
1

In-Memory Big Data Management and
Processing: A Survey

Hao Zhang, Gang Chen, Member, IEEE, Beng Chin Ooi, Fellow, IEEE,

Kian-Lee Tan, Member, IEEE, Meihui Zhang, Member, IEEE,

Abstract—Growing main memory capacity has fueled the development of in-memory big data management and processing. By

eliminating disk I/O bottleneck, it is now possible to support interactive data analytics. However, in-memory systems are much more

sensitive to other sources of overhead that do not matter in traditional I/O-bounded disk-based systems. Some issues such as

fault-tolerance and consistency are also more challenging to handle in in-memory environment.

We are witnessing a revolution in the design of database systems that exploits main memory as its data storage layer. Many of these

researches have focused along several dimensions: modern CPU and memory hierarchy utilization, time/space efficiency, parallelism

and concurrency control. In this survey, we aim to provide a thorough review of a wide range of in-memory data management and

processing proposals and systems, including both data storage systems and data processing frameworks. We also give a

comprehensive presentation of important technology in memory management, and some key factors that need to be considered in

order to achieve efficient in-memory data management and processing.

Index Terms—primary memory, DRAM, relational databases, distributed databases, query processing.

✦

1 INTRODUCTION

T HE explosion of Big Data has prompted much research to

develop systems to support ultra-low latency service and real-

time data analytics. Existing disk-based systems can no longer

offer timely response due to the high access latency to hard

disks. The unacceptable performance was initially encountered

by Internet companies such as Amazon, Google, Facebook and

Twitter, but is now also becoming an obstacle for other compa-

nies/organizations which desire to provide a meaningful real-time

service (e.g., real-time bidding, advertising, social gaming). For

instance, trading companies need to detect a sudden change in

the trading prices and react instantly (in several milliseconds),

which is impossible to achieve using traditional disk-based pro-

cessing/storage systems. To meet the strict real-time requirements

for analyzing mass amounts of data and servicing requests within

milliseconds, an in-memory system/database that keeps the data

in the random access memory (RAM) all the time is necessary.

Jim Gray’s insight that “Memory is the new disk, disk is

the new tape” is becoming true today [1] - we are witnessing a

trend where memory will eventually replace disk and the role of

disks must inevitably become more archival. In the last decade,

multi-core processors and the availability of large amounts of

main memory at plummeting cost are creating new breakthroughs,

making it viable to build in-memory systems where a significant

part, if not the entirety, of the database fits in memory. For

example, memory storage capacity and bandwidth have been

doubling roughly every three years, while its price has been

• Hao Zhang, Beng Chin Ooi and Kian-Lee Tan are with the School of

Computing, National University of Singapore, Singapore 117417.

E-mail: {zhangh, ooibc, tankl}@comp.nus.edu.sg

• Gang Chen is with the College of Computer Science, Zhejiang University,

Hangzhou, China 310027.

E-mail: cg@cs.zju.edu.cn

• Meihui Zhang is with the Information Systems Technology and Design

Pillar, Singapore University of Technology and Design, Singapore 138682.

E-mail: meihui zhang@sutd.edu.sg

dropping by a factor of 10 every five years. Similarly, there have

been significant advances in non-volatile memory (NVM) such as

SSD and the impending launch of various NVMs such as phase

change memory (PCM). The number of I/O operations per second

in such devices is far greater than hard disks. Modern high-end

servers usually have multiple sockets, each of which can have tens

or hundreds of gigabytes of DRAM, and tens of cores, and in

total, a server may have several terabytes of DRAM and hundreds

of cores. Moreover, in a distributed environment, it is possible to

aggregate the memories from a large number of server nodes to

the extent that the aggregated memory is able to keep all the data

for a variety of large-scale applications (e.g., Facebook [2]).

Database systems have been evolving over the last few

decades, mainly driven by advances in hardware, availability of

a large amount of data, collection of data at an unprecedented

rate, emerging applications and so on. The landscape of data man-

agement systems is increasingly fragmented based on application

domains (i.e., applications relying on relational data, graph-based

data, stream data). Figure 1 shows state-of-the-art commercial and

academic systems for disk-based and in-memory operations. In

this survey, we focus on in-memory systems; readers are referred

to [3] for a survey on disk-based systems.

In business operations, speed is not an option, but a must.

Hence every avenue is exploited to further improve performance,

including reducing dependency on the hard disk, adding more

memory to make more data resident in the memory, and even

deploying an in-memory system where all data can be kept in

memory. In-memory database systems have been studied in the

past, as early as the 1980s [69], [70], [71], [72], [73]. However,

recent advances in hardware technology have invalidated many of

the earlier works and re-generated interests in hosting the whole

database in memory in order to provide faster accesses and real-

time analytics [35], [36], [55], [74], [75], [76]. Most commercial

database vendors have recently introduced in-memory database

processing to support large-scale applications completely in mem-

2

Fig. 1. The (Partial) Landscape of Disk-Based and In-Memory Data Management Systems

ory [37], [38], [40], [77]. Efficient in-memory data management

is a necessity for various applications [78], [79]. Nevertheless, in-

memory data management is still at its infancy, and is likely to

evolve over the next few years.

In general, as summarized in Table 1, research in in-memory

data management and processing focus on the following aspects

for efficiency or enforcing ACID properties:

• Indexes. Although in-memory data access is extremely fast

compared to disk access, an efficient index is still required for

supporting point queries in order to avoid memory-intensive

scan. Indexes designed for in-memory databases are quite

different from traditional indexes designed for disk-based

databases such as the B+-tree, because traditional indexes

mainly care about the I/O efficiency instead of memory and

cache utilization. Hash-based indexes are commonly used in

key-value stores, e.g., Memcached [61], Redis [66], RAM-

Cloud [75], and can be further optimized for better cache

utilization by reducing pointer chasing [63]. However hash-

based indexes do not support range queries, which are crucial

for data analytics and thus, tree-based indexes have also

been proposed, such as T-Tree [80], Cache Sensitive Search

Trees (CSS-Trees) [81], Cache Sensitive B+-Trees (CSB+-

Trees) [82], ∆-Tree [83], BD-Tree [84], Fast Architecture

Sensitive Tree (FAST) [85], Bw-tree [86] and Adaptive

Radix Tree (ART) [87], some of which also consider pointer

reduction.

• Data Layouts. In-memory data layouts have a significant

impact on the memory usage and cache utilization. Columnar

layout of relational table facilitates scan-like queries/analytics

as it can achieve good cache locality [41], [88], and can

achieve better data compression [89], but is not optimal for

OLTP queries that need to operate on the row level [74],

[90]. It is also possible to have a hybrid of row and column

layouts, such as PAX which organizes data by columns

only within a page [91], and SAP HANA with multi-layer

stores consisting of several delta row/column stores and a

main column store, which are merged periodically [74]. In

addition, there are also proposals on handling the memory

fragmentation problem, such as the slab-based allocator in

Memcached [61], and log-structured data organization with

periodical cleaning in RAMCloud [75], and better utilization

of some hardware features (e.g., bit-level parallelism, SIMD),

such as BitWeaving [92] and ByteSlice [93].

• Parallelism. In general, there are three levels of par-

allelism, i.e., data-level parallelism (e.g., bit-level par-

allelism, SIMD)1, shared-memory scale-up parallelism

(thread/process)2, and shared-nothing scale-out parallelism

(distributed computation). All three levels of parallelism can

be exploited at the same time, as shown in Figure 2. The bit-

parallel algorithms fully unleash the intra-cycle parallelism

of modern CPUs, by packing multiple data values into one

CPU word, which can be processed in one single cycle [92],

1. Here data-level parallelism includes both bit-level parallelism achieved
by data packing, and word-level parallelism achieved by SIMD.

2. Accelerators such as GPGPU and Xeon Phi are also considered as shared-
memory scale-up parallelism.

3

TABLE 1
Optimization Aspects on In-memory Data Management and Processing

Aspects Concerns Related Work

Index cache consciousness,
time/space efficiency

T-Tree [80], CSS-Trees [81], CSB+-Trees [82], ∆-Tree [83], BD-Tree [84], FAST [85], ART
[87]

Data Layout cache consciousness, space
efficiency

PAX [91], columnar layout [41], [88], HANA Hybrid Store [74], slab allocator [61], log-
structure [75]

Parallelism linear scaling, partitioning BitWeaving [92], bit-parallel aggregation [94], SIMD sorting [95], SIMD scanning [96], [97],
multi-core join [98], distributed computing [2], [55], [99], [100]

Concurrency Control/
Transaction Management

overhead, correctness virtual snapshot [35], lock-eliding [101], transactional memory [102], [103], PALM [104],
LIL [105], VLL [106], OCC [39], [107], MVCC [108], [109], DGCC [110]

Query Processing code locality, register tempo-
ral locality, time efficiency

stored procedure [111], JIT compilation [112], [113], join [98], [114], [115], [116], [117],
[118], [119], [120], [121], [122], sort [95], [123], [124]

Fault Tolerance durability, correlated fail-
ures, availability

Copyset [125], fast recovery [126], group commit and log coalescing [37], [127], NVM [128],
[129], [130], command logging [131], adaptive logging [132], remote logging [2], [40]

Data Overflow locality, paging strategy,
hot/cold classification

Anti-caching [133], Hekaton Siberia [134], data compression [74], [89], [135], virtual
memory management [136], pointer swizzling [137], UVMM [138]

...

...

sNetworks

Node 0

Thread/ProcessSIMD

Bit-parallel

SIMD

Bit-parallel

Node N

...

Thread/ProcessSIMD

Bit-parallel

SIMD

Bit-parallel

Fig. 2. Three Levels of Parallelism

[94]. Intra-cycle parallelism performance can be proportional

to the packing ratio, since it does not require any concurrency

control protocol. SIMD instructions can improve vector-

style computations greatly, which are extensively used in

high-performance computing, and also in the database sys-

tems [95], [96], [97]. Scale-up parallelism can take advantage

of the multi-core architecture of supercomputers or even

commodity computers [36], [98], while scale-out parallelism

is highly utilized in cloud/distributed computing [2], [55],

[99]. Both scale-up and scale-out parallelisms require a good

data partitioning strategy in order to achieve load balanc-

ing and minimize cross-partition coordination [100], [139],

[140], [141].

• Concurrency control/transaction management. Concurrency

control/transaction management becomes an extremely im-

portant performance issue in in-memory data management

with the many-core systems. Heavy-weight mechanisms

based on lock/semaphore greatly degrade the performance,

due to its blocking-style scheme and the overhead caused

by centralized lock manager and deadlock detection [142],

[143]. Lightweight Intent Lock (LIL) [105] was proposed to

maintain a set of lightweight counters in a global lock table

instead of lock queues for intent locks. Very Lightweight

Locking (VLL) [106]. further simplifies the data structure

by compressing all the lock states of one record into a pair

of integers for partitioned databases. Another class of concur-

rency control is based on timestamp, where a predefined order

is used to guarantee transactions’ serializability [144], such

as Optimistic Concurrency Control (OCC) [39], [107] and

Multi-Version Concurrency Control (MVCC) [108], [109].

Furthermore, H-Store [36], [101], seeks to eliminate concur-

rency control in single-partition transactions by partitioning

the database beforehand based on a priori workload and

providing one thread for each partition. HyPer [35] isolates

OLTP and OLAP by fork-ing a child process (via fork()

system call) for OLAP jobs based on the hardware-assisted

virtual snapshot, which will never be modified. DGCC [110]

is proposed to reduce the overhead of concurrency control

by separating concurrency control from execution based

on a dependency graph. Hekaton [107] utilizes optimistic

MVCC and lock-free data structures to achieve high con-

currency efficiently. Besides, hardware transactional memory

(HTM) [102], [103] is being increasingly exploited in con-

currency control for OLTP.

• Query processing. Query processing is going through an evo-

lution in in-memory databases. While the traditional Iterator-

/Volcano-style model [145] facilitates easy combination of

arbitrary operators, it generates a huge number of function

calls (e.g., next()) which results in evicting the register con-

tents. The poor code locality and frequent instruction miss-

predictions further add to the overhead [112], [113]. Coarse-

grained stored procedures (e.g., transaction-level) can be used

to alleviate the problem [111], and dynamic compiling (Just-

in-Time) is another approach to achieve better code and data

locality [112], [113]. Performance gain can also be achieved

by optimizing specific query operation such as join [98],

[114], [115], [116], [117], [118], [119], [120], [121], [122],

and sort [95], [123], [124].

• Fault tolerance. DRAM is volatile, and fault-tolerance mech-

anisms are thus crucial to guarantee the data durability to

avoid data loss and to ensure transactional consistency when

there is a failure (e.g., power, software or hardware failure).

Traditional write-ahead logging (WAL) is also the de facto

approach used in in-memory database systems [35], [36],

[37]. But the data volatility of the in-memory storage invalids

the necessariness of the persistent undo log [37], [131] or

completely disables it in some scenarios [111]. To eliminate

the potential I/O bottleneck caused by logging, group commit

and log coalescing [37], [127], and remote logging [2],

[40] are adopted to optimize the logging efficiency. New

hardware technologies such as SSD and PCM are utilized

to increase the I/O performance [128], [129], [130]. Recent

studies proposed to use command logging [131], which logs

only operations instead of the updated data, which is used

in traditional ARIES logging [146]. [132] studies how to

alternate between these two strategies adaptively. To speed

up the recovery process, a consistent snapshot has to be

4

checkpointed periodically [37], [147], and replicas should be

dispersed in anticipation of correlated failures [125]. High

availability is usually achieved by maintaining multiple repli-

cas and stand-by servers [37], [148], [149], [150], or relying

on fast recovery upon failure [49], [126]. Data can be further

backuped onto a more stable storage such as GPFS [151],

HDFS [27] and NAS [152] to further secure the data.

• Data overflow. In spite of significant increase in memory size

and sharp drop in its price, it still cannot keep pace with

the rapid growth of data in the Big Data era, which makes

it essential to deal with data overflow where the size of the

data exceeds the size of main memory. With the advance-

ment of hardware, hybrid systems which incorporate Non-

Volatile Memories (NVMs) (e.g., SCM, PCM, SSD, Flash

memory) [30], [31], [32], [118], [127], [153], [154], [155],

[156] become a natural solution for achieving the speed.

Alternatively, as in the traditional database systems, effective

eviction mechanisms could be adopted to replace the in-

memory data when the main memory is not sufficient. [133],

[134], [157] propose to move cold data to disks, and [136]

re-organizes the data in memory and relies on OS to do the

paging, while [137] introduces pointer swizzling in database

buffer pool management to alleviate the overhead caused by

traditional databases in order to compete with the completely

re-designed in-memory databases. UVMM [138] taps onto

a hybrid of hardware-assisted and semantics-aware access

tracking, and non-blocking kernel I/O scheduler, to facilitate

efficient memory management. Data compression has also

been used to alleviate the memory usage pressure [74], [89],

[135].

The focus of the survey is on large-scale in-memory data

management and processing strategies, which can be broadly

grouped into two categories, i.e., in-memory data storage systems

and in-memory data processing systems. Accordingly, the remain-

ing sections are organized as follows. Section 2 presents some

background on in-memory data management. We elaborate in-

memory data storage systems, including relational databases and

NoSQL databases in Section 3, and in-memory data processing

systems, including in-memory batch processing and real-time

stream processing in Section 4. As a summary, we present a

qualitative comparison of the in-memory data management sys-

tems covered in this survey in Section 5. Finally, we discuss some

research opportunities in Section 6, and conclude in Section 7.

2 CORE TECHNOLOGIES FOR IN-MEMORY SYS-

TEMS

In this section, we shall introduce some concepts and techniques

that are important for efficient in-memory data management, in-

cluding memory hierarchy, non-uniform memory access (NUMA),

transactional memory, and non-volatile random access memory

(NVRAM). These are the basics on which the performance of

in-memory data management systems heavily rely.

2.1 Memory Hierarchy

The memory hierarchy is defined in terms of access latency and

the logical distance to the CPU. In general, it consists of registers,

caches (typically containing L1 cache, L2 cache and L3 cache),

main memory (i.e., RAM) and disks (e.g., hard disk, flash memory,

SSD) from the highest performance to the lowest. Figure 3 depicts

CPU

Core

register

L1 Cache

L2 Cache

L3 Cache

Core

register

L1 Cache

L2 Cache

 Main Memory

 Disk
SSD/Flash

Hard Disk

1 ns

3 ns

10 ns

15 - 90 ns

100K ns

7 - 15M ns

32 KB

256 KB - 1 MB

3 MB - 37.5 MB

4 GB - 6 TB

(32 GB - 4 TB)×N

(256 GB - 6 TB)×N

Capacity Latency

L
arg

er cap
acity

/lo
w

er p
rice

DRAM

L
o

w
er

 l
at

en
cy

Fig. 3. Memory Hierarchy

the memory hierarchy, and respective component’s capacity and

access latency [158], [159], [160], [161], [162], [163], [164],

[165], [166]. It shows that data access to the higher layers is much

faster than to the lower layers, and each of these layers will be

introduced in this section.

In modern architectures, data cannot be processed by CPU

unless it is put in the registers. Thus, data that is about to be

processed has to be transmitted through each of the memory

layers until it reaches the registers. Consequently, each upper layer

serves as a cache for the underlying lower layer to reduce the

latency for repetitive data accesses. The performance of a data-

intensive program highly depends on the utilization of the memory

hierarchy. How to achieve both good spatial and temporal locality

is usually what matters the most in the efficiency optimization. In

particular, spatial locality assumes that the adjacent data is more

likely to be accessed together, whereas temporal locality refers to

the observation that it is likely that an item will be accessed again

in the near future. We will introduce some important efficiency-

related properties of different memory layers respectively.

2.1.1 Register

A processor register is a small amount of storage within a CPU, on

which machine instructions can manipulate directly. In a normal

instruction, data is first loaded from the lower memory layers into

registers where it is used for arithmetic or test operation, and

the result is put back into another register, which is then often

stored back into main memory, either by the same instruction

or a subsequent one. The length of a register is usually equal

to the word length of a CPU, but there also exist double-word,

and even wider registers (e.g., 256 bits wide YMMX registers in

Intel Sandy Bridge CPU micro architecture), which can be used

for single instruction multiple data (SIMD) operations. While the

number of registers depends on the architecture, the total capacity

of registers is much smaller than that of the lower layers such as

cache or memory. However, accessing data from registers is very

much faster.

2.1.2 Cache

Registers play the role as the storage containers that CPU uses

to carry out instructions, while caches act as the bridge between

the registers and main memory due to the high transmission delay

between the registers and main memory. Cache is made of high-

speed static RAM (SRAM) instead of slower and cheaper dynamic

RAM (DRAM) that usually forms the main memory. In general,

5

there are three levels of caches, i.e., L1 cache, L2 cache and L3

cache (also called last level cache - LLC), with increasing latency

and capacity. L1 cache is further divided into data cache (i.e.,

L1-dcache) and instruction cache (i.e., L1-icache) to avoid any

interference between data access and instruction access. We call

it a cache hit if the requested data is in the cache; otherwise it is

called a cache miss.

Cache is typically subdivided into fixed-size logical cache

lines, which are the atomic units for transmitting data between

different levels of caches and between the last level cache and

main memory. In modern architectures, a cache line is usually 64

bytes long. By filling the caches per cache line, spatial locality can

be exploited to improve performance. The mapping between the

main memory and the cache is determined by several strategies,

i.e., direct mapping, N-way set associative, and fully associative.

With direct mapping, each entry (a cache line) in the memory can

only be put in one place in the cache, which makes addressing

faster. Under fully associative strategy, each entry can be put in

any place, which offers fewer cache misses. The N-way associa-

tive strategy is a compromise between direct mapping and fully

associative - it allows each entry in the memory to be in any of N

places in the cache, which is called a cache set. N-way associative

is often used in practice, and the mapping is deterministic in terms

of cache sets.

In addition, most architectures usually adopt a least-recently-

used (LRU) replacement strategy to evict a cache line when there

is not enough room. Such a scheme essentially utilizes temporal

locality for enhancing performance. As shown in Figure 3, the

latency to access cache is much shorter than the latency to access

main memory. In order to gain good CPU performance, we have

to guarantee high cache hit rate so that high-latency memory

accesses are reduced. In designing an in-memory management

system, it is important to exploit the properties of spatial and

temporal locality of caches. For examples, it would be faster to

access memory sequentially than randomly, and it would also be

better to keep a frequently-accessed object resident in the cache.

The advantage of sequential memory access is reinforced by the

prefetching strategies of modern CPUs.

2.1.3 Main Memory and Disks

Main memory is also called internal memory, which can be

directly addressed and possibly accessed by the CPU, in contrast

to external devices such as disks. Main memory is usually made

of volatile DRAM, which incurs equivalent latency for random

accesses without the effect of caches, but will lose data when

power is turned off. Recently, DRAM becomes inexpensive and

large enough to make an in-memory database viable.

Even though memory becomes the new disk [1], the volatility

of DRAM makes it a common case that disks3 are still needed

to backup data. Data transmission between main memory and

disks is conducted in units of pages, which makes use of data

spatial locality on the one hand and minimizes the performance

degradation caused by the high-latency of disk seek on the other

hand. A page is usually a multiple of disk sectors4 which is the

minimum transmission unit for hard disk. In modern architectures,

OS usually keeps a buffer which is part of the main memory to

3. Here we refer to hard disks.

4. A page in the modern file system is usually 4 KB; Each disk sector of
hard disks is traditionally 512 bytes.

make the communication between the memory and disk faster5.

The buffer is mainly used to bridge the performance gap between

the CPU and the disk. It increases the disk I/O performance by

buffering the writes to eliminate the costly disk seek time for

every write operation, and buffering the reads for fast answer to

subsequent reads to the same data. In a sense, the buffer is to the

disk as the cache is to the memory. And it also exposes both spatial

and temporal locality, which is an important factor in handling the

disk I/O efficiently.

2.2 Memory Hierarchy Utilization

This subsection reviews related works from three perspectives –

register-conscious optimization, cache-conscious optimization and

disk I/O optimization.

2.2.1 Register-Conscious Optimization

Register-related optimization usually matters in compiler and

assembly language programming, which requires utilizing the

limited number of registers efficiently. There have been some

criticisms on the traditional iterator-style query processing mech-

anisms for in-memory databases recently as it usually results in

poor code and data locality [36], [112], [167]. HyPer uses Low

Level Virtual Machine (LLVM) compiler framework [167] to

translate a query into machine code dynamically, which achieves

good code and data locality by avoiding recursive function calls

as much as possible and trying to keep the data in the registers as

long as possible [112].

SIMD is available in superscalar processors, which exploits

data-level parallelism with the help of wide registers (e.g., 256

bits). SIMD can improve the performance significantly especially

for vector-style computation, which is very common in Big Data

analytics jobs [95], [96], [97], [112], [168].

2.2.2 Cache-Conscious Optimization

Cache utilization is becoming increasingly important in modern

architectures. Several workload characterization studies provide

detailed analysis of the time breakdown in the execution of

DBMSs on a modern processor, and report that DBMSs suffer

from high memory-related processor stalls when running on mod-

ern architectures. This is caused by a huge amount of data cache

misses [169], which account for 50-70% for OLTP workloads [91],

[170] to 90% for DSS workloads [91], [171], of the total memory-

related stall. In a distributed database, instruction cache misses are

another main source of performance degradation due to a large

number of TCP network I/Os [172].

To utilize the cache more efficiently, some works focus on

re-organizing the data layout by grouping together all values of

each attribute in an NSM (N-ary Storage Model) page [91] or

using a DSM (Decomposition Storage Model) [173] or completely

organizing the records in a column store [41], [90], [174], [175].

This kind of optimization favors OLAP workload which typically

only needs a few columns, but has a negative impact on intra-

tuple cache locality [176]. There are also other techniques to

optimize cache utilization for the primary data structure, such as

compression [177] and coloring [178].

In addition, for memory-resident data structures, various

cache-conscious indexes have been proposed such as Cache

5. The kernel buffer is also used to buffer data from other block I/O devices
that transmit data in fixed-size blocks.

6

core

Node 0 memory

core... core

Node N memory

core......

NUMA Node 0 NUMA Node N

 Interconnect Busf

Fig. 4. NUMA Topology

Sensitive Search Trees (CSS-Trees) [81], Cache Sensitive B+-

Trees (CSB+-Trees) [82], Fast Architecture Sensitive Trees

(FAST) [85], and Adaptive Radix Trees (ART) [87]. Cache-

conscious algorithms have also been proposed for basic operations

such as sorting (e.g., burst sort) [179] and joining [98], [114].

In summary, to optimize cache utilization, the following im-

portant factors should be taken into consideration:

• Cache line length. This characteristic exposes spatial locality,

meaning that it would be more efficient to access adjacent

data.

• Cache size. It would also be more efficient to keep frequently-

used data within at least L3 cache size.

• Cache replacement policy. One of the most popular replace-

ment policies is LRU, which replaces the least recently used

cache line upon a cache miss. The temporal locality should

be exploited in order to get high performance.

2.3 Non-uniform Memory Access

Non-uniform Memory Access (NUMA) is an architecture of the

main memory subsystem where the latency of a memory operation

depends on the relative location of the processor that is performing

memory operations. Broadly, each processor in a NUMA system

has a local memory that can be accessed with minimal latency, but

can also access at least one remote memory with longer latency,

which is illustrated in Figure 4.

The main reason for employing NUMA architecture is to

improve the main memory bandwidth and total memory size that

can be deployed in a server node. NUMA allows the clustering of

several memory controllers into a single server node, creating sev-

eral memory domains. Although NUMA systems were deployed

as early as 1980s in specialized systems [180], since 2008 all

Intel and AMD processors incorporate one memory controller.

Thus, most contemporary multi-processor systems are NUMA;

therefore, NUMA-awareness is becoming a mainstream challenge.

In the context of data management systems, current research

directions on NUMA-awareness can be broadly classified into

three categories:

• partitioning the data such that memory accesses to remote

NUMA domains are minimized [115], [181], [182], [183],

[184];

• managing NUMA effects on latency-sensitive workloads

such as OLTP transactions [185], [186];

• efficient data shuffling across NUMA domains [187].

2.3.1 Data partitioning

Partitioning the working set of a database has long been used to

minimize data transfers across different data domains, both within

a compute node and across compute nodes. Bubba [181] is an

example of an earlier parallel database system that uses a shared-

nothing architecture to scale to hundreds of compute nodes. It

partitions the data using a hash- or range-based approach and

always performs the analytics operations only in the nodes that

contain the relevant partitions. Gamma [182] is another example

that was designed to operate on a complex architecture with an

Intel iPSC/2 hypercube with 32 processors and 32 disk drives.

Like Bubba, Gamma partitions the data across multiple disk drives

and uses a hash-based approach to implement join and aggregate

operations on top of the partitioned data. The partitioned data

and execution provide the partitioned parallelism [188]. With

NUMA systems becoming mainstream, many research efforts

have started to address NUMA issues explicitly, rather than just

relying on data partitioning. Furthermore, modern systems have

increasingly larger number of cores. The recent change in memory

topology and processing power have indeed attracted interest in

re-examining traditional processing methods in the context of

NUMA.

A new sort-merge technique for partitioning the join operation

was proposed in [115] to take advantage of NUMA systems with

high memory bandwidth and many cores. In contrast to hash

join and classical sort-merge join, the parallel sort-merge strategy

parallelizes also the final merge step, and naturally operates on

local memory partitions. This is to take advantage of both the

multi-core architecture and the large local memory bandwidth that

most NUMA systems have.

Partitioning the database index was proposed for the Buzzard

system [183]. Index operations typically incur frequent pointer

chasing during the traversal of a tree-based index. In a NUMA

system, these pointer operations might end up swinging from one

memory domain to another. To address this problem, Buzzard

proposes a NUMA-aware index that partitions different parts

of a prefix tree-based index across different NUMA domains.

Furthermore, Buzzard uses a set of dedicated worker threads to

access each memory domain. This guarantees that threads only

access their local memory during index traversal and further

improves the performance by using only local comparison and

swapping operations instead of expensive locking.

Partitioning both the input data and query execution was

proposed in [184]. In contrast to plan-driven query execution,

a fine-grained runtime task scheduling, termed “morsel query

execution” was proposed. The morsel-driven query processing

strategy dynamically assembles small pieces of input data, and

executes them in a pipelined fashion by assigning them to a

pool of worker threads. Due to this fine-grained control over the

parallelism and the input data, morsel-driven execution is aware of

the data locality of each operator, and can schedule their execution

on local memory domains.

2.3.2 OLTP latency

Since NUMA systems have heterogeneous access latency, they

pose a challenging problem to OLTP transactions which are

typically very sensitive to latency. The performance of NUMA-

unaware OLTP deployments on NUMA systems is profiled

in [185], where many of these systems are deemed to have

achieved suboptimal and unpredictable performance. To address

the needs for a NUMA-aware OLTP system, the paper proposes

“hardware islands”, in which it treats each memory domain as

a logical node, and uses UNIX domain sockets to communicate

among the NUMA memory domains of a physical node. The

recently proposed ATraPos [186] is an adaptive transaction pro-

cessing system that has been built based on this principle.

7

2.3.3 Data shuffling

Data shuffling in NUMA systems aims to transfer the data across

the NUMA domains as efficiently as possible, by saturating

the transfer bandwidth of the NUMA interconnect network. A

NUMA-aware coordinated ring-shuffling method was proposed

in [187]. To shuffle the data across NUMA domains as efficiently

as possible, the proposed approach forces the threads across

NUMA domains to communicate in a coordinated manner. It

divides the threads into an inner ring and an outer ring and

performs communication in a series of rounds, during which the

inner ring remains fixed while the outer ring rotates. This rotation

guarantees that all threads across the memory domains will be

paired based on a predictable pattern, and thus all the memory

channels of the NUMA interconnect are always busy. Compared

to the naive method of shuffling the data around the domains, this

method improves the transfer bandwidth by a factor of four, when

using a NUMA system with four domains.

2.4 Transactional Memory

Transactional memory is a concurrency control mechanism for

shared memory access, which is analogous to atomic database

transactions. The two types of transactional memory, i.e., software

transactional memory (STM) and hardware transactional memory

(HTM), are compared in Table 2. STM causes a significant

slowdown during execution and thus has limited practical ap-

plication [194], while HTM has attracted new attention for its

efficient hardware-assisted atomic operations/transactions, since

Intel introduced it in its mainstream Haswell microarchitecture

CPU [102], [103]. Haswell HTM is implemented based on cache

coherency protocol. In particular, L1 cache is used as a local buffer

to mark all transactional read/write on the granularity of cache

lines. The propagation of changes to other caches or main mem-

ory is postponed until the transaction commits, and write/write

and read/write conflicts are detected using the cache coherency

protocol [195]. This HTM design incurs almost no overhead for

transaction execution, but has the following drawbacks, which

make HTM only suitable for small and short transactions.

• The transaction size is limited to the size of L1 data cache,

which is usually 32 KB. Thus it is not possible to simply

execute a database transaction as one monolithic HTM trans-

action.

• Cache associativity makes it more prone to false conflicts,

because some cache lines are likely to go to the same

cache set, and an eviction of a cache line leads to abort

of the transaction, which cannot be resolved by restarting

the transaction due to the determinism of the cache mapping

strategy (refer to Subsection 2.1.2).

• HTM transactions may be aborted due to interrupt events,

which limits the maximum duration of HTM transactions.

There are two instruction sets for Haswell HTM in Transac-

tional Synchronization Extensions (TSX)6, i.e., Hardware Lock

Ellison (HLE) and Restricted Transactional Memory (RTM). HLE

allows optimistic execution of a transaction by eliding the lock

so that the lock is free to other threads, and restarting it if the

transaction failed due to data race, which mostly incurs no locking

overhead, and also provides backward compatibility with proces-

sors without TSX. RTM is a new instruction set that provides

6. In August 2014, Intel announced a bug in the TSX implementation on
the current steppings of Haswell, Haswell-E, Haswell-EP and early Broadwell
CPUs, resulting in disabling the TSX feature on affected CPUs.

the flexibility to specify a fallback code path after a transaction

aborts. [102] exploits HTM based on HLE, by dividing a database

transaction into a set of relatively small HTM transactions with

timestamp ordering (TSO) concurrency control and minimizing

the false abort probability via data/index segmentation. RTM is

utilized in [103], which uses a three-phase optimistic concurrency

control (OCC) to coordinate a whole database transaction, and

protects single data read (to guarantee consistency of sequence

numbers) and validate/write phases using RTM transactions.

2.5 NVRAM

Newly-emerging non-volatile memory (NVM) raises the prospect

of persistent high-speed memory with large capacity. Exam-

ples of NVM include both NAND/NOR flash memory with

block-granularity addressability, and non-volatile random access

memory (NVRAM) with byte-granularity addressability7. Flash

memory/SSD has been widely used in practice, and attracted a

significant amount of attention in both academia and industry [32],

[33], but its block-granularity interface, and expensive “erase”

operation make it only suitable to act as the lower-level storage,

such as replacement of hard disk [30], [32], or disk cache [196].

Thus, in this survey, we only focus on NVRAMs that have byte

addressability and comparable performance with DRAM, and can

be brought to the main memory layer or even the CPU cache layer.

Advanced NVRAM technologies, such as Phase Change Mem-

ory (PCM) [197], Spin-Transfer Torque Magnetic RAM (STT-

MRAM) [198], and Memristors [199], can provide orders of

magnitude better performance than either conventional hard disk

or flash memory, and deliver excellent performance on the same

order of magnitude as DRAM, but with persistent writes [200].

The read latency of PCM is only 2-5 times slower than DRAM,

and STT-MRAM and Memristor could even achieve lower access

latency than DRAM [118], [128], [129], [201]. With proper

caching, carefully architected PCM could also match DRAM

performance [159]. Besides, NVRAM is speculated to have much

higher storage density than DRAM, and consume much less

power [202]. Although NVRAM is currently only available in

small sizes, and the cost per bit is much higher than that of hard

disk or flash memory or even DRAM, it is estimated that by the

next decade, we may have a single PCM with 1 TB and Memristor

with 100 TB, at price close to the enterprise hard disk [128],

[129]. The advent of NVRAM offers an intriguing opportunity to

revolutionize the data management and re-think the system design.

It has been shown that simply replacing disk with NVRAM is

not optimal, due to the high overhead from the cumbersome file

system interface (e.g., file system cache and costly system calls),

block-granularity access and high economic cost, etc. [127], [130],

[203]. Instead, NVRAM has been proposed to be placed side-by-

side with DRAM on the memory bus, available to ordinary CPU

loads and stores, such that the physical address space can

be divided between volatile and non-volatile memory [203], or

be constituted completely by non-volatile memory [155], [204],

[205], equipped with fine-tuned OS support [206], [207]. Com-

pared to DRAM, NVRAM exhibits its distinct characteristics,

such as limited endurance, write/read asymmetry, uncertainty of

ordering and atomicity [128], [203]. For example, the write latency

of PCM is more than one order of magnitude slower than its read

7. NVM and NVRAM usually can be used exchangeably without much
distinction. NVRAM is also referred to as Storage-Class Memory (SCM),
Persistent Memory (PM) or Non-Volatile Byte-addressable Memory (NVBM).

8

TABLE 2
Comparison between STM and HTM

Performance Penalty Hardware Support Transaction Size Implementations

STM Much Atomic Operation Large TinySTM [189], Clojure [190], Haskell [191]

HTM No or Little Cache, Bus Protocol Small Intel TSX [192], AMD ASF [193]

latency [118]. Besides, there is no standard mechanisms/protocols

to guarantee the ordering and atomicity of NVRAM writes [128],

[203]. The endurance problem can be solved by wear-leveling

techniques in the hardware or middleware levels [204], [205],

[208], which can be easily hidden from the software design, while

the read/write asymmetry, and ordering and atomicity of writes,

must be taken into consideration in the system/algorithm design

[202].

Promisingly, NVRAM can be architected as the main memory

in general-purpose systems with well-designed architecture [155],

[204], [205]. In particular, longer write latency of PCM can be

solved by data comparison writes [209], partial writes [205], or

specialized algorithms/structures that trade writes for reads [118],

[202], [210], which can also alleviate the endurance problem. And

current solutions to the write ordering and atomicity problems

are either relying on some newly-proposed hardware primitives,

such as atomic 8-byte writes and epoch barriers [129], [203],

[210], or leveraging existing hardware primitives, such as cache

modes (e.g., write-back, write-combining), memory barriers (e.g.,

mfence), cache line flush (e.g., clflush) [128], [130], [211],

which, however, may incur non-trivial overhead. General libraries

and programming interfaces are proposed to expose NVRAM as

a persistent heap, enabling NVRAM adoption in an easy-to-use

manner, such as NV-heaps [212], Mnemosyne [213], NVMal-

loc [214], and recovery and durable structures [211], [215]. In

addition, file system support enables a transparent utilization of

NVRAM as a persistent storage, such as Intel’s PMFS [216],

BPFS [203], FRASH [217], ConquestFS [218], SCMFS [219],

which also take advantage of NVRAM’s byte addressability.

Besides, specific data structures widely used in databases, such

as B-Tree [210], [215], and some common query processing oper-

ators, such as sort and join [118], are starting to adapt to and take

advantage of NVRAM properties. Actually, the favorite goodies

brought to databases by NVRAM is its non-volatility property,

which facilitates a more efficient logging and fault tolerance

mechanisms [127], [128], [129], [130]. But write atomicity and de-

terministic orderings should be guaranteed and achieved efficiently

via carefully designed algorithms, such as group commit [127],

passive group commit [128], two-step logging (i.e., populating the

log entry in DRAM first and then flushing it to NVRAM) [130].

Also the centralized logging bottleneck should be eliminated,

e.g., via distributed logging [128], decentralized logging [130].

Otherwise the high performance brought by NVRAM would be

degraded by the legacy software overhead (e.g., centention for the

centralized log).

3 IN-MEMORY DATA STORAGE SYSTEMS

In this section, we introduce some in-memory databases, including

both relational and NoSQL databases. We also cover a special

category of in-memory storage system, i.e., cache system, which is

used as a cache between the application server and the underlying

database. In most relational databases, both OLTP and OLAP

workloads are supported inherently. The lack of data analytics

operations in NoSQL databases results in an inevitable data

transmission cost for data analytics jobs [172].

3.1 In-memory Relational Databases

Relational databases have been developed and enhanced since

1970s, and the relational model has been dominating in almost

all large-scale data processing applications since early 1990s.

Some widely used relational databases include Oracle, IBM DB2,

MySQL and PostgreSQL. In relational databases, data is organized

into tables/relations, and ACID properties are guaranteed. More

recently, a new type of relational databases, called NewSQL (e.g.,

Google Spanner [8], H-Store [36]) has emerged. These systems

seek to provide the same scalability as NoSQL databases for

OLTP while still maintaining the ACID guarantees of traditional

relational database systems.

In this subsection, we focus on in-memory relational

databases, which have been studied since 1980s [73]. However,

there has been a surge in interests in recent years [220]. Exam-

ples of commercial in-memory relational databases include SAP

HANA [77], VoltDB [150], Oracle TimesTen [38], SolidDB [40],

IBM DB2 with BLU Acceleration [221], [222], Microsoft Heka-

ton [37], NuoDB [43], eXtremeDB [223], Pivotal SQLFire [224],

and MemSQL [42]. There are also well known research/open-

source projects such as H-Store [36], HyPer [35], Silo [39],

Crescando [225], HYRISE [176], and MySQL Cluster NDB [226].

3.1.1 H-Store / VoltDB

H-Store [36], [227] or its commercial version VoltDB [150] is

a distributed row-based in-memory relational database targeted

for high-performance OLTP processing. It is motivated by two

observations: first, certain operations in traditional disk-based

databases, such as logging, latching, locking, B-tree and buffer

management operations, incur substantial amount of the pro-

cessing time (more than 90%) [220] when ported to in-memory

databases; second, it is possible to re-design in-memory database

processing so that these components become unnecessary. In H-

Store, most of these “heavy” components are removed or opti-

mized, in order to achieve high-performance transaction process-

ing.

Transaction execution in H-Store is based on the assumption

that all (at least most of) the templates of transactions are known

in advance, which are represented as a set of compiled stored

procedures inside the database. This reduces the overhead of

transaction parsing at runtime, and also enables pre-optimizations

on the database design and light-weight logging strategy [131].

In particular, the database can be more easily partitioned to avoid

multi-partition transactions [140], and each partition is maintained

by a site, which is single-threaded daemon that processes transac-

tions serially and independently without the need for heavy-weight

concurrency control (e.g., lock) in most cases [101]. Next, we will

elaborate on its transaction processing, data overflow and fault-

tolerance strategies.

9

3.1.1.1 Transaction Processing: Transaction processing

in H-Store is conducted on the partition/site basis. A site is an

independent transaction processing unit that executes transactions

sequentially, which makes it feasible only if a majority of the

transactions are single-sited. This is because if a transaction in-

volves multiple partitions, all these sites are sequentialized to pro-

cess this distributed transaction in collaboration (usually 2PC), and

thus cannot process transactions independently in parallel. H-Store

designs a skew-aware partitioning model – Horticulture [140]

– to automatically partition the database based on the database

schema, stored procedures and a sample transaction workload,

in order to minimize the number of multi-partition transactions

and meanwhile mitigate the effects of temporal skew in the

workload. Horticulture employs the large-neighborhood search

(LNS) approach to explore potential partitions in a guided manner,

in which it also considers read-only table replication to reduce

the transmission cost of frequent remote access, secondary index

replication to avoid broadcasting, and stored procedure routing

attributes to allow an efficient routing mechanism for requests.

The Horticulture partitioning model can reduce the number

of multi-partition transactions substantially, but not entirely. The

concurrency control scheme must therefore be able to differentiate

single partition transactions from multi-partition transactions, such

that it does not incur high overhead where it is not needed

(i.e., when there are only single-partition transactions). H-Store

designs two low overhead concurrency control schemes, i.e., light-

weight locking and speculative concurrency control [101]. Light-

weight locking scheme reduces the overhead of acquiring locks

and detecting deadlock by allowing single-partition transactions

to execute without locks when there are no active multi-partition

transactions. And speculative concurrency control scheme can pro-

ceed to execute queued transactions speculatively while waiting

for 2PC to finish (precisely after the last fragment of a multi-

partition transaction has been executed), which outperforms the

locking scheme as long as there are few aborts or few multi-

partition transactions that involve multiple rounds of communi-

cation.

In addition, based on the partitioning and concurrency control

strategies, H-Store utilizes a set of optimizations on transaction

processing, especially for workload with interleaving of single-

and multi-transactions. In particular, to process an incoming trans-

action (a stored procedure with concrete parameter values), H-

Store uses a Markov model-based approach [111] to determine the

necessary optimizations by predicting the most possible execution

path and the set of partitions that it may access. Based on

these predictions, it applies four major optimizations accordingly,

namely (1) execute the transaction at the node with the partition

that it will access the most; (2) lock only the partitions that the

transaction accesses; (3) disable undo logging for non-aborting

transactions; (4) speculatively commit the transaction at partitions

that it no longer needs to access.

3.1.1.2 Data Overflow: While H-Store is an in-memory

database, it also utilizes a technique, called anti-caching [133],

to allow data bigger than the memory size to be stored in the

database, without much sacrifice of performance, by moving cold

data to disk in a transactionally-safe manner, on the tuple-level,

in contrast to the page-level for OS virtual memory management.

In particular, to evict cold data to disk, it pops the least recently

used tuples from the database to a set of block buffers that will

be written out to disks, updates the evicted table that keeps

track of the evicted tuples and all the indexes, via a special

eviction transaction. Besides, non-blocking fetching is achieved by

simply aborting the transaction that accesses evicted data and then

restarting it at a later point once the data is retrieved from disks,

which is further optimized by executing a pre-pass phase before

aborting to determine all the evicted data that the transaction needs

so that it can be retrieved in one go without multiple aborts.

3.1.1.3 Fault Tolerance: H-Store uses a hybrid of fault-

tolerance strategies, i.e., it utilizes a replica set to achieve high

availability [36], [150], and both checkpointing and logging for

recovery in case that all the replicas are lost [131]. In particular,

every partition is replicated to k sites, to guarantee k-safety, i.e.,

still provide availability in case of simultaneous failure of k sites.

In addition, H-Store periodically checkpoints all the committed

database states to disks via a distributed transaction that puts all

the sites into a copy-on-write mode, where updates/deletes cause

the rows to be copied to a shadow table. Between the interval of

two checkpointings, command logging scheme [131] is used to

guarantee the durability by logging the commands (i.e., transac-

tion/stored procedure identifier and parameter values), in contrast

to logging each operation (insert/delete/update) performed by

the transaction as the traditional ARIES physiological logging

does [146]. Besides, memory-resident undo log can be used to

support rollback for some abort-able transactions. It is obvious

that command logging has a much lower runtime overhead than

physiological logging as it does less work at runtime and writes

less data to disk, however, at the cost of an increased recovery

time. Therefore, command logging scheme is more suitable for

short transactions where node failures are not frequent.

3.1.2 Hekaton

Hekaton [37] is a memory-optimized OLTP engine fully inte-

grated into Microsoft SQL server, where Hekaton tables8 and

regular SQL server tables can be accessed at the same time,

thereby providing much flexibility to users. It is designed for

high-concurrency OLTP, with utilization of lock-free or latch-

free data structures (e.g., latch-free hash and range indexes) [86],

[228], [229], and an optimistic MVCC technique [107]. It also

incorporates a framework, called Siberia [134], [230], [231], to

manage hot and cold data differently, equipping it with the capac-

ity to handle Big Data both economically and efficiently. Further-

more, to relieve the overhead caused by interpreter-based query

processing mechanism in traditional databases, Hekaton adopts

the compile-once-and-execute-many-times strategy, by compiling

SQL statements and stored procedures into C code first, which will

then be converted into native machine code [37]. Specifically, an

entire query plan is collapsed into a single function using labels

and gotos for code sharing, thus avoiding the costly argument

passing between functions and expensive function calls, with the

fewest number of instructions in the final compiled binary. In

addition, durability is ensured in Hekaton by using incremental

checkpoints, and transaction logs with log merging and group

commit optimizations, and availability is achieved by maintaining

highly available replicas [37]. We shall next elaborate on its

concurrency control, indexing and hot/cold data management.

3.1.2.1 Multi-version Concurrency Control: Hekaton

adopts optimistic MVCC to provide transaction isolation without

locking and blocking [107]. Basically, a transaction is divided into

two phases, i.e., normal processing phase where the transaction

8. Hekaton tables are declared as “memory optimized” in SQL server, to
distinguish with normal tables.

10

never blocks to avoid expensive context switching, and validation

phase where the visibility of the read set and phantoms are

checked9, and then outstanding commit dependencies are resolved

and logging is enforced. Specifically, updates will create a new

version of record rather than updating the existing one in place,

and only records whose valid time (i.e., a time range denoted

by start and end timestamps) overlaps the logical read time of

the transaction are visible. The uncommitted records are allowed

to be speculatively read/ignored/updated if those records have

reached the validation phase, in order to advance the process-

ing, and not to block during the normal processing phase. But

speculative processing enforces commit dependencies, which may

cause cascaded abort and must be resolved before committing.

It utilizes atomic operations for updating on the valid time of

records, visibility checking and conflict detection, rather than

locking. Finally, a version of a record is garbage-collected (GC) if

it is no longer visible to any active transaction, in a cooperative and

parallel manner. That is, the worker threads running the transaction

workload can remove the garbage when encountering it, which

also naturally provides a parallel GC mechanism. Garbage in the

never-accessed area will be collected by a dedicated GC process.

3.1.2.2 Latch-free Bw-Tree: Hekaton proposes a latch-

free B-tree index, called Bw-tree [86], [228], which uses delta

updates to make state changes, based on atomic compare-and-

swap (CAS) instructions and an elastic virtual page10 management

subsystem – LLAMA [229]. LLAMA provides a virtual page

interface, on top of which logical page IDs (PIDs) are used by

Bw-tree instead of pointers, which can be translated into physical

address based on a mapping table. This allows the physical address

of a Bw-tree node to change on every update, without requiring

the address change to be propagated to the root of the tree.

In particular, delta updates are performed by prepending the

update delta page to the prior page and atomically updating the

mapping table, thus avoiding update-in-place which may result in

costly cache invalidation especially on multi-socket environment,

and preventing the in-use data from being updated simultaneously,

enabling latch-free access. The delta update strategy applies to

both leaf node update achieved by simply prepending a delta page

to the page containing the prior leaf node, and structure modifi-

cation operations (SMO) (e.g., node split and merge) by a series

of non-blocking cooperative and atomic delta updates, which are

participated by any worker thread encountering the uncompleted

SMO [86]. Delta pages and base page are consolidated in a later

pointer, in order to relieve the search efficiency degradation caused

by the long chain of delta pages. Replaced pages are reclaimed by

the epoch mechanism [232], to protect data potentially used by

other threads, from being freed too early.

3.1.2.3 Siberia in Hekaton: Project Siberia [134], [230],

[231] aims to enable Hekaton to automatically and transparently

maintain cold data on the cheaper secondary storage, allowing

more data fit in Hekaton than the available memory. Instead of

maintaining an LRU list like H-Store Anti-Caching [133], Siberia

performs offline classification of hot and cold data by logging tuple

accesses first, and then analyzing them offline to predict the top

9. Some of validation checks are not necessary, depending on the isolation
levels. For example, no validation is required for read committed and snapshot

isolation, and only read set visibility check is needed for repeatable read. Both
checks are required only for serializable isolation.

10. The virtual page here does not mean that used by OS. There is no hard
limit on the page size, and pages grow by prepending “delta pages” to the base
page.

K hot tuples with the highest estimated access frequencies, using

an efficient parallel classification algorithm based on exponential

smoothing [230]. The record access logging method incurs less

overhead than an LRU list in terms of both memory and CPU

usage. In addition, to relieve the memory overhead caused by the

evicted tuples, Siberia does not store any additional information in

memory about the evicted tuples (e.g., keys in the index, evicted

table) other than the multiple variable-size Bloom filters [233] and

adaptive range filters [231] that are used to filter the access to disk.

Besides, in order to make it transactional even when a transaction

accesses both hot and cold data, it transactionally coordinates

between hot and cold stores so as to guarantee consistency, by

using a durable update memo to temporarily record notices that

specify the current status of cold records [134].

3.1.3 HyPer/ScyPer

HyPer [35], [234], [235] or its distributed version ScyPer [149]

is designed as a hybrid OLTP and OLAP high performance in-

memory database with utmost utilization of modern hardware

features. OLTP transactions are executed sequentially in a lock-

less style which is first advocated in [220] and parallelism is

achieved by logically partitioning the database and admitting

multiple partition-constrained transactions in parallel. It can yield

an unprecedentedly high transaction rate, as high as 100,000 per

second [35]. The superior performance is attributed to the low

latency of data access in in-memory databases, the effectiveness

of the space-efficient Adaptive Radix Tree (ART) [87] and the use

of stored transaction procedures. OLAP queries are conducted on

a consistent snapshot achieved by the virtual memory snapshot

mechanism based on hardware-supported shadow pages, which

is an efficient concurrency control model with low maintenance

overhead. In addition, HyPer adopts a dynamic query compilation

scheme, i.e., the SQL queries are first compiled into assembly

code [112], which can then be executed directly using an optimiz-

ing JIT (Just-in-Time) compiler provided by Low Level Virtual

Machine (LLVM) [167]. This query evaluation follows a data-

centric paradigm by applying as many operations on a data object

as possible, thus keeping data in the registers as long as possible

to achieve register-locality.

The distributed version of HyPer, i.e., ScyPer [149], adopts

a primary-secondary architecture, where the primary node is

responsible for all the OLTP requests and also acts as the entry

point for OLAP queries, while secondary nodes are only used

to execute the OLAP queries. To synchronize the updates from

the primary node to the secondary nodes, the logical redo log

is multicast to all secondary nodes using Pragmatic General

Multicast protocol (PGM), where the redo log is replayed to catch

up with the primary. Further, the secondary nodes can subscribe

to specific partitions, thus allowing the provisioning of secondary

nodes for specific partitions and enabling a more flexible multi-

tenancy model. In the current version of ScyPer, there is only one

primary node, which holds all the data in memory, thus bounding

the database size or the transaction processing power to one server.

Next, we will elaborate on HyPer’s snapshot mechanism, register-

conscious compilation scheme and the ART indexing.

3.1.3.1 Snapshot in HyPer: HyPer constructs a consistent

snapshot by fork-ing a child process (via fork() system call) with

its own copied virtual memory space [35], [147], which involves

no software concurrency control mechanism but the hardware-

assisted virtual memory management with little maintenance

overhead. By fork-ing a child process, all the data in the parent

11

process is virtually “copied” to the child process. It is however

quite light-weight as the copy-on-write mechanism will trigger

the real copying only when some process is trying to modify a

page, which is achieved by the OS and the memory management

unit (MMU). As reported in [234], the page replication is efficient

as it can be done in 2 µs. Consequently, a consistent snapshot

can be constructed efficiently for the OLAP queries without heavy

synchronization cost.

In [147], four snapshot mechanisms were benchmarked:

software-based Tuple Shadowing which generates a new version

when a tuple is modified, software-based Twin Tuple which

always keeps two versions of each tuple, hardware-based Page

Shadowing used by HyPer, and HotCold Shadowing which com-

bines Tuple Shadowing and hardware-supported Page Shadowing

by clustering update-intensive objects. The study shows that Page

Shadowing is superior in terms of OLTP performance, OLAP

query response time and memory consumption. The most time-

consuming task in the creation of a snapshot in the Page Shad-

owing mechanism is the copying of a process’s page table, which

can be reduced by using huge page (2MB per page on x86) for

cold data [135]. The hot or cold data is monitored and clustered

with a hardware-assisted approach by reading/resetting the young

and dirty flags of a page. Compression is applied on cold data to

further improve the performance of OLAP workload and reduce

memory consumption [135].

Snapshot is not only used for OLAP queries, but also for long-

running transactions [236], as these long-running transactions will

block other short good-natured transactions in the serial execution

model. In HyPer, these ill-natured transactions are identified and

tentatively executed on a child process with a consistent snapshot,

and the changes made by these transactions are effected by issuing

a deterministic “apply transaction”, back to the main database

process. The apply transaction validates the execution of the

tentative transaction, by checking that all reads performed on

the snapshot are identical to what would have been read on the

main database if view serializability is required, or by checking

the writes on the snapshot are disjoint from the writes by all

transactions on the main database after the snapshot was created

if the snapshot isolation is required. If the validation succeeds, it

applies the writes to the main database state. Otherwise an abort

is reported to the client.

3.1.3.2 Register-Conscious Compilation: To process a

query, HyPer translates it into compact and efficient machine

code using the LLVM compiler framework [112], [167], rather

than using the classical iterator-based query processing model.

The HyPer JIT compilation model is designed to avoid function

calls by extending recursive function calls into a code fragment

loop, thus resulting in better code locality and data locality (i.e.,

temporal locality for CPU registers), because each code fragment

performs all actions on a tuple within one execution pipeline

during which the tuple is kept in the registers, before materializing

the result into the memory for the next pipeline.

As an optimized high-level language compiler (e.g., C++)

is slow, HyPer uses the LLVM compiler framework to generate

portable assembler code for an SQL query. In particular, when

processing an SQL query, it is first processed as per normal, i.e.,

the query is parsed, translated and optimized into an algebraic

logical plan. However, the algebraic logical plan is not translated

into an executable physical plan as in the conventional scheme,

but instead compiled into an imperative program (i.e., LLVM

assembler code) which can then be executed directly using the

... ...

n keys n child pointers

... ...

256 inner pointers 48 child pointers

...

256 child pointers

0 1 2 3 4 5 6 7 8 9 10 255
...

0 1 255
k0 Kn-1

Node4/16 (n=4/16) Node48

Node256

...

Fig. 5. ART Inner Node Structures

JIT compiler provided by LLVM. Nevertheless, the complex part

of query processing (e.g., complex data structure management,

sorting) is still written in C++, which is pre-compiled. As the

LLVM code can directly call the native C++ method without

additional wrapper, C++ and LLVM interact with each other

without performance penalty [112]. However, there is a trade-off

between defining functions, and inlining code in one compact code

fragment, in terms of code cleanness, the size of the executable

file, efficiency, etc.

3.1.3.3 ART Indexing: HyPer uses an adaptive radix tree

(ART) [87] for efficient indexing. The property of the radix tree

guarantees that the keys are ordered bit-wise lexicographically,

making it possible for range scan, prefix lookup, etc. Larger span

of radix tree can decrease the tree height linearly, thus speeding up

the search process, but increase the space consumption exponen-

tially. ART achieves both space and time efficiency by adaptively

using different inner node sizes with the same, relatively large

span, but different fan-out.

Specifically, there are four types of inner nodes with a span

of 8 bits but different capacities: Node4, Node16, Node48 and

Node256, which are named according to their maximum capacity

of storing child node pointers. In particular, Node4/Node16 can

store up to 4/16 child pointers and uses an array of length 4/16

for sorted keys and another array of the same length for child

pointers. Node48 uses a 256-element array to directly index key

bits to the pointer array with capacity of 48, while Node256 is

simply an array of 256 pointers as normal radix tree node, which

is used to store between 49 to 256 entries. Figure 5 illustrates

the structures of Node16 and Node48. Lazy expansion and path

compression techniques are adopted to further reduce the memory

consumption.

3.1.4 SAP HANA

SAP HANA [77], [237], [238] is a distributed in-memory database

featured for the integration of OLTP and OLAP [41], and the uni-

fication of structured (i.e., relational table) [74], semi-structured

(i.e., graph) [239] and unstructured data (i.e., text) processing.

All the data is kept in memory as long as there is enough space

available, otherwise entire data objects (e.g., tables or partitions)

are unloaded from memory and reloaded into memory when they

are needed again. HANA has the following features:

• It supports both row- and column-oriented stores for rela-

tional data, in order to optimize different query workloads.

Furthermore, it exploits columnar data layout for both ef-

ficient OLAP and OLTP by adding two levels of delta

data structures to alleviate the inefficiency of insertion and

deletion operations in columnar data structures [74].

• It provides rich data analytics functionality by offering

multiple query language interfaces (e.g., standard SQL,

SQLScript, MDX, WIPE, FOX and R), which makes it

12

unsorted dict

sorted dict

L1-delta

L2-delta

main store

incremental

merge

partial/full

merge

optimize for OLAP

optimize for OLTP

Fig. 6. HANA Hybrid Store

easy to push down more application semantics into the data

management layer, thus avoiding heavy data transfer cost.

• It supports temporal queries based on the Timeline In-

dex [240] naturally as data is versioned in HANA.

• It provides snapshot isolation based on multi-version con-

currency control (MVCC), transaction semantics based on

optimized two-phase commit protocol (2PC) [241], and fault-

tolerance by logging and periodic checkpointing into GPFS

file system [148].

We will elaborate only on the first three features, as the other

feature is a fairly common technique used in the literature.

3.1.4.1 Relational Stores: SAP HANA supports both

row- and column-oriented physical representations of relational

tables. Row store is beneficial for heavy updates and inserts, as

well as point queries that are common in OLTP, while column

store is ideal for OLAP applications as they usually access

all values of a column together, and few columns at a time.

Another benefit for column-oriented representation is that it can

utilize compression techniques more effectively and efficiently. In

HANA, a table/partition can be configured to be either in the row

store or in the column store, and it can also be re-structured from

one store to the other. HANA also provides a storage advisor [242]

to recommend the optimal representation based on data and query

characteristics by taking both query cost and compression rate into

consideration.

As a table/partition only exists in either a row store or a column

store, and both have their own weaknesses, HANA designs a three-

level column-oriented unified table structure, consisting of L1-

delta, L2-delta and main store, which is illustrated in Figure 6,

to provide efficient support for both OLTP and OLAP workloads,

which shows that column store can be deployed efficiently for

OLTP as well [41], [74]. In general, a tuple is first stored in L1-

delta in row format, then propagated to L2-delta in column format

and finally merged with the main store with heavier compression.

The whole process of the three stages is called a lifecycle of a

tuple in HANA term.

3.1.4.2 Rich Data Analytics Support: HANA supports

various programming interfaces for data analytics (i.e., OLAP), in-

cluding standard SQL for generic data management functionality,

and more specialized languages such as SQL script, MDX, FOX,

WIPE [74], [238] and R [243]. While SQL queries are executed

in the same manner as in a traditional database, other specialized

queries have to be transformed. These queries are first parsed into

an intermediate abstract data flow model called “calculation graph

model”, where source nodes represent persistent or intermediate

tables and inner nodes reflect logical operators performed by

these queries, and then transformed into execution plans similar

to that of an SQL query. Unlike other systems, HANA supports

R scripting as part of the system to enable better optimization

of ad-hoc data analytics jobs. Specifically, R scripts can be

embedded into a custom operator in the calculation graph [243].

When an R operator is to be executed, a separate R runtime is

invoked using the Rserve package [244]. As the column format

of HANA column-oriented table is similar to R’s vector-oriented

dataframe, there is little overhead in the transformation from table

to dataframe. Data transfer is achieved via shared memory, which

is an efficient inter-process communication (IPC) mechanism.

With the help of RICE package [243], it only needs to copy once

to make the data available for the R process, i.e., it just copies

the data from the database to the shared memory section, and the

R runtime can access the data from the shared memory section

directly.

3.1.4.3 Temporal Query: HANA supports temporal

queries, such as temporal aggregation, time travel and temporal

join, based on a unified index structure called the Timeline

Index [88], [240], [245]. For every logical table, HANA keeps

the current version of the table in a Current Table and the whole

history of previous versions in a Temporal Table, accompanied

with a Timeline Index to facilitate temporal queries. Every tuple

of the Temporal Table carries a valid interval, from its commit

time to its last valid time, at which some transaction invalidates

that value. Transaction Time in HANA is represented by discrete,

monotonically increasing versions. Basically, the Timeline Index

maps each version to all the write events (i.e., records in the

Temporal Table) that committed before or at that version. A

Timeline Index consists of an Event List and a Version Map, where

the Event List keeps track of every invalidation or validation event,

and the Version Map keeps track of the sequence of events that

can be seen by each version of the database. Consequently due to

the fact that all visible rows of the Temporal Table being tracked

at every point in time, temporal queries can be implemented by

scanning Event List and Version Map concurrently.

To reduce the full scan cost for constructing a temporal

view, HANA augments the difference-based Timeline Index with

a number of complete view representations, called checkpoints, at

a specific time in the history. In particular, a checkpoint is a bit

vector with length equal to the number of rows in the Temporal

Table, which represents the visible rows of the Temporal Table

at a certain time point (i.e., a certain version). With the help of

checkpoints, a temporal view at a certain time can be obtained by

scanning from the latest checkpoint before that time, rather than

scanning from the start of the Event List each time.

3.2 In-memory NoSQL Databases

NoSQL is short for Not Only SQL, and a NoSQL database

provides a different mechanism from a relational database for

data storage and retrieval. Data in NoSQL databases is usually

structured as a tree, graph or key-value rather than a tabular

relation, and the query language is usually not SQL as well.

NoSQL database is motivated by its simplicity, horizontal scaling

and finer control over availability, and it usually compromises

consistency in favor of availability and partition tolerance [25],

[246].

With the trend of “Memory is the new disk”, in-memory

NoSQL databases are flourishing in recent years. There are

key-value stores such as Redis [66], RAMCloud [2], MemepiC

[60], [138], Masstree [247], MICA [64], Mercury [248], Cit-

rusleaf/Aerospike [34], Kyoto/Tokyo Cabinet [249], Pilaf [250],

document stores such as MongoDB [65], Couchbase [251], graph

13

databases such as Trinity [46], Bitsy [252], RDF databases such as

OWLIM [253], WhiteDB [50], etc. There are some systems that

are partially in-memory, such as MongoDB [65], MonetDB [254],

MDB [255], as they use memory-mapped files to store data such

that the data can be accessed as if it was in the memory.

In this subsection, we will introduce some representative

in-memory NoSQL databases, including MemepiC [60], [138],

MongoDB [65], RAMCloud [2], [75], [126], [256], [257], Redis

[66] and some graph databases.

3.2.1 MemepiC

MemepiC [60] is the in-memory version of epiC [23], an extensi-

ble and scalable system based on Actor Concurrent programming

model [258], which has been designed for processing Big Data.

It not only provides low latency storage service as a distributed

key-value store, but also integrates in-memory data analytics func-

tionality to support online analytics. With an efficient data eviction

and fetching mechanism, MemepiC has been designed to maintain

data that is much larger than the available memory, without severe

performance degradation. We shall elaborate MemepiC in three

aspects: system calls reduction, integration of storage service and

analytics operations, and virtual memory management.

3.2.1.1 Less-System-Call Design: The conventional

database design that relies on system calls for communication

with hardware or synchronization is no longer suitable for achiev-

ing good performance demanded by in-memory systems, as the

overhead incurred by system calls is detrimental to the overall

performance. Thus, MemepiC subscribes to the less-system-call

design principle, and attempts to reduce as much as possible on

the use of system calls in the storage access (via memory-mapped

file instead), network communication (via RDMA or library-based

networking), synchronization (via transactional memory or atomic

primitives) and fault-tolerance (via remote logging) [60].

3.2.1.2 Integration of Storage Service and Analytics Op-

erations: In order to meet the requirement of online data analytics,

MemepiC also integrates data analytics functionality, to allow

analyzing data where it is stored [60]. With the integration of data

storage and analytics, it significantly eliminates the data movement

cost, which typically dominates in conventional data analytics

scenarios, where data is first fetched from the database layer to

the application layer, only after which it can be analyzed [172].

The synchronization between data analytics and storage service

is achieved based on atomic primitives and fork-based virtual

snapshot.

3.2.1.3 User-space Virtual Memory Management

(UVMM): The problem of relatively smaller size of main

memory is alleviated in MemepiC via an efficient user-space

virtual memory management mechanism, by allowing data to

be freely evicted to disks when the total data size exceeds the

memory size, based on a configurable paging strategy [138]. The

adaptability of data storage enables a smooth transition from

disk-based to memory-based databases, by utilizing a hybrid of

storages. It takes advantage of not only semantics-aware eviction

strategy but also hardware-assisted I/O and CPU efficiency,

exhibiting a great potential as a more general approach of

“Anti-Caching” [138]. In particular, it adopts the following

strategies.

• A hybrid of access tracking strategies, including user-

supported tuple-level access logging, MMU (memory man-

agement unit)-assisted page-level access tracking, VMA

(virtual memory area)-protection-based method and malloc-

injection, which achieves light-weight and semantics-aware

access tracking.

• Customized WSCLOCK paging strategy based on fine-

grained access traces collected by above-mentioned access

tracking methods, and other alternative strategies including

LRU, aging-based LRU and FIFO, which enables a more

accurate and flexible online eviction strategy.

• VMA-protection-based book-keeping method, enabling less

memory overhead for book-keeping the location of data, and

tracking the data access in one go.

• Larger data swapping unit with a fast compression technique

(i.e., LZ4 [259]) and kernel-supported asynchronous I/O,

which can take advantage of the kernel I/O scheduler and

block I/O device, and reduce the I/O traffic significantly.

3.2.2 MongoDB

MongoDB [65] is a document-oriented NoSQL database, with

few restrictions on the schema of a document (i.e., BSON-style).

Specifically, a MongoDB hosts a number of databases, each of

which holds a set of collections of documents. MongoDB provides

atomicity at the document-level, and indexing and data analytics

can only be conducted within a single collection. Thus “cross-

collection” queries (such as join in traditional databases) are not

supported. It uses primary/secondary replication mechanism to

guarantee high availability, and sharding to achieve scalability.

In a sense, MongoDB can also act as a cache for documents

(e.g., HTML files) since it provides data expiration mechanism

by setting TTL (Time-to-Live) for documents.

We will discuss two aspects of MongoDB in detail in the

following subsections, i.e., the storage and data analytics func-

tionality.

3.2.2.1 Memory-Mapped File: MongoDB utilizes

memory-mapped files for managing and interacting with all its

data. It can act as a fully in-memory database if the total data can

fit into the memory. Otherwise it depends on the virtual-memory

manager (VMM) which will decide when and which page to page

in or page out. Memory-mapped file offers a way to access the

files on disk in the same way we access the dynamic memory –

through pointers. Thus we can get the data on disk directly by

just providing its pointer (i.e., virtual address), which is achieved

by the VMM that has been optimized to make the paging process

as fast as possible. It is typically faster to access memory-mapped

files than direct file operations because it does not need a system

call for normal access operations and it does not require memory

copy from kernel space to user space in most operating systems.

On the other hand, the VMM is not able to adapt to MongoDB’s

own specific memory access patterns, especially when multiple

tenants reside in the same machine. A more intelligent ad-hoc

scheme would be able to manage the memory more effectively by

taking specific usage scenarios into consideration.

3.2.2.2 Data Analytics: MongoDB supports two types of

data analytics operations: aggregation (i.e., aggregation pipeline

and single purpose aggregation operations in MongoDB term)

and MapReduce function which should be written in JavaScript

language. Data analytics on a sharded cluster that needs central

assembly is conducted in two steps:

• The query router divides the job into a set of tasks and

distributes the tasks to the appropriate sharded instances,

which will return the partial results back to the query router

after finishing the dedicated computations.

14

• The query router will then assemble the partial results and

return the final result to the client

3.2.3 RAMCloud

RAMCloud [2], [75], [126], [256], [257] is a distributed in-

memory key-value store, featured for low latency, high avail-

ability and high memory utilization. In particular, it can achieve

tens of microseconds latency by taking advantage of low-latency

networks (e.g., Infiniband and Myrinet), and provide “continuous

availability” by harnessing large scale to recover in 1-2 seconds

from system failure. In addition, it adopts a log-structured data

organization with a two-level cleaning policy to structure the

data both in memory and on disks. This results in high mem-

ory utilization and a single unified data management strategy.

The architecture of RAMCloud consists of a coordinator who

maintains the metadata in the cluster such as cluster membership,

data distribution, and a number of storage servers, each of which

contains two components, a master module which manages the in-

memory data and handles read/write requests from clients, and a

backup module which uses local disks or flash memory to backup

replicas of data owned by other servers.

3.2.3.1 Data Organization: Key-value objects in RAM-

Cloud are grouped into a set of tables, each of which is indi-

vidually range-partitioned into a number of tablets based on the

hash-codes of keys. RAMCloud relies on the uniformity of hash

function to distribute objects in a table evenly in proportion to the

amount of hash space (i.e., the range) a storage server covers. A

storage server uses a single log to store the data, and a hash table

for indexing. Data is accessed via the hash table, which directs the

access to the current version of objects.

RAMCloud adopts a log-structured approach of memory man-

agement rather than traditional memory allocation mechanisms

(e.g., C library’s malloc), allowing 80-90% memory utilization by

eliminating memory fragmentation. In particular, a log is divided

into a set of segments. As the log structure is append-only, objects

are not allowed to be deleted or updated in place. Thus a periodic

clean job should be scheduled to clean up the deleted/stale objects

to reclaim free space. RAMCloud designs an efficient two-level

cleaning policy.

• It schedules a segment compaction job to clean the log

segment in memory first whenever the free memory is less

than 10%, by copying its live data into a smaller segment and

freeing the original segment.

• When the data on disk is larger than that in memory by a

threshold, a combined cleaning job starts, cleaning both the

log in memory and on disk together.

A two-level cleaning policy can achieve a high memory

utilization by cleaning the in-memory log more frequently, and

meanwhile reduce disk bandwidth requirement by trying to lower

the disk utilization (i.e., increase the percentage of deleted/stale

data) since this can avoid copying a large percentage of live data

on disk during cleaning.

3.2.3.2 Fast Crash Recovery: One big challenge for in-

memory storage is fault-tolerance, as the data is resident in

the volatile DRAM. RAMCloud uses replication to guarantee

durability by replicating data in remote disks, and harnesses the

large scale of resources (e.g., CPU, disk bandwidth) to speed

up recovery process [126], [257]. Specifically, when receiving an

update request from a client, the master server appends the new

object to the in-memory log, and then forwards the object to R

(usually R = 3) remote backup servers, which buffer the object in

memory first and flush the buffer onto disk in a batch (i.e., in unit

of segment). The backup servers respond as soon as the object has

been copied into the buffer, thus the response time is dominated

by the network latency rather than the disk I/O.

To make recovery faster, replicas of the data are scattered

across all the backup servers in the cluster in unit of segment,

thus making more backup servers collaborate for the recovery

process. Each master server decides independently where to place

a segment replica using a combination of randomization and

refinement, which not only eliminates pathological behaviors but

also achieves a nearly optimal solution. Furthermore, after a server

fails, in addition to all the related backup servers, multiple master

servers are involved to share the recovery job (i.e., re-constructing

the in-memory log and hash table), and take responsibility for en-

suring an even partitioning of the recovered data. The assignment

of recovery job is determined by a will made by the master before

it crashes. The will is computed based on tablet profiles, each of

which maintains a histogram to track the distribution of resource

usage (e.g., the number of records and space consumption) within

a single table/tablet. The will aims to balance the partitions of a

recovery job such that they require roughly equal time to recover.

The random replication strategy produces almost uniform

allocation of replicas and takes advantage of the large scale, thus

preventing data loss and minimizing recovery time. However,

this strategy may result in data loss under simultaneous node

failures [125]. Although the amount of lost data may be small due

to the high dispersability of segment replicas, it is possible that

all replicas of certain part of the data may become unavailable.

Hence RAMCloud also supports another replication mode based

on Copyset [125], [256], [257], to reduce the probability of data

loss after large, coordinated failures such as power loss. Copyset

trades off the amount of lost data for the reduction in the frequency

of data loss, by constraining the set of backup servers where all

the segments in a master server can be replicated to. However, this

can lead to longer recovery time as there are fewer backup servers

for reading the replicas from disks. The trade-off can be controlled

by the scatter width, which is the number of backup servers that

each server’s data are allowed to be replicated to. For example, if

the scatter width equals the number of all the other servers (except

the server that wants to replicate) in the cluster, Copyset then turns

to random replication.

3.2.4 Redis

Redis [66] is an in-memory key-value store implemented in C

with support for a set of complex data structures, including

hash, list, set, sorted set, and some advanced functions such as

publish/subscribe messaging, scripting and transactions. It also

embeds two persistence mechanisms - snapshotting and append-

only logging. Snapshotting will back up all the current data in

memory onto disk periodically, which facilitates recovery process,

while append-only logging will log every update operation, which

guarantees more availability. Redis is single-threaded, but it pro-

cesses requests asynchronously by utilizing an event notification

strategy to overlap the network I/O communication and data

storage/retrieval computation.

Redis also maintains a hash-table to structure all the key-value

objects, but it uses naive memory allocation (e.g., malloc/free),

rather than slab-based memory allocation strategy (i.e., Mem-

cached’s), thus making it not very suitable as an LRU cache,

because it may incur heavy memory fragmentation. This problem

15

is partially alleviated by adopting the jemalloc [260] memory

allocator in the later versions.

3.2.4.1 Scripting: Redis features the server-side scripting

functionality (i.e., Lua scripting), which allows applications to

perform user-defined functions inside the server, thus avoiding

multiple round-trips for a sequence of dependent operations. How-

ever, there is an inevitable costly overhead in the communication

between the scripting engine and the main storage component.

Moreover, a long-running script can degenerate the overall per-

formance of the server as Redis is single-threaded and the long-

running script can block all other requests.

3.2.4.2 Distributed Redis: The first version of distributed

Redis is implemented via data sharding on the client-side. Re-

cently, the Redis group introduces a new version of distributed Re-

dis called Redis Cluster, which is an autonomous distributed data

store with support for automatic data sharding, master-slave fault-

tolerance and online cluster re-organization (e.g., adding/deleting

a node, re-sharding the data). Redis Cluster is fully distributed,

without a centralized master to monitor the cluster and maintain

the metadata. Basically, a Redis Cluster consists of a set of Redis

servers, each of which is aware of the others. That is, each

Redis server keeps all the metadata information (e.g., partitioning

configuration, aliveness status of other nodes) and uses gossip

protocol to propagate updates.

Redis Cluster uses a hash slot partition strategy to assign a

subset of the total hash slots to each server node. Thus each node

is responsible for the key-value objects whose hash code is within

its assigned slot subset. A client is free to send requests to any

server node, but it will get redirection response containing the

address of an appropriate server when that particular node cannot

answer the request locally. In this case, a single request needs two

round-trips. This can be avoided if the client can cache the map

between hash slots and server nodes. The current version of Redis

Cluster requires manual re-sharding of the data and allocating of

slots to a newly-added node. The availability is guaranteed by

accompanying a master Redis server with several slave servers

which replicate all the data of the master, and it uses asynchronous

replication in order to gain good performance, which, however,

may introduce inconsistency among primary copy and replicas.

3.2.5 In-memory Graph Databases

3.2.5.1 Bitsy: Bitsy [252] is an embeddable in-memory

graph database that implements the Blueprints API, with ACID

guarantees on transactions based on the optimistic concurrency

model. Bitsy maintains a copy of the entire graph in memory,

but logs every change to the disk during a commit operation,

thus enabling recovery from failures. Bitsy is designed to work

in multi-threaded OLTP environments. Specifically, it uses multi-

level dual-buffer/log to improve the write transaction performance

and facilitate log cleaning, and lock-free reading with sequential

locks to ameliorate the read performance. Basically, it has three

main design principles:

• No Seek: Bitsy appends all changes to an unordered transac-

tion log, and depends on re-organization process to clean the

obsolete vertices and edges.

• No Socket: Bitsy acts as an embedded database, which is

to be integrated into an application (java-based). Thus the

application can access the data directly, without the need to

transfer through socket-based interface which results in a lot

of system calls and serialization/de-serialization overhead.

• No SQL: Bitsy implements the Blueprints API, which is ori-

ented for the property graph model, instead of the relational

model with SQL.

3.2.5.2 Trinity: Trinity is an in-memory distributed

graph database and computation platform for graph analytics [46],

[261], whose graph model is built based on an in-memory key-

value store. Specifically, each graph node corresponds to a Trinity

cell, which is an (id, blob) pair, where id represents a node in the

graph, and the blob is the adjacent list of the node in serialized

binary format, instead of runtime object format, in order to

minimize memory overhead and facilitate checkpointing process.

However this introduces serialization/de-serialization overhead in

the analytics computation. A large cell, i.e., a graph node with

a large number of neighbors, is represented as a set of small

cells, each of which contains only the local edge information,

and a central cell that contains cell ids for the dispersed cells.

Besides, the edge can be tagged with a label (e.g., a predicate)

such that it can be extended to an RDF store [261], with both local

predicate indexing and global predicate indexing support. In local

predicate indexing, the adjacency list for each node is sorted first

by predicates and then by neighboring nodes id, such as SPO11

or OPS index in traditional RDF store, while the global predicate

index enables the locating of cells with a specific predicate as

traditional PSO or POS index.

3.3 In-memory Cache Systems

Cache plays an important role in enhancing system performance,

especially in web applications. Facebook, Twitter, Wikipedia,

LiveJournal, et al. are all taking advantage of cache extensively

to provide good service. Cache can provide two optimizations

for applications: optimization for disk I/O by allowing to ac-

cess data from memory, and optimization for CPU workload

by keeping results without the need for re-computation. Many

cache systems have been developed for various objectives. There

general cache systems such as Memcached [61] and BigTable

Cache [246], speeding up analytics jobs such as PACMan [262]

and GridGain [51], and more purpose specific systems that

have been designed for supporting specific frameworks such

as NCache [263] for .NET and Velocity/AppFabric [264] for

Windows servers, strict transactional semantics such as Tx-

Cache [265], and network caching such as HashCache [266].

Nonetheless, cache systems were mainly designed for web

applications, as Web 2.0 increases both the complexity of com-

putation and strictness of service-level agreement (SLA). Full-

page caching [267], [268], [269] was adopted in the early days,

while it becomes appealing to use fine-grained object-level data

caching [61], [270] for flexibility. In this subsection, we will

introduce some representative cache systems/libraries and their

main techniques in terms of in-memory data management.

3.3.1 Memcached

Memcached [61] is a light-weight in-memory key-value object

caching system with strict LRU eviction. Its distributed version is

achieved via the client-side library. Thus, it is the client libraries

that manage the data partitioning (usually hash-based partitioning)

and request routing. Memcached has different versions of client

libraries for various languages such as C/C++, PHP, Java, Python,

etc. In addition, it provides two main protocols, namely text

11. S stands for subject, P for predicate, and O for object.

16

…

grow

factor

slab class 1

slab class 2

slab class n

object

chunk

Fig. 7. Slab-based Allocation

protocol and binary protocol, and supports both UDP and TCP

connections.

3.3.1.1 Data Organization: Memcached uses a big hash-

table to index all the key-value objects, where the key is a text

string and the value is an opaque byte block. In particular, the

memory space is broken up into slabs of 1 MB, each of which

is assigned to a slab class. And slabs do not get re-assigned to

another class. The slab is further cut into chunks of a specific

size. Each slab class has its own chunk size specification and

eviction mechanism (i.e., LRU). Key-value objects are stored

in the corresponding slabs based on their sizes. The slab-based

memory allocation is illustrated in Figure 7, where the grow

factor indicates the chunk size difference ratio between adjacent

slab classes. The slab design helps prevent memory fragmentation

and optimize memory usage, but also causes slab calcification

problems. For example, it may incur unnecessary evictions in

scenarios where Memcached tries to insert a 500 KB object when

it runs out of 512 KB slabs but has lots of 2 MB slabs. In this

case, a 512 KB object will be evicted although there is still a lot

of free space. This problem is alleviated in the optimized versions

of Facebook and Twitter [271], [272].

3.3.1.2 Concurrency: Memcached uses libevent library

to achieve asynchronous request processing. In addition, Mem-

cached is a multi-threaded program, with fine-grained pthread

mutex lock mechanism. A static item lock hash-table is used

to control the concurrency of memory accesses. The size of the

lock hash-table is determined based on the configured number of

threads. And there is a trade-off between the memory usage for the

lock hash-table and the degree of parallelism. Even though Mem-

cached provides such a fine-grained locking mechanism, most of

operations such as index lookup/update and cache eviction/update

still need global locks [63], which prevents current Memcached

from scaling up on multi-core CPUs [273].

3.3.1.3 Memcached in Production – Facebook’s Mem-

cache [271] and Twitter’s Twemcache [272]: Facebook scales

Memcached at three different deployment levels (i.e., cluster,

region and across regions) from the engineering point of view,

by focusing on its specific workload (i.e., read-heavy) and trad-

ing off among performance, availability and consistency [271].

Memcache improves the performance of Memcached by designing

fine-grained locking mechanism, adaptive slab allocator and a

hybrid of lazy and proactive eviction schemes. Besides, Memcache

focuses more on the deployment-level optimization. In order to

reduce the latency of requests, it adopts parallel requests/batching,

uses connection-less UDP for get requests and incorporates flow-

control mechanisms to limit incast congestion. It also utilizes

techniques such as leases [274] and stale reads [275] to achieve

high hit rate, and provisioned pools to balance load and handle

failures.

Twitter adopts similar optimizations on its distributed version

of Memcached, called Twemcache. It alleviates Memcached’s slab

allocation problem (i.e., slab calcification problem) by random

eviction of a whole slab and re-assignment of a desired slab class,

when there is not enough space. It also enables a lock-less stat

collection via the updater-aggregator model, which is also adopted

by Facebook’s Memcache. In addition, Twitter also provides a

proxy for the Memcached protocol, which can be used to reduce

the TCP connections in a huge deployment of Memcached servers.

3.3.2 MemC3

MemC3 [63] optimizes Memcached in terms of both perfor-

mance and memory efficiency by using optimistic concurrent

cuckoo hashing and LRU-approximating eviction algorithm based

upon CLOCK [276], with the assumption that small and read-

only requests dominate in real-world workloads. MemC3 mostly

facilitates read-intensive workloads, as the write operations are

still serialized in MemC3 and cuckoo hashing favors read over

write operation. In addition, applications involving a large number

of small objects should benefit more from MemC3 in memory

efficiency because MemC3 eliminates a lot of pointer overhead

embedded in the key-value object. CLOCK-based eviction algo-

rithm takes less memory than list-based strict LRU, and makes

it possible to achieve high concurrency as it needs no global

synchronization to update LRU.

3.3.2.1 Optimistic Concurrent Cuckoo Hashing: The ba-

sic idea of cuckoo hashing is to use two hash functions to provide

each key two possible buckets in the hash table. When a new

key is inserted, it is inserted into one of its two possible buckets.

If both buckets are occupied, it will randomly displace the key

that already resides in one of these two buckets. The displaced

key is then inserted into its alternative bucket, which may further

trigger a displacement, until a vacant slot is found or until a

maximum number of displacements is reached. In the latter case,

the hash table is rebuilt in-place using new hash functions. This

sequence of displacements forms a cuckoo displacement path. The

collision resolution strategy of cuckoo hashing can achieve a high

load factor. In addition, it eliminates the pointer field embedded

in each key-value object in the chaining-based hashing used by

Memcached, which further ameliorates the memory efficiency of

MemC3, especially for small objects.

MemC3 optimizes the conventional cuckoo hashing by allow-

ing each bucket with 4 tagged slots (i.e., 4-way set-associative),

and separating the discovery of a valid cuckoo displacement path

from the execution of the path for high concurrency. The tag

in the slot is used to filter the unmatched requests and help to

calculate the alternative bucket in the displacement process. This

is done without the need for the access to the exact key (thus

no extra pointer de-reference), which makes both look-up and

insert operations cache-friendly. By first searching for the cuckoo

displacement path and then moving keys that need to be displaced

backwards along the cuckoo displacement path, it facilitates fine-

grained optimistic locking mechanism. MemC3 uses lock striping

techniques to balance the granularity of locking, and optimistic

locking to achieve multiple-reader/single-writer concurrency.

3.3.3 TxCache

TxCache [265] is a snapshot-based transactional cache used to

manage the cached results of queries to a transactional database.

TxCache ensures that transactions see only consistent snapshots

from both the cache and the database, and it also provides a

simple programming model where applications simply designate

functions/queries as cacheable and the TxCache library handles

the caching/invalidating of results.

TxCache uses versioning to guarantee consistency. In partic-

ular, each object in the cache and the database is tagged with

17

a version, described by its validity interval, which is a range of

timestamps at which the object is valid. A transaction can have a

staleness condition to indicate that the transaction can tolerate a

consistent snapshot within the past staleness seconds. Thus only

records that overlap with the transaction’s tolerance range (i.e., the

range between its timestamp minus staleness and its timestamp)

should be considered in the transaction execution. To increase the

cache hit rate, the timestamp of a transaction is chosen lazily by

maintaining a set of satisfying timestamps and revising it while

querying the cache. In this way, the probability of getting more

requested records from the cache increases. Moreover, it still keeps

the multi-version consistency at the same time. The cached results

are automatically invalidated whenever their dependent records

are updated. This is achieved by associating each object in the

cache with an invalidation tag, which describes which parts of

the database it depends on. When some records in the database

are modified, the database identifies the set of invalidation tags

affected and passes these tags to the cache nodes.

4 IN-MEMORY DATA PROCESSING SYSTEMS

In-memory data processing/analytics is becoming more and more

important in the Big Data era as it is necessary to analyze a large

amount of data in a small amount of time. In general, there are two

types of in-memory processing systems: data analytics systems

which focus on batch processing such as Spark [55], Piccolo [59],

SINGA [277], Pregel [278], GraphLab [47], Mammoth [56],

Phoenix [57], GridGain [51], and real-time data processing sys-

tems (i.e., stream processing) such as Storm [53], Yahoo! S4 [52],

Spark Streaming [54], MapReduce Online [279]. In this section,

we will review both types of in-memory data processing systems,

but mainly focus on those designed for supporting data analytics.

4.1 In-memory Big Data Analytics Systems

4.1.1 Main Memory MapReduce (M3R)

There is another main memory implementation of MapReduce

framework, called M3R [58]. M3R is designed for interactive

analytics with terabytes of data which can be held in the memory

of a small cluster of nodes with high mean time to failure.

It provides a backward compatible interfaces with conventional

MapReduce [280], and significantly better performance. However,

it does not guarantee resilience because it caches the results in

memory after map/reduce phase instead of flushing into the local

disk or HDFS, making M3R not suitable for long-running jobs.

Specifically, M3R optimizes the conventional MapReduce design

in two aspects as follows:

• It caches the input/output data in an in-memory key-value

store, such that the subsequent jobs can obtain the data

directly from the cache and the materialization of output

results is eliminated. Basically, the key-value store uses a

path as a key, and maps the path to a metadata location where

it contains the locations for the data blocks.

• It guarantees partition stability to achieve locality by specify-

ing a partitioner to control how keys are mapped to partitions

amongst reducers, thus allowing an iterative job to re-use the

cached data.

4.1.2 Piccolo

Piccolo [59] is an in-memory data-centric programming frame-

work for running data analytics computation across multiple nodes

with support for data locality specification and data-oriented ac-

cumulation. Basically, the analytics program consists of a control

function which is executed on the master, and a kernel function

which is launched as multiple instances concurrently executing

on many worker nodes and sharing distributed mutable key-value

tables, which can be updated on the fine-grained key-value object

level (in contrast to the immutable RDD and coarse-grained trans-

formations in Spark). Specifically, Piccolo supports the following

functionalities:

• A user-defined accumulation function (e.g., max, summation)

can be associated with each table, and Piccolo executes the

accumulation function during runtime to combine concurrent

updates on the same key.

• To achieve data locality during the distributed computation,

users are allowed to define a partition function for a table

and co-locate a kernel execution with some table partition or

co-locate partitions from different tables.

• Piccolo handles machine failures via a global user-assisted

checkpoint/restore mechanism, by explicitly specifying when

and what to checkpoint in the control function.

• Load-balance during computation is optimized via work

stealing, i.e., a worker that has finished all its assigned tasks

is instructed to steal a not-yet-started task from the worker

with the most remaining tasks.

4.1.3 Spark/RDD

Spark system [55], [281] presents a data abstraction for big

data analytics, called Resilient Distributed Dataset (RDD), which

is a coarse-grained deterministic immutable data structure with

lineage-based fault-tolerance [282], [283]. On top of Spark, Spark

SQL, Spark Streaming, MLlib and GraphX are built for SQL-

based manipulation, stream processing, machine learning and

graph processing, respectively. It has two main features:

• It uses an elastic persistence model to provide the flexibility

to persist the dataset in memory, on disks or both. By per-

sisting the dataset in memory, it favors applications that need

to read the dataset multiple times (e.g., iterative algorithms),

and enables interactive queries.

• It incorporates a light-weight fault-tolerance mechanism (i.e.,

lineage), without the need for checkpointing. The lineage of

an RDD contains sufficient information such that it can be re-

computed based on its lineage and dependent RDDs, which

are the input data files in HDFS in the worst case. This idea

is also adopted by Tachyon [284], which is a distributed file

system enabling reliable file sharing via memory.

The ability of persisting data in memory in a fault-tolerance

manner makes RDD suitable for many data analytics applications,

especially those iterative jobs, since it removes the heavy cost

of shuffling data onto disks at every stage as Hadoop does. We

elaborate on the following two aspects of RDD: data model and

job scheduling.

4.1.3.1 Data Model: RDD provides an abstraction for

a read-only distributed dataset. Data modification is achieved by

coarse-grained RDD transformations that apply the same operation

to all the data items in the RDD, thus generating a new RDD.

This abstraction offers opportunities for high consistency and a

light-weight fault-tolerance scheme. Specifically, an RDD logs

the transformations it depends on (i.e., its lineage), without data

replication or checkpointing for fault-tolerance. When a partition

of the RDD is lost, it is re-computed from other RDDs based on

18

map filter

reduce

Stage 1
Stage 2

taskRDD partition stage

Fig. 8. Spark Job Scheduler

its lineage. As RDD is updated by coarse-grained transformations,

it usually requires much less space and effort to back up the

lineage information than the traditional data replication or check-

pointing schemes, at the price of a higher re-computation cost

for computation-intensive jobs, when there is a failure. Thus, for

RDDs with long lineage graphs involving a large re-computation

cost, checkpointing is used, which is more beneficial.

The RDD model provides a good caching strategy for “work-

ing sets” during computation, but it is not general enough to

support traditional data storage functionality for two reasons:

• RDD fault-tolerance scheme is based on the assumption of

coarse-grained data manipulation without in-place modifi-

cation, because it has to guarantee that the program size

is much less than the data size. Thus, fine-grained data

operations such as updating a single key-value object cannot

be supported in this model.

• It assumes that there exists an original dataset persistent on

a stable storage, which guarantees the correctness of the

fault-tolerance model and the suitability of the block-based

organization model. However, in traditional data storage, data

is arriving dynamically and the allocation of data cannot

be determined beforehand. As a consequence, data objects

are dispersed in memory, which results in degraded memory

throughput.

4.1.3.2 Job Scheduling: The jobs in Spark are organized

into a DAG, which captures job dependencies. RDD uses lazy

materialization, i.e., an RDD is not computed unless it is used in

an action (e.g., count()). When an action is executed on an RDD,

the scheduler examines the RDD’s lineage to build a DAG of jobs

for execution. Spark uses a two-phase job scheduling as illustrated

in Figure 8 [55]:

• It first organizes the jobs into a DAG of stages, each of

which may contain a sequence of jobs with only one-to-one

dependency on the partition-level. For example, in Figure 8,

Stage 1 consists of two jobs, i.e., map and filter, both of which

only have one-to-one dependencies. The boundaries of the

stages are the operations with shuffle (e.g., reduce operation

in Figure 8), which have many-to-many dependencies.

• In each stage, a task is formed by a sequence of jobs on

a partition, such as the map and filter jobs on the shaded

partitions in Figure 8. Task is the unit of scheduling in the

system, which eliminates the materialization of the interme-

diate states (e.g., the middle RDD of Stage 1 in Figure 8),

and enables a fine-grained scheduling strategy.

4.2 In-memory Real-time Processing Systems

4.2.1 Spark Streaming

Spark Streaming [54] is a fault-tolerant stream processing system

built based on Spark [55]. It structures a streaming computation as

a series of stateless, deterministic batch computations on small

time intervals (say 1s), instead of keeping continuous, stateful

operators. Thus it targets applications that tolerate latency of

several seconds. Spark Streaming fully utilizes the immutability

of RDD and lineage-based fault-tolerance mechanism from Spark,

with some extensions and optimizations. Specifically, the incom-

ing stream is divided into a sequence of immutable RDDs based

on time intervals, called D-streams, which are the basic units that

can be acted on by deterministic transformations, including not

only many of the transformations available on normal Spark RDDs

(e.g., map, reduce and groupBy), but also windowed computations

exclusive for Spark Streaming (e.g., reduceByWindow and count-

ByWindow). RDDs from historical intervals can be automatically

merged with the newly-generated RDD as new streams arrive.

Stream data is replicated across two worker nodes to guarantee

durability of the original data that the lineage-based recovery relies

on, and checkpointing is conducted periodically to reduce the

recovery time due to long lineage graphs. The determinism and

partition-level lineage of D-streams makes it possible to perform

parallel recovery after a node fails and mitigate straggler problem

by speculative execution.

4.2.2 Yahoo! S4

S4 (Simple Scalable Streaming System) [52] is a fully decen-

tralized, distributed stream processing engine inspired by the

MapReduce [280] and Actors model [99]. Basically, computation

is performed by Processing Elements (PEs) which are distributed

across the cluster, and messages are transmitted among them in

the form of data events, which are routed to corresponding PEs

based on their identities. In particular, an event is identified by

its type and key, while a PE is defined by its functionality and

the events that it intends to consume. The incoming stream data

is first transformed as a stream of events, which will then be

processed by a series of PEs that are defined by users for specific

applications. However, S4 does not provide data fault-tolerance

by design, since even though automatic PE failover to standby

nodes is supported, the states of the failed PEs and messages are

lost during the handoff if there is no user-defined state/message

backup function inside the PEs.

5 QUALITATIVE COMPARISON

In this section, we summarize some representative in-memory

data management systems elaborated in this paper in terms of

data model, supported workloads, indexes, concurrency control

(CC), fault-tolerance, memory overflow control, query processing

strategy and supported query languages in Table 3.

In general, in-memory data management systems can also be

classified into three categories based on their functionality such

as storage and data analytics, namely storage systems, analytics

systems, and full-fledged systems that have both capabilities:

• In-memory storage systems have been designed purely

for efficient storage service, such as in-memory relational

databases only for OLTP (e.g., H-Store12 [36], Silo [39],

Microsoft Hekaton [37]), NoSQL databases without analytics

support (e.g., RAMCloud [75], Masstree [247], MICA [64],

Mercury [248], Kyoto/Tokyo Cabinet [249], Bitsy [252]),

12. Based on the H-Store website, it now incorporates a new experimental
OLAP engine based on JVM snapshot. Based on its main focus, we put it in
the storage category.

19

TABLE 3
Comparison of In-memory Data Management Systems

Systems Data
Model

Workloads Indexes Concurrency Control
(CC)

Fault
Tolerance

Memory
Overflow

Query
Processing

Relational
Databases

H-Store relational
(row)

OLTP hashing, B+-
tree, binary
tree

partition, serial
execution, light-
weight locking,
speculative CC

command
logging,
checkpoint,
replica

anti-caching stored pro-
cedure

Hekaton relational
(row)

OLTP latch-free
hashing,
Bw-tree

optimistic MVCC logging, check-
point, replica

Project Siberia complied
stored
procedure

HyPer/
ScyPer

relational OLTP,
OLAP

hashing,
balanced
search tree,
ART

virtual snapshot, strict
timestamp ordering
(STO), partition, serial
execution for OLTP

logging, check-
point, replica

compression JIT, stored
procedure

SAP
HANA

relational,
graph, text

OLTP,
OLAP

timeline index,
CSB+-tree,
inverted index

MVCC, 2PC logging, check-
point, standby
server, GPFS

table/partition-
level swapping,
compression

“calculation
graph
model”

NoSQL
Databases

MemepiC key-value object
operations,
analytics

hashing, skip-
list

atomic primitives, vir-
tual snapshot

logging, replica user-space
VMM

JIT

MongoDB document
(bson)

object
operations,
analytics

B-tree database-level locking memory-
mapped file

N/A N/A

RAMCloud key-value object op-
erations

hashing fine-grained locking logging, replica N/A N/A

Redis key-value object op-
erations

hashing single-threaded logging, check-
point

compression scripting

Graph
Databases

Bitsy graph OLTP N/A optimistic concurrency
control (version)

logging, backup N/A stored pro-
cedure

Trinity graph graph op-
erations

N/A fine-grained spin-lock replica, Trinity
File System
(TFS)

N/A stored pro-
cedure

Cache
Systems

Memcached key-value object op-
erations

hashing fine-grained locking N/A N/A N/A

MemC3 key-value object op-
erations

hashing lock striping,
optimistic locking

N/A N/A N/A

TxCache key-value OLTP hashing MVCC N/A N/A N/A

Big Data
Analytics
Systems

M3R key-value analytics N/A partition, locking N/A N/A offline
Piccolo key-value analytics hashing locking checkpoint N/A offline
Spark/
RDD

RDD analytics N/A partition, read/write
locking

lineage, check-
point

block-level
swapping

offline

Real-time
Processing
Systems

Spark
Streaming

RDD streaming N/A partition, read/write
locking

lineage, replica,
checkpoint

block-level
swapping

N/A

Yahoo! S4 Event streaming hashing message passing standby server N/A N/A

cache systems (e.g., Memcached [61], MemC3 [63], Tx-

Cache [265], HashCache [266]), etc. Storage service focuses

more on low latency and high throughput for short-running

query jobs, and is equipped with a light-weight framework

for online queries. It usually acts as the underlying layer for

upper-layer applications (e.g., web server, ERP), where fast

response is part of the service level agreement (SLA).

• In-memory analytics systems are designed for large scale data

processing and analytics, such as in-memory big data analyt-

ics systems (e.g., Spark/RDD [55], Piccolo [59], Pregel [278],

GraphLab [47], Mammoth [56], Phoenix [57]), and real-

time in-memory processing systems (e.g., Storm [53], Yahoo!

S4 [52], Spark Streaming [54], MapReduce Online [279]).

The main optimization objective of these systems is to

minimize the runtime of an analytics job, by achieving

high parallelism (e.g., multi-core, distribution, SIMD, and

pipelining) and batch processing.

• In-memory full-fledged systems include not only in-memory

relational databases with support for both OLTP and OLAP

(e.g., HyPer [35], Crescando [225], HYRISE [176]), but also

data stores with general purpose query language support

(e.g., SAP HANA [77], Redis [66], MemepiC [60], [138],

Citrusleaf/Aerospike [34], GridGain [51], MongoDB [65],

Couchbase [251], MonetDB [254], Trinity [46]). One major

challenge for this category of systems is to make a reasonable

tradeoff between two different workloads, by making use

of appropriate data structures and organization, resource

contention, etc.; concurrency control is also very important

as it deals with simultaneous mixed workloads.

6 RESEARCH OPPORTUNITIES

In this section, we briefly discuss the research challenges and

opportunities for in-memory data management, in the following

optimization aspects, which have been introduced earlier in Ta-

ble 1:

• Indexing. Existing works on indexing for in-memory

databases attempt to optimize both time and space efficiency.

Hash-based index is simple and easy to implement, and also

offers O(1) access time complexity, while tree-based index

supports range query naturally and usually has good space

efficiency. Trie-based index has bounded O(k) time complex-

ity, where k is the length of the key. There are also other

kinds of indexes such as bitmaps and skip-lists, which are

amenable to efficient in-memory and distributed processing.

For example, the skip-list, which allows fast point- and range-

queries of an ordered sequence of elements with O(logn)

20

complexity, is becoming a desirable alternative to B-trees for

in-memory databases, since it can be implemented latch-free

easily as a result of its layered structures. Indexes for in-

memory databases are different from those for disk-based

databases, which focus on I/O efficiency rather than memory

and cache utilization. It would be very useful to design

an index with constant time complexity for point accesses

achieved by hash- and trie-based indexes, efficient support

for range accesses achieved by tree- and trie-based indexes,

and good space efficiency achieved by hash- and tree-based

indexes (like ART index [87]). Lock-free or lock-less index

structures are essential to achieve high parallelism without

latch-related bottleneck, and index-less design or lossy index

is also interesting because of its high throughput and low

latency of DRAM [41], [64].

• Data layouts. The data layout or data organization is essential

to the performance of an in-memory system as a whole.

Cache-conscious design such as columnar structure, cache-

line alignment, and space utilization optimization such as

compression, data de-fragmentation are the main focuses in

the in-memory data organization. The idea of continuous

data allocation as log structure has been introduced in main

memory systems to eliminate the data fragmentation problem

and simplify concurrency control [2]. But it may be better

to design an application-independent data allocator with

common built-in functionality for in-memory systems such

as fault-tolerance, and application-assisted data compression

and de-fragmentation.

• Parallelism. Three levels of parallelism should be exploited in

order to speed up the processing, which have been detailed in

Section 1. It is usually beneficial to increase parallelism at the

instruction level (e.g., bit-level parallelism, SIMD) provided

in modern architecture, which can achieve nearly optimal

speedup, free from concurrency issues and other overhead

incurred, but with constraints on the maximum parallelism

allowed and data structures to operate on. The instruction-

level parallelism may yield a good performance boost, and

therefore it should be considered in the design of an efficient

in-memory data management system, especially in the design

of data structures. With the emergence of Many Integrated

Core (MIC) co-processors (e.g., Intel Xeon Phi), it provides

a promising alternative for parallelizing computation, with

wider SIMD instructions, many lower-frequency in-order

cores and hardware contexts [285].

• Concurrency control/transaction management. For in-

memory systems, the overhead of concurrency control signif-

icantly affects the overall performance, thus making it perfect

if there are no concurrency control at all. Hence, it is worth

making the serial execution strategy more efficient for cross-

partition transactions and more robust to skewed workloads.

Lock-less or lock-free concurrency control mechanism is

promising in in-memory data management as a heavy-weight

lock-based mechanism can greatly offset the performance

improved by the in-memory environment. Atomic primitives

provided in most mainstream programming languages are

efficient alternatives that can be exploited in designing a lock-

free concurrency control mechanism. Besides, HTM provides

a hardware-assisted approach for efficient concurrency con-

trol protocol, especially under the transactional semantics in

databases. Hardware-assisted approaches are good choices in

the latency-sensitive in-memory environment, as software so-

lutions usually incur heavy overhead that negates the benefits

brought by parallelism and fast data access. But we should

take care of its unexpected aborts under certain conditions.

A mix of these data protection mechanisms (i.e., HTM, lock,

timestamp, atomic primitives) should enable a more efficient

concurrency control model. Moreover, the protocol should be

data-locality sensitive and cache aware, which matter more

for modern machines [187].

• Query processing. Query processing is a widely studied

research topic even in traditional disk-based databases.

However, traditional query processing framework based

on Iterator-/Volcano-style model, although flexible, is no

longer suitable for in-memory databases because of its

poor code/data locality. The high computing power of mod-

ern CPU, and easy-to-use compiler infrastructure such as

LLVM [167] enable efficient dynamic compiling [112],

which can improve the query processing performance sig-

nificantly as a result of better code and data locality. SIMD

or multi-core boosted processing can be utilized to speed

up complex database operations such as join and sort, and

NUMA architecture will play a bigger role in the future years.

• Fault tolerance. Fault tolerance is a necessity for an in-

memory database in order to guarantee durability; however,

it is also a major performance bottleneck caused by I/Os.

Thus one design philosophy for fault-tolerance is to make

it almost invisible to normal operations by minimizing the

I/O cost in the critical path as much as possible. Command

logging [131] can reduce the data that needs to be logged,

while remote logging used by RAMCloud [2] and 2-Safe

visible policy of solidDB [40] can reduce the response time

by logging the data in remote nodes and replying back as

soon as the data is written into the buffer. Fast recovery

can provide high availability upon failure, which may be

achievable at the price of more and well-organized backuped

files (log/checkpoint). The tradeoff between the interference

to the normal performance and the recovery efficiency should

be further examined [132]. Hardware/OS-assisted approaches

are promising, e.g., NVRAM, memory-mapped file, on top of

which optimized algorithms and data structures are required

to exert its performance potential.

• Data overflow. In general, approaches to the data overflow

problem can be classified into three categories: user-space

(e.g., H-Store Anti-caching [133], Hekaton Siberia [134]),

kernel-space (e.g., OS Swap, MongoDB memory mapped

files [65]) and the hybrid (e.g., Efficient OS Paging [136] and

UVMM [138]). The semantics-aware user-space approaches

can make more effective decision on the paging strategies,

while the hardware-conscious and well-developed kernel-

space approaches are able to utilize the I/O efficiency brought

by the OS during swapping. Potentially, both the semantics-

aware paging strategy and hardware-conscious I/O manage-

ment can be exploited to boost the performance [136], [138].

In addition to the above, hardware solutions are being in-

creasingly exploited for performance gain. In particular, new

hardware/architecture solutions such as HTM, NVM, RDMA,

NUMA and SIMD, have been shown to be able to boost the

performance of in-memory database systems significantly. Energy

efficiency is also becoming attractive in the in-memory systems as

DRAM contributes a relatively significant portion of the overall

power consumption [286], [287], and distributed computation

21

further exacerbates the problem. Every operational overhead that

is considered negligible in disk-based systems, may become the

new bottleneck in memory-based systems. Thus the removal of

these legacy bottlenecks such as system calls, network stack,

and cross-cache-line data layout, would contribute to a signifi-

cant performance boost for in-memory systems. Furthermore, as

exemplified in [117], even the implementation matters a lot in the

overhead-sensitive in-memory environment.

7 CONCLUSIONS

As memory becomes the new disk, in-memory data management

and processing becomes increasingly interesting for both academia

and industry. Shifting the data storage layer from disks to main

memory can lead to more than 100x theoretical improvement in

terms of response time and throughput. When data access becomes

faster, every source of overhead that does not matter in tradi-

tional disk-based systems, may degrade the overall performance

significantly. The shifting prompts a rethinking of the design of

traditional systems, especially for databases, in the aspect of data

layouts, indexes, parallelism, concurrency control, query process-

ing, fault-tolerance, etc. Modern CPU utilization and memory-

hierarchy-conscious optimization play a significant role in the

design of in-memory systems, and new hardware technologies

such as HTM and RDMA provide a promising opportunity to

resolve problems encountered by software solutions.

In this survey, our have focused on the design principles

for in-memory data management and processing, and practical

techniques for designing and implementing efficient and high-

performance in-memory systems. We reviewed the memory hi-

erarchy and some advanced technologies such as NUMA and

transactional memory, which provide the basis for in-memory data

management and processing. In addition, we also discussed some

pioneering in-memory NewSQL and NoSQL databases including

cache systems, batch and online/continuous processing systems.

We highlighted some promising design techniques in detail, from

which we can learn the practical and concrete system design prin-

ciples. This survey provides a comprehensive review of important

technology in memory management and analysis of related works

to date, which hopefully will be a useful resource for further

memory-oriented system research.

ACKNOWLEDGMENTS

This work was supported by A*STAR project 1321202073. We

would like to thank the anonymous reviewers, and also Bingsheng

He, Eric Lo and Bogdan Marius Tudor, for their insightful com-

ments and suggestions.

REFERENCES

[1] S. Robbins, “Ram is the new disk,” InfoQ News, Jun. 2008.
[2] J. Ousterhout, P. Agrawal, D. Erickson et al., “The case for ramclouds:

Scalable high-performance storage entirely in dram,” OSR, 2010.
[3] F. Li, B. C. Ooi, M. T. Özsu, and S. Wu, “Distributed data management

using mapreduce,” ACM Comput. Surv., 2014.
[4] HP, “Vertica systems,” 2011. [Online]. Available: http://www.vertica.

com
[5] Hadapt Inc., “Hadapt: Sql on hadoop,” 2011. [Online]. Available:

http://hadapt.com/
[6] A. Thusoo, J. S. Sarma, N. Jain et al., “Hive: A warehousing solution

over a map-reduce framework,” in PVLDB ’09, 2009.
[7] Apache, “Apache hbase,” 2008. [Online]. Available: http://hbase.

apache.org/
[8] J. C. Corbett, J. Dean, M. Epstein et al., “Spanner: Google’s globally-

distributed database,” in OSDI ’12, 2012.

[9] S. Alsubaiee, Y. Altowim, H. Altwaijry et al., “Asterixdb: A scalable,
open source BDMS,” in PVLDB ’14, 2014.

[10] MySQL AB, “Mysql: The world’s most popular open source database,”
1995. [Online]. Available: http://www.mysql.com/

[11] Apache, “Apache cassandra,” 2008. [Online]. Available: http:
//cassandra.apache.org/

[12] Oracle, “Oracle database 12c,” 2013. [Online]. Available: https:
//www.oracle.com/database/index.html

[13] Neo Technology, “Neo4j - the world’s leading graph database,” 2007.
[Online]. Available: http://www.neo4j.org/

[14] Aurelius, “Titan - distributed graph database,” 2012. [Online].
Available: http://thinkaurelius.github.io/titan/

[15] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph
computation on just a pc,” in OSDI ’12, 2012.

[16] Objectivity Inc., “Infinitegraph,” 2010. [Online]. Available: http:
//www.objectivity.com/infinitegraph

[17] Apache, “Apache hama,” 2010. [Online]. Available: https://hama.
apache.org

[18] A. Biem, E. Bouillet, H. Feng et al., “Ibm infosphere streams for
scalable, real-time, intelligent transportation services,” in SIGMOD ’10,
2010.

[19] S. Hoffman, Apache Flume: Distributed Log Collection for Hadoop.
Packt Publishing Ltd., 2013.

[20] Apache, “Apache hadoop,” 2005. [Online]. Available: http://hadoop.
apache.org/

[21] V. Borkar, M. Carey, R. Grover et al., “Hyracks: A flexible and
extensible foundation for data-intensive computing,” in ICDE ’11, 2011.

[22] M. Isard, M. Budiu, Y. Yu et al., “Dryad: Distributed data-parallel
programs from sequential building blocks,” in EuroSys ’07, 2007.

[23] D. Jiang, G. Chen, B. C. Ooi et al., “epic: an extensible and scalable
system for processing big data,” in PVLDB ’14, 2014.

[24] H. T. Vo, S. Wang, D. Agrawal et al., “Logbase: A scalable log-
structured database system in the cloud,” in PVLDB ’12, 2012.

[25] G. DeCandia, D. Hastorun, M. Jampani et al., “Dynamo: Amazon’s
highly available key-value store,” OSR, 2007.

[26] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in SOSP ’03, 2003.

[27] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop
distributed file system,” in MSST ’10, 2010.

[28] Y. Cao, C. Chen, F. Guo et al., “Es2: A cloud data storage system for
supporting both oltp and olap,” in ICDE ’11, 2011.

[29] FoundationDB, “Foundationdb,” 2013. [Online]. Available: https:
//foundationdb.com

[30] D. G. Andersen, J. Franklin, M. Kaminsky et al., “Fawn: A fast array
of wimpy nodes,” in SOSP ’09, 2009.

[31] H. Lim, B. Fan, D. G. Andersen, and M. Kaminsky, “Silt: A memory-
efficient, high-performance key-value store,” in SOSP ’11, 2011.

[32] B. Debnath, S. Sengupta, and J. Li, “Skimpystash: Ram space skimpy
key-value store on flash,” in SIGMOD ’11, 2011.

[33] Clustrix Inc., “Clustrix,” 2006. [Online]. Available: http://www.clustrix.
com/

[34] V. Srinivasan and B. Bulkowski, “Citrusleaf: A real-time nosql db which
preserves acid,” in PVLDB ’11, 2011.

[35] A. Kemper and T. Neumann, “Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots,” in ICDE ’11,
2011.

[36] R. Kallman, H. Kimura, J. Natkins et al., “H-store: A high-performance,
distributed main memory transaction processing system,” in PVLDB

’08, 2008.

[37] C. Diaconu, C. Freedman, E. Ismert et al., “Hekaton: Sql server’s
memory-optimized oltp engine,” in SIGMOD ’13, 2013.

[38] T. Lahiri, M.-A. Neimat, and S. Folkman, “Oracle timesten: An in-
memory database for enterprise applications,” IEEE Data Eng. Bull.,
2013.

[39] S. Tu, W. Zheng, E. Kohler et al., “Speedy transactions in multicore
in-memory databases,” in SOSP ’13, 2013.

[40] J. Lindström, V. Raatikka, J. Ruuth et al., “Ibm soliddb: In-memory
database optimized for extreme speed and availability,” IEEE Data Eng.

Bull., 2013.

[41] H. Plattner, “A common database approach for oltp and olap using an
in-memory column database,” in SIGMOD ’09, 2009.

[42] MemSQL Inc., “Memsql,” 2012. [Online]. Available: http://www.
memsql.com/

[43] B. Brynko, “Nuodb: Reinventing the database,” Information Today,
2012.

[44] C. Avery, “Giraph: Large-scale graph processing infrastruction on
hadoop,” Hadoop Summit, 2011.

http://www.vertica.com
http://www.vertica.com
http://hadapt.com/
http://hbase.apache.org/
http://hbase.apache.org/
http://www.mysql.com/
http://cassandra.apache.org/
http://cassandra.apache.org/
https://www.oracle.com/database/index.html
https://www.oracle.com/database/index.html
http://www.neo4j.org/
http://thinkaurelius.github.io/titan/
http://www.objectivity.com/infinitegraph
http://www.objectivity.com/infinitegraph
https://hama.apache.org
https://hama.apache.org
http://hadoop.apache.org/
http://hadoop.apache.org/
https://foundationdb.com
https://foundationdb.com
http://www.clustrix.com/
http://www.clustrix.com/
http://www.memsql.com/
http://www.memsql.com/

22

[45] S. Salihoglu and J. Widom, “Gps: A graph processing system,” in
SSDBM ’13, 2013.

[46] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on a
memory cloud,” in SIGMOD ’13, 2013.

[47] Y. Low, D. Bickson, J. Gonzalez et al., “Distributed graphlab: A
framework for machine learning and data mining in the cloud,” in
PVLDB ’12, 2012.

[48] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx: A
resilient distributed graph system on spark,” in GRADES ’13, 2013.

[49] Y. Shen, G. Chen, H. V. Jagadish et al., “Fast failure recovery in
distributed graph processing systems,” in PVLDB ’15, 2014.

[50] WhiteDB Team, “Whitedb,” 2013. [Online]. Available: http:
//whitedb.org/

[51] GridGain Team, “Gridgain: In-memory computing platform,” 2007.
[Online]. Available: http://gridgain.com/

[52] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” in ICDMW ’10, 2010.

[53] BackType and Twitter, “Storm: Distributed and fault-tolerant realtime
computation,” 2011. [Online]. Available: https://storm.incubator.
apache.org/

[54] M. Zaharia, T. Das, H. Li et al., “Discretized streams: Fault-tolerant
streaming computation at scale,” in SOSP ’13, 2013.

[55] M. Zaharia, M. Chowdhury, T. Das et al., “Resilient distributed datasets:
A fault-tolerant abstraction for in-memory cluster computing,” in NSDI

’12, 2012.

[56] X. Shi, M. Chen, L. He et al., “Mammoth: Gearing hadoop towards
memory-intensive mapreduce applications,” TPDS, 2014.

[57] R. M. Yoo, A. Romano, and C. Kozyrakis, “Phoenix rebirth: Scalable
mapreduce on a large-scale shared-memory system,” in IISWC ’09,
2009.

[58] A. Shinnar, D. Cunningham, V. Saraswat, and B. Herta, “M3r: Increased
performance for in-memory hadoop jobs,” in PVLDB ’12, 2012.

[59] R. Power and J. Li, “Piccolo: Building fast, distributed programs with
partitioned tables,” in OSDI ’10, 2010.

[60] Q. Cai, H. Zhang, G. Chen et al., “Memepic: Towards a database system
architecture without system calls,” NUS, Tech. Rep., 2014.

[61] B. Fitzpatrick and A. Vorobey, “Memcached: a distributed
memory object caching system,” 2003. [Online]. Available: http:
//memcached.org/

[62] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, “Farm: Fast
remote memory,” in NSDI ’14, 2014.

[63] B. Fan, D. G. Andersen, and M. Kaminsky, “Memc3: Compact and
concurrent memcache with dumber caching and smarter hashing,” in
NSDI ’13, 2013.

[64] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky, “Mica: A holistic
approach to fast in-memory key-value storage,” in NSDI ’14, 2014.

[65] MongoDB Inc., “Mongodb,” 2009. [Online]. Available: http:
//www.mongodb.org/

[66] S. Sanfilippo and P. Noordhuis, “Redis,” 2009. [Online]. Available:
http://redis.io

[67] S. J. Kazemitabar, U. Demiryurek, M. Ali et al., “Geospatial stream
query processing using microsoft sql server streaminsight,” in PVLDB

’10, 2010.

[68] B. Chandramouli, J. Goldstein, M. Barnett et al., “Trill: A high-
performance incremental query processor for diverse analytics,” in
PVLDB ’15, 2014.

[69] D. J. DeWitt, R. H. Katz, F. Olken et al., “Implementation techniques
for main memory database systems,” in SIGMOD ’84, 1984.

[70] R. B. Hagmann, “A crash recovery scheme for a memory-resident
database system,” TC, 1986.

[71] T. J. Lehman and M. J. Carey, “A recovery algorithm for a high-
performance memory-resident database system,” in SIGMOD ’87, 1987.

[72] M. H. Eich, “Mars: The design of a main memory database machine,”
in Database Machines and Knowledge Base Machines. Springer US,
1988.

[73] H. Garcia-Molina and K. Salem, “Main memory database systems: An
overview,” TKDE, 1992.

[74] V. Sikka, F. Färber, W. Lehner et al., “Efficient transaction processing
in sap hana database: The end of a column store myth,” in SIGMOD

’12, 2012.

[75] S. M. Rumble, A. Kejriwal, and J. Ousterhout, “Log-structured memory
for dram-based storage,” in FAST ’14, 2014.

[76] D. Loghin, B. M. Tudor, H. Zhang et al., “A performance study of big
data on small nodes,” in PVLDB ’15, 2015.

[77] V. Sikka, F. Färber, A. Goel, and W. Lehner, “Sap hana: The evolution
from a modern main-memory data platform to an enterprise application
platform,” in PVLDB ’13, 2013.

[78] S. Wu, B. C. Ooi, and K.-L. Tan, “Online aggregation,” in Advanced

Query Processing. Springer Berlin Heidelberg, 2013.

[79] S. Wu, S. Jiang, B. C. Ooi, and K.-L. Tan, “Distributed online aggrega-
tions,” in PVLDB ’09, 2009.

[80] T. J. Lehman and M. J. Carey, “A study of index structures for main
memory database management systems,” in PVLDB ’86, 1986.

[81] J. Rao and K. A. Ross, “Cache conscious indexing for decision-support
in main memory,” in PVLDB ’99, 1999.

[82] ——, “Making b+- trees cache conscious in main memory,” in SIGMOD

’00, 2000.

[83] B. Cui, B. C. Ooi, J. Su, and K.-L. Tan, “Contorting high dimensional
data for efficient main memory knn processing,” in SIGMOD ’03, 2003.

[84] ——, “Main memory indexing: the case for bd-tree,” TKDE, 2004.

[85] C. Kim, J. Chhugani, N. Satish et al., “Fast: Fast architecture sensitive
tree search on modern cpus and gpus,” in SIGMOD ’10, 2010.

[86] D. B. Lomet, S. Sengupta, and J. J. Levandoski, “The bw-tree: A b-tree
for new hardware platforms,” in ICDE ’13, 2013.

[87] V. Leis, A. Kemper, and T. Neumann, “The adaptive radix tree: Artful
indexing for main-memory databases,” in ICDE ’13, 2013.

[88] M. Kaufmann and D. Kossmann, “Storing and processing temporal data
in a main memory column store,” in PVLDB ’13, 2013.

[89] C. Lemke, K.-U. Sattler, F. Faerber, and A. Zeier, “Speeding up queries
in column stores: A case for compression,” in DaWaK ’10, 2010.

[90] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores vs. row-
stores: How different are they really?” in SIGMOD ’08, 2008.

[91] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, “Weaving
relations for cache performance,” in PVLDB ’01, 2001.

[92] Y. Li and J. M. Patel, “Bitweaving: Fast scans for main memory data
processing,” in SIGMOD ’13, 2013.

[93] Z. Feng, E. Lo, B. Kao, and W. Xu, “Byteslice: Pushing the envelop of
main memory data processing with a new storage layout,” in SIGMOD

’15, 2015.

[94] Z. Feng and E. Lo, “Accelerating aggregation using intra-cycle paral-
lelism,” in ICDE ’15, 2014.

[95] J. Chhugani, A. D. Nguyen, V. W. Lee et al., “Efficient implementation
of sorting on multi-core simd cpu architecture,” in PVLDB ’08, 2008.

[96] T. Willhalm, N. Popovici, Y. Boshmaf et al., “Simd-scan: Ultra fast in-
memory table scan using on-chip vector processing units,” in PVLDB

’09, 2009.

[97] T. Mühlbauer, W. Rödiger, R. Seilbeck et al., “Instant loading for main
memory databases,” in PVLDB ’13, 2013.

[98] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu, “Multi-core, main-
memory joins: Sort vs. hash revisited,” in PVLDB ’13, 2013.

[99] G. Agha, Actors: A Model of Concurrent Computation in Distributed

Systems. MIT Press, 1986.

[100] R. Taft, E. Mansour, M. Serafini et al., “E-store: Fine-grained elastic
partitioning for distributed transaction processing systems,” in PVLDB

’15, 2014.

[101] E. P. C. Jones, D. J. Abadi, and S. Madden, “Low overhead concurrency
control for partitioned main memory databases,” in SIGMOD ’10, 2010.

[102] V. Leis, A. Kemper, and T. Neumann, “Exploiting hardware transac-
tional memory in main-memory databases,” in ICDE ’14, 2014.

[103] Z. Wang, H. Qian, J. Li, and H. Chen, “Using restricted transactional
memory to build a scalable in-memory database,” in EuroSys ’14, 2014.

[104] J. Sewall, J. Chhugani, C. Kim et al., “Palm: Parallel architecture-
friendly latch-free modifications to b+ trees on many-core processors,”
in PVLDB ’11, 2011.

[105] H. Kimura, G. Graefe, and H. Kuno, “Efficient locking techniques for
databases on modern hardware,” in ADMS ’12, 2012.

[106] K. Ren, A. Thomson, and D. J. Abadi, “Lightweight locking for main
memory database systems,” in PVLDB ’13, 2013.

[107] P.-A. Larson, S. Blanas, C. Diaconu et al., “High-performance concur-
rency control mechanisms for main-memory databases,” in PVLDB ’11,
2011.

[108] D. Lomet, A. Fekete, R. Wang, and P. Ward, “Multi-version concurrency
via timestamp range conflict management,” in ICDE ’12, 2012.

[109] T. Neumann, T. Mühlbauer, and A. Kemper, “Fast serializable multi-
version concurrency control for main-memory database systems,” in
SIGMOD ’15, 2015.

[110] C. Yao, D. Agrawal, P. Chang et al., “Dgcc: A new dependency graph
based concurrency control protocol for multicore database systems,”
ArXiv e-prints, 2015.

[111] A. Pavlo, E. P. C. Jones, and S. Zdonik, “On predictive modeling for
optimizing transaction execution in parallel oltp systems,” in PVLDB

’11, 2011.

[112] T. Neumann, “Efficiently compiling efficient query plans for modern
hardware,” in PVLDB ’11, 2011.

http://whitedb.org/
http://whitedb.org/
http://gridgain.com/
https://storm.incubator.apache.org/
https://storm.incubator.apache.org/
http://memcached.org/
http://memcached.org/
http://www.mongodb.org/
http://www.mongodb.org/
http://redis. io

23

[113] H. Pirk, F. Funke, M. Grund et al., “Cpu and cache efficient manage-
ment of memory-resident databases,” in ICDE ’13, 2013.

[114] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing main-
memory join on modern hardware,” TKDE, 2002.

[115] M.-C. Albutiu, A. Kemper, and T. Neumann, “Massively parallel sort-
merge joins in main memory multi-core database systems,” in PVLDB

’12, 2012.

[116] B. Sowell, M. V. Salles, T. Cao et al., “An experimental analysis of
iterated spatial joins in main memory,” in PVLDB ’13, 2013.

[117] D. Sidlauskas and C. S. Jensen, “Spatial joins in main memory:
Implementation matters!” in PVLDB ’15, 2014.

[118] S. D. Viglas, “Write-limited sorts and joins for persistent memory,” in
PVLDB ’14, 2014.

[119] M. Elseidy, A. Elguindy, A. Vitorovic, and C. Koch, “Scalable and
adaptive online joins,” in PVLDB ’14, 2014.

[120] P. Roy, J. Teubner, and R. Gemulla, “Low-latency handshake join,” in
PVLDB ’14, 2014.

[121] R. Barber, G. Lohman, I. Pandis et al., “Memory-efficient hash joins,”
in PVLDB ’15, 2014.

[122] S. Blanas and J. M. Patel, “Memory footprint matters: Efficient equi-
join algorithms for main memory data processing,” in SOCC ’13, 2013.

[123] O. Polychroniou and K. A. Ross, “A comprehensive study of main-
memory partitioning and its application to large-scale comparison- and
radix-sort,” in SIGMOD ’14, 2014.

[124] B. Chandramouli and J. Goldstein, “Patience is a virtue: Revisiting
merge and sort on modern processors,” in SIGMOD ’14, 2014.

[125] A. Cidon, S. M. Rumble, R. Stutsman et al., “Copysets: Reducing the
frequency of data loss in cloud storage,” in USENIX ATC ’13, 2013.

[126] D. Ongaro, S. M. Rumble, R. Stutsman et al., “Fast crash recovery in
ramcloud,” in SOSP ’11, 2011.

[127] S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge, “Storage manage-
ment in the nvram era,” in PVLDB ’14, 2014.

[128] T. Wang and R. Johnson, “Scalable logging through emerging non-
volatile memory,” in PVLDB ’14, 2014.

[129] R. Fang, H.-I. Hsiao, B. He et al., “High performance database logging
using storage class memory,” in ICDE ’11, 2011.

[130] J. Huang, K. Schwan, and M. K. Qureshi, “Nvram-aware logging in
transaction systems,” in PVLDB ’15, 2014.

[131] N. Malviya, A. Weisberg, S. Madden, and M. Stonebraker, “Rethinking
main memory oltp recovery,” in ICDE ’14, 2014.

[132] C. Yao, D. Agrawal, G. Chen et al., “Adaptive logging for distributed
in-memory databases,” ArXiv e-prints, 2015.

[133] J. DeBrabant, A. Pavlo, S. Tu et al., “Anti-caching: A new approach to
database management system architecture,” in PVLDB ’13, 2013.

[134] A. Eldawy, J. J. Levandoski, and P. Larson, “Trekking through siberia:
Managing cold data in a memory-optimized database,” in PVLDB ’14,
2014.

[135] F. Funke, A. Kemper, and T. Neumann, “Compacting transactional data
in hybrid oltp&olap databases,” in PVLDB ’12, 2012.

[136] R. Stoica and A. Ailamaki, “Enabling efficient os paging for main-
memory oltp databases,” in DaMoN ’13, 2013.

[137] G. Graefe, H. Volos, H. Kimura et al., “In-memory performance for big
data,” in PVLDB ’15, 2014.

[138] H. Zhang, G. Chen, W.-F. Wong et al., “Anti-caching-based elastic data
management for big data,” in ICDE ’15, 2014.

[139] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: A workload-
driven approach to database replication and partitioning,” in PVLDB

’10, 2010.

[140] A. Pavlo, C. Curino, and S. Zdonik, “Skew-aware automatic database
partitioning in shared-nothing, parallel oltp systems,” in SIGMOD ’12,
2012.

[141] W. Rödiger, T. Mühlbauer, P. Unterbrunner et al., “Locality-sensitive
operators for parallel main-memory database clusters,” in ICDE ’14,
2014.

[142] X. Yu, G. Bezerra, A. Pavlo et al., “Staring into the abyss: An evaluation
of concurrency control with one thousand cores,” in PVLDB ’15, 2014.

[143] P. Bailis, A. Fekete, M. J. Franklin et al., “Coordination avoidance in
database systems,” in PVLDB ’15, 2014.

[144] S. Wolf, H. Mühe, A. Kemper, and T. Neumann, “An evaluation of strict
timestamp ordering concurrency control for main-memory database
systems,” in IMDM ’13, 2013.

[145] G. Graefe and W. J. McKenna, “The volcano optimizer generator:
Extensibility and efficient search,” in ICDE ’93, 1993.

[146] C. Mohan, D. Haderle, B. Lindsay et al., “Aries: A transaction recovery
method supporting fine-granularity locking and partial rollbacks using
write-ahead logging,” TODS, 1992.

[147] H. Mühe, A. Kemper, and T. Neumann, “How to efficiently snapshot
transactional data: Hardware or software controlled?” in DaMoN ’11,
2011.

[148] Oracle, “Analysis of sap hana high availability capabilities,” Oracle,
Tech. Rep., 2014.

[149] T. Mühlbauer, W. Rödiger, A. Reiser et al., “Scyper: Elastic olap
throughput on transactional data,” in DanaC ’13, 2013.

[150] M. Stonebraker and A. Weisberg, “The voltdb main memory dbms,”
IEEE Data Eng. Bull., 2013.

[151] F. Schmuck and R. Haskin, “Gpfs: A shared-disk file system for large
computing clusters,” in FAST ’02, 2002.

[152] G. A. Gibson and R. Van Meter, “Network attached storage architec-
ture,” CACM, 2000.

[153] B. Höppner, A. Waizy, and H. Rauhe, “An approach for hybrid-memory
scaling columnar in-memory databases,” in ADMS ’14, 2014.

[154] I. Oukid, D. Booss, W. Lehner et al., “Sofort: A hybrid scm-dram
storage engine for fast data recovery,” in DaMoN ’14, 2014.

[155] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high perfor-
mance main memory system using phase-change memory technology,”
in ISCA ’09, 2009.

[156] G. Dhiman, R. Ayoub, and T. Rosing, “Pdram: A hybrid pram and dram
main memory system,” in DAC ’09, 2009.

[157] M. Boissier, “Optimizing main memory utilization of columnar in-
memory databases using data eviction,” in VLDB PhD Workshop ’14,
2014.

[158] J. Dean, “Designs, lessons and advice from building large distributed
systems,” in LADIS ’09, 2009.

[159] A. M. Caulfield, J. Coburn, T. Mollov et al., “Understanding the impact
of emerging non-volatile memories on high-performance, io-intensive
computing,” in SC ’10, 2010.

[160] T. Jain and T. Agrawal, “The haswell microarchitecture - 4th generation
processor,” IJCSIT, 2013.

[161] Samsung, “Samsung solid state drive white paper,” Samsung, Tech.
Rep., 2013.

[162] PassMark, “Passmark - memory latency,” 2014. [Online]. Available:
http://www.memorybenchmark.net/latency ddr3 intel.html

[163] Seagate, “Seagate hard disk,” 2014. [Online]. Available: http:
//www.seagate.com

[164] Western Digital, “Western digital hard drive,” 2014. [Online]. Available:
http://www.wdc.com/

[165] Intel, “Intel 64 and ia-32 architectures optimization reference manual,”
Intel, Tech. Rep., 2014.

[166] 7-CPU, “Intel haswell,” 2014. [Online]. Available: http://www.7-cpu.
com/cpu/Haswell.html

[167] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in CGO ’04, 2004.

[168] V. Raman, G. Swart, L. Qiao et al., “Constant-time query processing,”
in ICDE ’08, 2008.

[169] J. L. Lo, L. A. Barroso, S. J. Eggers et al., “An analysis of database
workload performance on simultaneous multithreaded processors,” in
ISCA ’98, 1998.

[170] K. Keeton, D. A. Patterson, Y. Q. He et al., “Performance characteri-
zation of a quad pentium pro smp using oltp workloads,” in ISCA ’98,
1998.

[171] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “Dbmss on a
modern processor: Where does time go?” in PVLDB ’99, 1999.

[172] H. Zhang, B. M. Tudor, G. Chen, and B. C. Ooi, “Efficient in-memory
data management: An analysis,” in PVLDB ’14, 2014.

[173] G. P. Copeland and S. N. Khoshafian, “A decomposition storage model,”
in SIGMOD ’85, 1985.

[174] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing database
architecture for the new bottleneck: Memory access,” VLDBJ, 2000.

[175] D. J. Abadi, P. A. Boncz, and S. Harizopoulos, “Column-oriented
database systems,” in PVLDB ’09, 2009.

[176] M. Grund, J. Krüger, H. Plattner et al., “Hyrise: A main memory hybrid
storage engine,” in PVLDB ’10, 2010.

[177] J. Goldstein, R. Ramakrishnan, and U. Shaft, “Compressing relations
and indexes,” in ICDE ’98, 1998.

[178] T. M. Chilimbi, M. D. Hill, and J. R. Larus, “Making pointer-based data
structures cache conscious,” Computer, 2000.

[179] R. Sinha and J. Zobel, “Cache-conscious sorting of large sets of strings
with dynamic tries,” JEA, 2004.

[180] D. B. Gustavson, “Scalable coherent interface,” COMPCON Spring,
1989.

[181] H. Boral, W. Alexander, L. Clay et al., “Prototyping bubba, a highly
parallel database system,” TKDE, 1990.

http://www.memorybenchmark.net/latency_ddr3_intel.html
http://www.seagate.com
http://www.seagate.com
http://www.wdc.com/
http://www.7-cpu.com/cpu/Haswell.html
http://www.7-cpu.com/cpu/Haswell.html

24

[182] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider et al., “The gamma
database machine project,” TKDE, 1990.

[183] L. M. Maas, T. Kissinger, D. Habich, and W. Lehner, “Buzzard: A
numa-aware in-memory indexing system,” in SIGMOD ’13, 2013.

[184] V. Leis, P. Boncz, A. Kemper, and T. Neumann, “Morsel-driven paral-
lelism: A numa-aware query evaluation framework for the many-core
age,” in SIGMOD ’14, 2014.

[185] D. Porobic, I. Pandis, M. Branco et al., “Oltp on hardware islands,” in
PVLDB ’12, 2012.

[186] D. Porobic, E. Liarou, P. Tözün, and A. Ailamaki, “Atrapos: Adaptive
transaction processing on hardware islands,” in ICDE ’14, 2014.

[187] Y. Li, I. Pandis, R. Müller et al., “Numa-aware algorithms: the case of
data shuffling,” in CIDR ’13, 2013.

[188] D. J. DeWitt and J. Gray, “Parallel database systems: The future of high
performance database systems,” CACM, 1992.

[189] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning of
word-based software transactional memory,” in PPoPP ’08, 2008.

[190] R. Hickey, “The clojure programming language,” in DLS ’08, 2008.

[191] T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy, “Composable
memory transactions,” in PPoPP ’05, 2005.

[192] R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance
evaluation of intel transactional synchronization extensions for high-
performance computing,” in SC ’13, 2013.

[193] AMD, “Advanced synchronization facility proposed architectural spec-
ification,” AMD, Tech. Rep., 2009.

[194] C. Cascaval, C. Blundell, M. Michael et al., “Software transactional
memory: Why is it only a research toy?” Queue, 2008.

[195] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-

tative Approach. Elsevier, 2012.

[196] T. Kgil, D. Roberts, and T. Mudge, “Improving nand flash based disk
caches,” in ISCA ’08, 2008.

[197] G. W. Burr, M. J. Breitwisch, M. Franceschini et al., “Phase change
memory technology,” J. Vacuum Science, 2010.

[198] D. Apalkov, A. Khvalkovskiy, S. Watts et al., “Spin-transfer torque
magnetic random access memory (stt-mram),” JETC, 2013.

[199] J. J. Yang and R. S. Williams, “Memristive devices in computing
system: Promises and challenges,” JETC, 2013.

[200] G. W. Burr, B. N. Kurdi, J. C. Scott et al., “Overview of candidate
device technologies for storage-class memory,” IBM J. of Research and

Development, 2008.

[201] A. Jog, A. K. Mishra, C. Xu et al., “Cache revive: Architecting volatile
stt-ram caches for enhanced performance in cmps,” in DAC ’12, 2012.

[202] S. Chen, P. B. Gibbons, and S. Nath, “Rethinking database algorithms
for phase change memory,” in CIDR ’11, 2011.

[203] J. Condit, E. B. Nightingale, C. Frost et al., “Better i/o through byte-
addressable, persistent memory,” in SOSP ’09, 2009.

[204] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in ISCA ’09,
2009.

[205] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change
memory as a scalable dram alternative,” in ISCA ’09, 2009.

[206] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi, “Operating system
support for nvm+dram hybrid main memory,” in HotOS ’09, 2009.

[207] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy, “Operating system
implications of fast, cheap, non-volatile memory,” in HotOS ’11, 2011.

[208] M. K. Qureshi, J. Karidis, M. Franceschini et al., “Enhancing lifetime
and security of pcm-based main memory with start-gap wear leveling,”
in MICRO ’09, 2009.

[209] B.-D. Yang, J.-E. Lee, J.-S. Kim et al., “A low power phase-change
random access memory using a data-comparison write scheme,” in
ISCAS ’07, 2007.

[210] S. Chen and Q. Jin, “Persistent b+-trees in non-volatile main memory,”
in PVLDB ’15, 2015.

[211] A. Chatzistergiou, M. Cintra, and S. D. Viglas, “Rewind: Recovery
write-ahead system for in-memory non-volatitle data-structures,” in
PVLDB ’15, 2015.

[212] J. Coburn, A. M. Caulfield, A. Akel et al., “Nv-heaps: Making persistent
objects fast and safe with next-generation, non-volatile memories,” in
ASPLOS XVI ’11, 2011.

[213] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight
persistent memory,” in ASPLOS XVI ’11, 2011.

[214] I. Moraru, D. G. Andersen, M. Kaminsky et al., “Consistent, durable,
and safe memory management for byte-addressable non volatile main
memory,” in TRIOS ’13, 2013.

[215] S. Venkataraman, N. Tolia, P. Ranganathan, and R. H. Campbell, “Con-
sistent and durable data structures for non-volatile byte-addressable
memory,” in FAST ’11, 2011.

[216] S. R. Dulloor, S. Kumar, A. Keshavamurthy et al., “System software for
persistent memory,” in EuroSys ’14, 2014.

[217] J. Jung, Y. Won, E. Kim et al., “Frash: Exploiting storage class memory
in hybrid file system for hierarchical storage,” TOS, 2010.

[218] A.-I. A. Wang, G. Kuenning, P. Reiher, and G. Popek, “The conquest
file system: Better performance through a disk/persistent-ram hybrid
design,” TOS, 2006.

[219] X. Wu and A. L. N. Reddy, “Scmfs: A file system for storage class
memory,” in SC ’11, 2011.

[220] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker, “Oltp
through the looking glass, and what we found there,” in SIGMOD ’08,
2008.

[221] V. Raman, G. Attaluri, R. Barber et al., “Db2 with blu acceleration: So
much more than just a column store,” in PVLDB ’13, 2013.

[222] R. Barber, G. Lohman, V. Raman et al., “In-memory blu acceleration in
ibms db2 and dashdb: Optimized for modern workloads and hardware
architectures,” in ICDE ’15, 2015.

[223] McObject, “extremedb database system,” 2001. [Online]. Available:
http://www.mcobject.com/extremedbfamily.shtml

[224] Pivotal, “Pivotal sqlfire,” 2013. [Online]. Available: http://www.
vmware.com/products/vfabric-sqlfire/overview.html

[225] P. Unterbrunner, G. Giannikis, G. Alonso et al., “Predictable perfor-
mance for unpredictable workloads,” in PVLDB ’09, 2009.

[226] Oracle, “Mysql cluster ndb,” 2004. [Online]. Available: http:
//www.mysql.com/

[227] M. Stonebraker, S. Madden, D. J. Abadi et al., “The end of an
architectural era: (it’s time for a complete rewrite),” in PVLDB ’07,
2007.

[228] J. Levandoski, D. Lomet, S. Sengupta et al., “Indexing on modern
hardware: Hekaton and beyond,” in SIGMOD ’14, 2014.

[229] J. Levandoski, D. Lomet, and S. Sengupta, “Llama: A cache/storage
subsystem for modern hardware,” in PVLDB ’13, 2013.

[230] R. Stoica, J. J. Levandoski, and P.-A. Larson, “Identifying hot and cold
data in main-memory databases,” in ICDE ’13, 2013.

[231] K. Alexiou, D. Kossmann, and P.-A. Larson, “Adaptive range filters for
cold data: Avoiding trips to siberia,” in PVLDB ’13, 2013.

[232] H. T. Kung and P. L. Lehman, “Concurrent manipulation of binary
search trees,” TODS, 1980.

[233] L. Sidirourgos and P.-A. Larson, “Splitting bloom filters for efficient
access to cold data,” Available from Authors, 2014.

[234] A. Kemper and T. Neumann, “One size fits all, again! the architecture
of the hybrid oltp&olap database management system hyper,” in BIRTE

’10, 2010.

[235] A. Kemper, T. Neumann, F. Funke et al., “Hyper: Adapting columnar
main-memory data management for transactional and query process-
ing.” IEEE Data Eng. Bull., 2012.

[236] H. Mühe, A. Kemper, and T. Neumann, “Executing long-running
transactions in synchronization-free main memory database systems.”
in CIDR ’13, 2013.

[237] SAP, “SAP HANA,” 2010. [Online]. Available: http://www.saphana.
com/

[238] F. Frber, N. May, W. Lehner et al., “The sap hana database – an
architecture overview.” IEEE Data Eng. Bull., 2012.

[239] M. Rudolf, M. Paradies, C. Bornhvd, and W. Lehner, “The graph story
of the sap hana database,” in BTW ’13, 2013.

[240] M. Kaufmann, A. A. Manjili, P. Vagenas et al., “Timeline index: A
unified data structure for processing queries on temporal data in sap
hana,” in SIGMOD ’13, 2013.

[241] J. Lee, Y. S. Kwon, F. Farber et al., “Sap hana distributed in-memory
database system: Transaction, session, and metadata management,” in
ICDE ’13, 2013.

[242] P. Rösch, L. Dannecker, F. Färber, and G. Hackenbroich, “A storage
advisor for hybrid-store databases,” in PVLDB ’12, 2012.

[243] P. Große, W. Lehner, T. Weichert et al., “Bridging two worlds with rice
integrating r into the sap in-memory computing engine,” in PVLDB ’11,
2011.

[244] S. Urbanek, “Rserve – a fast way to provide r functionality to applica-
tions,” in DSC ’03, 2003.

[245] M. Kaufmann, P. Vagenas, P. M. Fischer et al., “Comprehensive and
interactive temporal query processing with sap hana,” in PVLDB ’13,
2013.

[246] F. Chang, J. Dean, S. Ghemawat et al., “Bigtable: A distributed storage
system for structured data,” TOCS, 2008.

[247] Y. Mao, E. Kohler, and R. T. Morris, “Cache craftiness for fast multicore
key-value storage,” in EuroSys ’12, 2012.

[248] R. Gandhi, A. Gupta, A. Povzner et al., “Mercury: Bringing efficiency
to key-value stores,” in SYSTOR ’13, 2013.

http://www.mcobject.com/extremedbfamily.shtml
http://www.vmware.com/products/vfabric-sqlfire/overview.html
http://www.vmware.com/products/vfabric-sqlfire/overview.html
http://www.mysql.com/
http://www.mysql.com/
http://www.saphana.com/
http://www.saphana.com/

25

[249] FAL Labs, “Kyoto cabinet: a straightforward implementation of dbm,”
2009. [Online]. Available: http://fallabs.com/kyotocabinet/

[250] C. Mitchell, Y. Geng, and J. Li, “Using one-sided rdma reads to build a
fast, cpu-efficient key-value store,” in USENIX ATC ’13, 2013.

[251] M. C. Brown, Getting Started with Couchbase Server. O’Reilly Media,
Inc., 2012.

[252] S. Ramachandran, “Bitsy graph database,” 2013. [Online]. Available:
https://bitbucket.org/lambdazen/bitsy

[253] B. Bishop, A. Kiryakov, D. Ognyanoff et al., “Owlim: A family of
scalable semantic repositories,” Semantic Web, 2011.

[254] P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100: Hyper-
pipelining query execution,” in CIDR ’05, 2005.

[255] H. Chu, “Mdb: A memory-mapped database and backend for openldap,”
in LDAPCon ’11, 2011.

[256] S. M. Rumble, “Memory and object management in ramcloud,” Ph.D.
dissertation, Stanford University, 2014.

[257] R. S. Stutsman, “Durability and crash recovery in distributed in-memory
storage systems,” Ph.D. dissertation, Stanford University, 2013.

[258] C. Hewitt, P. Bishop, and R. Steiger, “A universal modular actor
formalism for artificial intelligence,” in IJCAI ’73, 1973.

[259] Y. Collet, “Lz4: Extremely fast compression algorithm,” 2013. [Online].
Available: https://code.google.com/p/lz4/

[260] J. Evans, “A scalable concurrent malloc (3) implementation for freebsd,”
in BSDCan ’06, 2006.

[261] K. Zeng, J. Yang, H. Wang et al., “A distributed graph engine for web
scale rdf data,” in PVLDB ’13, 2013.

[262] G. Ananthanarayanan, A. Ghodsi, A. Wang et al., “Pacman: Coordi-
nated memory caching for parallel jobs,” in NSDI ’12, 2012.

[263] Alachisoft, “Ncache: In-memory distributed cache for .net,” 2005.
[Online]. Available: http://www.alachisoft.com/ncache/

[264] N. Sampathkumar, M. Krishnaprasad, and A. Nori, “Introduction to
caching with windows server appfabric,” Microsoft Corporation, Tech.
Rep., 2009.

[265] D. R. K. Ports, A. T. Clements, I. Zhang et al., “Transactional consis-
tency and automatic management in an application data cache,” in OSDI

’10, 2010.

[266] A. Badam, K. Park, V. S. Pai, and L. L. Peterson, “Hashcache: Cache
storage for the next billion,” in NSDI ’09, 2009.

[267] H. Yu, L. Breslau, and S. Shenker, “A scalable web cache consistency
architecture,” in SIGCOMM ’99, 1999.

[268] J. Challenger, A. Iyengar, and P. Dantzig, “A scalable system for
consistently caching dynamic web data,” in INFOCOM ’99, 1999.

[269] H. Zhu and T. Yang, “Class-based cache management for dynamic web
content,” in INFOCOM ’01, 2001.

[270] M. Surtani, “Jboss cache,” 2005. [Online]. Available: http:
//www.jboss.org/jbosscache/

[271] R. Nishtala, H. Fugal, S. Grimm et al., “Scaling memcache at facebook,”
in NSDI ’13, 2013.

[272] M. Rajashekhar and Y. Yue, “Twemcache: Twitter memcached,” 2012.
[Online]. Available: https://github.com/twitter/twemcache

[273] N. Gunther, S. Subramanyam, and S. Parvu, “Hidden scalability gotchas
in memcached and friends,” Oracle, Tech. Rep., 2010.

[274] C. G. Gray and D. R. Cheriton, “Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency,” in SOSP ’89, 1989.

[275] K. Keeton, C. B. Morrey III, C. A. Soules, and A. C. Veitch, “Lazybase:
Freshness vs. performance in information management,” OSR, 2010.

[276] F. J. Corbató, A Paging Experiment with the Multics System. Defense
Technical Information Center, 1968.

[277] W. Wang et al., “Singa: A distributed training platform for deep
learning models,” 2014. [Online]. Available: http://www.comp.nus.edu.
sg/∼dbsystem/singa/

[278] G. Malewicz, M. H. Austern, A. J. Bik et al., “Pregel: A system for
large-scale graph processing,” in SIGMOD ’10, 2010.

[279] T. Condie, N. Conway, P. Alvaro et al., “Mapreduce online,” in NSDI

’10, 2010.

[280] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” in OSDI ’04, 2004.

[281] M. Zaharia, M. Chowdhury, M. J. Franklin et al., “Spark: Cluster
computing with working sets,” in HotCloud ’10, 2010.

[282] J. Cheney, L. Chiticariu, and W. C. Tan, “Provenance in databases: Why,
how, and where,” Foundations and Trends in Databases, 2009.

[283] R. Bose and J. Frew, “Lineage retrieval for scientific data processing: A
survey,” ACM Comput. Surv., 2005.

[284] H. Li, A. Ghodsi, M. Zaharia et al., “Tachyon: Memory throughput i/o
for cluster computing frameworks,” in LADIS ’13, 2013.

[285] S. Jha, B. He, M. Lu et al., “Improving main memory hash joins on
intel xeon phi processors: An experimental approach,” in PVLDB ’15,
2015.

[286] A. N. Udipi, N. Muralimanohar, N. Chatterjee et al., “Rethinking dram
design and organization for energy-constrained multi-cores,” in ISCA

’10, 2010.
[287] T. Vogelsang, “Understanding the energy consumption of dynamic

random access memories,” in MICRO ’10, 2010.

Hao Zhang is currently a Ph.D. Candidate of
Computer Science at the School of Comput-
ing, National University of Singapore (NUS). He
received his B.Sc. in computer science, from
the Harbin Institute of Technology, in 2012. His
research interests include in-memory database
systems, distributed systems, and database per-
formance.

Gang Chen is currently a Professor at the Col-
lege of Computer Science, Zhejiang University.
He received his B.Sc., M.Sc. and Ph.D. in com-
puter science and engineering from Zhejiang
University in 1993, 1995 and 1998 respectively.
His research interests include databases, infor-
mation retrieval, information security and com-
puter supported cooperative work. He is also
the executive director of Zhejiang University –
Netease Joint Lab on Internet Technology.

Beng Chin Ooi is currently a distinguished
Professor of Computer Science at the Na-
tional University of Singapore (NUS). He ob-
tained his B.Sc. (First-class Honors) and Ph.D.
from Monash University, Australia, in 1985 and
1989 respectively. His research interests in-
clude database system architectures, perfor-
mance issues, indexing techniques and query
processing, in the context of multimedia, spatio-
temporal, distributed, parallel, peer-to-peer, in-
memory and Cloud database systems.

Kian-Lee Tan is currently a Shaw Professor of
Computer Science at the School of Comput-
ing, National University of Singapore (NUS). He
received his B.Sc. (First-class Honors), M.Sc.
and Ph.D. in computer science, from the Na-
tional University of Singapore, in 1989, 1991
and 1994 respectively. His research interests
include multimedia information retrieval, query
processing and optimization in multiprocessor
and distributed systems, database performance,
and database security.

Meihui Zhang is currently an Assistant Profes-
sor of Information Systems Technology and De-
sign (ISTD), Singapore University of Technology
and Design (SUTD). She received her B.Sc.
and Ph.D. in computer science, from the Harbin
Institute of Technology in 2008, and National
University of Singapore in 2013 respectively. Her
research interests include database issues, par-
ticularly data management, massive data inte-
gration and analytics. She also works on crowd-
sourcing and spatio-temporal databases.

http://fallabs.com/kyotocabinet/
https://bitbucket.org/lambdazen/bitsy
https://code.google.com/p/lz4/
http://www.alachisoft.com/ncache/
http://www.jboss.org/jbosscache/
http://www.jboss.org/jbosscache/
https://github.com/twitter/twemcache
http://www.comp.nus.edu.sg/~dbsystem/singa/
http://www.comp.nus.edu.sg/~dbsystem/singa/

	Introduction
	Core Technologies for In-Memory Systems
	Memory Hierarchy
	Register
	Cache
	Main Memory and Disks

	Memory Hierarchy Utilization
	Register-Conscious Optimization
	Cache-Conscious Optimization

	Non-uniform Memory Access
	Data partitioning
	OLTP latency
	Data shuffling

	Transactional Memory
	NVRAM

	In-memory Data Storage Systems
	In-memory Relational Databases
	H-Store / VoltDB
	Hekaton
	HyPer/ScyPer
	SAP HANA

	In-memory NoSQL Databases
	MemepiC
	MongoDB
	RAMCloud
	Redis
	In-memory Graph Databases

	In-memory Cache Systems
	Memcached
	MemC3
	TxCache

	In-memory Data Processing Systems
	In-memory Big Data Analytics Systems
	Main Memory MapReduce (M3R)
	Piccolo
	Spark/RDD

	In-memory Real-time Processing Systems
	Spark Streaming
	Yahoo! S4

	Qualitative Comparison
	Research Opportunities
	Conclusions
	References
	Biographies
	Hao Zhang
	Gang Chen
	Beng Chin Ooi
	Kian-Lee Tan
	Meihui Zhang

