databases, the
curse has taken a new twist: a high-dimensional point may
not fit into the L2 cache line, whose size is typically 32-
128 bytes. Additionally, the distance computation of high-
dimensional query occupies a large portion of the overall
cost in the absence of disk I/O. As such, existing indexing
schemes are not adequate in handling high-dimensional
data. In this section, we present a new index structure,
called �-tree, to facilitate fast query processing in main
memory databases. For the rest of this paper, we assume
that the data set consists of D-dimensional points and use
the Euclidean distance as the metric distance function.

3.1 The Index Structure

The proposed structure is based on three key observations.
First, dimensionality reduction is an important technique to
deal with the dimensionality curse. In particular, by
reducing the dimensionality of a high-dimensional point,
it is possible to “squeeze” it into the cache line. Second,
ascertaining the number of dimensions to reduce to is a
nontrivial task. In addition, even if we can decide on the
number of dimensions, it is almost impossible to identify
the dimensions to be retained for optimal performance.
Third, PCA offers a very good solution: the first component
captures the most dominant information of points, the
second the next most dominant, and so on. Moreover, as
discussed in Section 2.2, it has several very nice properties.

3.1.1 The Structure of �-tree

Consider a data set of D-dimensional points. Suppose we
apply PCA on the data set to transform the points into a
new space that is also D-dimensional. We refer to the
transformed space as PCA-Space. Consider a data point P
in the PCA-Space, say (x1; . . . ; xD). We define

Q
ðP;mÞ to be

an operator that projects point P on its first m dimensions
(2 � m � D):

Y
ððx1; . . . ; xDÞ;mÞ ¼ ðx1; . . . ; xmÞ:

Fig. 2 shows a �-tree, which is essentially a multitier tree.
The data space is split into clusters and the tree directs the
search to the relevant clusters. However, the indexing keys
at each level of the tree are different—nodes closer to the
root have keys with fewer dimensions and the keys at the
leaves are in the full dimensions of the data. We discuss
how the number of levels of the tree and the number of
dimensions to be used at each level can be determined
shortly. For the moment, we assume that the tree has L

levels and the number of dimensions at level k is mk,
1 � k � L, mi < mj for i < j. Moreover, we note that the mi

dimensions selected for level i are given byQ
ððx1; . . . ; xDÞ;miÞ, i.e., first mi dimensions of points are

used for indexing at level i.
In the �-tree, the data is recursively split into smaller

clusters at each level. This is done as follows: At level 1
(root), the data is partitioned into n clusters C1; C2; . . .Cn.
We employ a clustering algorithm for this purpose and, in
our implementation, we use the K-means scheme. The
clustering is, however, performed using the m1 dimensions
in the PCA-Space of the transformed data. In other words,
Ci contains points that are clustered together in m1

dimensions in the PCA-Space. At level 2, Ci is partitioned
into Ci1; Ci2; . . . ; Cin subclusters using the m2 dimensions of
the points in Ci in the PCA-Space. This process is repeated
for each subcluster at each subsequent level l where each
subsequent clustering process operates on the ml dimen-
sions of the points in the subcluster in the PCA-Space. At
the leaf level (level L), the full dimensions in the original
space are used as the indexing key, i.e., the leaf nodes
correspond to clusters of the actual data points.

An internal node at level l contains information of the
cluster it covers at ml dimensions and each entry corre-
sponds to information of a subcluster. Each entry is a 4-tuple
(cl, r, num, ptr), where cl is the center of the subcluster
obtained at level l, r is the radius of the subcluster, num is the
number of points in the subcluster, and ptr is a pointer to the
next level node. The root node has the same structure as an
internal node except that it has to maintain additional
information on the data set. This is captured as a triple (L,m,
eigenmatrix) header, where L represents the number of
projection levels, m ¼ ðm1;m2; . . . ;mL�1Þ is a vector of size
L� 1 representing the number of dimensions in each
projection level (excluding the last level which stores the
full dimensions of points), and eigenmatrix is the eigenma-
trix of data set after PCA processing.

We note that the �-tree can be used to prune the search
space effectively. Recall (in Property 1 of PCA) that the
distance between two points in a low dimensionality in the
PCA-Space is always smaller than the distance between the
two points in a higher dimensionality. In the �-tree, the
distances between the clusters in the upper levels are
usually larger. Thus, we can use the distance at low
dimensionality to prune away points that are far away
(i.e., if the distance between a database point and the query
point at low dimensionality is larger than the real distance
of the current Kth NN, then it can be pruned away). More
importantly, the lower dimensionality at upper levels of the

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

Fig. 2. The �-tree.

tree decreases the distance computational cost and also
allows us to exploit the L2 cache more effectively to
minimize cache misses.

For the �-tree to be effective, we need to be able to
determine the optimal number of levels and the number of
dimensions to be used at each level. In our presentation, we
fix the fanout of the tree. For the number of levels, we adopt
a simple strategy: We estimate the number of levels based
on the fanout of a node, e.g., given a set of N points and a
fanout of f , the number of levels is L ¼ dlogfNe.

To determine the number of dimensions ml to be used at
level l, our criterion is to select a cumulative percentage of the
total variation that these dimensions should contribute [17].
Let the variance of the jth dimension be vj. Then, the
percentage of variation accounted for by the first k dimen-
sions is given by

Vk ¼
Pk

j¼1 vjPD
j¼1 vj

:

With this definition, we can choose a cut-off V �
l for each

level. Suppose there are L projection levels, we have

V �
l ¼ l

L
; 1 � l � L:

Hence, we can retain ml dimensions in level l, where ml

is the smallest k for which Vk � V �
l . In practice, we

always retain the first ml dimensions which preserve as
much information as possible, e.g., the first eight
dimensions already capture 60 percent of the variation
in the 64-dimensional color histogram data.

We note that, for efficiency reasons, we do not require
the �-tree to be height-balanced. Since the data may be
skewed, it is possible that some clusters may be large, while
others contain fewer points. If the points in a subcluster at a
level l (< L) fit into a leaf node, we will not partition it
further. In this case, the height of this branch may be shorter
than L. On the other hand, for a large cluster, if the number
of points at level L is too large to fit into a leaf node, we

further split it into subclusters using the full dimensions of
the data. We have ml ¼ D for l > L. However, in practice,
we find that the difference in height between different
subtrees is very small. Moreover, if we should bound the
size of a cluster, we can control the height differences.

3.1.2 The �-tree Construction

Fig. 3 shows the algorithm for constructing a �-tree for a
given data set. We have adopted a top-down approach. At
first, routine PCA() transforms the data set into the
PCA space (line 1). We treat the whole data set as a cluster
and refer to these new points as pC. In line 2, the function
Init() initiates parameters of root node according to the
information of PCA, such as the eigenmatrix, the value of L,
and the vector m. The default value of ml ¼ D for l > L and
we do not save this value in the root node explicitly. In line
3, we call the recursive routine R insertðnode; pC; levÞ that
essentially determines the content of the entries of the node
at level lev—one entry per subcluster. Note that we are
dealing with points in the transformed space (i.e., pC) and
that lev determines the number of dimensions that this node
is handling.

In line 1 of R insertðnode;pC; levÞ, we partition the
data of the cluster pC into K subclusters (by K-means).
However, this partitioning is performed only on the mlev

dimensions of the cluster. For each subcluster, in lines 3-4,
we fill the information on the center and radius into the
corresponding entry node. If the number of points in a
subcluster fits into the leaf node (lines 5-8), we insert the
points into the leaf node directly. Otherwise (lines 9-12), we
recursively invoke routine R_insert() to build the next level
of the tree.

3.1.3 KNN Search Algorithm

To facilitate the KNN search, we employ two separate data
structures. The first is a priority queue that maintains
entries in nondescending order of distance. Each item in the
queue is an internal node of the�-tree. The second is the list
of KNN candidates. The distance between the Kth NN and
the query point is used to prune away points that are
further away.

CUI ET AL.: INDEXING HIGH-DIMENSIONAL DATA FOR EFFICIENT IN-MEMORY SIMILARITY SEARCH 5

Fig. 3. The algorithm of building a �-tree.

Fig. 4. KNN search algorithm for �-tree.

We summarize the algorithm in Fig. 4. In the first stage,
we initialize the priority queue, KNN list, and the pruning
distance (lines 1-3). Next, we transform the query point
from the original space to the PCA-based space using the
eigenmatrix in the root (line 4). In line 5, we insert the root
node into the priority queue as a start. After that, we repeat
the operations in lines 7-16 until the queue is empty. We get
the first item of the queue which must be an internal node
(line 7). For each child of the node, we calculate the distance
from Q0 to the subcluster in PCA-space (distance is
computed with mchild:lev dimensions using P_dist()). If the
distance is shorter than the pruning distance, we proceed as
follows: If the child node is an internal node, it means that
there is a further partitioning of the space into subcluster,
and we insert the node into the queue (lines 10-11).
Otherwise, the child must be a leaf node and we access
the real data points in the node and compute their distances
to the query point; points that are nearer to the query point
are then used to update the current KNN list (lines 12-15).
The function Adjust() in line 16 updates the value of
pruning distance when necessary, which is always equal to
the distance between the query point and the Kth nearest-
neighbor candidate.

3.1.4 Range Query Algorithm

As we mentioned previously, window=range query can be
treated as a similarity range query around the center point
of the given query range. Therefore, we only present the
algorithm which supports similarity range query, and call it
range query shortly. Like KNN search algorithm, we
employ two separate data structures. The first is a priority
queue that maintains entries within the search distance.
Each item is an internal node of the �-tree. The second is
the list of current query results. The search distance, which
defines the query range, is used to prune away points
directly.

We summarize the range query algorithm in Fig. 5. The
algorithm is very straightforward. At first, we initialize the
priority queue. After that, we transform the query point
from the original space to the PCA-based space using the
eigenmatrix in the root (line 2). In line 3, we insert the root
node into the priority queue as a start. After that, we repeat
the operations in lines 5-13 until the queue is empty. We get

the first item of the queue which must be an internal node
(line 5). For each child of the node, we calculate the distance
from Q0 to the subcluster in PCA-space (distance is
computed with mchild:lev dimensions using P_dist()). If the
distance is shorter than the search distance dis, we proceed
as follows: If the child node is an internal node, it means
that there is a further partitioning of the space into
subclusters and we insert the node into the queue (lines 8-
9). Otherwise, the child must be a leaf node and we access
the real data points in the node and compute their distances
to the query point; if the distance between point and the
query point is less than the search distance, the point is
inserted into the result set.

3.1.5 Insertion of the �-tree

So far, we have seen the �-tree as a structure for static
databases. However, the �-tree can also be used for
dynamic databases. This is based on the properties of
PCA. When a new point is inserted, we simply apply
eigenmatrix on the new point to transform it into PCA space
and insert it into the appropriate subcluster. To reduce the
complexity of the algorithm, we only update the radius and
keep the original center of the affected cluster. This may
result in a larger cluster space and degrade the precision of
eigenmatrix gradually, but, as our study shows, the �-tree
is still effective.

The algorithmic description of the insert operation is
shown in Fig. 6. We first transform the newly inserted point
into the PCA-space using the eigenmatrix in the root node
(line 1). We then traverse down the tree (beginning from the
root node (line 2)) to the leaf node by always selecting the
nearest subcluster along the path (lines 3-10). If the leaf
node has free space, we insert the new point into the leaf
(line 12). Otherwise, we must split the leaf node before
insertion. To split the leaf, we generate two clusters. If the
parent node is not full, the routine InsertLeaf() (line 15)
inserts two new clusters into the parent. Otherwise, we

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

Fig. 5. Range query algorithm for �-tree.

Fig. 6. Insert algorithm for the �-tree.

generate a new internal node and insert the leaf nodes

(lines 17-19). In this case, a new internal node level is

introduced.
We note that our algorithm does not change the cluster

eigenmatrix as new points are added. As such, it may not

reflect the real feature of a cluster as more points are added

since the optimal eigenmatrix is derived from all known

points. On the other hand, once we change the eigenmatrix,

we have to update the keys of the original data points as

well. As a result, insertion may make it necessary to rebuild

the tree periodically. Two mechanisms to decide when to

rebuild the tree are as follows:

1. Insertion threshold: In this naive method, once the
newly inserted points exceed a predetermined
threshold, say 50 percent of the original data size,
we rebuild the tree regardless of the precision of the
original eigenmatrix.

2. Distance variance threshold: Given a set of N points,
we form a cluster with center c. After PCA
transformation, we have another center c0 in the
projected lower-dimensional space. Originally, we
have the average distance variance Va:

Va ¼
PN

i¼1 jdistðPi; CÞ � distðP 0
i ; c

0Þj
N

:

Once we insert a point P , we get a new average

distance variance, called V 0
a:

V 0
a ¼ Va �N þ jdistðP;CÞ � distðP 0; c0Þj

N þ 1
:

V 0
a may change after every insertion. Once

V 0
a�Va

Va
is

larger than a predefined threshold, we rebuild the

tree. Note that we do not modify the value of cluster

centers C and c0 for each insertion unless the cluster

has to be split. In this case, the new cluster centers

will be generated. This method is expected to be

more efficient because the decision factor is related

to the distribution of newly inserted points.

3.1.6 Deletion of the �-tree

In the above section, we have discussed the algorithm to

deal with insertion of the �-tree. Although deletion is

different from insertion, we can apply the similar scheme

on the delete operation. The details are as follows:

1. We first transform the point into the PCA-space
using the eigenmatrix. We then traverse down the
tree to the leaf node holding the point. Either the
KNN search or range query algorithm can be used to
locate the point.

2. We delete the point and, in the case of underflow,
the node is merged with the sibling node.

3. Note that we do not change the cluster eigenmatrix
in the first two steps. However, we record the effect
of deletion on eigenmatrix. Like insert operations,
large volumes of deletion may trigger rebuilding of
the tree.

3.2 The �þ-tree: A Partition-Based Enhancement of
the �-tree

While the proposed �-tree can efficiently prune the search
space, it has several limitations. First, its effectiveness
depends on how well a data set is globally correlated, i.e.,
most of the variations can be captured by a few principle
components in the transformed space. For real data sets that
are typically not globally correlated, more clusters may
have to be searched. Second, the complete dataspace has to
be evaluated to generate the PCA eigenmatrix, which may
cause significant loss of distance information resulting in
more false drops and, hence, a high query cost. Third, there
is a need to periodically rebuild the whole tree for optimal
performance.

In this section, we propose an extension, called �þ-tree,
that addresses the above three limitations. To deal with the
first limitation, we globally partition the dataspace into
multiple clusters and manage the points in each cluster with
a �-tree. For simplicity, we also employ the K-means
clustering scheme to generate the global clusters and apply
PCA for clusters individually. We use a directory to save
the information of global clusters. Each entry of the
directory represents a global cluster and has its own
eigenmatrix, L, m, cluster center, radius, and a pointer to
the corresponding �-tree that manages its points.

Even with the proposed enhancement, the second
limitation remains: Each global cluster space has to be
examined completely. Our solution is to partition the
cluster into smaller regions so that only certain regions
need to be examined. We made the following observations
of a cluster:

1. Points close to each other have similar distances to a
given reference point. The distance value is single
dimensional and it can be easily divided into
different intervals.

2. A cluster can be split into regions (“concentric
circle”) as follows: First, each point is mapped into
a single-dimensional space based on the distance to
the cluster center. Second, the cluster is partitioned.
Let Dmin and Dmax be the minimum and maximum
distance of points within the cluster to the center. Let
there be k regions (k is a predetermined parameter).
The points in region i must satisfy the following
equations:

CUI ET AL.: INDEXING HIGH-DIMENSIONAL DATA FOR EFFICIENT IN-MEMORY SIMILARITY SEARCH 7

Fig. 7. An example of the pruning searching space.

Dminþi�f�Disti�Dminþðiþ1Þ�f i¼0

Dminþi�f<Disti�Dminþðiþ1Þ�f 1�i<k;

�

where f ¼ ðDmax �DminÞ=k. Fig. 7 shows an exam-

ple of a cluster with six regions.
3. Given a query point, we can order the regions in

nondescending order of their minimum distance to
the query point. The regions are then searched in
this order. This step can be efficiently performed by
checking against the partitioning vectors (i.e.,
Dmin;Dmin þ f; . . . ; Dmin þ ðk� 1Þf) of the region.
For example, consider the query point q in Fig. 7. q
falls in region 4. As such, region 4 will be examined
first, followed by regions 5, 3, 2, 1, and 0.

4. We note that this partitioning scheme can potentially
minimize the search space by pruning away some
regions. Using the same example as before, if the
current KNN points after searching, say, region 5,
are already nearer than the minimum distance
between qt and region 3, we only need to search
the subtrees of certain partitions and regions 3, 2, 1,
and 0 need not be examined.

Based on these observations, we can introduce a new

level immediately after the directory. In other words,

instead of building a �-tree for each global cluster, we

partition it as described above. For each region, we build a

�-tree. We refer to this new structure as the �þ-tree. Fig. 8b

shows a �þ-tree structure. The whole data set has two

global clusters and we partition the cluster into three

regions. For comparison purposes, we also show the �-tree
(Fig. 8a).

As described above, the operations on the �þ-tree are
quite similar to those on the �-tree. To build a �þ-tree, we
first globally partition the dataspace into multiple clusters
and apply PCA for clusters individually. The cluster
information is stored in the flat directory. Second, we
partition the cluster into smaller regions according to the
distance to the cluster center. Finally, we build a �-tree for
each region deploying the algorithm Buildtree(), as shown
in Section 3.1.2. For all the other operations, we first locate
the nearest global cluster and region and then traverse the
subtree. The operations within the subtree are same as that
of the �-tree. This process continues with other clusters,
while cluster or regions containing points further than the
Kth NN are not traversed.

The proposed �þ-tree is also more update efficient—-
while it cannot avoid a complete rebuild, it can defer a
complete rebuild to a longer period (compared to �-tree).
Recall that the structure partitions the data space into global
clusters before PCA transformation. As such, it localizes the
rebuilding to only clusters whose eigenmatrix is no longer
optimal as a result of insertions, while other clusters are not
affected at all. A complete rebuild will eventually be needed
if the global clusters are no longer optimal. As we will see in
our experimental study, the index remains effective for a
high percentage of updates.

4 A PERFORMANCE STUDY

In this section, we present an experimental study to
evaluate the �-tree and �þ-tree. The performance is
measured by the average execution time, cache misses,
and distance computation for KNN searches over 100 dif-
ferent queries. We use the Perfmon tool [13] to count L2
cache misses. All the experiments are conducted on a SUN
E450 machine, with 4 GB RAM and 2 MB L2 cache with
cache line size 64 bytes. The machine is running SUN OS
5.7. All the data and index structures are loaded into the
main memory before each experiment begins. We demon-
strate the results on the random data set, synthetical
clustered data set, and real-life data sets.

4.1 Tuning the �þ-tree
The �þ-tree has two extra parameters: the number of global
clusters and regions. When both parameters are set to 1, the
�þ-tree becomes the �-tree. In the first experiment, we tune

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

Fig. 8. The structure of �-tree variants. (a) �-tree and (b) �þ -tree.

Fig. 9. NN search for different cluster numbers. (a) Elapsed time and (b) cache misses.

these two parameters of the �þ-tree. We use a real-life data
set consisting of 64-dimensional color histograms extracted
from the Corel Database [2].

First, we set the number of region 1 and vary the number
of clusters. The default fanout of the subtree we used is 10,
which is near optimal, as shown in the following Section
4.2. Fig. 9 shows the NN search performance of our new
structures for different cluster numbers.

We observe that the performance of �þ-tree improves
with relatively large numbers of clusters. As shown in
Fig. 9a, when the number of clusters is fewer than 10, the
larger the cluster number the better the performance.
Because the image data set is typically skewed, it is possible
for queries to be constrained within a certain cluster. In this
case, the search space can be reduced efficiently, compared
with the �-tree, as we only need to search a subtree.
However, the performance starts to degenerate when the
number exceeds 10. If we partition the data set into too
many clusters, the query may incur multiple subtree
traversals, which introduce more cost overhead.

We conduct two sets of experiments to test the number of
cache misses:

. cold cache: the cache is flushed after every query; that
is, the cache does not contain any index nodes or
pages,

. warm cache: the queries run consecutively without
cache flushing.

In both cases, we record the average number of cache
misses for 100 queries. We found that the actual cache miss
cost is only around 10 percent of the overall time cost if we
run the queries consecutively, i.e., warm cache. This is the
case in our studies as we do not perform any cache flushing
between queries. Since we have run many queries on a
single index structure, the cache hits are high, because some
highly accessed cache lines can always reside in the L2
cache. However, the number of cache misses can be much
larger in the case of cold cache. Our investigation shows that
the number of cache misses for an independent query can
be twice as much.

Another parameter of the �þ-tree is the number of
regions. We set the cluster number to 10 and show the
experiment result for varying number of regions in Fig. 10.

We found that the performance is near optimal when the
number of regions is between 3 and 5. The query can be
limited to a region and, hence, the search space is reduced.
Partitioning too many regions also introduces more subtree
traversal which degrades the performance.

In this experiment, we test the performance of two extra
parameters of the �þ-tree. However, the optimal values of
the parameters may vary with different data sets. If we
know the distribution of the data set, we can apply the
optimal value to the index structure. For simplicity, we set
the default number of clusters and regions to be 10 and 5,
respectively, throughout the performance study. Addition-
ally, we only show the average number of cache misses for
100 consecutive queries without cache flushing, i.e., warm
cache.

4.2 Comparing �-tree and �þ-tree

We conduct an extensive performance study to tune the two
proposed schemes for optimality. Here, we present one
representative set that studies the effect of node size, i.e., we
vary the node size from 1 KB to 8 KB. Although the optimal
node size for single-dimensional data sets has been shown
to be the cache line size [21], this choice of node size is not
optimal in high-dimensional cases—the L2 cache line size is
usually 64 bytes, which is not sufficient to store a high-
dimensional data point (256 bytes for 64 dimensions) in a
single cache block. [19] shows that, even for 2-dimensional
data, the optimal node size can be up to 256-512 bytes and
increases as the dimensionality increases. The minimum
cache misses is a compromise of node size and tree height.
High-dimensional indexes require more space per entry
and, therefore, the optimal node size is larger than cache
line size.

Fig. 11 shows the NN search performance of our new
structures for different node sizes. The node size here
represents the size of leaf node. Since we fix the fanout of
tree in our implementation, we have varied internal node
size depending on the remaining dimensions in each level.
As shown in the figure, there is an optimal node size that
should be used. When the node size is small (< 2K), the
fanout of the tree is also small. In multidimensional indexes,
more than one node of the same level needs to be accessed
and the small fanout introduces high overlap between

CUI ET AL.: INDEXING HIGH-DIMENSIONAL DATA FOR EFFICIENT IN-MEMORY SIMILARITY SEARCH 9

Fig. 10. NN search for different region numbers. (a) Elapsed time and (b) cache misses.

nodes. As a result, more nodes will have to be accessed. We

observe that as the node size increases, the number of

accessed nodes decreases. The performance is optimal

when the node size is around 2-3K. However, as the node

size reaches beyond a certain point (> 3K), the performance

starts to degenerate again. This is because too large a node

size results in more cache misses per node. Therefore, the

total cache misses increase. The optimal node size (2-3K) is

a compromise of these factors.
The results, shown in Fig. 11, clearly demonstrate the

superiority of the �þ-tree over the �-tree: It is about

15 percent better than the�-tree. This is because the�þ-tree

searches a smaller data space compared to the �-tree. First,

the �þ-tree globally partitions the data set into clusters

before PCA transformation, thus the eigenmatrix is more

efficient than that of the �-tree. Second, the �þ-tree may

only need to search a few clusters and exclude the other

clusters that are far to the query point. Third, partitioning

the cluster into regions can further reduce the search space

compared to the �-tree that examines the whole data space.

Hence, the total cost of cache misses and computation is

reduced by the �þ-tree.
Since �þ-tree performs better than �-tree, in the

following experiments, we shall restrict our discussion to

the �þ-tree and use the optimal parameters determined

above.

4.3 Comparison with Other Structures

In this section, we only demonstrate the results on the

synthetical clustered data set and real-life data set. For

uniformly distributed random data, all the index structures

yield similar performance when the dimensionality is

beyond 30. Because of the large NN distance, all the

methods have to access most of the data for a single query

when dimensionality is high. As shown in [4], we can

determine the expected distance of the query point to the

nearest neighbor in the database. Assuming a uniformly

distributed data set in a normalized data space ½0; 1�d with

N points, the nearest-neighbor distance can be approxi-

mated by the volume of the sphere, which, on the average,

contains one data point. The data space with radii r can be

calculated by

spdðrÞ ¼
ffiffiffiffiffi
�d

p

�ðd=2þ 1Þ � r
d;

where �ðnÞ is the gamma function (�ðxþ 1Þ ¼ x � �ðxÞ,
�ð1Þ ¼ 1, and �ð1=2Þ ¼ ffiffiffi

�
p Þ. Since spdðdistnnÞ ¼ 1

N , we can

get the the expected nearest-neighbor distance

distnnðN; dÞ ¼ 1ffiffiffi
�

p �
ffi
�ðd=2þ 1Þ

N

½d�

r
:

Based on this formula, the distnn can become larger than the

length of the data space, i.e., 1, when the dimensionality is

higher than 30. Because of a large NN distance, it is almost

impossible to partition the data space well, thus the tree

index cannot be efficient for uniformly distributed data due

to its extra tree operations. Therefore, the Sequential Scan

can be the best scheme for high-dimensional data space

(D > 30). Interested readers can refer to [11] for the

experimental results of uniformly distributed data set.
For the rest of this paper, we only focus on the TV-tree,

Slim-tree, iDistance, Omni-sequential, Sequential Scan, and

the �þ-tree. We exclude the CR-tree due to its poor

performance for high-dimensional data sets. Because the

Slim-tree is optimized from the M-tree and performs better,

we also omit the M-tree in the comparison for the clarity of

figures. To ensure a fair comparison, we optimize these

methods for main memory indexing purposes, such as

tuning the node size. We only present the optimal result of

each structure.

4.3.1 On Clustered Data Sets

In many applications, data points are often correlated in

some ways. In this set of experiments, we evaluate the Slim-

tree, Omni-sequential, TV-tree, iDistance, Sequential Scan,

and �þ-tree on clustered data sets. We generate the data for

different dimensional spaces ranging from 8 to 64 dimen-

sions, each having 10 clusters. We use a method similar to

that of [8] to generate the clusters in subspaces of different

orientations and dimensionalities. All data sets have

1,000,000 points. We vary the cluster number of the

�þ-tree; as we expected, the tree yields optimal perfor-

mance when the number of clusters exactly matches the a

priori number of clusters used in the �þ-tree (which is 10).

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

Fig. 11. NN search for different node sizes. (a) Elapsed time and (b) cache misses.

Fig. 12 shows the time and cache misses of a NN search
as we vary the number of dimensions from 8 to 64. Since the
cost of memory access is mainly determined by cache access
and the node sizes varies for different indexes, we omit the
details of node accesses. Because Sequential Scan performs
poorly and all these tree structures achieve a speedup by a
factor of around 15 over the Sequential Scan, we omit
Sequential Scan from the figures to clearly show the
differences between the other schemes. The reason is clear:
For Sequential Scan, we must scan the whole data set to get
the nearest neighbors and the cost is proportional to the size
and dimension of the data set. When the data set is
clustered, the nearest neighbors are (almost) always located
in the same cluster with the query point. Thus, the tree
structures can prune most of the data when traversing the
trees.

Our �þ-tree can be 60 percent faster than the other
three methods, especially when the dimensionality is
high. The �þ-tree has three advantages over the Slim-
tree. First, the �þ-tree reduces the cache misses compared
to the Slim-tree. Because we index different levels of
projections of the data set, the number of projected
dimensions in the upper levels is much smaller than that
of real data. When the original space is 64 dimensions,
the dimensions in the first three upper levels are fewer
than 15. The node size of the �þ-tree in the upper levels
can be much smaller than that of the Slim-tree; conse-
quently, the index size of the �þ-tree is also smaller. In
the tree operations, upper levels of the tree will probably
remain in the L2 cache as they are accessed with high
frequency, so the �þ-tree can benefit more from this
property. Furthermore, the internal nodes of the �þ-tree
are full and fewer node accesses are needed because of
hierarchical clustering. The effect is that the �þ-tree can
reduce more cache misses compared to the Slim-tree.
Second, the computational cost of �þ-tree is also smaller
than the Slim-tree. The reason is, in the projection level,
the distance computation is much faster because of
reduced dimensionality. For example, when the dimen-
sion of the projection is 8, it already captures more than
60 percent of the information of the point. This means we
can prune the data efficiently in this projection level as
the computational cost is only 12.5 percent of the actual

data distance computation. Third, we build the tree from
top down exploiting the global clustering compared with
local partition of Slim-tree, so the benefit of the �þ-tree is
also from the improved data clustering which reduce the
search space and, hence, the fewer operations for a query.

Comparing with the iDistance, although the Bþ-tree
structure of iDistance is more cache conscious, the
iDistance incurs more distance computation and cache
misses than the �þ-tree, because the search space of
iDistance is larger. Omni-sequential also transforms the
high-dimensional data into single-dimensional space
based on a set of global foci and uses precomputed
distance to prune the distance calculations. Although
these two methods exploit different pruning mechanisms,
mapping high-dimensional data to 1-dimensional space
is less efficient in filtering data, compared to the �þ-tree,
because of the heavy information loss.

Not surprisingly, the TV-tree performs worst among
these index methods, especially when dimensionality is
high. There are several reasons for this behavior. First, the
TV-tree is essentially similar to the R-tree and its effective-
ness depends on �, the number of active dimensions. It
turns out that for the data sets used, the data are not
globally correlated. As a result, the optimal � value for the
TV-tree remains relatively large. For example, for 64 dimen-
sions, we found that � 	 20. The reduced number of
dimensions is still too large for an R-tree-based scheme

CUI ET AL.: INDEXING HIGH-DIMENSIONAL DATA FOR EFFICIENT IN-MEMORY SIMILARITY SEARCH 11

Fig. 12. NN search for clustered data sets. (a) Elapsed time and (b) cache misses.

Fig. 13. Range query for clustered data set.

(like the TV-tree) to perform well. Moreover, searching the
reduced dimensions leads to false admissions, which results
in more nodes being accessed.

In the next experiment, we compare the range query
performance for these indexes. Since the Pyramid-tree was
specifically proposed for range search in high-dimensional
space, we also include it in the comparison. Fig. 13 shows
the results of range search for 64D clustered data set with
varying search radius from 0 to 0.4. It is clear that all the
indexes perform worse as we increase the search radius or
the dimensionality, because the query have to search more
space, which means more cache misses and distance
computation. Although the Pyramid-tree performs well
when the search radius is small, it degrades faster than
other methods. The Pyramid-tree is primarily designed and
optimized for queries of small side length on uniform data,
but it does not work well with big sized queries. The
�þ-tree is the best among these structures for most of the
case, however, the gap between other indexes is narrowed.
The reason is that a large search radius reduces the
efficiency of the index technology.

4.3.2 On Real Data Sets

In this experiment, we evaluate the various schemes on the
different real-life data sets, 70K 64-dimensional color
histograms [2] and 11K 79-dimensional motion capture

data set [1]. First, we test the performance of KNN search.

The performance is quite similar to the clustered data sets.

The tree-based methods are at least 10 times faster than

Sequential Scan because the real data set is generally

skewed. As such, we will not present the results for

Sequential Scan.
The NN performance comparisons for 64D data set

among the �þ-tree, Slim-tree, TV-tree, Omni-sequential,

and iDistance are shown in Fig. 14. The �þ-tree is about

50 percent faster than other methods for NN search in terms

of cache misses and time cost. These results clearly show the

effectiveness of the �þ-tree, even if the number of clusters

employed may not match that of the data set. The Slim-tree

is poor because it incurs more computation and it uses all

the dimensions in the internal nodes, resulting in more

cache misses. Although it adjusts the nodes to reduce the

overlap, the partition is not as good as that of the �þ-tree,

because the �þ-tree clusters the data set from top-down by

capturing the overall data distribution and makes optimal

partition. The iDistance and Omni-sequential are worse

than the �þ-tree because the distance information loss

incurs larger search space and, hence, more computation

and cache misses. The number of active dimensions for the

TV-tree remains large, so its performance is affected by the

scalability problem of the R-tree. In the context of main

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

Fig. 14. NN search for 64D real data set. (a) Elapsed time and (b) cache misses.

Fig. 15. Range query for 64D real data set. (a) Elapsed time and (b) cache misses.

memory indexing, this translates into higher computational

cost and number of cache misses.
As in Section 4.3.1, we also conduct the range queries for

these indexes. Fig. 15 shows the range query results with

varying the search radius from 0 to 0.4. All the indexes

degrade as we increase search radius because a large search

range incurs more cache misses and distance computation.

However, our method is still 30 percent better for relatively

large search radius. We can expect that the performance of

all the index structures will degrade to that of the Sequential

Scan for very large search radius where all the data needs to

be accessed.
The results for KNN and range queries in the motion

capture data set are presented in Fig. 16. The performance

differences are quite similar to that of color histogram data

set. Moveover, the gap between the �þ-tree and other

indexes is even widened. The reason is that the motion data

set is more skewed and, hence, the�þ-tree can benefit more

from the PCA transformation. Checking the effect of

cumulative variation of the data set after applying PCA,

we found the first six dimensions in the PCA-space can

capture 80 percent of the data information; furthermore, the

first 17 dimensions in the PCA-space capture 95 percent of

the information. Therefore, the �þ-tree can apply the

reduced dimensionality to decrease the distance computa-

tional cost and cache misses without much information loss.

We also note that the TV-tree performs better as we can use
fewer active dimensions for this data set.

4.3.3 On the Effect of Insertion

In the last experiment, we study the effect of insertion on
the �þ-tree and �-tree. The delete operations yield similar
performance and we omit it. For the �þ tree and �-tree, we
evaluated four versions, e.g., �þ-tree represents the version
that is based on the proposed insert algorithm (without
rebuilding); �þ-rebuild represents the version that always
rebuild the tree upon insertion, i.e., this is ideal and
represents the optimal �þ-tree; �þ-size represents the
version that rebuilds the tree after a certain size threshold
is reached; and �þ-variance represents the version that
rebuilds the tree after a certain variance threshold is
reached. In our experiment, we set the threshold as
10 percent for the latter two schemes. We used the 64D
clustered synthetic data set for this experiment. We first
build the tree structure with 1,000,000 data. Subsequently,
we insert up to 100 percent more new data points. The
results of insertion and NN search are shown in Fig. 17. The
performances of Omni-sequential and TV-tree are similar to
iDistance and Slim-tree, respectively, and we omit them for
the clarity of figure.

Fig. 17a shows the average execution time of the NN
search on the new data sets after 20 percent of newly
inserted data. First, we observe that the �þ-trees and

CUI ET AL.: INDEXING HIGH-DIMENSIONAL DATA FOR EFFICIENT IN-MEMORY SIMILARITY SEARCH 13

Fig. 16. Performance for 79D real data set. (a) KNN and (b) range query.

Fig. 17. Performance for the effect of insertion. (a) NN search and (b) insertion.

�-trees outperform the other tree structures. We only show
the performance of the �-rebuild for comparison because
the �-trees show the similar performance degeneration as
the �þ-trees. This clearly demonstrates the effectiveness of
the proposed schemes. Second, as expected, as more points
are inserted, the performance of �þ-tree degenerates as the
newly inserted data affect the precision of cluster eigenma-
trix. However, the degradation of performance is marginal.
More importantly, the accuracy is not affected—the �þ-tree
may examine more nodes because of the relatively larger
radius. Third, it is clear that the rebuilding algorithms can
reduce the performance degradation. For �þ-size and
�þ-variance, the degradation is around 30 percent even
for 100 percent new insertions. So, the �þ-tree remains very
effective after new data points are inserted. We also observe
that �þ-size is slightly better than �þ-variance. This is
because it incurs more rebuilding. Once the new points of a
global cluster are more than the threshold, it rebuilds the
subtree regardless of the data distribution. The results show
�þ-tree’s robustness with respect to updates, in the sense
that it can take sufficiently large number of updates before
we need to rebuild the tree structure.

Fig. 17b shows the execution time for insertions. The
�þ-tree and �-tree incur more expensive insertion cost
because K-means clustering and PCA transformation are
necessary for the reorganization of the tree. We did not
show the rebuild version as the rebuild cost for each
insertion is extremely high. However, our two proposed
update mechanisms can significantly reduce the insertion
cost, especially the Distance variance threshold method. The
�þ-variance yields better performance than �-variance as
the points are inserted into respective global cluster and the
efficiency of eigenmatrix degenerates less than that of �-tree,
hence, reduces the rebuild frequency. The iDistance is the
most efficient in terms of insertion, as we only need to insert
a new record into the Bþ-tree. However, the insertion cost is
small compared with NN query cost because the query in
high-dimensional space typically needs to access a great
amount of nodes. Additionally, we can do the rebuilding
offline while not interfering with the other queries. This
makes the �þ-tree a promising candidate even for dynamic
data sets.

5 CONCLUSION

In this paper, we have addressed the problem of in-memory
similarity search for high-dimensional data. We presented
an efficient novel index method, called �-tree. The �-tree
employs hierarchical clustering top down and applies
multiple level of projections of points to allow nodes to
better fit into the L2 cache. The search process can prune the
search space efficiently, thus be accelerated by reducing
computational cost and cache misses. We also proposed an
extension, called �þ-tree, that partitions the data set into
clusters and then further divides a cluster into regions. The
global clustering of �þ-tree can capture the overall feature
of the data set and better utilize the PCA. We conducted
extensive experiments to evaluate the �-tree and �þ-tree
against a large number of known techniques and the results
showed that our technique is superior.

REFERENCES

[1] CMU Graphics Lab Motion Capture Database, available from
http://mocap.cs.cmu.edu/, 2004.

[2] Corel Image Features, available from http://kdd.ics.uci.edu, 2000.
[3] S. Berchtold, C. Böhm, and H.P. Kriegel, “The Pyramid-Tree:

Breaking the Curse of Dimensionality,” Proc. ACM SIGMOD Conf.,
pp. 142-153, 1998.

[4] S. Berchtold, C. Bohm, D. Keim, F. Krebs, and H.P. Kriegel, “On
Optimizing Nearest Neighbor Queries in High-Dimensional Data
Spaces,” Proc. Eighth Int’l Conf. Database Theory, pp. 435-449, 2001.

[5] P. Bohannon, P. Mcllroy, and R. Rastogi, “Main-Memory Index
Structures with Fixed-Size Partial Keys,” Proc. ACM SIGMOD
Conf., pp. 163-174, 2001.

[6] C. Bohm, S. Berchtold, and D. Keim, “Searching in High-
Dimensional Spaces: Index Structures for Improving the Perfor-
mance of Multimedia Databases,” ACM Computing Surveys,
pp. 322-373, 2001.

[7] T. Bozkaya and M. Ozsoyoglu, “Distance-Based Indexing for
High-Dimensional Metric Spaces,” Proc. ACM SIGMOD Conf.,
pp. 357-368, 1997.

[8] K. Chakrabarti and S. Mehrotra, “Local Dimensionality Reduction:
A New Approach to Indexing High Dimensional Spaces,” Proc.
26th Very Large Data Bases Conf., pp. 89-100, 2000.

[9] S. Chen, P.B. Gibbons, and T.C. Mowry, “Improving Index
Performance through Prefetching,” Proc. ACM SIGMOD Conf.,
pp. 139-150, 2001.

[10] P. Ciaccia, M. Patella, and P. Zezula, “M-Tree: An Efficient Access
Method for Similarity Search in Metric Spaces,” Proc. 24th Very
Large Data Bases Conf., pp. 194-205, 1997.

[11] B. Cui, B.C. Ooi, J.W. Su, and K.L. Tan, “Contorting High
Dimensional Data for Efficient Main Memory Processing,” Proc.
ACM SIGMOD Conf., pp. 479-490, 2003.

[12] B. Cui, B.C. Ooi, J.W. Su, and K.L. Tan, “Main Memory Indexing:
The Case for BD-Tree,” IEEE Trans. Knowledge and Data Eng., 2003.

[13] R. Enbody Perfmon: Performance Monitoring Tool, available from
http://www.cps.msu.edu/enbody/perfmon.html, 1999.

[14] R.F.S. Filho, A. Traina, C. Traina Jr., and C. Faloutsos, “Similarity
Search without Tears: The Omni-Family of All-Purpose Access
Methods,” Proc. 17th Int’l Conf. Data Eng., 2001.

[15] G.H. Golub and C.F. Van Loan, Matrix Computations. The Johns
Hopkins University Press, 1989.

[16] J. Hui, B.C. Ooi, H. Shen, C. Yu, and A. Zhou, “An Adaptive and
Efficient Dimensionality Reduction Algorithm for High-Dimen-
sional Indexing,” Proc. 19th Int’l Conf. Data Eng., 2003.

[17] I.T. Jolliffe, Principal Component Analysis. Springer-Verlag, 1986.
[18] C. Traina Jr., A. Traina, C. Faloutsos, and B. Seeger, “Fast Indexing

and Visualization of Metric Data Sets Using Slim-Trees,” IEEE
Trans. Knowledge and Data Eng., 2002.

[19] K. Kim, S.K. Cha, and K. Kwon, “Optimizing Multidimensional
Index Trees for Main Memory Access,” Proc. ACM SIGMOD Conf.,
pp. 139-150, 2001.

[20] K. Lin, H.V. Jagadish, and C. Faloutsos, “The TV-Tree: An Index
Structure for High-Dimensional Data,” The VLDB J., vol. 3, no. 4,
pp. 517-542, 1994.

[21] J. Rao and K. Ross, “Making B+-Trees Cache Conscious in Main
Memory,” Proc. ACM SIGMOD Conf., pp. 475-486, 2000.

[22] R. Weber, H.J. Schek, and S. Blott, “A Quantitative Analysis and
Performance Study for Similarity-Search Methods in High-
Dimensional Spaces,” Proc. 24th Very Large Data Bases Conf.,
pp. 194-205, 1998.

[23] C. Yu, B.C. Ooi, K.L. Tan, and H.V. Jagadish, “Indexing the
Distance: An Efficient Method to KNN Processing,” Proc. 27th
Very Large Data Bases Conf., pp. 421-430, 2001.

Bin Cui received the BS degree in computer
science from Xi’an Jiaotong University, China, in
1996, and the PhD degree in computer science
from the National University of Singapore in
2004. Currently, he is a research fellow at
Singapore-MIT Alliance. His major research
interests include index techniques, multi/high
databases, multimedia retrieval, and database
performance. He has served on program com-
mittees of several database conferences.

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 3, MARCH 2005

Beng Chin Ooi received the BSc (First Class
Honors) and PhD degrees from Monash Uni-
versity, Australia, in 1985 and 1989, respec-
tively. He is currently a professor of computer
science at the School of Computing, National
University of Singapore. His current research
interests include database performance issues,
index techniques, XML, spatial databases, and
P2P/grid computing. He has published more
than 100 conference/journal papers and served

as a program committee member for a number of international
conferences (including SIGMOD, VLDB, ICDE, EDBT, and DASFAA).
He is an editor of GeoInformatica, the Journal of GIS, ACM SIGMOD
Disc, VLDB Journal and the IEEE Transactions on Knowledge and Data
Engineering. He is a member of the ACM and the IEEE.

Jianwen Su received the BS and MS
degrees in computer science from Fudan
University and the PhD degree in computer
science from the University of Southern
California. He joined the Department of
Computer Science at the University of Cali-
fornia at Santa Barbara in 1990. Dr. Su is a
member of the ACM and SIGMOD, and a
senior member of the IEEE and the IEEE
Computer Society. He has served on pro-

gram/organizational committees of several database conferences.

Kian-Lee Tan received the BSc (Hons) and PhD
degrees in computer science from the National
University of Singapore in 1989 and 1994,
respectively. He is currently an associate pro-
fessor in the Department of Computer Science,
National University of Singapore. His major
research interests include query processing
and optimization, database security, and data-
base performance. He has published more than
140 conference/journal papers in international

conferences and journals. He has also coauthored three books. Dr. Tan
is a member of the ACM and the IEEE Computer Society.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

CUI ET AL.: INDEXING HIGH-DIMENSIONAL DATA FOR EFFICIENT IN-MEMORY SIMILARITY SEARCH 15

