
Similarity Search: A Matching Based Approach

Anthony K. H. Tung† Rui Zhang‡ Nick Koudas§ Beng Chin Ooi†

† National Univ. of Singapore ‡ Univ. of Melbourne § Univ. of Toronto
{atung, ooibc}@comp.nus.edu.sg rui@csse.unimelb.edu.au koudas@cs.toronto.edu

ABSTRACT
Similarity search is a crucial task in multimedia retrieval and
data mining. Most existing work has modelled this prob-
lem as the nearest neighbor (NN) problem, which considers
the distance between the query object and the data objects
over a fixed set of features. Such an approach has two draw-
backs: 1) it leaves many partial similarities uncovered; 2)
the distance is often affected by a few dimensions with high
dissimilarity. To overcome these drawbacks, we propose the
k-n-match problem in this paper.

The k-n-match problem models similarity search as match-
ing between the query object and the data objects in n di-
mensions, where n is a given integer smaller than dimension-
ality d and these n dimensions are determined dynamically
to make the query object and the data objects returned
in the answer set match best. The k-n-match query is ex-
pected to be superior to the kNN query in discovering partial
similarities, however, it may not be as good in identifying
full similarity since a single value of n may only correspond
to a particular aspect of an object instead of the entirety.
To address this problem, we further introduce the frequent
k-n-match problem, which finds a set of objects that ap-
pears in the k-n-match answers most frequently for a range
of n values. Moreover, we propose search algorithms for
both problems. We prove that our proposed algorithm is
optimal in terms of the number of individual attributes re-
trieved, which is especially useful for information retrieval
from multiple systems. We can also apply the proposed al-
gorithmic strategy to achieve a disk based algorithm for the
(frequent) k-n-match query. By a thorough experimental
study using both real and synthetic data sets, we show that:
1) the k-n-match query yields better result than the kNN
query in identifying similar objects by partial similarities;
2) our proposed method (for processing the frequent k-n-
match query) outperforms existing techniques for similarity
search in terms of both effectiveness and efficiency.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06,September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

1. INTRODUCTION
Similarity search is a crucial task in many multimedia and

data mining applications and extensive studies have been
performed in the area. Usually, the objects are mapped to
multi-dimensional points and similarity search is modelled
as a nearest neighbor search in a multi-dimensional space.
In such searches, comparison between two objects is per-
formed by computing a score based on a similarity function
like Euclidean distance [8] which essentially aggregates the
difference between each dimension of the two objects. The
nearest neighbor model considers the distance between the
query object and the data objects over a fixed set of features.
Such an approach has two drawbacks: 1) it leaves many par-
tial similarities uncovered since the distance computation is
based on the fixed set of features; 2) the distance is often
affected by a few dimensions with high dissimilarity. For
example, consider the 10-dimensional database consisting of
four data objects as shown in Figure 1 and the query ob-
ject (1,1,1,1,1,1,1,1,1,1). A search for the nearest neighbor

ID d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

1 1.1 100 1.2 1.6 1.6 1.1 1.2 1.2 1 1
2 1.4 1.4 1.4 1.5 100 1.4 1.2 1.2 1 1
3 1 1 1 1 1 1 2 100 2 2
4 20 20 20 20 20 20 20 20 20 20

Figure 1: An Example Database

based on Euclidean distance will return object 4 as the an-
swer. However, it is not difficult to see that the other three
objects are actually more similar to the query object in 9
out of the 10 dimensions but are considered to be further
away due to large dissimilarity in only one dimension (the
dimension with value 100). Such a phenomenon becomes
more obvious for high-dimensional data when the probabil-
ity of encountering big differences in some of the dimensions
is higher. These high dissimilarity dimensions happen often
in real applications such as bad pixels, wrong readings or
noise in a signal. Moreover, think of the example database
as features extracted from pictures, and suppose the first
three dimensions represent the color, the second three di-
mensions represent the texture and the last four dimensions
represent the shape (there may be more number of features
in reality). We can see that the nearest neighbor based on
Euclidean distance returns a picture which is not that simi-
lar to the query picture in any aspects despite those pictures

that have exact matches on certain aspects (e.g., picture 3
matches the query’s color and texture exactly). This shows
how finding similarity based on a fixed set of features over-
look the partial similarities.

To overcome these drawbacks, we propose the k-n-match
problem in this paper. For ease of illustration, we will start
with the n-match problem, which is the special case when k
equals 1. Alternatively, we can view the k-n-match problem
as finding the top k answers for the n-match problem.

The n-match problem models similarity search as match-
ing between the query object and the data objects in n di-
mensions, where n is a given integer smaller than dimension-
ality d and these n dimensions are determined dynamically
to make the query object and the data objects returned in
the answer set match best. A key difference here is that we
are using a small number (n) of dimensions which are deter-
mined dynamically according to the query object and a par-
ticular data object, so that we can focus on the dimensions
where these two objects are most similar. By this means,
we overcome drawback (2), that is, the effects of the dimen-
sions with high dissimilarities are suppressed. Further, by
using n dimensions, we are able to discover partial similar-
ities so that drawback (1) is overcome. To further give an
intuition on the method that we are proposing in this paper,
let us consider the process of judging the similarity between
two persons. Given the large number of features (eye color,
shape of face etc.) and the inability to give a very accurate
measure of the similarity for each feature, a quick approach
is to approximate the number of features in which we judge
to be very close and claim that the two persons are similar
if the number of such features is high. Still consider the
example in Figure 1, if we issue a 6-match query, object 3
will be returned, which is a more reasonable answer than
object 4. However, we may not always have exact matches
in reality especially for continuous value domains. For ex-
ample, objects 1 and 2 are also close to the query in many
dimensions although they are not exact matches. Therefore,
we use a more flexible match scheme, that is, pi (data value
in dimension i) matches qi (query value in dimension i) if
their difference is within a threshold δ. If we set δ to 0.2, we
would have an additional answer, object 1, for the 6-match
query. A new problem here is how we determine δ. We still
leave this choice self-adaptive with regard to the data and
query. Specifically, for a data object P and a query Q, we
first sort the differences |pi − qi| in all the dimensions and
obtain the n-th smallest difference, called P ’s n-match dif-
ference with regard to Q. Then, among all the data objects,
the one with the smallest n-match difference determines δ,
that is, δ is this smallest n-match difference. For the k-n-
match query, δ equals the k-th smallest n-match difference
and therefore k objects will be returned as the answer.

While the k-n-match query is expected to be superior than
the kNN query in discovering partial similarities, it may not
be as good in finding full similarity since a single value of n
may only correspond to one aspect of an object instead of
the entirety. To address the problem, we further introduce
the frequent k-n-match query. In the frequent k-n-match
query, we first find out the k-n-match solutions for a range
of n values, say, from 1 to d. Then we choose k objects that
appear most frequently in the k-n-match answer sets for all

the n values.
A naive algorithm for processing the k-n-match query is to

compute the n-match difference of every point and return
the top k answers. The frequent k-n-match query can be
done similarly. We just need to maintain a top k answer set
for each n value required by the query while checking every
point. However, the naive algorithm is expensive since we
have to scan the whole database and hence every attribute
of every point is accessed. In this paper we propose an al-
gorithm that works on a different organization of the data
objects, namely, each dimension of the data set is sorted.
Our algorithm accesses the attributes in each dimension in
ascending order of their differences to the query in corre-
sponding dimensions. We call it the ascending difference
(AD) algorithm. We prove that the AD algorithm is optimal
for both query types in terms of the number of individual
attributes retrieved given our data organization. Our model
of organizing data as sorted dimensions and using number
of attributes retrieved as cost measure matches very well the
setting of information retrieval from multiple systems [11].
Our cost measure also conforms with the cost model of disk
based algorithms, where the number of disk accesses is the
major measure of performance, and the number of disk ac-
cesses is proportional to the attributes retrieved. So we also
apply our algorithmic strategy to achieve an efficient disk
based algorithm.

By a thorough experimental study using both real and
synthetic data sets, we show that: 1) the k-n-match query
yields better result than the kNN query in identifying sim-
ilar objects by partial similarities; 2) our proposed method
(for processing the frequent k-n-match query) outperforms
existing techniques for similarity search in terms of both
effectiveness and efficiency.

The rest of the paper is organized as follows. First, we for-
mulate the k-n-match and the frequent k-n-match problems
in Section 2. Then we propose the AD algorithm for process-
ing the (frequent) k-n-match problem and discuss properties
of the AD algorithm in Section 3. In section 4, we apply our
algorithmic strategy to achieve a disk based solution. At the
same time, we give an adapted algorithm from the VA-file
technique as a competitive method for the disk based ver-
sion of the problem. The experimental study is reported in
Section 5 and related work is discuss in Section 6. Finally,
we conclude the paper in Section 7.

2. PROBLEM FORMULATION
In this section, we formulate the k-n-match and the fre-

quent k-n-match problems. As an object is represented as a
multi-dimensional point, we will use object and point inter-
changeably in the remainder of the paper. Then a database
is a set of d-dimensional points, where d is the dimensional-
ity. The notation used in this paper is summarized in Table
1 for easy reference.

2.1 TheK-N-Match Problem
For ease of illustration, we start with the simplest form

of the k-n-match problem, that is, the n-match problem,
which is the special case when k equals 1. Before giving the
definition, we first define the n-match difference of a point
P with regard to another point Q as follows:

Table 1: Notation
Notation Meaning

c Cardinality of the database
DB The database, which is a set of points
d Dimensionality of the data space
k The number of n-match points to return
n The number of dimensions to match
P A point
pi The coordinate of P in the i-th dimension
Q The query point
qi The coordinate of Q in the i-th dimension
S A set of points

Definition 1. N-match difference
Given two d-dimensional points P (p1, p2, ..., pd) and
Q (q1, q2, ..., qd), let δi = |pi−qi|, i = 1, ..., d. Sort the array
{δ1, ..., δd} in increasing order and let the sorted array be
{δ′1, ..., δ′d}. Then δ′n is the n-match difference of point P
with regard to Q. 2

Following our notation, Q represents the query point, there-
fore in the sequel, we simply say P ’s n-match difference for
short and by default it is with regard to the query point Q.
Obviously, the n-match difference of point P with regard
to Q is the same as the n-match difference of point Q with
regard to P .

Next, we give the definition of the n-match problem as
follows:

Definition 2. The n-match problem
Given a d-dimensional database DB, a query point Q and
an integer n (1 ≤ n ≤ d), find the point P ∈ DB that has
the smallest n-match difference with regard to Q. P is called
the n-match point of Q. 2

In the example of Figure 1, point 3 is the 6-match (δ=0)
of the query, point 1 is the 7-match (δ=0.2) and point 2 is
the 8-match (δ=0.4).

Figure 2 shows a more intuitive example in 2-dimensional
space. A is the 1-match of Q because it has the smallest

Q

A

D

E

CB

y

x

Figure 2: The n-match problem

difference from Q in dimension x. B is the 2-match of Q
because when we consider 2 dimensions, B has the smallest
difference.

Intuitively, the query finds a point P that matches Q in n
dimensions. If we consider the maximum difference in these
n dimensions, P has the smallest maximum difference to Q
among all the points in DB.

This definition conforms with our reasoning in the ex-
ample of Figure 1, which actually uses a modified form of
Hamming distance [15] in judging the similarity exhibited
by the first three points. The difference however is that we
are working on spatial attributes while Hamming distance
is typically used for categorical data 1.

If we view n-match difference as a distance function, we
can see that the n-match problem is still looking for the
nearest neighbor of Q. The key difference is that the dis-
tance is not defined on a fixed set of dimensions, but dynam-
ically determined based on the query and data points. The
n-match difference differs from existing similarity scores in
two ways. First, the attributes are discretized dynamically
by determining a value of δ on the fly. Given a value of δ,
determining a match or a mismatch is performed indepen-
dently without aggregating the actual differences among the
dimensions. Because of this, dimensions with high dissim-
ilarities are not accumulated, making comparison more ro-
bust to these artifacts. Second, in the n-match problem, the
number of dimensions that are deemed close are captured in
the final result. Existing similarity measure can generally
be classified into two approaches. For categorical data, the
total number of dimensions in which there are matches are
usually used. For spatial data, a distance function like Eu-
clidean distance simply aggregates the differences without
capturing any dimensional matching information. The ap-
proach of n-match can be seen as combination of the two,
capturing the number of dimensional matches in terms of n
and the spatial distances in terms of δ. This makes sense
especially in high dimensional data in which we can leverage
on a high value of d to provide statistical evidence that two
points are similar if they are deemed to be close in most of
the d dimensions.

Note that our distance function is not a generalization of
the Chebyshev distance (or the L∞ norm), which returns the
maximum difference (made to positive) of attributes in the
same dimension. The radical difference is that our function
is not metric, particularly, it does not satisfy the triangular
inequality. Consider the three 3-dimensional points F (0.1,
0.5, 0.9), G(0.1, 0.1, 0.1) and H(0.5, 0.5, 0.5). The 1-match
difference between F and G, F and H, G and H are 0, 0, 0.4,
respectively; they do not satisfy the triangular inequality of
0 + 0 > 0.4.

In analogy to kNN with regard to NN, we further intro-
duce the k-n-match problem as follows.

Definition 3. The k-n-match problem
Given a d-dimensional database DB of cardinality c, a query
point Q, an integer n (1 ≤ n ≤ d), and an integer k ≤ c,
find a set S which consists of k points from DB so that for
any point P1 ∈ S and any point P2 ∈ DB−S, the n-match
difference between P1 and Q is less than or equal to the n-
match difference between P2 and Q. The S is the k-n-match
set of Q.

For the example in Figure 2, {A, D, E} is the 3-1-match
of Q while {A, B} is the 2-2-match of Q.

Obviously the k-n-match query is different from the sky-
line query, which returns a set points so that any point in

1A side effect of our work will be that we can have a uniform
treatment for both type of attributes in the future.

the returned set is not dominated by any other point in
the database. The skyline query returns {A, B, C} for the
example in Figure 2, while the k-n-match query returns k
points depending on the query point and the k value. None
of the k-n-match query example shown above has the same
answer as the skyline query.

While the k-n-match problem may find us similar objects
through partial similarity, the choice of n introduces an ad-
ditional parameter to the solution. It is evident that the
most similar points returned are sensitive to the choice of n.
To address this, we will further introduce the frequent k-n-
match query, which is described in the following section.

2.2 The FrequentK-N-Match Problem
The k-n-match query can help us find out similar objects

through partial similarity when an appropriate value of n is
selected. However, it is not obvious how such a value of n
can be determined. Instead of trying to find such a value
of n directly, we will instead vary n within a certain range
(say, 1 to d) and try to compute some statistics on the set of
matches that are returned for each n. Specifically, we first
find out the k-n-match answer sets for a range [n0, n1] of
n values. Then we choose the k points that appear most
frequently in the k-n-match answer sets for all the n values.
Henceforth, we will say that the similar points generated
from the k-n-match problem are based on partial similarity
(only one value of n) while those generated from the frequent
k-n-match problem are based on full similarity (all possible
values of n). We use an example to illustrate the intuition
behind such a definition. Suppose we are looking for objects
similar to an orange. The objects are all represented by its
features including color (described by 1 attribute), shape
(described by 2 attributes) and other characteristics. When
we issue a k-1-match query, we may get a fire and a sun
in the answer set. When we issue a k-2-match query, we
may get a volleyball and a sun in the answer set. The sun
appears in both answer sets while none of the volleyball or
the fire does, because the sun is more similar to the orange
than the others, in both color and shape.

The definition of the frequent k-n-match problem is given
below:

Definition 4. The frequent k-n-match problem
Given a d-dimensional database DB of cardinality c, a query
point Q, an integer k ≤ c, and an integer range [n0, n1]
within [1, d], let S0, ..., Si be the answer sets of k-n0-match,
..., k-n1-match, respectively. Find a set T of k points, so
that for any point P1 ∈ T and any point P2 ∈ DB− T , P1’s
number of appearances in S0, ..., Si is larger than or equal
to P2’s number of appearances in S0, ..., Si.

The range [n0, n1] can be determined by users. We can
simply set it as [1, d]. As in our previous discussion, full
number of dimensions usually contains dimensions of large
dissimilarity, therefore setting n1 as d may not help much
in the effectiveness. On the other hand, too few features
can hardly determine a certain aspects of an object and
matching on a small number of dimensions may be caused
by noises. Therefore, we may set n0 as a small number, say
3, instead of 1. We will investigate more on the effects of n0

and n1 in Section 5 through experiments.

3. ALGORITHMS
In this section, we propose an algorithm to process the

(frequent) k-n-match problem with optimal cost under the
following model, namely, attributes are sorted in each di-
mension and the cost is measured by the number of at-
tributes retrieved. This model makes sense in a number
of settings. For example, in information retrieval from mul-
tiple systems [11], objects are stored in different systems and
given scores by each system. Each system will sort the ob-
jects according to their scores. A query retrieves the scores
of objects (by sorted access) from different systems and then
combines them using an aggregation function to obtain the
final result. In this whole process, the major cost is the
retrieval of the scores from the systems, which is propor-
tional to the number of scores retrieved. [11] has focused on
aggregation functions such as min and max. Besides these
functions, we could also perform similarity search over the
systems and implement similarity search as the (frequent)
k-n-match query. Then the scores from different systems
become the attributes of different dimensions in the (fre-
quent) k-n-match problem, and the algorithmic goal is to
minimize the number of attributes retrieved. Further, the
cost measure also conforms with the cost model of disk based
algorithms, where the number of disk accesses is the major
measure of performance, and the number of disk accesses
is proportional to the attributes retrieved. However, unlike
the multiple system information retrieval case, disk based
schemes may make use of indexes to reduce disk accesses,
which adds some complexity to judge which strategy is bet-
ter. We will analyze these problems in more detail in Section
4.

A naive algorithm for processing the k-n-match query is to
compute the n-match difference of every point and return
the top k answers. The frequent k-n-match query can be
done similarly. We just need to maintain a top k answer set
for each n value required by the query while checking every
point. However, the naive algorithm is expensive since every
attribute of every point is retrieved. We hope to do better
and access less than all the attributes. We will propose an
algorithm, called the AD algorithm, that retrieves minimum
number of attributes in Section 3.1.

Note that the algorithm proposed in [11] for aggregating
scores from multiple systems, called FA, does not apply to
our problem. They require the aggregation function to be
monotone, but the aggregation function used in k-n-match
(that is, n-match difference) is not monotone. We use an ex-
ample to explain this. Consider the database in Figure 3 and
we are looking for the 1-match of the query (3.0, 7.0, 4.0). A

ID d1 d2 d3

1 0.4 1.0 1.0
2 2.8 5.5 2.0
3 6.5 7.8 5.0
4 9.0 9.0 9.0
5 3.5 1.5 8.0

Figure 3: An Example Database

function f is monotone means that f(p1, ..., pd) ≤ f(p′1, ..., p
′
d)

whenever pi ≤ p′i for every i = 1, ..., d (or pi ≥ p′i for every

i = 1, ..., d). In the example, point 1 is smaller than point 2
in every dimension, but its 1-match difference (2.6) is larger
than point 2’s 1-match difference (0.2). Point 4 is larger than
point 2 in every dimension, but its 1-match difference (2.0)
is still larger than point 2’s 1-match difference (0.2). This
example shows that the n-match difference is not a mono-
tone aggregation function. If we use the FA algorithm here,
we get point 1, which is a wrong answer (the correct answer
is point 2). The reason is that the sorting of the attributes
in each dimension is based on the attribute values, but our
ranking is based on the differences to the query. Further-
more, the score we obtained from the aggregation function
(n-match difference) is based on a dynamically determined
dimension set instead of all the dimensions.

Next we present the AD algorithm, which guarantees cor-
rectness of the answer and retrieves minimum number of
attributes.

3.1 The AD Algorithm for K-N-Match Search
Recall the model that the attributes are sorted in each

dimension; each attribute is associated with its point ID.
Therefore, we have d sorted lists. Our algorithm works as
follows. We first locate each dimension of the query Q in
the d sorted lists. Then we retrieve the individual attributes
in ascending order of their differences to the corresponding
attributes of Q. When a point ID is first seen n times, this
point is the first n-match. We keep retrieving the attributes
until k point ID’s have been seen at least n times. Then we
can stop. We call this strategy of accessing the attributes
in Ascending order of their Differences to the query point’s
attributes as the AD algorithm. Besides the applicability
due to the aggregation function, the AD algorithm has an-
other key difference from the FA algorithm in the accessing
style. The FA algorithm accesses the attributes in parallel,
that is, if we think of the sorted dimensions as columns and
combine them into a table, the FA algorithm would access
the “records” in the table one row after another. But the
AD algorithm access the attributes in ascending order of
their differences to the corresponding query attributes. If a
parallel access was used, we would retrieve more attributes
than necessary as can be seen from the optimality analysis
in Theorem 3.2.

The detailed steps of the AD algorithm for k-n-match
search, namely “KNMatchAD”, is illustrated in Figure 4.
Line 1 initializes some structures used in the algorithm.
appear[i] maintains the number of appearances of point i. It
has c elements, where c is the cardinality of the database2,
and all the elements are initialized to 0. h maintains the
number of point ID’s that have appeared n times and is ini-
tialized to 0. S is the answer set and initialized to ∅. Line 3
finds the position of qi in dimension i using a binary search,
since each dimension is sorted. Then starting from the posi-
tion of qi, we access the attributes one by one towards both
directions along dimension i. Here, we use an array g[]
(line 4) of size 2d to maintain the next attribute to access in
each dimension, in both directions (attributes smaller than

2We only use 1 byte for each element of appear[], which can
work for up to 256 dimensions. For a data set of 1 million
records, the memory usage is 1 Megabytes. This should be
acceptable given the memory size of today’s computer.

Algorithm KNMatchAD
1 Initialize appear[], h and S.
2 for every dimension i
3 Locate qi in dimension i.
4 Calculate the differences between qi and its

closest attributes in dimension i along both
directions. Form a triple (pid, pd, dif) for each
direction. Put this triple to g[pd].

5 do
6 (pid, pd, dif) = smallest(g);
7 appear[pid]++;
8 if appear[pid] = n
9 h++;
10 S=S ∪ pid;
11 Read next attribute from dimension pd and form

a new triple (pid, pd, dif). If end of the dimension
is reached, let dif be ∞. Put the triple to g[pd].

while h < k
12 return S.
End KNMatchAD

Figure 4: Algorithm KNMatchAD

qi and attributes larger than qi). Actually we can view them
as 2d dimensions: the direction towards smaller values of di-
mension i corresponds to g[2 ∗ (i − 1)] while the direction
towards large values of dimension i corresponds to g[2∗i−1].
Each element of g[] is a triple (pid, pd, dif) where pid is the
point ID of the attribute, pd is the dimension and dif is
the difference between qpd and the next attribute to access
in dimension pd. For example, first we retrieve the largest
attribute in dimension 1 that is smaller than q0, let it be
a0 and let its point ID be pid0. We use them to form the
triple (pid0, 0, q0 − a0), and put this triple into g[0]. Simi-
larly, we retrieve the smallest attribute in dimension 1 that
is larger than q0 and form a triple to be put into g[1]. We do
the same thing for other dimensions. After initializing g[],
we begin to pop out values from it in the ascending order
of dif . The function “smallest” in line 6 returns the triple
with the smallest dif from g[]. Whenever we see a pid,
we increase its number of appearance by 1 (line 7). When
a pid appears n times, an n-match is found, therefore h is
increased by 1 and the pid is added to S. After popping out
an attribute from g[], we retrieve the next attribute in the
same dimension to fill the slot. Next, we continue to pop out
triples from g[] until h reaches k, and then the algorithm
terminates.

We use the database in Figure 3 as a running example
to explain the algorithm, and suppose we are searching 2-
2-match for the query (3.0, 7.0, 4.0). Hence k=n=2 in this
query. First, we have each dimension sorted as in Figure
5, where each entry in each dimension represents a (point
ID, attribute) pair. We locate qi in each dimension. q1 is
between (2, 2.8) and (5, 3.5); q2 is between (2, 5.5) and (3,
7.8); q3 is between (2, 2.0) and (3, 5.0). Then we calculate
the differences of these attributes to qi in the corresponding
dimension and form triples, which are put into the array g[].
g[] becomes {(2, 0, 0.2), (5, 1, 0.5), (2, 2, 1.5), (3, 3, 0.8),
(2, 4, 2.0), (3, 5, 1.0)}. Then we start popping triples out of
g[] from the one with the smallest difference. First, (2, 0,

d1 d2 d3

1, 0.4 1, 1.0 1, 1.0
2, 2.8 5, 1.5 2, 2.0
5, 3.5 2, 5.5 3, 5.0
3, 6.5 3, 7.8 5, 8.0
4, 9.0 4, 9.0 4, 9.0

Figure 5: A Running Example

0.2) is popped out, so appear[2] is increased by 1 and equals
1 now. We read the next pair in dimension 1 towards the
smaller attribute direction, that is, (1, 0.4), and form the
triple (1, 0, 2.6), which is put back into g[0]. Next, we pop
the triple with the smallest difference from the current g[].
We get (5, 1, 0.5), so appear[5] becomes 1 and (3, 1, 3.5) is
put into g[1]. Next, we get (3, 3, 0.8) from g[], so appear[3]
becomes 1 and (4, 3, 2.0) is put into g[3]. Now g[]={(1,
0, 2.6), (3, 1, 3.5), (2, 2, 1.5), (4, 3, 2.0), (2, 4, 2.0), (3,
5, 1.0)}. Next, we get (3, 5, 1.0), so appear[3] becomes 2,
which equals n, and so h becomes 1. At this time we have
found the first 2-match point, that is, point 3. (5, 5, 4.0) is
put into g[5]. Next we get (2, 2, 1.5) from g[], so appear[2]
becomes 2, which also equals n, and so h becomes 2, which
equals k. At this time we have found the second 2-match,
therefore the algorithm stops. The 2-2-match set is {point
2, point 3} and we also get the 2-2-match difference, 1.5.

In the implementation, we do not have to actually store
pd in the triple since we can tell which dimension a (pid, dif)
pair is from when we get it from the sorted dimensions or
from g[].

In what follows, we will prove the correctness and opti-
mality of the AD algorithm.

Theorem 3.1. Correctness of KNMatchAD
The points returned by algorithm KNMatchAD compose the
k-n-match set of Q.

Proof. We will prove that the k-th point that appears
n times has the k-th smallest n-match difference.

First, we consider k = 1. Let the first point that appears
n times be P , and when it appears the n-th time, let the
difference between pi and qi be dif (i is the corresponding
dimension). We are accessing the attributes in ascending
order of their differences to qi, therefore dif is the n-match
difference of P . Suppose P does not have the smallest n-
match difference, then there must exist a point P ′ that has a
smaller n-match difference, that is, P ′ has at least n dimen-
sions smaller than dif , and then P ′ should have appeared
n times. This result is contradictory to the fact that P is
the first point that appears n times. Therefore, the suppo-
sition that P does not have the smallest n-match difference
is wrong.

We can use a similar method as above to prove that the
second point that appears n times must have the second
smallest k-n-match difference, and so on. Therefore, the
points returned by the algorithm KNMatchAD compose the
k-n-match set of Q.

Theorem 3.2. Optimality of KNMatchAD
Among all algorithms that guarantee correctness for any data
set instances, algorithm KNMatchAD retrieves the least at-
tributes for the k-n-match problem.

Proof. Suppose another algorithm A retrieves one less
attribute a than the attributes retrieved by KNMatchAD.
Suppose a is dimension i of point pid1 (for convenience, we
may simply use a point ID to represent the point). a − qi

must be smaller than the k-n-match difference δ (otherwise
it would not be retrieved by KNMatchAD). In our model,
data are sorted according to the attribute values. The al-
gorithm only has information on the attribute value range
but no information on the associated point ID at all. There-
fore, as long as we keep the attribute values the same, an
algorithm will retrieve the same values no matter how the
associated point ID change. In other words, the set of at-
tributes retrieved is irrespective to the point ID’s. Given this
observation, we can construct a data set instance as follows,
which will make A produce wrong k-n-match answers.

Let point pid2 be the point with the k-th smallest n-match
difference, that is, it should be the last point to join the k-
n-match answer set. Let b be an attribute of point pid2

that is less than δ. Suppose b is in dimension j, hence b −
qj < δ. Further, let point pid3 be the point with the (k +
1)-th smallest n-match difference and let this difference be
smaller than point pid2’s (n + 1)-match difference. If A
returns the correct answer, then (b, pid2) is already retrieved
when A finished searching. Now consider two (attribute,
point ID) pairs in the sorted dimensions: (a, pid1) and (b,
pid2). We exchange the point ID’s of these two pairs and
obtain a new data set instance with (a, pid2) and (b, pid1),
while everything else is the same as the original data set.
According to our observation, A is not aware of the change
of the point ID’s, and still will not retrieve the pair with
attribute a. In this case, A can only find n − 1 dimensions
less than δ for point pid2. Because of not retrieving (a,
pid2), A thinks pid2’s n + 1-match difference is its n-match
difference, and hence will return point pid3 as the point
with the k-th smallest n-match difference. Therefore, A will
return wrong answers if it retrieves any less attribute than
KNMatchAD does.

More generally, as long as an algorithm A knows noth-
ing about the point ID before retrieving an attribute (the
dimensions not necessarily sorted), A still have to retrieve
all the attributes that KNMatchAD retrieves to guarantee
correctness for any data set. The proof is the same as above.
The multiple system information retrieval model satisfies the
condition here, therefore KNMatchAD is optimal among all
the algorithms that search k-n-match correctly, including
those not based on attributes sorted at each system.

3.2 The AD Algorithm for Frequent K-N-Match
Search

For frequent k-n-match search, the AD algorithm works in
a similar fashion as for k-n-match search. The difference is
that, instead of monitoring point ID’s that appear n times,
we need to monitor point ID’s whose number of appearances
are in the range [n0, n1].

The AD algorithm for frequent k-n-match search, namely
“FKNMatchAD”, is illustrated in Figure 6. Line 1 initializes
some structures used in the algorithm. appear[], h[] and
S[] have the same meanings as in algorithm KNMatchAD
except that h and S are arrays, each has d elements. After
initialization, we locate the query’s attributes in each dimen-

Algorithm FKNMatchAD
1 Initialize appear[], h[] and S[].
2 for every dimension i
3 Locate qi in dimension i.
4 Calculate the differences between qi and its

closest attributes in dimension i along both
directions. Form a triple (pid, pd, dif) for each
direction. Put this triple to g[pd].

5 do
6 (pid, pd, dif) = smallest(g);
7 appear[pid]++;
8 if n0 ≤ appear[pid] ≤ n1

9 h[appear[pid]]++;
10 S[appear[pid]]=S[appear[pid]] ∪ pid;
11 Read next attribute from dimension pd and form

a new triple (pid, pd, dif). If end of the dimension
is reached, let dif be ∞. Put the triple to g[pd].

while h[n1] < k
12 scan Sn0 , ..., Sn1 to obtain the k point ID’s that

appear most times
End FKNMatchAD

Figure 6: Algorithm FKNMatchAD

sion and put the 2d attributes with smallest differences to
the query into the array g[]. Next we retrieve (pid, pd, dif)
triples from g[] in ascending order of dif and update h[]
and S[] accordingly. We keep doing this until there are k
points that have appeared n1 times.

Before k points appear at least n1 times, they must have
already appeared n0 times, ..., n1−1 times. Therefore, when
algorithm FKNMatchAD stops, that is, when it finds the k-
n1-match answer set, it must have found all the k-i-match
answer sets, where i = n0, ..., n1. Then we simply need to
scan the k-i-match answer sets for i = n0, ..., n1 to get the
k points that appear most frequently. This shows the cor-
rectness of the algorithm. At the same time, we can see
that algorithm FKNMatchAD retrieves the same number of
attributes as if we are performing a k-n1-match search by
algorithm KNMatchAD. Since we have to at least retrieve
the attributes necessary for answering the k-n1-match query,
and we only need to retrieve this many to answer the fre-
quent k-n-match query, we consequently have the following
theorem:

Theorem 3.3. Optimality of FKNMatchAD
Algorithm FKNMatchAD retrieves the least attributes for
the frequent k-n-match problem.

We can see that the frequent k-n-match search is no harder
than a k-n-match search with the same k and n values. How-
ever, the frequent k-n-match query can take advantage of
the results of a range of n values to obtain answers based
on full similarity.

4. DISK BASED SOLUTIONS
In the previous section, we have investigated AD algo-

rithms that are optimal in the model where cost is measured
by the number of attributes retrieved. This model directly
applies to the multiple system information retrieval prob-

lem. In this section, we would like to study how the AD
algorithm works in the disk based model. Our cost measure
still conforms with the disk model, where the number of disk
accesses is the major measure of performance, and disk ac-
cesses is proportional to the attributes retrieved. However,
one complication is that disk based algorithms may make
use of auxiliary structures such as indexes or compression
to prune data. R-tree based approaches have been shown
to perform badly with high dimensional data due to too
much overlap between page regions, and also no other in-
dexing techniques can be applied directly to out problem
because of the dynamic dimensions used for aggregating the
score. Only compression techniques still apply such as the
one used in VA-file [21], which does not rely on a fixed set of
dimensions. Therefore, we will describe the disk based AD
algorithm and an adaption from the VA-file algorithm for
our problem in the following. We will use the VA-file based
algorithm as a competitor when evaluating the efficiency of
the AD algorithm in the experimental study.

4.1 Disk Based AD Algorithm
As we can see from Section 3.2, algorithm KNMatchAD

is actually a special case of FKNMatchAD (when n0 = n1).
Therefore we will focus on the frequent k-n-match search.
First, we sort each dimension and store them sequentially on
disk. Then we can use the same FKNMatchAD algorithm
except that, when reading the next attribute from the sorted
dimensions, if we reach the end of a page, we will read the
next page from disk. Note that FKNMatchAD accesses the
pages sequentially when search forwards, which makes the
processing more efficient.

4.2 Compression Based Approach
Compression based techniques such as the VA-file [21] can

be adapted to process the frequent k-n-match query. The
algorithm runs in two phases. The first phase scans an ap-
proximation of the points, that is, the VA-file. During the
first phase, the algorithm calculate lower and upper bounds
of the k-n-match difference of each point based on the VA-
file and utilizes these bounds to prune some points. Only
the points that go through the first phase will be actually re-
trieved from the database for further checking in the second
phase. We omit the implementation details here.

5. EXPERIMENTAL STUDY
In this section, we evaluate both the effectiveness and the

efficiency of the (frequent) k-n-match query by an extensive
experimental study. We use both synthetic uniform data
sets and real data sets of different dimensionalities. The
data values are all normalized to the range [0,1]. All the
experiments were run on a desktop computer with 1.1GHz
CPU and 500M RAM.

5.1 Effectiveness
To validate the statement that the traditional kNN query

leaves many partial similarities uncovered, we first use a
image database to visually show this fact in Section 5.1.1. In
comparison, we show that the k-n-match query can identify
similar objects by partial similarities if a proper n is chosen.
But note that we are not using this to argue the effectiveness

of the k-n-match approach for full similarity. The technique
we use for full similarity search is the frequent k-n-match
query and we will evaluate its effectiveness statistically in
Section 5.1.2.

5.1.1 Searching byK-N-Match
We shall first visually show that the k-n-match query

yields better result than the k-n-match search if a proper
value of n is chosen. To do so, we use the COIL-100 database
[1], which consists of 100 images. Some of the images in the
database are shown in Figure 7 (the numbers under the im-
ages are the image ID’s). We extracted 54 features from
these images such as color histograms and moments of area.
Below we show a sample of the experiments we conducted
and the results of other searches on the database exhibit
similar behavior.

In this experiment, we used image 42 as the query object.

3 13 27 33 35

36 38 40 42 48

57 64 72 78 85

87 88 94 96 100

Figure 7: Images in the COIL-100 database

Table 2: k-n-match results, k = 4, Query Image 42
n images returned n images returned
5 36, 42, 78, 94 30 10, 35, 42, 94
10 27, 35, 42, 78 35 35, 42, 94, 96
15 3, 38, 42, 78 40 35, 42, 94, 96
20 27, 38, 42, 78 45 35, 42, 94, 96
25 35, 40, 42, 94 50 35, 42, 94, 96

Table 3: kNN results, k = 10, Query Image 42
k images returned
10 13, 35, 36, 40, 42

64, 85, 88, 94, 96

Table 2 shows the results returned by k-n-match with k =
4 and sampled n values varying from 5 to 50. The results
of the kNN search is shown in Table 3 and the 10 nearest
neighbors returned based on Euclidean distance are given.
Comparing the two tables, the most obvious difference is the
existence of image 78 in the k-n-match frequently which is

not found in the 10 nearest neighbors of kNN search. Image
78 is a boat which is obviously more similar to image 42
compared to images 13, 64, 85, and 88 in the kNN result
set. In fact, we did not find image 78 in the kNN result set
even when finding 20 nearest neighbors. The difference in
color between image 42 and 78 is clearly dominating all other
aspects of comparison. The k-n-match query successfully
identifies this object because of the use of partial matches.

Among the remaining k-n-match result, perhaps less no-
ticeable is the existence of image 3. It is obviously more
similar to image 42 than many images in the kNN result set
and image 3 is in fact a yellow color and bigger version of
image 42. However, it appears only once in the k-n-matches
of different n values. If we are not using a good n value, we
may miss this answer.

As can be seen from these results, k-n-match can yield
better result than kNN search, but it also depends on a
good choice of n. This motivates the use of the frequent k-
n-match query, which returns objects that have many partial
matches with the query object.

5.1.2 Searching by FrequentK-N-Match
We next evaluate the effectiveness of our proposed method,

the frequent k-n-match query, for finding objects of full simi-
larity. In order to evaluate effectiveness from a (statistically)
quantitative view, we use the class stripping technique [6],
which is described as follows. We use five real data sets from
the UCI machine learning repository [2] with dimensionali-
ties varying from 4 to 34: 1) the ionosphere data set contains
351 34-dimensional points with 2 classes; 2) the image seg-
mentation data set contains 300 19-dimensional points with
7 classes; 3)the wdbc data set contains 569 30-dimensional
points with 2 classes; 4) the glass data set contains 214 9-
dimensional points with 7 classes; 5) the iris data set con-
tains 150 4-dimensional points with 3 classes. Each record
has an additional variable indicating which class it belongs
to. By the class stripping technique, we strip this class tag
from each point and use different techniques to find the simi-
lar objects to the query objects. If the answer and the query
belong to the same class, then the answer is correct. The
more correct ones in the returned answers, statistically, the
better the quality of the similarity searching method.

We run 100 queries which are sampled randomly from the
data sets, k set as 20. We count the number of the answers
with correct classification and divide it by 2000 to obtain
the accuracy rates. Two techniques proposed previously:
IGrid [6] and the Human-Computer Interactive NN search
(HCINN for short) [4] have been shown to obtain more ac-
curate results than the traditional kNN query. Therefore,
we will compare the frequent k-n-match query with these
two techniques. [n0,n1] for the frequent k-n-match query is
simply set to [1,d]. The results are shown in Table 4. As
the code of HCINN is not available, its accuracies on the
ionosphere and segmentation data sets are adopted directly
from [4] while results on other data sets are not available.

We can see that frequent k-n-match constantly obtains
higher accuracy than the other two techniques. It improves
the accuracy up to 9.2% over IGrid. Therefore, we argue
that the frequent k-n-match query is a more accurate model
for similarity search.

Table 4: Accuracy on Real data sets
data sets (d) IGrid HCINN Freq. k-n-match

Ionosphere (34) 80.1% 86% 87.5%
Segmentation (19) 79.9% 83% 87.3%

Wdbc (30) 87.1% N.A. 92.5%
Glass (9) 58.6% N.A. 67.8%
Iris (4) 88.9% N.A. 89.6%

5.2 Efficiency
In Section 3, we have proved that the AD algorithm is op-

timal in terms of number of attributes retrieved. However,
is it also efficient in a disk based model? To answer this
question, we would like to conduct the following experimen-
tal studies. First, we will study how to choose parameters,
particularly, the range of frequent k-n-match, [n0,n1], to op-
timize its performance (we will focus on frequent k-n-match
instead of k-n-match, since frequent k-n-match is the tech-
nique we finally use to perform similarity search). Second,
we will study, using well chosen parameters, which search-
ing scheme is the best for frequent k-n-match search. Third,
we would like to study how the efficiency of frequent k-n-
match search is compared to other similarity search tech-
niques, such as IGrid, since IGrid is more effective than kNN
and can be processed very efficiently as reported in [6].

5.2.1 Choosing Parameters

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 5 10 15 20 25 30 35

A
cc

ur
ac

y

n0

iono
seg

wdbc

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35

A
cc

ur
ac

y

n1

iono
seg

wdbc

(a) Accuracy vs. n0 (b) Accuracy vs. n1

Figure 8: Effects of n0 and n1

Figure 8 illustrates the effects of the range of the frequent
k-n-match, [n0, n1], on the accuracy of the results of the
three high dimensional machine learning data sets: iono-
sphere (iono), image segmentation (seg), and wdbc, still us-
ing the class stripping technique described in Section 5.1.2.
Figure 8 (a) plots the accuracy as a function of n0 while
fixing n1 as d. We can see that, as n0 increases, the ac-
curacy first increases, and then decreases. This is because
when n is too small, there are not enough attributes to cap-
ture any feature of the object but some random matches.
Using such small n values decreases the accuracy. When
there are enough number of dimensions, the results begin
to make sense and accuracy increases. However, when n0 is
too large, the range of [n0, n1] becomes too small to identify
frequently appearing objects, and therefore the accuracy de-
creases again. As the accuracy on the ionosphere data set
starts to decrease from n0 = 4, we have chosen n0 conserva-
tively as 4 in the following experiments.

Figure 8 (b) shows the accuracy of frequent k-n-match
as a function of n1 while fixing the value of n0 as 4. The
accuracy decreases as n1 decreases. This is expected since
the larger the range, the more stable the frequent appearing
objects that we find. We observe that the accuracy decreases
very slowly when n0 is large. As n0 becomes smaller, the
accuracy decreases more and more rapidly. The reason is
that, when n is large, more dimensions of high dissimilarities
are taken into account. These dimensions do not help in
finding similarities between objects.

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30 35
R

et
rie

ve
d

at
tr

ib
ut

es
 (

%
)

n1

iono
seg

wdbc

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70

A
cc

ur
ar

y

Retrieved attributes (%)

AD
IGrid

(a) Attr retrieved vs. n1 (b) Accuracy vs. Attr retrieved

Figure 9: Tradeoff between accuracy and perfor-
mance

In another experiment, we would like to see the relation-
ship between the number of attributes retrieved and n1,
which is revealed in Figure 9. This figure shows that there
is a tradeoff between the accuracy and performance of the
AD algorithm in terms of number of attributes retrieved.
Figure 9 (a) plots the number of attributes retrieved (in
terms of percentage of the cardinality of the data set) by
the AD algorithm as a function of n1. The number of at-
tributes retrieved increases as n1 increases since the larger
the n1, the larger the k-n-match difference and hence the
more attributes smaller than this k-n-match difference. An
interesting phenomenon is that, in contrary to the trend of
the accuracy, the increase of the number of attributes re-
trieved is slower when n1 is small than when n1 is large.
This means that, by decreasing n1 slightly from d, we can
achieve a large performance gain without sacrificing much
accuracy. And we have plotted this tradeoff between accu-
racy and performance more clearly in Figure 9 (b). This
figure shows the accuracy of the AD algorithm versus the
percentage of attributes retrieved on the ionosphere data
set. We can see that the accuracy increases most rapidly
when about 10% of the attributes are retrieved. After this,
the accuracy increases much slower. We also draw the ac-
curacy of the IGrid technique on the same data set. When
the AD algorithm achieves the same accuracy as IGrid, less
than 15% of the attributes are retrieved. Results on other
data sets have the similar trend and all retrieve about 15%
attributes when getting the same accuracy as IGrid. There-
fore, we choose the n1 value according to the accuracy of
IGrid when comparing efficiency with IGrid. By this means,
n1 is about 8 for the high dimensional real data sets, varying
1 or 2 depending on the dimensionality.

5.2.2 Evaluation of Disk Based Algorithms for Fre-
quentK-N-Match

As the data sets used for the above studies are too small
for run time testing on disk based solutions (the queries
finish too fast to make any difference in time for different
techniques), we use data sets with more points for efficiency
evaluation. We generated uniformly distributed data sets
of various dimensionalities and also a real data set, the Co-
occurrence Texture from the UCI KDD archive[3]. All uni-
form data sets contain 100,000 points. The Texture data
set contains 68040 16-dimensional points. Data page size is
4096 bytes. Because frequent k-n-match search is the final
technique we use to performance similarity search, we focus
on frequent k-n-match search instead of k-n-match search.
The range [n0, n1] of frequent k-n-match search is chosen
according to the results on real data sets as described in
Section 5.2.1.

First, we evaluate the VA-file based algorithm as described
in Section 4.2. In our implementation of the VA-file, we
use 8 bits to code the data, which make the size of VA-file
25% of the size of the original data set. Figure 10 shows

0

2000

4000

6000

8000

10000

12000

14000

10 20 30

N
um

be
r

of
 p

oi
nt

s
re

tr
ie

ve
d

k

uniform
texture

0

5

10

15

10 20 30

R
es

po
ns

e
tim

e
(s

ec
)

k

VA-file, uniform
scan, uniform

VA-file, texture
scan, texture

(a) Number of points retrieved (b) Response time

Figure 10: Performance of VA-file based algorithm

the results on a 16-dimensional uniform and the Texture
data sets. Figure 10 (a) shows the number of points that
are actually retrieved from the database in the refinement
phase of the VA-file based algorithm for frequent k-n-match.
As the total number of points is 100,000 and 68,040 for the
uniform and the Texture data sets respectively, there are
about 10% of points retrieved. For these about 10% points,
the algorithm needs to do random page accesses to retrieve
them, therefore the final response time turns out to be about
twice that of the scan algorithm, as shown in 10 (b). Results
of data sets of other dimensionalities have similar behavior.
Therefore, VA-file based algorithm does not work for the
frequent k-n-match query.

Next, we evaluate our proposed AD algorithm. The num-
ber of page accesses and response time on a 16-dimensional
uniform and the Texture data sets are shown in Figure 11 (a)
and (b), respectively. The number of page accesses of AD
is 10∼20% of the sequential scan and the result of response
time is similar. Because the AD algorithm retrieves only the
necessary attributes for evaluating the frequent k-n-match
query and search forwards in a dimension take advantage of
sequential accesses, it beats sequential scan on the total re-
sponse time. This shows the efficiency of the AD algorithm.

We also plotted the number of page accesses and response

0

1000

2000

10 20 30

N
um

be
r

of
 p

ag
e

ac
ce

ss
es

k

AD, uniform
scan, uniform

AD, texture
scan texture

0

1

2

3

4

10 20 30

R
es

po
ns

e
tim

e
(s

ec
)

k

AD, uniform
scan, uniform

AD, texture
scan, texture

(a) Page access (b) Response time

Figure 11: Performance of the AD algorithm

0

500

1000

1500

2000

8 9 10 11 12 13 14 15 16

N
um

be
r

of
 p

ag
e

ac
ce

ss
es

n1

AD, uniform
scan, uniform

AD, texture
scan, texture

0

0.5

1

1.5

2

2.5

3

3.5

4

8 9 10 11 12 13 14 15 16

R
es

po
ns

e
tim

e
(s

ec
)

n1

AD, uniform
scan, uniform

AD, texture
scan, texture

(a) Page access vs. n1 (b) Response time vs. n1

Figure 12: Performance of the AD algorithm

time as functions of n1 in Figure 12 (a) and (b), respectively.
While the AD algorithm can achieve the same accuracy as
IGrid when n1 as low as 8, the AD algorithm beats the
sequential scan even when n1 is much larger (up to 14).
This means that our technique can achieve high accuracy in
similarity search while still being very efficient.

From the above comparison with VA-file based algorithm
and sequential scan, we can draw the conclusion that the
AD algorithm is still the best choice among the competitors
in the disk based model.

5.2.3 Comparison with Other Similarity Search Tech-
niques

In this section, we compare the efficiency of the frequent
k-n-match query using the AD algorithm (that is, FKN-
MatchAD) with other similarity search techniques. Both
IGrid [6] and the Human-Computer Interactive NN search
(HCINN for short) [4] have been reported to have better ac-
curacy than the kNN query. We have shown that frequent
k-n-match search has better accuracy than them in Section
5.1.2. Therefore, we would like to further see how is the ef-
ficiency of our method compared with these two techniques.

The HCINN search algorithm needs to access all the data
in the data set and moreover, it requires human interac-
tion, therefore it is less efficient than FKNMatchAD. In the
following, we will only compare FKNMatchAD with IGrid.
IGrid [6] was proposed as an inverted file on the grid parti-
tion of the database. The analysis in [6] shows that the ac-
cessed data size is 2/d of the original data, therefore the data
accessed decreases as the dimensionality increases. However,
in their analysis, they only considered the sum of the size

of the data accessed, but not how the data are distributed
on the disk. In fact, the accessed data are fragmented and
distributed all over the data set. Random accesses of all
the fragments are much more expensive than when they are
clustered together and accessed sequentially. So a mere com-
parison in the size of the accessed data is not enough to show
its efficiency. In view of this, we have compared the response
time of FKNMatchAD and IGrid, using both synthetic and
real data sets.

0

0.5

1

1.5

2

2.5

3

10 20 30 40

R
es

po
ns

e
tim

e
(s

ec
)

k

scan
AD

IGrid

0

1

2

3

4

5

6

7

8

50 100 200 300

R
es

po
ns

e
tim

e
(s

ec
)

Data set size (thousand)

scan
AD

IGrid

(a) Response time vs. k (b) Response time vs. dataset size

Figure 13: Comparison with IGrid

The response time of the two techniques, FKNMatchAD
and IGrid, on a 16-dimensional uniform data set with vary-
ing k and data set sizes are shown in Figure 13. We also plot-
ted the response time of the sequential scan algorithm for
frequent k-n-match search as a reference for FKNMatchAD.
We see that the FKNMatchAD is more efficient than IGrid.
And FKNMatchAD is scalable with regard to k and data
set size. We also compared them for on data sets of varying

0

1

2

3

4

5

6

7

8

9

8 16 32 48

R
es

po
ns

e
tim

e
(s

ec
)

dimensionality

scan
AD

IGrid

Figure 14: Effect of dimensionality

dimensionalities from 8 to 48. FKNMatchAD always out-
performs the other two techniques as shown in Figure 14.

Finally, we compare them on the real data set (the Texture
data set). The result of response time is shown in Figure
15 (a). We can see that FKNMatchAD beats the other
two techniques even when n1 equals the dimensionality 16.
By examining the number of attributes retrieved as shown
in Figure 15 (b), we can see that when n1 = 16, there is
only 25% of the attributes retrieved due to the high skew
of the real data. This is the reason for the especially good
performance exhibited here.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

6 8 10 12 14 16

R
es

po
ns

e
tim

e
(s

ec
)

n1

scan
AD

IGrid

0

5

10

15

20

25

6 8 10 12 14 16

R
et

rie
ve

d
at

tr
ib

ut
es

 (
%

)

n1

(a) Response time vs. n1 (b) Attributes retrieved vs. n1

Figure 15: Comparison with IGrid on real data

From the above results, we draw the conclusion that the
frequent k-n-match query can be processed more efficiently
(by our proposed FKNMatchAD algorithm) than the exist-
ing techniques while achieving better accuracy than them in
similarity search.

6. RELATED WORK
A popular method for similarity search is to first extract

from objects some features such as image colors [14], shapes
[17] and texts [19], and then use nearest neighbor queries to
search similar objects [10, 14]. In the last decade, many
structures and algorithms have been proposed aiming at
accelerating the processing of (k) nearest neighbor queries.
Early methods are based on R-tree-like structures such as
the SS-tree [22] and the X-tree [7]. However, the R-tree-like
structures all suffer from the “dimensionality curse”, that is,
their performance deteriorates dramatically as dimensional-
ity becomes high. [21] has shown this phenomenon both
analytically and experimentally. Therefore, the authors of
[21] proposed an algorithm based on compression, called the
vector approximation-file (VA-file) to accelerate sequential
scan.

While the papers above mainly emphasize on the efficiency
of kNN search, other works look at kNN from the aspect of
effectiveness. In [8], Beyer et. al. show that at very high
dimensionality, the distance between two nearest points and
two furthest points in a data set are almost the same. At the
same time however, they also show that points that are gen-
erated from distinct clusters do not obey such rules. Various
studies [16, 5, 6, 4] have been performed subsequently to ad-
dress the issue raised in [8]. Among these, only [6] addresses
the efficiency issue. In [6], the IGrid index was proposed,
in which each dimension is discretized based on equi-depth
partitioning in a pre-processing phase. When comparing two
points, the actual difference between matching dimensions
are aggregated to judge their similarity. This is different
from our work which performs the discretization dynami-
cally while counting only the matches. The most effective
among these works is reported in [4] where human computer
interaction is needed to find meaningful neighbors.

In [18], dynamic partial function (DPF) was proposed to
compute similarity based on the closest n dimensions. Our
work employs the similar strategy in defining the n-match
problem. However, in view of the hardness to define a good n
value in reality, we propose the frequent k-n-match problem

which captures the full similarity of objects and the result
is not sensitive to the choice of n. [18] used an n value ob-
served from experiments over the data set, which is an ad
hoc method. Moreover, the algorithm proposed in [18] has
no correctness guarantee and their accuracy is measured by
recall of the actual kNN, that is, how many actual kNNs
are included in their answers. In other words, the algorithm
finds approximations to the exact kNN answers, but with-
out any approximation guarantee. This is different from our
effectiveness evaluation, which measures the extent of simi-
larity of answers to the query, while the answers are exact
correct nearest neighbors under our similarity model.

We have discussed our problem in the multiple system in-
formation retrieval model, which was described in [11]. As
discussed in Section 3, the algorithm proposed in [11] and
variations in [13] were for other types of queries and they
assume a monotone aggregation function, which is not sat-
isfied by the aggregation function of our problem. More
recently, [12] has used rank aggregation to answer kNN ap-
proximately and the quality measure is the approximation
factor. Again, the difference is that we are answering the
query defined by our similarity model exactly.

The skyline query [9, 20] has also been proposed to find
close objects based on various feature sets, but the answer
of the skyline query is a set of objects that do not dominate
each other. In our model, we still find top k answers accord-
ing to one score, the n-match difference. In this sense, it
is closer to the traditional kNN query that the answer with
higher score dominates the ones with lower scores.

7. CONCLUSION
In this paper, we proposed a new approach to model

the similarity search problem, namely the k-n-match prob-
lem. The k-n-match problem models the similarity search
as matching between the query object and the data objects
in n dimensions, where these n dimensions are determined
dynamically to make the query object and the data objects
in the answer set match best. While the k-n-match query
is expected to be superior than the kNN query in discover-
ing partial similarities, it depends on a good choice of the
n value. To address the problem, we further introduced the
frequent k-n-match query, which returns the objects that ap-
pear most frequently in the answer sets of k-n-match queries
with a range of n values. Moreover, we proposed algorithms
(called the AD algorithm) for both problems. We proved
that the AD algorithm is optimal in the multiple system in-
formation retrieval model. We also applied the strategy to
obtain a disk based algorithm for the (frequent) k-n-match
query. By a thorough experimental study using both real
and synthetic data sets, we validated that the k-n-match
query finds better result than the kNN query through par-
tial similarity if a good value of n is chosen; we showed that
the frequent k-n-match query is more effective in similarity
search than existing techniques such as IGrid and Human-
Computer Interactive NN search, which have been reported
to be more effective than traditional kNN queries based on
Euclidean distance. We also showed that the frequent k-
n-match query can be processed more efficiently than the
other techniques by our proposed AD algorithm in the disk
based cost model.

8. REFERENCES
[1] http://www1.cs.columbia.edu/CAVE/research/

softlib/coil-100.html.

[2] ftp://ftp.ics.uci.edu/pub/machine-learning-databases/.

[3] http://kdd.ics.uci.edu/databases/CorelFeatures/
CorelFeatures.data.html.

[4] C. C. Aggarwal. Towards meaningful high-dimensional
nearest neighbor search by human-computer
interaction. In ICDE, 2002.

[5] C. C. Aggarwal, A. Hinneburg, and D. A. Keim. On
the surprising behavior of distance metrics in high
dimensional spaces. In ICDT, 2001.

[6] C. C. Aggarwal and Philip S. Yu. The igrid index:
Reversing the dimensionality curse for similarity
indexing in high dimensional space. In KDD, 2000.

[7] S. Berchtold, D. Keim, and H.-P. Kriegel. The x-tree:
An index structure for high-dimensional data. In
VLDB, 1996.

[8] K. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft. When is nearest neighbors meaningful? In
ICDT, 1999.

[9] S. Börzsönyi, D. Kossmann, and K. Stocker. The
skyline operator. In ICDE, 2001.

[10] T. Chiueh. Content-based image indexing. In VLDB,
1994.

[11] R. Fagin. Combining fuzzy information from multiple
systems. In PODS, 1996.

[12] R. Fagin, R. Kumar, and D. Sivakumar. Efficient
similarity search and classification via rank
aggregation. In SIGMOD, 2003.

[13] R. Fagin, A. Lotem, and M. Naor. Optimal
aggregation algorithms for middleware. In PODS,
2001.

[14] C. Faloutsos, W. Equitz, M. Flickner, W. Niblack,
D. Petkovic, and R. Barber. Efficient and effective
querying by image content. Journal of Intelligent
Information Systems, 3(3):231–262, 1994.

[15] Richard W. Hamming. Error detecting and error
correcting codes. Bell Systems Technical Journal,
29:147–160, 1950.

[16] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What
is the nearest neighbor in high dimensional spaces? In
VLDB, 2000.

[17] H. V. Jagadish. A retrieval technique for similar
shapes. In SIGMOD, 1991.

[18] E. Y. Chang K.-S. Goh, B. Li. Dyndex: a dynamic and
non-metric space indexer. In ACM Multimedia, 2002.

[19] Karen Kukich. Techniques for automatically
correcting words in text. ACM Computing survey,
24(4):377–439, 1992.

[20] D. Papadias, Y. Tao, G. Fu, and B. Seeger.
Progressive skyline computation in database systems.
TODS, 30(1):41–82, 2005.

[21] R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In VLDB, 1998.

[22] D. A. White and R. Jain. Similarity indexing with the
ss-tree. In ICDE, 1996.

