B-trees: Bearing Fruits of All Kinds

Beng Chin Ooi

Kian-Lee Tan

Department of Computer Science
National University of Singapore
3 Science Drive 2, Singapore 117543
Email: {ooibc,tankl}@comp.nus.edu.au

Abstract

Index structures are often used to support search operations
in large databases. Many advanced database application do-
mains such as spatial databases, multimedia databases, tem-
poral databases, and object-oriented databases, call for index
structures that are specially designed and tailored for the do-
mains. Interestingly, in each of these domains, we find methods
that are based on one distinct structure — the B-tree. Invented
some thirty years ago, the B-tree has been challenged repeat-
edly, but has retained its competitiveness. In this paper, we
first give a quick review of B-trees. We then present its adap-
tations to various domains. For each domain, we present repre-
sentative B-tree-based structures and their search operations.
We conclude that the B-tree is truly an ubiquitous structure
that has stood the test of times with wide acceptance in many
domains.

Keywords: B-tree, spatial databases, multimedia
databases, high-dimensional databases, main memory
databases.

1 Introduction

The B-tree index structure [4] is one of the most
widely used and studied data structure. It is a bal-
anced, multiway, external file organization in which
every path from the root of the tree to a leaf of the
tree is of the same length. Each non-leaf node (except
the root node) in the tree has between [n/2] and n
children, where n (called the order) is fixed for par-
ticular tree. A B-tree maintains its efficiency despite
insertion and deletion of data, and is highly scalable
(i.e, if you increase the size of a database by a fac-
tor of 100-400, you add just one level to the B-tree
index!).

Invented by Rudulf Bayer and Ed McCreight
thirty years ago, the B-tree has been challenged con-
tinually. Right from the beginning in 1969, despite
its simplicity and efficiency, its value was not immedi-
ately recognized: simply splitting an overflowing page
into two half empty pages and potentially wasting
50% of storage capacity was a real sacrilege (in the old
days, the magnetic disk technology was immature and
disk capacity was only 7.5 MB) [3]. Ironically (and
interestingly), similar argument is upheld against the
B-tree today by main memory database proponents,
i.e., wastage of memory space.

In this paper, we first give a brief review of
B-tree. We then present its adaptations to var-
ious domains, including temporal databases, spa-
tial databases, high-dimensional databases, and main

Copyright (©2001, Australian Computer Society, Inc. This pa-
per appeared at the Thirteenth Australasian Database Confer-
ence (ADC2002), Melbourne, Australia. Conferences in Research
and Practice in Information Technology, Vol. 5. Xiaofang Zhou,
Ed. Reproduction for academic, not-for profit purposes permit-
ted provided this text is included.

memory databases. For each domain, we present rep-
resentative B-tree-based structures and their search
operations.

The rest of the this paper is organized as follows.
In the next Section, we give a quick overview of the
family of B-trees. In Section 3, we discuss the basic
paradigm that is used to exploit B-trees in most appli-
cation domains. Sections 4-8 present some example
domains in greater depth. Finally, we conclude in
Section 9.

2 The Family of B-trees

A B-tree of order n is a multi-way search tree with
the following properties [4]:

e The root has at least two subtrees unless it is a
leaf.

e Each non-root and each non-leaf node holds k—1
keys and k pointers to subtrees where [n/2] <
k <n.

e Each leaf node holds k — 1 keys where [n/2] <
k <n.

e All leaf nodes are at the same level.

Thus, a B-tree is always at least half full, has few lev-
els, and is perfectly balanced. Typically, each node
corresponds to a disk page. Figure 1(a) shows a sam-
ple B-tree structure. Here, we have a set of 18 key
values ranging from 6 to 89.

Since each node of a B-tree represents a page, ac-
cessing one node means one disk I/O. Therefore, the
fewer nodes that are created the better it will be.
To better utilize the storage capacity of the B-tree
nodes, Donald Knuth introduced a variant called the
B*-tree. In a B*-tree, all nodes except the root are
required to be at least two-thirds full, not just half
full, as in a B-tree.

While the B-tree structure provides fast exact
match search (number of disk page accesses is equal
to the height of the tree + 1 data page), range search
requires a depth-first-traversal of the tree which may
require examining some internal nodes multiple times.
To reduce the computation overhead, the BT-tree is
proposed. BT -tree differs from the B-tree in the fol-
lowing ways. First, all key values appear in the leaf
nodes. Values in the internal nodes need not be keys
- they serve only as separators to direct the search
process. As shown in Figure 1(b), all the 18 keys are
stored at the leaf nodes, and values 22, 59 and 78 are
separators that do not appear in the database. Sec-
ond, all the leaf nodes are linked. In this way, a range
query [a,b] requires searching for a, and examining
the leaf nodes (by following the next-leaf pointer) un-
til a value larger than b is found. Among the differ-
ent variants, the BT-tree is one that has been imple-
mented and used.

/ 10\
6 8 11 12 25 30 35

/ 50\
N\ ~

11 12 20 = 25 30 35 —=

)

6 8 10 —=

20/50\
R

T

71 76 81 89

59l78\
50 54 56 = 70 71 76 = 80 81 89

(b) B+-tree

Figure 1: The B-tree and B*-tree.

3 The Power of Transformation

Databases are increasingly being employed for
advanced applications such as object-oriented
databases, geographic and spatial databases, tempo-
ral databases, data warehousing, high-dimensional
databases, and even XML databases. Many special-
ized indexing structures were and continue to be
proposed to deal with these applications [7]. Among
these, there are always B-tree-based schemes being
pursued. Two reasons account for this. First, as
B-tree is widely deployed in commercial systems,
there is a need to be able to reuse it to allow these
systems to cope with different applications’ demands.
Second, solutions based on B-trees are typically easy
to implement and understand.

Almost all B-tree based schemes (even for differ-
ent applications) are based on the paradigm of trans-
formation: the key attribute is mapped into a single
dimensional space so that B-tree can be used to in-
dex the transformed data. This is typically done ei-
ther using linear-ordering techniques (such as z-order,
morton order, peano-hilbert, row order, etc.), or using
some transformation functions.

Clearly, applying transformation technique implies
lost of information. In other words, it is possible for
multiple key values to be mapped to the same value in
the transformed space. However, because we are deal-
ing with single dimensional data in the transformed
space, the size of the attributes are typically small
(compared to the original data). This gives rise to a
small index search key, and hence small index size.
As a result, the search process is very much faster.

Because of the transformation, query processing
follows a two-phase strategy:

e In phase one, the query in the original data space
is transformed to the single dimensional space in
order for it to be evaluated on the transformed
space. We note that typically a query in the
original space may be mapped into multiple sub-
queries in the transformed space.

e Phase two examines the returned answers and
prune away false drops that may arise. This is
necessary because it is typically the case that a

superset of the answers will be accessed due to
the lost in information.

While it may appear that it is straightforward to
apply transformation on any dataset to reuse B-trees,
to guarantee good performance is a non-trivial task.
In other words, a careless choice of transformation
scheme can lead to very poor performance. Exist-
ing B-tree-based schemes, as we shall see in the next
few sections, come with very clever observations made
by their inventors. It is a combination of such in-
sights with B-tree that make its performance com-
parable (and in many cases better) than specialized
techniques.

Table 1 gives a list of some of the B-tree techniques
that have been proposed in the literature, some of
which will be presented in greater depth in subsequent
sections. The list is certainly not exhaustive.

4 Indexing Low Dimensional Spatial Data

Spatial data are data associated with spatial co-
ordinates and extents such as points, lines, poly-
gons, and volumetric objects. Spatial data are multi-
dimensional data and hence include high-dimensional
data. However, when the field was initially investi-
gated, the number of dimensions tend to low, and
that affected the design of indexes for spatial appli-
cations. These spatial applications include computer-
aided design (CAD), geographic information systems
(GIS), computational geometry and computer vision.
In these applications, retrieval of data is primarily
based on spatial proximity relationships amongst ob-
jects rather than on attribute values of objects. For
example, in GIS, a query may be “retrieve all restau-
rants that are within a certain distance from a par-
ticular road”. Spatial operators like intersection, ad-
jacency, and containment are much more expensive
to compute than conventional relational join and se-
lect operators. This is due to the irregularity in the
shapes of the spatial objects. For example, consider
the intersection of two polyhedra. Besides the need
to test all points of one polyhedron against the other,
the result of the operation is not always a polyhedron
but it may sometimes consist of a set of polyhedra.

Object oriented databases

SC-tree [14], CH-tree

14], H-tree [17]

Temporal databases
Valid time [21]

Monotonic B+-tree [9],

ol A

itemporal B+-tree [13], Transaction time [20],

String databases

Prefix B-tree [5], String B-tree [12]

Spatial databases
Z-ordering [23]

location-key based [1], UB-tree [25]

High-dimensional databases

Pyramid [6]

iMinMax [22], iDistance [27], UB-tree [25],

Table 1: B-tree based schemes.

Query box

| H N —
[| L—

. =T

. —_t

. | —

| [| =
|
(a) Z-regions

(b) Range search

Figure 2: Z-regions of UB-tree, and its range search.

Object representation and indexing structures are
treated separately in spatial database applications.
Objects of complex shape are approximated by sim-
pler containers for retrieval purposes. The aim of such
approximation is to filter out as much false drops as
possible before performing more expensive testing on
the actual complex spatial objects. These objects are
then indexed directly in their natural space or trans-
formed and indexed in a parametric space.

For the latter approach, the data space is par-
titioned into grid cells of the same size, which are
then numbered in certain fixed pattern. The idea is
to assign a number to each representative grid in a
space and these numbers are then used to obtain a
representative number for the spatial objects. Tech-
niques on ordering multi-dimensional objects using
single-dimensional values have been proposed. These
include the Peano curve [19], locational keys [1], Z-
ordering [24], Hilbert curve [11], and gray ordering
[10]. The mapping functions used in mapping must
preserve the proximity between data well enough in
order to yield reasonably good spatial search. A
spatial object with extent is represented by a set
of numbers or one-dimensional objects. These one-
dimensional points are indexed using B*-trees.

One such prominent scheme is the universal B-
tree (UB-tree) [2, 25]. In the UB-tree, the Z-ordering
scheme is used to map a multidimensional space to
single dimensional space. The Z-value of a point,
computed by interleaving the bits of the bitstring rep-
resentations of the values of the dimensions of the
point, is the ordinal number of the point on the Z-
curve. Based on the Z-value of the point, it can there-
fore be stored into a BT-tree.

The novelty of the UB-tree lies in the way it or-
ganizes the data space. Basically, it splits the space
into disjoint Z-Regions, each of which is a space cov-
ered by an interval on the Z-curve. Moreover, each
Z-region corresponds exactly to one page on the sec-
ondary storage, i.e., one leaf page of the B*-tree. Fig-

ure 2(a) shows a set of 10 points, and 5 Z-regions
assuming each page can hold only 2 points (For visi-
bility, we have draw each point smaller).

To process a multidimensional range query, the
UB-tree computes the Z-regions that intersect the
query. Each Z-region (which is an interval) corre-
sponds to a range query on the BT-tree storing the
Z-values. Figure 2(b) shows an example. While it
is possible to precompute all Z-value intervals for a
query, this can incur significant overhead as many of
them may fall into the same Z-region. UB-tree avoids
the overhead by constructing the intervals dynami-
cally during runtime by processing the query page-

by-page.

5 High-dimensional Indexing

Many emerging database applications such as image,
time series and scientific databases, manipulate high-
dimensional data. In these applications, two queries
are common: the typical window queries and simi-
larity queries. Similarity search or nearest neighor
search finds objects in the high-dimensional database
that are similar to a given query object, and near-
est neighbor search is a central requirement in such
applications.

Indexes originally designed for low-dimensional
databases deteriorate rapidly in performance with the
increase in the dimensionality of data. This phe-
nomenon is widely known as the dimensionality curse,
and is caused by a few factors. One, the increase
in dimensions reduces the number of entries that
can be stored in an internal node of spatial indexes
that capture spatial information. The smaller fan-
out contributes not only to increased overlap between
node entries but also the height of the correspond-
ing spatial index. Two, as the number of dimensions
increases, the area covered by the query increases
tremendously. Three, the sparsity of data in high-
dimensional databases and low contrast in distance

make high-dimensional indexing a very hard problem
to solve.

Instead of designing a completely new index-
ing structure, we proposed two indexes, known as
iMinMax(¢) [22] and iDistance [27], respectively for
window and similarity queries.

In [22], we observed that firstly, data points in high
dimensional space can be ordered based on the max-
imum value of all dimensions; secondly, if an index
key does not fit in any query window, the data point
will not be in the answer set. The first observation
enables us to represent high-dimension data in sin-
gle dimensional space, and reuse the existing BT -tree,
while the second observation provides a mechanism to
prune the search space. This leads to the design of the
iMinMax(6). The iMinMax(6) adopts a simple trans-
formation function to map high dimension points to
a single dimension space. Let Z.,,i, and x4, be re-
spectively the smallest and largest values among all
the d dimensions of the data point (z1, x2, ..., Z4)
0 < z; < 1,1 < j < d. Let the correspond-
ing dimension for z.,;, and T,z be dmin and dmaes
respectively. The data point is mapped to y over a
single dimensional space as follows:

if Tmin + 0 <1l- Tmaz

dmaz + Tmae Ootherwise

where 6 is a tuning knob that determines the edge
(maximum or minimum) that a point will be mapped
to, and hence can be used to optimize the transfor-
mation for different data distributions. We note that
the transformation actually partitions the data space
into different partitions based on the dimension which
has the largest value or smallest value, and provides
an ordering within each partition. With such a trans-
formation, a B*-tree is used to index the transformed
values.

Range queries on the original d-dimensional space
have to be transformed to the single dimensional
space for evaluation. In iMinMax(6), the original
query on the d-dimensional space is mapped into d
subqueries — one for each dimension — for each sub-
query, a typical range search is performed. Let us de-
note the subqueries as q1, qa, . - ., ¢4, where g; = [I;, h;]
1 <i < d. For the jth query subrange in g, [z;1, Z;2],
we have:

[j + max_; ziy, j+ o]

if min¢ | :L'u +6>1—-maxl ;i
[+zj1, §+mind_; o]

if mmle Tio +60 < 1 —max?_ |z
7+ zj1, 7+ zj2 otherwise

a; =

The union of the answers from all subqueries pro-
vides the candidate answer set from which the query
answers can be obtained, i.e., ans(q) C UL ;ans(g;).
We note that the leaf nodes of the Bt-tree contains
the high-dimensional point, i.e., even though the in-
dex key on the B*-tree is only smgle dimension, the
leaf node entries contain the triple (zey, x, ptr) where
Trey 1S the single dimensional index ﬁey of point z

cf ptr is the pointer to the data page containing
other information that may be related to the high-
dimensional point. Therefore, the false drop affects
only the vectors used as index keys, rather than the
data itself.

As the iMinMax(f) does not capture information
about metric distance or spatial relationship, it is
not able to support exact K nearest neighbor search.
However, the index is efficient for approximate KNN
search when a small error can be tolerated.

Following the similar concept of partitioning data
space, we proposed a technique called iDistance [27]

for KNN search that can be adapted based on the data
distribution. For uniform distributions, it behaves
like iMinMax(6). For highly clustered distributions,
it behaves as if a hierarchical clustering tree had been
created especially for this problem.

In iDistance, the high-dimensional space is split
into partitions either based on some space partition-
ing or data partitioning strategies. KEach partition
is associated with an anchor point (called reference
point) whereby other points in the same partitions
can be made reference to. These reference points
are numbered, O; (i = 0,1,...,m — 1) where m is
the number of partitions. A data point in a unit d-
dimensional space, p(z1, z2, ..., 4) 0 < z; < 1,
1 < j < d,is indexed based on the distance from
the nearest reference point O; as follows:

y = 1% c+ dist(p, 0;)

where dist(p, 0;) is a distance function that returns
the distance between p and O;, and c is some constant
to stretch the data ranges. Since distance is a scalar
value, we used the BT-tree as the indexing structure.
We note that an auxiliary structure must also be used
to store the reference points.

Since the minimum radius required for retrieving
the complete KNNs cannot be predetermined, an it-
erative approach that examines increasingly larger
sphere in each iteration has to be employed. The algo-
rithm works as follows. Given a query point ¢, finding
K nearest neighbors (NN) begins with a query sphere
defined by a relatively small radius r around q. 7 is
increased gradually in each iteration until all the k
nearest neighbors are obtained.

Figure 3: Searching for NN queries ¢; and gs.

Figure 3 shows an example with clusters in the
same axis system. Here, for query point ¢;, only clus-
ter Sp is necessarily to be searched; for query point
g2, both S5 and S3 have to be searched.

Searching in iDistance begins by scanning the aux-
iliary structure to identify the centroids whose data
space (sphere area of cluster or data partition) over-
laps with the query sphere defined by ¢; and r. The
search starts with a small radius, and step by step,
the radius is increased to form a bigger query sphere.
For each enlargement, there are three main cases to
consider.

1. The data space S; contains the query point, g;.
In this case, we want to traverse the data space
sufficiently to determine the K nearest neigh-
bors. This is done by first locating the leaf node
where ¢; may be stored. Since this node does
not necessarily contain points whose distance are
closest to ¢; compared to its sibling nodes, we
need to search left and right (inward and out-
ward of data space) from the reference point ac-
cordingly.

2. The data space intersects the query sphere. In
this case, we only need to search leftward (in-
ward) since the query point is outside the data
space.

3. The data space does not intersect the query
sphere. Here, we do not need to examine the
data space.

The search stops when the K nearest neighbors
have been identified from the data subspaces that in-
tersect with the current query sphere and when fur-
ther enlargement of query sphere does not change the
K nearest neighbors list. The stop criterion is when
the distance of the K** NN object to q is less than
search radius r.

6 Indexing Temporal Databases

Typically, when data is updated in a database sys-
tem, its old copy is discarded and the most recent
version is retained. Conventional databases that have
been designed to capture only the most recent data
are known as snapshot databases. However, histori-
cal data is increasingly becoming an integral part of
corporate databases. In such databases, versions of
records are kept and the database grows as the time
progresses. Data is retrieved based on the time for
which it is valid or recorded. Databases that support
the storage and manipulation of time varying data are
known as temporal databases.

In a temporal database, the temporal data is mod-
eled as collections of line segments. These line seg-
ments have a begin time, an end time, a time-invariant
attribute, and a time-varying attribute. Temporal
data can either be wvalid time or transaction time
data. Valid time represents the time interval when the
database fact is true in the modeled world, whereas
transaction time is when a transaction is committed.
A less commonly used time is the user-defined time,
and more than one user-defined time is allowed.

One of the challenges for temporal databases is
to support efficient query retrieval based on time and
key. To support temporal queries efficiently, a tempo-
ral index that indexes and manipulates data based on
temporal relationships is required. Valid time inter-
vals of a time-invariant object can overlap, but each
interval is usually closed. On the other hand, trans-
action time intervals of a time-invariant object do not
overlap, and its last interval is usually not closed.
Both properties present unique problems to the de-
sign of time indexes.

In [13], we show that temporal data can also be
linearized so that the BT-tree structure can be em-
ployed without any modification. The proposed ap-
proach involves three steps: mapping temporal data
into a two-dimensional space, linearizing the points,
and building a B*-tree on the ordered points.

In the first step, the temporal data is mapped
into points in a triangular two-dimensional space: a
time interval [T, T.] is transformed to a point [T,
T, — Ts]. Figure 4 illustrates the transformation of
the time interval to the spatial representation for the
tourist relation. The z-axis denotes the discrete time
points in the interval [0, now], and the y-axis repre-
sents the time duration of a tuple. The points on the
line named time frontier represent tuples with ending
time of now. The time frontier will move dynamically
along with the progress of time.

In the second step, points in the two-dimensional
space are mapped to a one-dimensional space by
defining a linear order on them. Given two points,
Py(z1,y1) and Py(z2,y2), the paper proposes three
linear orders:

— AN o’ Time Frontier
now_| LN

FTTTTITTITTITTITT
2 4 6 8 10 12 14now 18 20 X

Figure 4: Spatial representation of a relation

. Dgiagonal)—order (<p). P1 <p P iff (a) (z1 +
Y1) < (w2 +y2); or (b) (z1+y1) = (2 +y2) and
r1 < T2.

e Vl(ertical)-order (< V). P, <y Py iff (a) z3 +
y2 = now and z; < xo; or (b) z; +1y; # now and
Z2+y2 # now and z1 < z; or (¢) z1 +y1 # now
and x2 + y2 7# now and 1 = x2, and y; < Ys.

e H{orizontal)-order (<g). Pi <g P iff (a) z2 +
y2 = now and y; < yo; or (b) x1 +y1 # now and
Z2+y2 # now and y1 < yo; or (¢) z1 +y1 # now
and x2 + Y2 # now and y; = Yo, and 1 < Ts.

Figure 5 provides a graphic representation of the
three linear orders defined above. By transforming
the points through linearizing based on any of the
above orders, we can index the temporal database
using a Bt-tree. A temporal query can be mapped to
a spatial search on the two-dimensional space, which
in turn can be translated to a range search operation
on the linear space defined by the ordering relation.
For example, consider the query “Find all persons
who left the United States on or after day 5.” This
query can be efficiently handled by traversing the D-
order B*-tree and retrieving all points in the interval
[(0,5), (14,0)]. However, not all temporal queries can
be efficiently handled using the D-order. For exam-
ple, consider the query “List all persons who entered
the United States on or before day 5”. The D-order
performs poorly for this query, while the V-order is
superior, hence different indexes (constructed using
different ordering relations) have to be used to sup-
port the various types of queries. However, the in-
dex is more suitable for valid times, which are mostly
closed intervals. For data with open intervals, expen-
sive reorganization is necessary. This highlights the
common problem of transformation that one transfor-
mation may not be generic or efficient enough for all
query types. Nevertheless, the main advantage of this
method is the ease with which this indexing scheme
can be implemented using existing DBMSs.

7 Bt-trees in Main Memory

As main memory size increases, it is now possible to
store the entirety of an index (and even a database!)
in the main memory. It is now not uncommon to
find affordable computer systems with main memory
in the order of magnitude of gigabytes. For exam-
ple, a SUN E450 machine with 2 CPUs and 4 GB
RAM costs no more than US$30K, and this price is
expected to drop. For some commercial database sys-
tems, it is now possible to pin the whole index in the

now now

now

now

(a) D-order

(b) V-order

now now

(c) H-order

Figure 5: The three orderings for points in the two-dimensional space.

main memory to reduce I/O cost. However, conven-
tional disk-based indexes are not cache conscious as
they do not optimize on the utilization of L2 cache.
Although the performance gain is achieved by reduc-
ing I/0 reads and writes, it has not been maximized.
To further improve performance, it is important to
make effective use of the L2 caches. Consider the
SUN Fire 4800 we used in our experiments for exam-
ple, a L1 cache hit incurs about 2 processor clocks,
while a L2 miss incurs more than 10 processor clocks
when data is required to be fetched from slower but
larger capacity RAM. Indeed, optimizing the utiliza-
tion of L2 cache is somewhat similar to optimizing
the utilization of RAM to the disk-based DBMS. In-
dexes that have been designed to exploit smaller but
much faster cache memory are said to be cache con-
scious. Like the disk-based indexes which page the
structure into 4K or 8K blocks due to the way data
blocks are read from disk, cache conscious indexes
page the structure based on cache lines. This indeed
has generated renewed interests in designing memory-
based auxiliary structures that optimize CPU cycles
and memory space.

In main memory indexing, disk I/O cost is no
longer an optimization parameter; instead, memory
access, cache misses, translation lookahead buffer
(TLB) misses and computation become the main
costs. Traditional disk-based techniques (e.g., B™-
trees), while applicable, are largely designed to min-
imize I/O cost, which are no longer an optimization
issue in main memory systems. As such, they failed to
exhibit the benefits that they are designed for. How-
ever, as CPU cycle and memory cache read improve
drastically, the BT-tree proved to be cache conscious
and yield good performance. In fact, it has been
shown the the performance of the B*-tree is no longer
inferior than the T-tree [15], which evolved from AVL
Trees and B-trees and was designed specifically for the
main memory indexing.

The CSBT-tree [26], called Cache Sensitive B*-
tree, is a variant of BT -trees that stores all the child
nodes of any given node contiguously, and keeps only
the address of the first child in each node (see Fig-
ure 6). The rest of the children can be found by
adding an offset to that address. Since only one child
pointer is stored explicitly, the utilization of a cache
line is high. CSB*-trees support incremental updates
in a way similar to B*-trees.

Hash-based methods are very efficient for exact
match query, but may perform poorly for range
queries. In [8], based on [16], we proposed a cache
conscious BT-tree called the HB-tree that incorpo-
rates the concept of hashing in its leaf node to support
fast exact match and range queries (see Figure 7).

2 3 8 9 11 13 16 19 21 22 25 26 30 31

Figure 6: The CSB*-tree.

Unlike [16], we exploit the cache line size as the bucket
size and squeeze in as many < key, RID > as possi-
ble to reduce cache misses. The performance study
shows that the HB provides very fast search for both
exact match and range queries. It is a compromise
between the fast random access provided by hashing
and the range search provided by the B+-tree.

N T
FIN /1IN AN

Bucket 1:
Bucket 2:
Bucket 3:

Bucket 4:

Figure 7: The HB*-tree.

The B-tree structure is suitable for exploiting
cache line in main memory indexing in the same way
it was proposed for earlier machines with small mem-
ory. This again illustrates the durability of the B-tree.

8 String Databases

String databases are becoming important due to the
growth of string data in many real world applica-
tions (e.g., web documents, e-commerce data, genome
databases). It is not uncommon to search these
databases for substrings that match a query string.
As such, the need for effective string indexes has been

urgent. Here, we shall present a promising B-tree-
based scheme, the String B-tree [12] whose worse-case
performance is the same as that of the B-trees.

In the String B-tree, each string is stored in a con-
tiguous sequence of disk pages, and the keys of the
strings are logical pointers to the external memory
addresses of their first character. Consider the exam-
ple shown in Figure 8 (see the bottom half). Here,
we assume that the disk page size is 8 characters, and
there are 15 strings {aid, atom, ..., bye}. The value
48 is the logical pointer to string “fit” and 14 is the
logical pointer to suffix “nuate”. There is a space be-
tween two words to denote special endmarkers of a
string.

The String B-tree comprises two logical levels. At
the first level, it is a BT-tree where the logical pointers
of the strings are stored at the leaf nodes of the tree
(see upper portion of Figure 8. The pointers, how-
ever, are not ordered by their values, but rather by
the lexicographical order of the strings. Thus, in the
figure, we find 56 (representing string “ace”) appear-
ing before key 1 (representing string “aid”). However,
unlike conventional BT-tree, each entry in an internal
node is the triplet (first key, last key, pointer), where
pointer points to the subtree that contains the strings
whose lexicographical orders are bounded by the or-
der given by first key and last key. With this level,
one can perform a prefix search as follows: Given a
query string S, as the BT-tree is retrieved, the data
pages that contain the strings corresponding to the
logical pointers are retrieved. By comparing S with
these strings, it can be easily determined which child
node should be traversed next.

To improve on the performance, the second logical
level is introduced in String B-tree. This level repre-
sents the internal organization of each node, i.e., each
BT-tree node is organized as a Patricia trie [18]. By
traversing the Patricia trie, fewer disk pages need to
be retrieved.

The same scheme can be easily extended for sub-
string search by storing all suffixes of all strings in the
database, and perform a prefix search on the struc-
ture [12].

9 Conclusion

B-tree has come a long way. As we have seen in this
paper, it has enjoyed 30 years of success not only in
the traditional domain in which it was first designed
for, but also in many other domains. Its ability to
adapt to “hostile climate” has made it one of the most
fruitful tree. We conclude that the B-tree is truly an
ubiquitous structure that has stood the test of times
with wide acceptance in many domains.

References

[1] D. Abel and J. Smith. A data structure and
algorithm based on a linear key for a rectan-
gle retrieval problem. International Journal of

Computer Vision, Graphics and Image Process-
ing, 24(1):1-13, 1983.

[2] R. Bayer. The universal b-tree for multidimen-
sional indexing: General concepts. In World-
Wide Computing and Its Applications, pages
198-209, 1997.

[3] R. Bayer. Acceptance speech for sigmod innova-
tions award 2001. 2001.

[4] R. Bayer and E. McCreight. Organization and
maintenance of large ordered indices. Acta In-
formatica, 1(3):173-189, 1972.

[5] R.Bayer and K. Unterauer. Prefix b-tree. TODS,
2(1):11-26, 1977.

[6] S. Berchtold, C. B6hm, and H-P. Kriegel. The
pyramid-technique: Towards breaking the curse
of dimensionality. In Proc. 1998 ACM SIG-
MOD International Conference on Management
of Data, pages 142-153. 1998.

[7] E. Bertino, B.C. Ooi, R. Sacks-Davis, K.L. Tan,
J. Zobel, B. Shilovsky, and B. Catania. Indez-
ing Techniques for Advanced Database Systems.
Kluwer Academic Publishers, August 1997.

[8] B. Cui, B.C. Ooi, J. Su, and K.L. Tan. Hash-
based b+-trees for main memory access and join.
In submitted for publication, 2001.

[9] R. Elmasri, G.T.J. Wuu, and V. Kouramajian.
The time index and the monotonic b+-tree. In
Temporal Databases, pages 433-456, 1993.

[10] C. Faloutsos. Gray-codes for partial match and
range queries. IEEE Transactions on Software
Engineering, 14(10):1381-1393, 1988.

[11] C. Faloutsos and S. Roseman. Fractals
for secondary key retrieval. In Proc. 1989
ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, pages 247—
252. 1989.

[12] P. Ferragina and R. Grossi. The string b-tree:
A new data structure for string search in ex-
ternal memory and its applications. J. ACM,
46(2):236-280, 1999.

[13] C.H. Goh, H. Lu, B.C. Ooi, and K.L. Tan. Index-
ing temporal data using existing b+-trees. Data
and Knowledge Engineering, 18:147-165, 1996.

[14] W. Kim, K.C. Kim, and A. Dale. Indexing tech-
niques for object-oriented databases. In Object-
Oriented Concepts, Databases, and Applications,
pages 371-394. Addison-Wesley, 1989.

[15] T. Lehman and M. Carey. A study of index
structure for main memory management sys-
tems. In Proc. 12th International Conference on
Very Large Data Bases, pages 294-303. 1986.

[16] W. Litwin and D. Lomet. The bounded disorder
access method. In Proc. 2nd International Con-
ference on Data Engineering, pages 34-48. 1986.

[17] C.C. Low, B.C. Ooi, and H. Lu. H-trees: A dy-
namic associative search index for oodb. In SIG-
MOD Conference 1992, pages 134-143, 1992.

[18] D.R. Morrison. PATRICIA — Practical algorithm
to retrieve information coded in alphanumeric.
Journal of the ACM, 15(4):514-534, 1968.

[19] G.M. Morton. A computer oriented geodetic
data base and a new technique in file sequenc-
ing. In IBM Ltd. 1966.

[20] M. Nascimento. A two-stage b+-tree based ap-

proach to index transaction time. In IADT,
pages 513-520, 1998.
[21] M. Nascimento and M. Dunham. Indexing

valid time databases via b+-tree. IEEE TKDE,
11(6):929-947, 1999.

[22] B. C. Ooi, K. L. Tan, C. Yu, and S. Bressan.
Indexing the edge: a simple and yet efficient ap-
proach to high-dimensional indexing. In Proc.
18th ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, pages
166-174. 2000.

56 20 64 31

T

56510< }60 24<

BT BT BT BT
5% 1 35 5 10 45 68 20 64 52 48 60 24 41 31
123 45 67 8 9 1011121314 15 1617 18 19 2021 22 23 24 2526 27 28 29 30 31 32
aid atom attenuate car patent zo

3334 3536373839 49 41 42 43 44 4546 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
0 atl as s un by fit dog ace I i d c

65 66 67 68 69 70 71 72
od bye

Figure 8: The String B-tree.

[23] J. Orenstein. Spatial query processing in an
object-oriented database system. In SIGMOD
Conference 1986, pages 326-336, 1986.

[24] J. A. Orenstein and T. H. Merrett. A class of
data structures for associative searching. In Proc.
1984 ACM-SIGACT-SIGMOD Symposium on
Principles of Database Systems, pages 181-190.
1984.

[25] F. Ramsaka, V. Markl, R. Fenk, M. Zirkel, K. El-
hardt, and R. Bayer. Integrating the ub-tree into
a database system kernel. In VLDB 2000, pages
263-272, August 2000.

[26] J. Rao and K. Ross. Making b+-tree cache con-
scious in main memory. In Proc. 2000 ACM SIG-
MOD International Conference on Management
of Data, pages 475-486. 2000.

[27] C. Yu, B.C. Ooi, K.L. Tan, and H. V. Jagadish.
Indexing the distance: An efficient method to
knn processing. In VLDB 2001, pages 421-430,
Roma, Ttaly, September 2001.

