
Blockchains vs. Distributed Databases: Dichotomy and Fusion
Pingcheng Ruan

National University of
Singapore

ruanpc@comp.nus.edu.sg

Tien Tuan Anh Dinh
Singapore University of
Technology and Design
dinhtta@sutd.edu.sg

Dumitrel Loghin
National University of

Singapore
dumitrel@comp.nus.edu.sg

Meihui Zhang
Beijing Institute of

Technology
meihui_zhang@bit.edu.cn

Gang Chen
Zhejiang University

cg@zju.edu.cn

Qian Lin
ByteDance

streamjoin@linqian.me

Beng Chin Ooi
National University of

Singapore
ooibc@comp.nus.edu.sg

ABSTRACT
Blockchain has come a long way — a system that was initially
proposed specifically for cryptocurrencies is now being adapted and
adopted as a general-purpose transactional system. As blockchain
evolves into another data management system, the natural question
is how it compares against distributed database systems. Existing
works on this comparison focus on high-level properties, such
as security and throughput. They stop short of showing how the
underlying design choices contribute to the overall differences. Our
work fills this important gap and provides a principled framework
for analyzing the emerging trend of blockchain-database fusion.

We perform a twin study of blockchains and distributed data-
base systems as two types of transactional systems. We propose a
taxonomy that illustrates the dichotomy across four dimensions,
namely replication, concurrency, storage, and sharding. Within
each dimension, we discuss how the design choices are driven by
two goals: security for blockchains, and performance for distributed
databases. To expose the impact of different design choices on the
overall performance, we conduct an in-depth performance analysis
of two blockchains, namely Quorum and Hyperledger Fabric, and
two distributed databases, namely TiDB, and etcd. Lastly, we pro-
pose a framework for back-of-the-envelope performance forecast
of blockchain-database hybrids.

CCS CONCEPTS
• Information systems→ Distributed database transactions;
Database performance evaluation; • General and reference →

Surveys and overviews.

KEYWORDS
Taxonomy; Benchmark; Blockchain; Transaction; Database

ACM Reference Format:
Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang,
Gang Chen, Qian Lin, and Beng Chin Ooi. 2021. Blockchains vs. Distributed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’21, June 2021, Xi’an, Shaangxi, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Databases: Dichotomy and Fusion. In Proceedings of ACM SIGMOD confer-
ence (SIGMOD’21). ACM, Xi’an, Shaangxi, China, 14 pages. https://doi.org/
10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
The very first blockchain system, that is Bitcoin [64], is a decentral-
ized ledger for recording cryptocurrency’s transactions. The ledger
consists of multiple blocks chained together with cryptographic
hash pointers, each block containing multiple transactions. This
chain of blocks is distributed across a network of nodes, some of
which behave in a Byzantine (or malicious) manner [58]. The net-
work runs a consensus protocol, namely proof-of-work (PoW), to
keep the ledger consistent among the nodes.

Bitcoin is the first digital currency (or cryptocurrency) system
that operates in a Byzantine [58] peer-to-peer (P2P) environment,
without relying on a common trusted third party. But it can execute
only simple transactions that move some coins from one address
(or user) to another. Recent blockchains such as Ethereum [82]
and Hyperledger Fabric [23] support general-purpose transactions.
The key enabler is the smart contract — a user-defined computa-
tion executed by all nodes in the blockchain. With smart contracts,
blockchains can execute transactional workloads which have so
far been handled almost exclusively by databases. In other words,
blockchains have evolved into transactional management systems,
and therefore are comparable to distributed databases. Their advan-
tages over the latter include data transparency and security against
Byzantine failures. In fact, many companies and government agen-
cies are exploring blockchains to replace, or to complement, their
enterprise-grade databases [40, 62, 63].

The parallel between blockchains and distributed databases has
not gone unnoticed. Existing works show that there are little simi-
larities between the two. Blockchains are suitable when the appli-
cations are running in untrusted, hostile environments, whereas
databases are suitable when performance is more important than
security [36, 40, 83, 85]. Their distinction is further compounded
by the significant gap in performance [45], for instance Bitcoin
processes around 10 transactions per second [59] while etcd —
a state-of-the-art distributed NoSQL database — processes over
50, 000 operations per second [47].

On the other hand, we notice the trend of design fusion between
databases and blockchains. Design principles and techniques that
are traditionally used by databases are being adopted by block-
chains. For example, concurrency control techniques attributed to
databases are used to increase the performance of blockchains [42,

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

SIGMOD’21, June 2021, Xi’an, Shaangxi, China Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang Chen, Qian Lin, and Beng Chin Ooi

70, 74]. Moreover, sharding has been used to scale out permissioned
blockchains [41]. At the same time, the security features of block-
chains are used in hybrid blockchain-database systems to provide
verifiable data [21, 46, 68].

One limitation of the existing works that compare blockchains
and databases is that they only focus on application-level, observ-
able and measurable properties, such as throughput and security.
In particular, they show how the two types of systems differ with-
out identifying the root cause. For example, BLOCKBENCH [45]
compares three private blockchains, namely Hyperledger Fabric,
Ethereum and Parity, with H-Store under two popular data pro-
cessing workloads. The authors expose a large gap in performance,
but provide no further analysis of that gap. As a consequence, the
reported difference does not generalize to workloads other than the
two used in the experiments. For instance, under high contention
workloads, the performance difference may shrink drastically.

To overcome these limitations, we aim to provide a comprehen-
sive dichotomy of blockchains and databases. Our approach is to
position them within the same design space — that is, the design
space of general transactional systems. We propose a taxonomy
consisting of four design dimensions and discuss how the two
types of systems make different design choices in each dimension.
The first dimension is replication, which determines what data is
replicated to what nodes, and the mechanism needed to keep the
replicas consistent. The second is concurrency, which determines
the tradeoffs between performance and correctness when executing
concurrent transactions. The third is storage, which determines the
data models and access methods. The final dimension is sharding,
which determines how data is partitioned, and the mechanism for
atomicity of cross-shard transactions.

The four dimensions in our taxonomy capture the fundamental
similarities betwen blockchains and databases. In addition, their
impact on the overall performance can be measured, therefore these
dimensions form a framework for fine-grained, quantitiative com-
parison between these systems.We demonstrate how our taxonomy
is useful in practice by applying it to compare the performance of
recent hybrid database-blockchain systems [21, 46, 61, 65, 68, 71].

In summary, we make the following contributions in this paper:

• We compare blockchains and distributed databases as two
different types of distributed, transactional systems. We pro-
pose a new taxonomy that characterizes both types of sys-
tems and their hybrids along four design dimensions: repli-
cation, concurrency, storage, and sharding.

• We conduct a comprehensive performance study of four
popular systems, including two permissioned blockchains,
namely Fabric [10] and Quorum [16], and two database sys-
tems, namely TiDB [18] and etcd [7]. The results demonstrate
the impact of different design choices on performance.

• We use our taxonomy to analyze the security and perfor-
mance of emerging hybrid blockchain-database systems. We
propose a framework that explains their performance dif-
ferences and estimates the performance of future hybird
systems.

Section 2 provides relevant background, followed by a qualitative
comparisons on the above four dimensions in Section 3. Section 4

Security

Perform
ance Permissionless

Blokchcains

Distributed
Databases

Permissioned
Blockchains

Figure 1: Blockchains vs. distributed databases in the
security-performance coordinate.

and Section 5 discuss the experimental setup and results, respec-
tively. Section 6 reviews related works before Section 7 concludes.

2 BACKGROUND
In this section, we discuss relevant background on blockchains and
distributed databases. Figure 1 shows a high-level comparison.

2.1 Blockchain
From a data structure perspective, a blockchain is a list of blocks
linked by cryptographic hash pointers. These blocks contain cryp-
tocurrency transactions [64]. By this definition, the blockchain is
a tamper-evident ledger for recording transactions. With smart
contracts, transactions are in the form of contract deployment and
invocation. From a systems perspective, a blockchain is a distributed
system consisting of multiple nodes, some of which are malicious.
These nodes maintain a consistent ledger by using a Byzantine
fault-tolerant (BFT) consensus protocol, such as PoW or PBFT [35].

In earlier designs, a blockchain transaction is restricted to cryp-
tocurrency and the states are modeled as Unspent Transaction
Outputs (UTXO). For example, Bitcoin [64] and other similar alt-
coins use the UTXOmodel. Starting with Ethereum [8], blockchains
support smart contracts which allow users to encode and execute
arbitrary Turing-complete computations on the ledger. The ledger
states aremodelled as accounts instead of UTXO. Other systems sup-
porting smart contracts include Quorum, Parity and Hyperledger
Fabric [23]. In these systems, a transaction on the ledger takes the
form of a contract invocation. Transactions sequentially modify the
system state based on their order in the ledger, determined by the
consensus protocol. A read-only transaction can be carried out by
any node, without undergoing the consensus and being included
in the ledger. We only consider blockchains that support smart
contracts in this paper, because earlier blockchains (without smart
contracts) cannot support database transaction workloads and thus
cannot be compared with distributed databases.

Permissionless vs. Permissioned. Blockchains can be broadly
divided into two categories: permissionless (or public), and per-
missioned (or private). In the former, for example in Bitcoin and
Ethereum, any node and user can join the system in a pseudony-
mous manner. In the latter, for example in Fabric and Quorum,
the node and user must be authorized to join the system. With
strong membership control and action regulation, permissioned
blockchains are more suitable for enterprise applications and are
particularly used in the financial sector. Figure 1 shows the security-
performance tradeoffs in blockchains. It highlights how permission-
less blockchains can achieve stronger security because they make

2

Blockchains vs. Distributed Databases: Dichotomy and Fusion SIGMOD’21, June 2021, Xi’an, Shaangxi, China

Storage

Consensus

Operation

Ledger Consensus

Storage

Txn
Engine

Consensus

(a)

Consnsus

Operation

Txn Engine

Consensus

(b)

Figure 2: (a) Blockchains first reach consensus on the trans-
action history, then commit their effects into the storage. (b)
Distributed databases replicate at the storage layer.

no identity assumption. In contrast, permissioned blockchains have
weaker security because of the identity assumption, but can achieve
higher performance because they can employ consensus protocols
with higher efficiency. A more detailed discussion of permissionless
versus permissioned blockchain designs can be found in [44, 45].

2.2 Distributed Databases
Unlike blockchains, database systems have been around for decades.
Relational databases, which support easy-to-use SQL language
and intuitive ACID transaction semantics, remained mainstream
throughout the years. The recent demand of big data processing
and the fact that Moore’s law is reaching its limit are major factors
behind the trend of scale-out database designs. Nowadays, both data
and computation are distributed over multiple nodes in order to
achieve high availability and scalability. Principles and techniques
in designing and scaling distributed databases are described in de-
tail in [67]. Basically, there are two distinctive movements, namely
NoSQL and NewSQL, under this new distributed design direction.

NoSQL vs. NewSQL. For scalability, many distributed databases
abandon the complex relational model and the strong ACID seman-
tics. These systems are referred to as NoSQL. They support more
flexible data models and weaker consistency. In the sense of the
CAP theorem [50], these NoSQL systems compromise consistency
for the sake of availability. A variety of their supported data models
include key-value store (e.g, Redis [34], etcd [7]), document store
(e.g, CouchDB [22]), graph store (e.g, Neo4J [80]), column-oriented
(e.g, Cassandra [55]) and so on. The most lenient consistency model
is eventual consistency which makes no guarantees about the order
of read and write operations. Between eventual and strong con-
sistency, researchers explore a variety of other abstractions, such
as sequential, causal, and PRAM consistency. They standardize on
the allowable operation behavior for the ease of reasoning. Most
NoSQL databases offer configurable options, where users can trade
off between performance and consistency.

The surge of NoSQL systems, however, does not obscure the
cost in usability and the increase in application complexity. A new
class of distributed database systems, called NewSQL, aim to restore
the relational model and ACID semantics without sacrificing much
scalability. NewSQL has drawn attention since Google introduced
Spanner [39], the first NewSQL system. It was followed by a few
database vendors, such as CockroachDB [5] and TiDB [18]. In this
paper, we consider both NoSQL and NewSQL systems.

3 TAXONOMY
Table 1 compares the design choices of distributed databases and
blockchains under each dimension in our taxonomy.

3.1 Replication
Replication is the technique of storing copies of the data on multiple
nodes called replicas. The key challenge in such a system is to
ensure consistency under failures. In this section, we characterize
blockchains and distributed databases by what they replicate, how
they keep the replicas consistent, and their failure models.

3.1.1 Replication model. The units of replication can be transac-
tions or the read/write operations. Figure 2 shows that blockchains
replicate an ordered log of transactions (or ledger). Distributed
databases replicate the ordered log of read and write operations
on top of the storage. The nodes in the database are oblivious to
the transaction logic because they see only one operation at a time.
One consequence of this model is that the transaction manager
which coordinates the execution of a transaction must be trusted.
In contrast, a blockchain does not have such trusted entity, there-
fore it replicates the entire transaction so that its execution can be
replayed by each participant node.

By replicating transactions, the ledger contain application-level
information, such as transaction context, client signature, execution
timestamp, etc., making it easy to perform transaction verification.
Due to this verifiability, blockchains are often used as a data and
computing platform for mutually distrusting parties. On the other
hand, replicating storage operations means there can be more con-
currency, because operations can be replicated in different order
but with the same effect on the storage.

3.1.2 Replication approach. There are two main approaches to
maintain consistency among replicas. The first is primary-backup,
which dedicates a replica as the primary which synchronizes its
states with backup replicas. This is adopted by many databases. For
example, Replex [77] that uses chain replication. Cassandra [55]
uses the client as the primary to synchronize the replicas.

The second approach is state-machine replication, which essen-
tially maintains an ordered log of operations/transactions on each
replica. Each replica starts at the same initial state, then applies
the operations/transactions in the log in the same order. Many
systems use consensus protocols, such as Paxos [57], Raft [66], and
PBFT [35], for the replicas to agree on the ordered log. Examples
include Quorum [16], TiDB [18], Spanner [39]. Compared with
the primary-backup, consensus protocols achieve the automatic
primary failover, by introducing the view change. That is, when
the progress halts, replicas may jointly agree to enter into a new
epoch/view where a new primary is elected. Apart from the con-
sensus, other systems rely on external services that provide a dis-
tributed shared log abstraction, such as Kafka [13] and Corfu [26].
Operations/transactions are appended to the log, and the replicas,
as clients of the log, apply them independently. Examples of shared
log systems include Fabric [10], Hyder [29], and Tango [27].

Primary-backup protocols are simpler, and can perform better
than state-machine replication, when the states are small and there
are no failures. For example, the chain replication protocol can
spread the network cost more evenly among the replicas than a

3

SIGMOD’21, June 2021, Xi’an, Shaangxi, China Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang Chen, Qian Lin, and Beng Chin Ooi

Table 1: Design choices in blockchains and distributed databases

Blockchains Distributed Databases

Replication Transaction replication
Byzantine Fault Tolerant consensus: PBFT, PoW, etc.

State replication
Crash Fault Tolerant consensus: Raft, Paxos, etc.

Concurrency Serial execution Concurrent execution

Storage Append-only ledger abstraction
Authenticated data structure: Merkle Tree, etc.

Direct access without historical query
Hardware-conscious index: PSL, FAST, etc.

Sharding Node-aware shard formation
2PC and BFT-based replication

Workload-aware shard formation
2PC with centralized coordinator

consensus protocol, and it achieves better read performance [77].
Systems based on shared log are expected to perform better than the
ones based on consensus when there are no failures. This is because
shared log decouples ordering from state replication, therefore it
can be optimized to have high throughput. Furthermore, while the
throughput of a consensus protocol decreases with more replicas,
the throughput of a shared log system is expected to remain con-
stant until the number of log consumers exceeds the capacity of
the log producers [26].

3.1.3 Failure model. Replication protocols are complex because
they need to maintain consistency under failure. Under the crash
failure model, in which nodes only fail by crashing, the protocols
need to tolerate hardware and software failures. Under the Byzan-
tine failure model, in which nodes fail arbitrarily, the protocols
need to tolerate any software and hardware failures, as well as any
malicious behavior. This model is suitable for achieving security,
since it considers attacks that fully compromise some nodes in the
system.

An orthogonal dimension to the node failure model is the net-
work assumption. The network is synchronous when the network
delay is bounded and known. It is asynchronous when the network
delay is unbounded. Protocols that tolerate crash failures, or CFT,
require f + 1 replicas to tolerate f failures under the synchro-
nous network model [32], and 2f + 1 under the asynchronous
network model [57, 66]. Protocols that tolerate Byzantine failure,
or BFT, require 2f + 1 and 3f + 1 replicas to tolerate f failures
under the synchronous and asynhronous network models, respec-
tively [31, 35, 87].

Databases assume the crash failure model, since they are con-
sidered internal systems which are not subject to security attacks.
For example, Spanner [17] uses Paxos [56], a CFT protocol. Per-
missioned blockchains support both failure models. For example,
Quorum provides implementations for both Raft [66], a CFT proto-
col, and IBFT, a BFT protocol. These systems allow applications to
make different tradeoffs between security and performance. Public
blockchains, on the other hand, ubiquitously adopt BFT protocols
because they admit any nodes to the system. In particular, PoW
protocols are often used because they address one fundamental
problem in the public settings: a node can have many identities.
In PoW, a node’s probability of solving a computational puzzle,
thereby reaching consensus and gaining rewards, is proportional
to its physical resources which are difficult to forge.

In an asynchronous network and under failures, the FLP theo-
rem [48] rules out any deterministic consensus protocol that can
achieve both safety and liveness. Public blockchains choose liveness

over safety, meaning that the systems remain available under net-
work partitions, but these partitions may be in disagreement which
takes the form of forks. Here, availability refers to the system’s
behavior, that is, new blocks are appended to the ledger. Individual
transactions may be censored and excluded from the blockchain.

PoW protocols have low throughputs mainly due to the resource
requirements [45]. CFT protocols have better performance than BFT
protocols, because the former incur O(N) network cost, whereas
the latter incur O(N 2), where N is the number of nodes. As a re-
sult, BFT protocols do not scale to a large number of nodes, and
their performance is more sensitive to network conditions at scale.
Specifically, when N is large, BFT protocols are more likely to enter
view change — an expensive phase of the protocol for replacing the
current leader.

3.2 Concurrency
Concurrency refers to the extent to which transactions are executed
at the same time. There are two choices: transactions are executed
either serially (or sequentially), or concurrently. Most blockchains
support only serial execution, while distributed databases employ
sophisticated concurrency control mechanisms to extract as much
concurrency as possible.

There are two reason behind blockchains’ lack of support for
concurrency. First, serial execution may not affect the overall per-
formance because transaction execution is often not the bottle-
neck [45]. For example, in Bitcoin, the consensus protocol may
take several minutes to complete, which is the block interval re-
quired by the protocol, whereas the transaction execution, which
invokes the Bitcoin script to validate a cryptocurreny flow, can be
done in milliseconds. Second, serial execution means the behavior
of smart contracts is deterministic when the transaction execution
is replicated over many nodes. The benefit of determinism is that it
is easy to reason about the states of the ledger.

Unlike blockchains, concurrency remains a major research topic
in databases, as it is the main source of performance improvement.
The challenge in extracting concurrency is to ensure the correctness
of the concurrent execution. In fact, there is a wide range of isolation
levels [25, 37] which make different tradeoffs between correctness
and performance. Most production-grade databases today offer
more than one isolation level.

We observe that recent blockchains are adopting some simple
concurrency techniques often found in databases. In Hyperledger
Fabric, for example, transactions are simulated (executed) in parallel
against the ledger states before being sent for ordering. During the
later commit phase, the system uses a simple optimistic concurrency

4

Blockchains vs. Distributed Databases: Dichotomy and Fusion SIGMOD’21, June 2021, Xi’an, Shaangxi, China

control to achieve serializability which aborts transactions whose
simulated states are stale. More established techniques to reduce
abort have also been proposed [70, 74].

3.3 Storage
3.3.1 Storage model. Storage can be built upon the latest states
only, amenable for mutation, or upon all historical information,
amenable for appending. The storage in distributed databases only
exposes direct access to up-to-date records. In databases without
explicit provenance support, historical data is maintained in lim-
ited forms, for example as write-ahead logs. We note that such
logs are used primarily for failure recovery, and they are periodi-
cally pruned. Blockchains, besides the state storage, additionally
expose an append-only ledger abstraction. The ledger, a chain of
blocks, records historical transactions and the changes made to
the global states. We note that such a ledger is hash protected to
conserve historical integrity. Some blockchains allow applications
to access only the latest states, for example, Hyperledger Fabric
v0.6. Recently, novel blockchain-tailored storage systems have been
proposed to enable access to any historical states during smart
contract execution [69].

3.3.2 Index. Indexes play an instrumental role on the state storage
to facilitate data access. Apart from the performance consideration,
some security-oriented systems additionally rely on the index to
compute a digest, which uniquely identifies the state contents. Dis-
tributed databases are more concerned by performance, i.e., any
small optimization on the index can translate to a significant im-
provement in performance. Modern indexes are designed to be
hardware-conscious in order to extract the most efficiency from
the hardware. For example, in-memory databases abandon the disk-
friendly B-tree structure for other structures such as FAST [53]
and PSL [84] which are designed for better cache utilization and
multi-core parallelism.

To compute the content-unique digest, blockchains employ an
authenticated data structure, such as the Merkle tree index, to
provide integrity protection on top of the state storage. For example,
Ethereum uses a prefix trie, named Merkle Patricia Trie (MPT) [14].
InMPT, the states are stored in the leaves. The states with a common
key prefix are organized under the same branch. Each node is
associated with the cryptographic hash of its content in the storage
engine, such that the root hash represents the complete global
states. The access path serves as the integrity proof for the retrieved
value. Older versions of Hyperledger Fabric use a Merkle Bucket
Tree (MBT) in which the size of the tree is fixed. Unlike the ledger
abstraction which is ubiquitous in blockchains, we note that not
all blockchains adopt the authenticated data structure for the state
organization. For example, Hyperledger Fabric abandons this design
from version 1 onwards.

3.4 Sharding
Sharding is a common technique in distributed databases for achiev-
ing scalability, in which data is partitioned into multiple shards.
Although it has been studied extensively in databases, sharding has
only recently been introduced to blockchains to harness concur-
rency across shards. In this section, we discuss two key challenges

in any sharded system, that are (i) how to form a shard, and (ii)
how to ensure atomicity for cross-shard transactions.

3.4.1 Shard formation. A shard formation protocol determines
which nodes and data go to which shard. The security of block-
chains depends on the assumption that the number of failures
is below a certain threshold. The shard formation protocol must,
therefore, ensure that the assumption holds for every shard. In
particular, the shard size must be large enough so that the fraction
of Byzantine nodes is small. Furthermore, the attacker must not be
able to influence the shard assignment, otherwise, it could reserve
enough resources for one shard to break the security assumption.
State-of-the-art sharded blockchains have different approaches. For
example, Elastico uses PoW for shard formation [60], while the re-
cent version of Ethereum uses Proof-of-Stake to select validators for
each shard [9]. OmniLedger [54] employs a complex cryptographic
protocol, while AHL [41] uses trusted hardware. These protocols
are secured against Sybil attacks, and executed regularly, in the
form of shard reconfiguration, to guard against adaptive attackers.

The goal of sharding in distributed databases is scalability. As
such, the systems aim to assign data to shards in a way that opti-
mizes the performance of certain workloads. In practice, they offer
a variety of partitioning schemes, for example, hash partitioning
and range partitioning, so that users can select the most suitable for
their workloads. Some systems, for instance, Cassandra[55], even
allow users to specify workload distributions so that data can be
partitioned in a locality-aware manner. Unlike blockchains, shard
reconfiguration is not necessary for databases, unless when there
are significant changes in the workload distribution.

3.4.2 Atomicity. Sharding introduces the problem of transaction
atomicity when a transaction touched data inmultiple shards. Atom-
icity requires a cross-shard transaction to either commit or abort
in all shards. In databases, this problem is addressed by the two-
phase commit (2PC) protocol. This protocol requires a dedicated
transaction coordinator that must be trusted, but may fail and leave
the transaction blocked forever. A recent work proposed Parallel
Commit to reduce the commit duration to a single round trip [76].

Sharded blockchains face additional challenges in ensuring atom-
icity because the coordinator cannot be trusted under the Byzantine
failure model. To overcome this, Eth2 introduces a separate chain
running Casper consensus [33], called Beacon Chain, that coordi-
nates cross-shard transactions [9]. Similarly, [41, 51] propose to
implement the 2PC coordinator as a state machine in a shard that
runs a BFT protocol. The BFT protocol ensures that the shard is less
vulnerable to attacks and does not become a point of failure. Any
cross-shard transaction must involve this 2PC BFT replicated state
machine to ensure atomicity. The consensus liveness guarantees
the high availability of the coordinator, therefore mitigating the
blocking problem. But the Byzantine setup in blockchains imposes
considerable overhead to the 2PC process.

3.5 Fusion of Blockchains and Databases
The taxonomy above provides a comprehensive description of the
design space of distributed transactional systems. This taxonomy

5

SIGMOD’21, June 2021, Xi’an, Shaangxi, China Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang Chen, Qian Lin, and Beng Chin Ooi

Table 2: System comparison based on our taxonomy with the benchmarked ones and their versions highlighted. For each
hybrid system, we mark their security-oriented designs with red and performance-oriented designs with blue.

Category System Replication Concurrency Storage Sharding
Support (2PC)Replication

Model
Replication
Approach

Failure Model
(Consensus Protocol) Ledger Abstraction Index(Storage Engine)

Permissionless
Blockchains

Ethereum [8] Txn-based Consensus BFT(PoW) Serial ✓ LSM Tree(LevelDB)+MPT ✗(✗)

Eth2 [9] Txn-based Consensus BFT(PoS + Casper) Serial (in each shard) ✓ LSM Tree(LevelDB)+MPT ✓(✗)

Permissioned
Blockchains

Quorum v2.2 [16] Txn-based Consensus Raft(CFT)/IBFT(BFT) Serial ✓ LSM Tree(LevelDB)+MPT ✗(✗)

Fabric v2.2 [10] Txn-based Shared log CFT(Orderer with Raft) Concurrent Execution
Serial Commit ✓ LSM Tree(LevelDB) ✗(✗)

Fabric v0.6 [11] Txn-basformatsed Consensus BFT(PBFT) Serial ✓
LSM Tree(RocksDB)

+ MBT ✗(✗)

EOS [6] Txn-based Consensus BFT(DPoS) Serial ✓ B-tree(MongoDB) ✗(✗)

FISCO BCOS [12] Txn-based Consensus CFT(Raft) Serial ✓
LSM Tree(LevelDB)

+MPT ✗(✗)BFT(PBFT)

NewSQL
Databases

TiDB v4.0 [18] Storage-based Consensus CFT(Raft) Concurrent ✗ LSM Tree(TiKV) ✓(✓)

CockroachDB [5] Storage-based Consensus CFT(Raft) Concurrent ✗ LSM Tree(RocksDB) ✓(✓)

Spanner [17] Storage-based Consensus CFT(Paxos) Concurrent ✗ LSM Tree ✓(✓)

H-store [52] Storage-based Primary-backup CFT Concurrent ✗ B Tree ✓(✓)

NoSQL
Databases

Etcd v3.3 [7] Storage-based Consensus CFT(Raft) Serial ✗ B Tree(BoltDB) ✗(✗)

Cassandra [4] Storage-based Primary-backup CFT Concurrent ✗ LSM Tree ✓(✗)

DynamoDB [1] Storage-based Primary-backup CFT Concurrent ✗ B Tree ✓(✗)

Out-of-the
Blockchain
Databases

BlockchainDB [46] Storage-based Consensus BFT(PoW) Serial (in each shard) ✓
LSM Tree(LevelDB)

+MPT ✓(✗)

Veritas [21] Storage-based Shared log CFT(Kafka) Concurrent Execution
Serial Commit ✓ Skip List(Redis) ✗(✗)

FalconDB [68] Storage-based Consensus BFT(Tendermint) Concurrent Execution
Serial Commit ✓

B Tree(MySQL)
+Merkle Tree(IntegriDB) ✗(✗)

Out-of-the
Database

Blockchains

Blockchain Relational
Database (BRD) [65] Txn-based Shared log CFT(Kafka)

BFT(BFT-SMaRt) Concurrent ✓ B Tree(PostgreSQL) ✗(✗)

ChainifyDB [71] Txn-based Shared log CFT(Kafka) Concurrent ✓
B Tree

(MySQL/PostgreSQL) ✗(✗)

BigchainDB [61] Txn-based Consensus BFT(Tendermint) Concurrent ✓ B Tree(MongoDB) ✗(✗)

helps in illustrating the similarities and differences between block-
chains and distributed databases. It also serves as a principled frame-
work for understanding the recently emerging hybrid blockchain-
database systems. In this section, we discuss how these systems
fit into the design space. We provide a deeper analysis of their
performance in Section 5.6.

Out-of-the-blockchain Databases. One approach toward a
hybrid design is to start with a blockchain (or a blockchain-like
system) and build database features on top of it. Examples of this ap-
proach include BlockchainDB [46], Veritas [21], and FalconDB [68],
which provide shared and verifiable databases for multiple distrust-
ing parties. They use blockchains as an integrity-protected storage,
and build other database components on top of it. In these sys-
tems, replication is transaction-oblivious, with duplicated states,
logs, and meta-data. BlockchainDB replicates storage operations
and uses PoW for consensus. It inherits the authenticated state
organization from the underlying blockchain and employs multi-
ple blockchains for storage. Therefore, it is amenable to sharding.
However, transactions are executed sequentially within each shard.
FalconDB and Vertias also adopt storage-based replication, but use
Tendermint [31] for consensus and Kafka [13] as the shared log,

respectively. They use a similar optimistic concurrency control
mechanism as Fabric. FalconDB outsources the authentication task
to IntegriDB [91], which enables a light-weight client to produce a
proof without holding the entire ledger. Veritas relies on trusted
verifiers for the state integrity.

Out-of-the-database Blockchains. Another hybrid design ap-
proach is to start with a database, then add blockchain features to it.
Examples of this approach include BigchainDB [61], Blockchain Re-
lational Database (BRD) [65], and ChainifyDB [71]. In these systems,
each node has its own database and executes transactions on its
database according to a global order achieved through consensus.
These systems adopt the transaction-based replication model where
the ledger serves as a secure shared log that stores transactions.
The nodes execute the same sequence of transactions, but on differ-
ent local databases. In particular, BRD uses PostgreSQL [75] and
the transactions contain invocation contexts of stored procedures.
BigchainDB uses MongoDB [15], thus its transactions are in JSON
format. ChainifyDB allows heterogeneous relational databases, and
transactions are in the form of standardized SQL statements. Chaini-
fyDB uses a Kafka broker to share logs for efficiency. In contrast,

6

Blockchains vs. Distributed Databases: Dichotomy and Fusion SIGMOD’21, June 2021, Xi’an, Shaangxi, China

BigchainDB uses the Tendermint consensus protocol which toler-
ates Byzantine failures at the expense of performance. BRD jointly
uses Kafka [13] and BFT-SMaRt [30], an implementation of PBFT.
These systems inherit the concurrency support of their underly-
ing databases, with serializable constraints according to the ledger
order. However, these systems do not protect the local states with
Merkle trees and only rely on the integrity protection of the ledger.
Finally, these systems do not support sharding.

In summary, out-of-the-database blockchains retain many de-
sign choices of distributed databases, as their main goal is perfor-
mance. In contrast, out-of-the-blockchain databases inherit many
blockchain features, as they are more security-driven. Some cen-
tralized and in-cloud databases, also learning from blockchains,
rely on a hashed chain for verifiable transactions. Examples include
Spitz [90], QLDB [2] and LedgerDB [86]. Some systems provide
tailored optimizations on the ledger-like structure like LogBase [79].

3.6 Discussion
Table 2 summarizes some representative transactional systems and
their design choices based on our proposed taxonomy. We only
consider blockchains with generic smart contracts and NoSQL data-
bases with key-value data model. We exclude permissionless block-
chains from our quantitative analysis, as their security-performance
tradeoffs have been extensively studied [49]. One can observe from
Table 2 that the hybrid systems, just like permissioned blockchains,
share some security-oriented design choices with blockchains and
some performance-oriented design choices with databases.

4 EXPERIMENTAL SETUP
4.1 Systems
We select four representative systems: two permissioned block-
chains, namely Quorum [16] and Hyperledger Fabric [10], and two
distributed databases, namely TiDB [18] and etcd [7]. Quorum rep-
resents order-execute blockchains, while Fabric represents execute-
order-validate blockchains. They also employ different replication
approaches, as shown in Figure 3. Fabric employs an external or-
dering service while Quorum relies on Raft consensus. Quorum
is a fork of geth, the Golang implementation of Ethereum. Quo-
rum replaces the original Proof of Work (PoW) of Ethereum with
a CFT protocol, namely Raft, and a BFT protocol called Istanbul
BFT (IBFT). However, it inherits Ethereum Virtual Machine (EVM)
to invoke smart contracts. Fabric is featured for its modularized
design. In particular, a node role is separated into orderer and peer,
as detailed in Figure 3b.

TiDB [18] and etcd [7] represent NewSQL and NoSQL distributed
databases, respectively. TiDB consists of three independent mod-
ules, namely Placement Driver for coordinating cluster manage-
ment, TiKV as the replicated key-value storage, and TiDB-server
for parsing and scheduling SQL queries in a stateless manner. TiDB
only supports snapshot isolation. Etcd provides a simple key-value
data model with relaxed transactional restrictions but focuses on
the tradeoff between availability and consistency. Similar to block-
chains, etcd employs a single consensus instance to sequence all the
requests. Without sharding, etcd fully replicates the data on each
node. We also benchmarked CockroachDB [5], another NewSQL

Node

Node

Block
Proposal

Node

Node

Consensus
Ledger: Block

Validation

1

2

3

2

3

Txn
Proposal

(a) Quorum transaction lifecycle

Ledger Node

Node

Block
Validation

Ordering
Service

Node

Node

Txn Proposal

Simulation Result

Txn Proposal
with Result

1

2

3 4

43

(b) Fabric transaction lifecycle

Figure 3: Transaction execution in Quorum vs. Fabric. In
Quorum, a node assembles pre-executed transactions into
blocks before running the consensus. In Fabric, a client col-
lects simulation results and endorsements from peer nodes
to form a transaction. Orderer nodes order the transactions
and batch them into blocks, which are then pulled by the
peer nodes for independent validation and commit.

database. Since it exhibits similar performance trends as TiDB, we
decide to omit it in this paper.

4.2 Setup
For a fair comparison, we run all systems in full replication mode
where each node has a complete copy of the states. In particular,
for Fabric the endorsement policy is set such that a transaction is
executed and endorsed by all peers. For TiDB, we set the replication
factor to be the same as the number of nodes. In other words, even
though TiDB partitions data to multiple shards and manages the
shards separately, each node has a copy of the entire system state.
We configure Quorum and Fabric to use Raft, a CFT consensus. For
Fabric, we fix the number of orderers to three while scaling the
peers. For TiDB, we scale all its modules with the number of nodes.

Unless otherwise specified, we use YCSB and Smallbank work-
loads in our experiments. The experiment parameters for YCSB are
summarized in Table 3 with the default values underlined. For the
database experiments we use the open-source driver for YCSB [19]
and the OLTPBench [43] driver for Smallbank. Both Fabric and
Quorum are benchmarked using Caliper [3]. We note that although
there are differences in the types of drivers for benchmarking block-
chains and databases, they alone do not account for the large per-
formance gap reported in the following section.

Our experiments are conducted on an in-house cluster consisting
of 96 nodes connected via 1Gb Ethernet. Each node is equipped
with Intel Xeon E5-1650 CPU, 32GB RAM, and 2TB hard disk. All
the experiments are repeated three times and we report the average.

5 RESULT AND ANALYSIS
We first summarize the main findings, then provide the detailed
experimental analysis. Based on these findings, we propose an em-
pirical framework that compares the performance of recent hybrid
blockchain-database systems. The framework not only explains the
performance differences in existing systems, but it is also useful for
understanding future hybrid systems.

7

SIGMOD’21, June 2021, Xi’an, Shaangxi, China Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang Chen, Qian Lin, and Beng Chin Ooi

Table 3: Experiments parameters

Variable Values

Record size (Byte) 10, 100, 1000, 5000
Zipfian coefficient θ 0.0, 0.2, 0.4, 0.6, 0.8, 1.0
of transaction operations 1, 2, 4, 6, 8, 10
of nodes 3, 5, 7, 11, 15, 19

Fab
ric
Quo

rum TiDB Etcd TiKV
102

103

104

105

tp
s

1294

245

5159

16781 14117

(a) Update

Fabric
Quorum TiDB Etcd TiKV

102

103

104

105

106
tp

s

23809 19166

87933

282192
94050

(b) Query

Figure 4: Throughput of YCSB workload (log scale).

• Peak performance. The performance gap between block-
chains and distributed databases is large. However, the gap
is not as significant as previously reported.

• Replication. The transaction-based replication model re-
stricts concurrency, which limits the impact of different repli-
cation approaches and failure models on the system’s peak
performance.

• Concurrency. Execute-order-validate blockchains have low
performance under workloads with high contention and
constraints. The impact of workloads on the performance is
prominent in NewSQL databases, where concurrency is on
top of replication.

• Storage. The ledger abstraction in blockchains incurs sig-
nificant storage overhead. On the other hand, the overhead
needed to guarantee state tamper evidence is small.

• Sharding. The performance of sharded blockchains is far
behind that of distributed databases, due to the security re-
quirements on shard formation and periodic reconfiguration.

5.1 Peak Performance
5.1.1 YCSB. We first analyze the peak performance of the four
systems under the default configurations shown in Table 3. Specif-
ically, we populate each system with 100K records, each of size
1 KB. We then measure the throughput and latency against two
YCSB workloads: uniform update-only (100% writes) and uniform
query-only (100% reads). We also measure independently the per-
formance of TiKV, the replicated storage of TiDB, and include it in
this comparison.

Figure 4 shows the peak throughput of the five systems. The
relational NewSQL database (TiDB) outperforms the blockchains,
while the replicated storages (etcd and TiKV) outperform the rela-
tional database. Specifically, the two blockchains achieve update
throughputs of below 1500 transactions per second (tps), whereas
TiDB achieves 5159 tps. The two key-value storages, etcd and TiKV,
achieve around 15, 000 tps. Both outperform the NewSQL data-
base because they do not incur the overhead of supporting ACID

Fab
ric
Quo

rumTiDB Etcd TiKV
0

1000

2000

3000

4000

m
s

(a) Update

Fab
ric
Quo

rum TiDB Etcd TiKV
0

2

4

6

8

10

m
s

(b) Query

Figure 5: Latency of YCSB workload.

transactions. This is evidenced by the gap between TiDB and TiKV,
caused by the overhead of the TiDB-server that wraps around the
key-value storage. But this gap is less evident under the query
workload, as ACID semantics impose less constraints on read-only
transactions.

Figure 5 shows the latency when the systems are unsaturated.
Similar to throughput, we observe a clear separation between the
blockchains and the databases. We note that the blockchains have
weaker guarantees for read-only transactions compared to those of-
fered by the databases (linearizability). Responses to read requests
in the former still take longer (up to 6× in Fabric) than the lin-
earizable reads in the latter. The update (query) latency in Fabric
and Quorum is around 3500ms (9ms) and 500ms (4ms) respectively,
while in databases it is below 100ms (1ms).

Our results confirm the conclusion drawn in [45] that the per-
formance of blockchains lags far behind state-of-the-art databases.
However, we observe a smaller gap than that reported in [45].
In particular, the relational database, TiDB, achieves 4× greater
throughput than the fastest blockchain, Fabric, under the uniform
update workload (5159 vs. 1294 tps). This is in contrast with [45],
where H-Store exhibits more than 120× speedup over blockchains.
The key reason is that H-Store is an in-memory, distributed database
with primary-backup replication. H-Store represents an extreme
point of the design space that makes it rather dissimilar to block-
chains. In contrast, all systems considered in our work incur some
overheads from the consensus protocols.

5.1.2 Smallbank. Figure 6 compares the OLTP performance under
the Smallbank workload. The request key follows a Zipfian distri-
bution with coefficient θ = 1 on 1M records. We do not include etcd
because it does not support general transactional workloads. Com-
pared to YCSB, besides skewness, a Smallbank transaction imposes
more constraints and may touch up to two records, but the record
size is smaller. To our astonishment, the experiments show that
the performance difference between blockchains and distributed
databases is small. For example, Faric and Quorum exhibit through-
puts of 835 and 655 tps, respectively, while TiDB exhibits only 1031
tps. The performance of Fabric and TiDB drops when switching
from YCSB to Smallbank, while the performance of Quorum im-
proves with a peak throughput under Smallbank that is 2.5× greater
compared to YCSB. We attribute this improvement to the smaller
record size of Smallbank. As we shall see in Section 5.3.3, Quorum’s
performance is vulnerable to transactions that access large records.
Likewise, the request skewness accounts for the throughput drop
reported by Fabric and TiDB.

8

Blockchains vs. Distributed Databases: Dichotomy and Fusion SIGMOD’21, June 2021, Xi’an, Shaangxi, China

Fabric Quorum TiDB0

200

400

600

800

1000

1200

tp
s

835
655

1031

Figure 6: Throughput of
the skewed Smallbank
workload (1M records).

Fabric TiDB0

2500

5000

7500

10000

12500

15000

17500

m
s

Un
sat
ura
ted

Sa
tur
ate
d

Un
sat
ura
ted

Sa
tur
ate
d

Execute
Order
Validate
TiDB

(a) Update

Fabric TiDB0

1000

2000

3000

4000

5000

us

4294

406
59 16 15 275

Authentication
Simulation
Endorsement
SQL-parse
SQL-compile
Storage-get

(b) Query

Figure 7: Latency breakdown.

1 2 3 4 5 6
tolerated failures (f)

0

100

200

300

400

tp
s

Raft IBFT

Figure 8: Quorum throughput
with CFT(Raft) and BFT(IBFT).

Table 4: Throughput (in tps) with varying number of nodes
under full replication mode.

3 7 11 15 19

Fabric 1560 1288 1031 749 528
Quorum 237 236 229 217 219
TiDB 5726 8301 8898 6235 5465
Etcd 19282 16453 11243 7801 6076
TiKV 10369 7765 7236 5516 5195

5.2 Replication
5.2.1 Effect of replication model. To understand the impact of the
replication model, we focus on Fabric and TiDB because they sup-
port different transaction lifecycles. Figure 7a compares the latency
of a transaction when the systems are both unsaturated and satu-
rated. Besides its higher latency compared to TiDB, Fabric exhibits
a significant increase in latency when the system is saturated. To
investigate this issue, we instrument Fabric codebase to record
detailed latency breakdown at each phase of a transaction. In par-
ticular, we measure the latency of the execute, order, and validate
phases. When Fabric is unsaturated, the order and validate phases
take roughly 700ms each, while the execute phase takes below
500ms. But when the request rate exceeds the system capacity,
validation phase becomes the bottleneck, as shown in Figure 7a.

We attribute this increase in latency to the serial validation of
blocks in Fabric, where blocks pile up before committing their
transactions. Even inside a block, transactions persist their effects
sequentially based on their internal order. Worst still, substantial
overhead in transaction processing is attributed to factors other
than data processing. For example, we observe that Fabric, under
the saturated scenario, spends 42% of the block validation time to
verify the transaction signature. We note that serial validation is
Fabric’s implementation choice, i.e., it could commit transactions
concurrently. However, most of the blockchains impose a strict
transaction order to achieve deterministic execution for security
reasons. In contrast, database transactions do not suffer from such
strict sequentiality under their storage-based replication, nor do
they incur security overhead.

The security overhead is the most prominent in query transac-
tions, which involve no consensus in both systems. We show in
Figure 7b that Fabric spends most of the query time to authenticate
the clients. In contrast, TiDB incurs no cryptographic overhead and
most of its query time is spent on getting the data.

5.2.2 Effect of replication approach. We increase the number of
nodes to compare the scalability of shared log and consensus-based
systems under the full replication mode, and summarize the results
in Table 4. Here, Fabric is the only shared log system. Even though
Fabric employs the Raft consensus to obtain the transaction order,
this is an external service with 3 fixed orderers. The increasing
number of Fabric peers consume the same shared ordered log while
for the other systems, all their nodes participate in the consensus.

Contrary to our expectations on the two blockchains, we ob-
serve neither a constant performance of the shared log system nor
performance degradation in the consensus-based system. In par-
ticular, Fabric’s throughput drops 3× from 3 to 19 nodes, while
Quorum’s throughput is roughly unchanged. In Fabric, we find a
38% increase in the block validation latency. This is because the
endorsement policy requires a transaction to be endorsed by all the
nodes. Hence, more nodes lead to transactions with more signa-
tures and, therefore, longer validation. Due to the sequentiality in
transaction-based replication, this increase in validation time trans-
lates to the decrease in throughput, as we explained in Section 5.2.1.
On the other hand, Quorum underutilizes Raft, making its perfor-
mance insensitive to the consensus group size. Specifically, Quorum
first pre-executes transactions at the tip of the ledger, before batch-
ing these transactions into a block for the consensus. Thus, the
block proposal rate is affected by the ledger’s sequentiality.

Under the same Raft protocol, both NoSQL databases (etcd and
TiKV) achieve higher peak performance compared to the block-
chains, but the performance degrades with the number of nodes.
We attribute this to the consensus protocol. The NewSQL database
does not exhibit either a constant or decreasing performance trend.
Instead, TiDB reaches its peak performance on 11 nodes. This is be-
cause of the interplay between the consensus overhead in TiKV and
the transaction processing on TiDB servers. Finally, we conclude
that the transaction-based replication model has an obvious impact
on the performance of blockchains, while replication approaches
have plain effects on the performance of distributed databases.
5.2.3 Effect of failure model. We compare the performance of Raft
and Istanbul Byzantine Fault Tolerant (IBFT) consensus in Quorum
to illustrate the impact of different failure models. Recall that Raft
tolerates only crash failures, whereas IBFT can tolerate Byzantine
failures. IBFT shares the crux of PBFT, which consists of a three-
phase commit. But IBFT is heavily optimized for blockchains. For
example, by embedding the consensus meta-data in the ledger, IBFT
saves PBFT checkpointing efforts. IBFT additionally accommodates
dynamic validators, while PBFT assumes fixed membership.

9

SIGMOD’21, June 2021, Xi’an, Shaangxi, China Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang Chen, Qian Lin, and Beng Chin Ooi

0 0.2 0.4 0.6 0.8 1.0
Zipfian coefficient θ

102

103

104

105

tp
s

Fabric
Quorum

TiDB
Etcd

(a) Throughput (log scale)

0.2 0.4 0.6 0.8 1.0
Zipfian coefficient θ

0

10

20

30

40

50

pe
rc

en
t (

%
)

Fabric
TiDB

(b) Abort rate

Figure 9: Throughput and abort rate with skewedworkloads.
Each transaction modifies a single record.

Figure 8 shows similar peak throughputs that remain relatively
constant when increasing the number of tolerated failures. However,
we observe that IBFT’s throughput exhibits higher variance in larger
networks, as evidenced by the greater error bar. This is due to the
larger quorums needed in IBFT, which are 2f + 1 out of 3f + 1,
compared to f + 1 out of 2f + 1 replicas needed in Raft. IBFT needs
to contact more replicas in a time window compared to Raft to
avoid the view change, during which the corresponding transaction
processing is interrupted. When f increases, the probability of
such interruption increases accordingly, hence, this leads to larger
variances in performance.

5.3 Concurrency
5.3.1 Effect of skewness. To analyze the effect of concurrency con-
trol mechanisms, we use skewed workloads in which each trans-
action modifies (first read, then update and write back) a single
record. The records’ keys follow a Zipfian distribution that varies
based on the skewness coefficient θ . Figure 9 shows the through-
puts and the corresponding abort rates under different skewness.
Our key observation here is that blockchains and databases are
comparable under a high contention workload, given the fact that
TiDB drastically drops from 5461 to 173 tps when θ increases from
0 to 1. Etcd and Quorum do not have concurrency control because
they execute transactions serially. Thus, their performance is not
affected by skewness.

Although Fabric commits transactions sequentially, we observe a
31% drop in throughput from a uniform to a skewed workload with
θ = 1. This is due to Fabric’s optimistic concurrency control on
read-write conflicts. That is, a transaction contains the versions of
the records read during the proposal phase, which are then checked
in the validation phase. If the versions are not the latest, the trans-
action aborts. A skewed workload means that many transactions
are accessing the same records, leading to a higher probability of
transaction abort. For example, Figure 9b shows that 44% of the
transactions in Fabric abort when θ = 1.

Another interesting observation is that TiDB’s throughput drop
is disproportional to its increase in abort rate. Specifically, when
θ = 1, only 30% of TiDB’s transactions fail but the throughput de-
creases by 90%. This is because each transaction coordinator must
obtain a latch on a primary record, whose write outcome deter-
mines the overall transaction status. But write must undergo the
consensus for replication. Under a highly skewed workload, such a
latching mechanism makes the transaction coordinator spend more

1 2 4 6 8 10
op per txn

102

103

104

105

tp
s

Fabric
Quorum

TiDB
Etcd

(a) Throughput (log scale)

1 2 4 6 8 10
op per txn

0
20
40
60
80

100
120
140

pe
rc

en
t (

%
)

Read-write Conflict (Fabric)
Inconsistent Read (Fabric)
TiDB

(b) Abort rate

Figure 10: Throughput and abort rate with uniformly modi-
fied records in a single transaction.

time on contention resolution than the actual execution of the trans-
action payload, resulting in a remarkable decrement of the overall
throughput. Hence we conclude that the workload skewness exerts
a tremendous impact on storage-based replicated, concurrency-
over-replication architectures.

5.3.2 Effect of operation count. We gradually include more update
operations per transaction to analyze the impact of transaction
atomicity on performance. To remove the effect of transaction size,
for a given number of operations we vary the record size such that
the total transaction size is 1000 bytes. For example, if a transaction
writes 10 records, then each record contains 100 bytes.

As shown in Figure 10a, the performance of Fabric, TiDB, and
etcd drops when the number of operations per transaction increases.
In particular, with 10 operations per transaction, TiDB achieves only
32% of the throughput of single operation transactions. Two sources
of overheads contribute to this drop in performance. First, there are
more conflicts when a transaction writes to more records, which
leads to a higher abort rate. Second, TiDB uses sharding, which
means that a 10-operation transaction may span multiple shards.
As there are more shards, the overhead of the 2PC coordination in
TiDB increases. Etcd and Quorum are unaffected because they do
not entail cross-shard transactions.

Figure 10b shows the abort rate of TiDB and Fabric as the number
of operations per transaction increases. Both systems experience
high abort rates: 26.9% for TiDB and 87% for Fabric. Interestingly,
while TiDB aborts are mostly due to write-write conflicts, aborts
in Fabric come from two sources: inconsistent reads and the read-
write conflicts. On the one hand, during the proposal phase in
Fabric, a client must collect identical read results from the peers.
This is because we mandate that each transaction proposal must be
simulated and endorsed by all peers. But different results may be
returned, as the peers have disjoint states, which is highly likely
since they commit blocks at different rates. In this case, the client
immediately aborts the transaction. On the other hand, any of the
modified records exhibiting a read-write conflict may render the
transaction invalid. Under 10 operations per transaction, these two
sources take up 14% and 86% of all the aborts, respectively.

5.3.3 Effect of record size. We enlarge the record in the uniform-
update workload to increase the complexity per transaction without
aggravating the inter-transaction conflicts. As shown in Figure 11a,
all the databases exhibit moderate throughput decrease and latency
increase. However, the two blockchains behave differently. When

10

Blockchains vs. Distributed Databases: Dichotomy and Fusion SIGMOD’21, June 2021, Xi’an, Shaangxi, China

10 100 1000 5000
Record size (byte)

102

103

104

105

106

tp
s

Fabric
Quorum

TiDB
Etcd

(a) Throughput

10 100 1000 5000
Record size (byte)

101

102

103

104

m
s

Proposal
Consensus
Commit

Fabric
Quorum

(b) Latency breakdown

Figure 11: Performance under uniform update workload
with increasing record size. Both plots use log scale.

the record grows from 10 to 1, 000 bytes, Fabric’s performance re-
mains roughly constant at 1400 tps and drops by half on 5, 000
bytes. But Quorum suffers a significant drop in throughput, from
1547 tps on 10-byte to 58 tps on 5000-byte records. To understand
this, we analyze the transaction latency breakdown in Fabric and
Quorum, and present the results in Figure 11b. The block commit
time in Fabric only doubles, whereas in Quorum there is a 70× in-
crease from 3ms for 10-byte records to 221ms for 5000-byte records,
reducing the proportion of the consensus from 88% to 50% in a
transaction lifecycle. For each commit, Quorum’s virtual machine
needs to reconstruct an MPT data structure, which involves many
expensive cryptographic hash computations. At the same time, the
cost of a hash function increases with the record size. In particular,
we find that the cost of MPT reconstruction increases from 56us to
2.5ms when the record size grows from 10 to 5000 bytes.

Another interesting observation from Figure 11b is that the delay
of the proposal phase in Quorum grows at the same rate as the
delay of the commit phase. This is due to Quorum’s order-execute
model, where transactions are firstly batched and serially executed
during the proposal phase by the proposer. After consensus, the
batched transactions are serially executed again by all the other
nodes for validation and commit. Hence, Quorum’s performance
suffers from both double execution and the overhead of sequen-
tial validation of in-block transactions. In contrast, Fabric adopts
an execute-order-commit model where transactions are executed
concurrently during the proposal phase, before being ordered and
batched in the consensus phase. The serial processing only occurs
once during the commit phase. However, concurrency comes at the
cost of potentially aborted in-block transactions that would break
the serializability, as we saw in the previous section. Hence, when
the transactions are computationally heavy, execute-order-commit
blockchains outperform order-execute blockchains by introducing
the sequentiality requirement later. But compared with blockchains,
NewSQL databases with storage-based replication can harness more
concurrency.

5.4 Storage
5.4.1 Effect of record size on storage. Figure 12 shows the storage
cost per record as we increase the record size. Fabric incurs a much
higher storage overhead than TiDB. For a 5000-byte record, the
state storage consumes around 5000 bytes, while the block storage
consumes 21, 725 bytes. There is no additional storage used by TiDB
because no historical information is maintained and the associated
metadata is negligible. This result demonstrates that blockchains

incur significantly higher storage costs than databases because of
the underlying ledger abstraction.

5.4.2 Security overhead for tamper evidence. To quantify the over-
head incurred by the integrity protectionmechanism in blockchains,
we compare the performance of Merkle Bucket Tree (MBT) from
Hyperledger Fabric v0.61 and Merkle Patricia Trie (MPT) from Quo-
rum. This comparison is done on the system behavior in its entirety.
We refer readers to [88] for an in-depth analysis.

For this comparison, we insert 10K records of different sizes and
measure the state storage cost per record. Figure 13 shows that
MBT adds extra 24 bytes per record, while MPT adds over 1KB
per record. Since both MBT and MPT store data records in the
leaves, their differences come from the tree structures: the deeper
the tree, the higher the storage overhead. The scale of MBT is fixed.
Specifically, MBT first hashes all the records into 1, 000 buckets, on
top of which a Merkle tree with a given fan-out is built. Considering
1, 000 buckets and a fan-out of 4 in our experiments, the depth of
the tree is capped at 5 (⌈loд41000⌉). As a prefix tree, the depth of
MPT is affected by the key length, which is 16 bytes in our setting.
Specifically, each internal MPT node holds 4 bits of the key, hence,
the depth and fan-out can go up to 32 and 16, respectively. This
explains why MPT needs more space.

5.5 Sharding
To compare the impact of sharding on databases and blockchains,
we disable full replication in TiDB, and compare its performance
with Spanner, a cloud-based NewSQL database, and Attested Hy-
perledger (AHL) [41], a state-of-the-art sharded blockchain based
on Hyperledger Fabric v0.6. AHL leverages trusted hardware to
reduce shard size and to improve throughput per shard. It supports
cross-shard transactions by running a BFT shard that implements
a 2PC state machine, and periodically reconfigures shards to miti-
gate adaptive adversaries. This experiment is run on Google Cloud
Platform since Spanner is a cloud-only service. We set the number
of nodes in a shard to 3 for all the systems, and we pre-populate
the state with 1M 1KB-size records. We evaluate the systems with a
skewed workload with a Zipfian coefficient of θ = 1, in which each
transaction modifies two records.

Figure 14 shows that TiDB achieves higher throughput compared
to Spanner when increasing the number of nodes (and shards).
This is because TiDB instantly aborts a transaction once detecting
a conflict. In contrast, conflicting transactions in Spanner would
contend for locks under the pessimistic concurrency control. To
achieve stronger security, AHLwith periodic shard re-configuration
trades off 30% in performance compared to AHL with fixed shards.
Nonetheless, the gap between AHL and both the databases is large,
due to the high cost of PBFT and other security overheads.

5.6 Performance of Hybrid Systems
Based on our taxonomy and experimental results, we propose a
framework for comparing the performance of existing hybrid sys-
tems. We emphasize that the framework only supports high-level,
back-of-the-envelope comparison, and is not a replacement for de-
tailed experimental analysis. It focuses on throughput as the key
1Fabric v1.0 and later relax the security model and no longer require tamper-evident
indexes.

11

SIGMOD’21, June 2021, Xi’an, Shaangxi, China Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang Chen, Qian Lin, and Beng Chin Ooi

10 100 1000 5000
Record size (byte)

0

5000

10000

15000

20000

25000

by
te

6741 7020
9723

21725

59.8 150 1050

5050

Fabric-state
Fabric-block
TiDB

Figure 12: Storage breakdown
in Fabric and TiDB.

10 100 1000 5000
Record size (byte)

100

101

102

103

104

105

106

by
te

34
124

1024

5024
1090 1184 2071

6083

Merkle bucket tree
Merkle patricia trie

Figure 13: Storage overhead to achieve
tamper evidence (log scale).

3 12 24 36 48
of server nodes (shards)

101

102

103

104

tp
s

AHL(Periodic Reconfig)
AHL(Fixed Members)

TiDB
Spanner

Figure 14: Throughput of the skewed
workload (log scale).

CFT

BFT

Transaction
Replication

Storage
Replication

CFT

BFT
low

medium

Throughput

high

BlockchainDB
BigchainDB
BRD
Chainify

FalconDB

Veritas

Figure 15: The framework for understanding the through-
put of hybrid systems. The systems are color-coded based
on the design choices.

performance metric and does not consider all the dimensions in
our taxonomy. However, this framework explains the performance
differences among systems according to their reported results. More
importantly, it can guide the design of future hybrid systems.

Figure 15 presents our framework together with the reported
performance of some hybrid systems. We note that the replication
model is the deciding factor in determining the peak throughput.
The results in Section 5.2.1 show that the replication model affects
concurrency. In particular, transaction-based replication exposes
lower concurrency than storage-based replication, which results
in lower throughput. The next factor that affects throughput is the
failure model. As explained in Section 3.1.3, CFT protocols are more
efficient than BFT protocols due to their lower network overhead,
therefore, systems using CFT are likely to have higher throughput.
This is true especially when the CFT protocol is implemented as a
shared log service. We note that even though our experiments do
not show much difference between CFT and BFT in Quorum, it is
because these protocols are not the bottleneck.

Figure 15 illustrates the reported performance of six hybrid sys-
tems within our framework. Using the two factors stated above,
we can predict the throughput effectively. For instance, Vertias ex-
hibits better throughput than Chainify (29k vs. 6.1k) because it uses
storage-based replication and CFT protocols. But its performance
has a high variance because, under high contention, the throughput
can decrease significantly, as explained in Section 5.3.
6 RELATEDWORK
Comparison. Existing works that compare blockchains and data-
bases have highlighted their high-level differences. [44] demon-
strates a significant gap in performance, while [36, 40, 83, 85] focus
on the differences at the application layer. Some of these studies pro-
pose empirical flow charts to guide users in the quest of choosing

solutions based on blockchains or databases [36, 83, 85]. In contrast,
our work presents a deeper and more comprehensive comparison,
by looking at the fundamental designs of both systems.

Surveys and benchmarking. There are some works that con-
duct separate surveys and benchmarking of distributed databases [20,
24, 38, 89] and blockchains [28, 78, 92]. BLOCKBENCH [45] is the
first to compare them side-by-side and demonstrate that the perfor-
mance of blockchain is still far behind that of distributed databases.
Our work is more comprehensive than [45], as we consider systems
that are related to blockchains in their designs. We conduct more
fine-grained measurements and investigate the impact of more
factors. In addition, our results expose a smaller performance gap
between the two types of systems than previously reported.

Bridging blockchains and databases. There is a trend of in-
tegrating database designs into blockchains and vice versa. In par-
ticular, some works apply well-established concurrency control
techniques to improve blockchain’s performance [42, 73] or to rea-
son about smart contracts’ behavior [72]. [69, 81] use database
techniques to enhance the blockchain storage layer and expose
richer information to smart contracts. [21, 46, 65] propose hybrid
designs that support the relational data model and strong security.
Our work provides a novel framework for exploring the design
space of hybrid, database-blockchain systems.
7 CONCLUSIONS
In this paper, we presented a comprehensive dichotomy between
blockchains and distributed databases, viewing them as two dif-
ferent types of transactional distributed systems. We proposed a
taxonomy consisting of four design dimensions: replication, con-
currency, storage, and sharding. Using this taxonomy, we discussed
how both system typesmake different design choices driven by their
high-level goals, i.e., security for blockchains, and performance for
databases. We then performed a quantitative performance compari-
son covering a large area of the design space. Our results illustrate
the effects of different design choices to the overall performance.
Finally, our work provides the first framework to explore future
database-blockchain design fusions.

ACKNOWLEDGMENTS
The research is supported by the National Research Foundation, Sin-
gapore under its Emerging Areas Research Projects (EARP) Funding
Initiative. Meihui Zhang’s work is supported by National Natural
Science Foundation of China (62072033) and CCF- AFSG Research
Fund (RF20200015). Tien Tuan Anh Dinh is supported by Singapore

12

Blockchains vs. Distributed Databases: Dichotomy and Fusion SIGMOD’21, June 2021, Xi’an, Shaangxi, China

University of Technology and Design’s startup grant SRG-ISTD-
2019-144.

REFERENCES
[1] Amazon dynamodb. https://aws.amazon.com/dynamodb.
[2] Amazon quantum ledger database (qldb). https://aws.amazon.com/qldb/.
[3] Caliper. https://github.com/hyperledger/caliper.
[4] Cassandra. https://cassandra.apache.org/.
[5] Cockroachdb. https://github.com/cockroachdb/cockroach.
[6] Eosio. https://eos.io/.
[7] Etcd: Distributed reliable key-value store for the most critical data of a distributed

system. https://github.com/etcd-io/etcd.
[8] Ethereum. https://github.com/ethereum/go-ethereum.
[9] Ethereum 2.0 (eth2). https://ethereum.org/en/eth2/.
[10] Fabric. https://github.com/hyperledger/fabric.
[11] Fabric v0.6. https://hyperledger-fabric.readthedocs.io/en/v0.6/home.html.
[12] Fisco-bcos. https://http://fisco-bcos.org//.
[13] Kafka. https://kafka.apache.org/.
[14] Merkle patricia tree. https://github.com/ethereum/wiki/wiki/Patricia-Tree.
[15] Mongodb. https://www.mongodb.com.
[16] Quorum. https://github.com/jpmorganchase/quorum.
[17] Spanner. https://cloud.google.com/spanner.
[18] Tidb. https://github.com/pingcap/tidb.
[19] Ycsb. https://github.com/brianfrankcooper/YCSB.
[20] V. Abramova and J. Bernardino. Nosql Databases: Mongodb Vs Cassandra. In

Proc. of International C* Conference on Computer Science and Software Engineering,
pages 14–22. ACM, 2013.

[21] L. Allen, P. Antonopoulos, A. Arasu, J. Gehrke, J. Hammer, J. Hunter, R. Kaushik,
D. Kossmann, J. Lee, R. Ramamurthy, S. Setty, J. Szymaszek, A. van Renen, and
R. Venkatesan. Veritas: Shared Verifiable Databases And Tables In The Cloud. In
CIDR, 2019.

[22] J. C. Anderson, J. Lehnardt, and N. Slater. CouchDB: the Definitive Guide: Time to
Relax. "O’Reilly Media, Inc.", 2010.

[23] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. De Caro,
D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, et al. Hyperledger Fabric: A
Distributed Operating System For Permissioned Blockchains. In Proc. of 13th
EuroSys Conference, pages 1–30. ACM, 2018.

[24] T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan. Linkbench:
A Database Benchmark Based On The Facebook Social Graph. In Proc. of ACM
SIGMOD International Conference onManagement of Data, pages 1185–1196. ACM,
2013.

[25] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Highly
Available Transactions: Virtues And Limitations. PVLDB, 7(3):181–192, 2013.

[26] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber, M. Wei, and J. D. Davis.
Corfu: A Shared Log Design For Flash Clusters. In Proc. of 9th USENIX Conference
on Networked Systems Design and Implementation, 2012.

[27] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prabhakaran, M. Wei, J. D.
Davis, S. Rao, T. Zou, and A. Zuck. Tango: Distributed Data Structures Over A
Shared Log. In Proc. of 24th ACM Symposium on Operating Systems Principles,
pages 325–340, 2013.

[28] A. Baliga, I. Subhod, P. Kamat, and S. Chatterjee. Performance Evaluation Of The
Quorum Blockchain Platform. arXiv preprint arXiv:1809.03421, 2018.

[29] P. A. Bernstein, C. W. Reid, and S. Das. Hyder âĂŞ A Transactional Record
Manager For Shared Flash. In CIDR, 2011.

[30] A. Bessani, J. Sousa, and E. E. P. Alchieri. State Machine Replication For The
Masses With Bft-Smart. In Proc. of 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 355–362, 2014.

[31] E. Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains.
PhD thesis, The University of Guelph, 2016.

[32] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg. The Primary-Backup
Approach. Distributed systems, 2:199–216, 1993.

[33] V. Buterin and V. Griffith. Casper The Friendly Finality Gadget. arXiv preprint
arXiv:1710.09437, 2017.

[34] J. L. Carlson. Redis in action. Manning Shelter Island, 2013.
[35] M. Castro, B. Liskov, et al. Practical Byzantine Fault Tolerance. InOSDI, volume 99,

pages 173–186, 1999.
[36] M. J. M. Chowdhury, A. Colman, M. A. Kabir, J. Han, and P. Sarda. Blockchain

Versus Database: A Critical Analysis. In 2018 17th IEEE International Conference
On Trust, Security And Privacy In Computing And Communications/12th IEEE Inter-
national Conference On Big Data Science And Engineering (TrustCom/BigDataSE),
pages 1348–1353. IEEE, 2018.

[37] Computer, B. E. M. Association, et al. American National Standard For Informa-
tion Systems-Database Language Sql. NY, American National Standards Institute,
pages 27–28, 1986.

[38] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking
Cloud Serving Systems With Ycsb. In Proc. of 1st ACM Symposium on Cloud

Computing, pages 143–154. ACM, 2010.
[39] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,

A. Gubarev, C. Heiser, P. Hochschild, et al. Spanner: Google’S Globally Distributed
Database. ACM Transactions on Computer Systems (TOCS), 31(3):1–22, 2013.

[40] M. Crosby, P. Pattanayak, S. Verma, V. Kalyanaraman, et al. Blockchain Technol-
ogy: Beyond Bitcoin. Applied Innovation, 2(6-10):71, 2016.

[41] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi. Towards
Scaling Blockchain Systems Via Sharding. arXiv preprint arXiv:1804.00399, 2018.

[42] T. Dickerson, P. Gazzillo, M. Herlihy, and E. Koskinen. Adding Concurrency
To Smart Contracts. In Proc. of ACM Symposium on Principles of Distributed
Computing, pages 303–312. ACM, 2017.

[43] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux. Oltp-Bench: An
Extensible Testbed For Benchmarking Relational Databases. PVLDB, 7(4):277–
288, 2013.

[44] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang. Untangling
Blockchain: A Data Processing View Of Blockchain Systems. IEEE Transactions
on Knowledge and Data Engineering, 30(7):1366–1385, 2018.

[45] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, and K.-L. Tan. Blockbench: A
Framework For Analyzing Private Blockchains. In Proc. of ACM International
Conference on Management of Data, pages 1085–1100. ACM, 2017.

[46] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy. Blockchaindb:
A Shared Database On Blockchains. PVLDB, 12(11):1597–1609, 2019.

[47] etcd. Understanding Performance. https://bit.ly/2kzI8R2, 2019.
[48] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed

consensus with one faulty process. Technical report, Massachusetts Inst of Tech
Cambridge lab for Computer Science, 1982.

[49] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun. On
The Security And Performance Of Proof Of Work Blockchains. In Proc. of ACM
SIGSAC Conference on Computer and Communications Security, pages 3–16. ACM,
2016.

[50] S. Gilbert and N. Lynch. Perspectives On The Cap Theorem. Computer, 45(2):30–
36, 2012.

[51] M. Herlihy, B. Liskov, and L. Shrira. Cross-Chain Deals And Adversarial Com-
merce. arXiv preprint arXiv:1905.09743, 2019.

[52] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. Jones,
S. Madden, M. Stonebraker, Y. Zhang, et al. H-Store: A High-Performance, Dis-
tributed Main Memory Transaction Processing System. Proc. of VLDB Endowment,
1(2):1496–1499, 2008.

[53] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A. D. Nguyen, T. Kaldewey, V. W. Lee,
S. A. Brandt, and P. Dubey. Fast: Fast Architecture Sensitive Tree Search On
Modern Cpus And Gpus. In Proc. of ACM SIGMOD International Conference on
Management of Data, pages 339–350. ACM, 2010.

[54] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford. Om-
niledger: A Secure, Scale-Out, Decentralized Ledger Via Sharding. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 583–598. IEEE, 2018.

[55] A. Lakshman and P. Malik. Cassandra: A Decentralized Structured Storage
System. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[56] L. Lamport. Generalized Consensus And Paxos. Technical Report MSR-TR-2005-33,
Microsoft Research, 2005.

[57] L. Lamport et al. Paxos Made Simple. ACM Sigact News, 32(4):18–25, 2001.
[58] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem. ACM

Trans. Program. Lang. Syst., 4(3):382–401, 1982.
[59] K. Li. The Blockchain Scalability Problem & the Race for Visa-Like Transaction

Speed. http://archive.today/XnKJC, 2019.
[60] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena. A Secure

Sharding Protocol For Open Blockchains. In Proc. of ACM SIGSAC Conference on
Computer and Communications Security, pages 17–30. ACM, 2016.

[61] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. McConaghy, G. McMullen,
R. Henderson, S. Bellemare, and A. Granzotto. Bigchaindb: A Scalable Blockchain
Database. white paper, BigChainDB, 2016.

[62] V. Morabito. Business Innovation Through Blockchain. Cham: Springer Interna-
tional Publishing, 2017.

[63] W. Mougayar. The business blockchain: promise, practice, and application of the
next Internet technology. John Wiley & Sons, 2016.

[64] S. Nakamoto et al. Bitcoin: A Peer-To-Peer Electronic Cash System. Working
Paper, 2008.

[65] S. Nathan, C. Govindarajan, A. Saraf, M. Sethi, and P. Jayachandran. Block-
chain Meets Database: Design And Implementation Of A Blockchain Relational
Database. PVLDB, 12(11):1539–1552, 2019.

[66] D. Ongaro and J. Ousterhout. In Search Of An Understandable Consensus Algo-
rithm. In Proc. of USENIX Annual Technical Conference, pages 305–320, 2014.

[67] M. T. Özsu and P. Valduriez. Principles of distributed database systems. Springer
Science & Business Media, 2011.

[68] Y. Peng, M. Du, F. Li, R. Cheng, and D. Song. Falcondb: Blockchain-Based Collabo-
rative Database. In Proc. of ACM SIGMOD International Conference onManagement
of Data, pages 637–652, 2020.

[69] P. Ruan, G. Chen, T. T. A. Dinh, Q. Lin, B. C. Ooi, and M. Zhang. Fine-Grained,
Secure And Efficient Data Provenance On Blockchain Systems. In VLDB, 2019.

13

https://aws.amazon.com/dynamodb
https://aws.amazon.com/qldb/
https://github.com/hyperledger/caliper
https://cassandra.apache.org/
https://github.com/cockroachdb/cockroach
https://eos.io/
https://github.com/etcd-io/etcd
https://github.com/ethereum/go-ethereum
https://ethereum.org/en/eth2/
https://github.com/hyperledger/fabric
https://hyperledger-fabric.readthedocs.io/en/v0.6/home.html
https://http://fisco-bcos.org//
https://kafka.apache.org/
https://github.com/ethereum/wiki/wiki/Patricia-Tree
https://www.mongodb.com
https://github.com/jpmorganchase/quorum
https://cloud.google.com/spanner
https://github.com/pingcap/tidb
https://github.com/brianfrankcooper/YCSB

SIGMOD’21, June 2021, Xi’an, Shaangxi, China Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang Chen, Qian Lin, and Beng Chin Ooi

[70] P. Ruan, D. Loghin, Q.-T. Ta, M. Zhang, G. Chen, and B. C. Ooi. A Transactional
Perspective On Execute-Order-Validate Blockchains. In Proc. of ACM SIGMOD
International Conference on Management of Data, pages 543–557, 2020.

[71] F. M. Schuhknecht, A. Sharma, J. Dittrich, and D. Agrawal. Chainifydb: How To
Blockchainify Any Data Management System. arXiv preprint arXiv:1912.04820,
2019.

[72] I. Sergey and A. Hobor. A Concurrent Perspective On Smart Contracts. In
International Conference on Financial Cryptography and Data Security, pages
478–493. Springer, 2017.

[73] A. Sharma, F. M. Schuhknecht, D. Agrawal, and J. Dittrich. How To Databasify A
Blockchain: The Case Of Hyperledger Fabric. arXiv preprint arXiv:1810.13177,
2018.

[74] A. Sharma, F. M. Schuhknecht, D. Agrawal, and J. Dittrich. Blurring The Lines
Between Blockchains And Database Systems: The Case Of Hyperledger Fabric.
In Proc. of International Conference on Management of Data, pages 105–122, 2019.

[75] M. Stonebraker and L. A. Rowe. The Design Of Postgres. SIGMOD Rec., 15(2):340–
355, 1986.

[76] R. Taft, I. Sharif, A. Matei, N. VanBenschoten, J. Lewis, T. Grieger, K. Niemi,
A. Woods, A. Birzin, R. Poss, et al. Cockroachdb: The Resilient Geo-Distributed
Sql Database. In Proc. of ACM SIGMOD International Conference on Management
of Data, pages 1493–1509, 2020.

[77] A. Tai, M. Wei, M. J. Freedman, I. Abraham, and D. Malkhi. Replex: A Scalable,
Highly Available Multi-Index Data Store. In Usenix ATC, 2016.

[78] P. Thakkar, S. Nathan, and B. Viswanathan. Performance Benchmarking And
Optimizing Hyperledger Fabric Blockchain Platform. In Proc. of 26th International
Symposium on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems (MASCOTS), pages 264–276. IEEE, 2018.

[79] H. T. Vo, S. Wang, D. Agrawal, G. Chen, and B. C. Ooi. LogBase: A Scalable Log-
Structured Database System in the Cloud. Proc. of VLDB Endow., 5(10):1004–1015,
June 2012.

[80] A. Vukotic, N.Watt, T. Abedrabbo, D. Fox, and J. Partner. Neo4j in action. Manning
Publications Co., 2014.

[81] S. Wang, T. T. A. Dinh, Q. Lin, Z. Xie, M. Zhang, Q. Cai, G. Chen, B. C. Ooi, and
P. Ruan. Forkbase: An Efficient Storage Engine For Blockchain And Forkable
Applications. PVLDB, 11(10):1137–1150, 2018.

[82] G. Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper , 2014.

[83] K. Wüst and A. Gervais. Do You Need A Blockchain? In 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT), pages 45–54. IEEE, 2018.

[84] Z. Xie, Q. Cai, H. Jagadish, B. C. Ooi, and W. F. Wong. Parallelizing Skip Lists
For In-Memory Multi-Core Database Systems. In 2017 IEEE 33rd International
Conference on Data Engineering (ICDE), pages 119–122. IEEE, 2017.

[85] D. Yaga, P. Mell, N. Roby, and K. Scarfone. Blockchain technology overview.
Technical report, National Institute of Standards and Technology, 2018.

[86] X. Yang, Y. Zhang, S. Wang, B. Yu, F. Li, Y. Li, andW. Yan. LedgerDB: a Centralized
Ledger Database for Universal Audit and Verification. Proc. of VLDB Endow.,
13(12):3138–3151, 2020.

[87] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. Hotstuff: Bft
Consensus With Linearity And Responsiveness. In Proc. of ACM Symposium on
Principles of Distributed Computing, pages 347–356, 2019.

[88] C. Yue, Z. Xie, M. Zhang, G. Chen, B. C. Ooi, S. Wang, and X. Xiao. Analysis Of
Indexing Structures For Immutable Data. In Proc. of ACM SIGMOD International
Conference on Management of Data, pages 925–935, 2020.

[89] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang. In-memory Big Data
Management and Processing: A Survey. IEEE Transactions on Knowledge and
Data Engineering, 27(7):1920–1948, 2015.

[90] M. Zhang, Z. Xie, C. Yue, and Z. Zhong. Spitz: A Verifiable Database System.
Proc. of VLDB Endow., 13(12):3449–3460, Aug. 2020.

[91] Y. Zhang, J. Katz, and C. Papamanthou. Integridb: Verifiable Sql For Outsourced
Databases. In Proc. of 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 1480–1491, 2015.

[92] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang. Blockchain challenges
and opportunities: A survey. International Journal of Web and Grid Services,
14(4):352–375, 2018.

14

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain
	2.2 Distributed Databases

	3 Taxonomy
	3.1 Replication
	3.2 Concurrency
	3.3 Storage
	3.4 Sharding
	3.5 Fusion of Blockchains and Databases
	3.6 blackDiscussion

	4 Experimental Setup
	4.1 blackSystems
	4.2 Setup

	5 Result and Analysis
	5.1 Peak Performance
	5.2 Replication
	5.3 Concurrency
	5.4 Storage
	5.5 blackSharding
	5.6 blackPerformance of Hybrid Systems

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

