
BLOCKBENCH: A Framework for
Analyzing Private Blockchains

Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi,
Kian-lee Tan

Outline

• Introduction
• Backgrounds
• Problem Statement
• Related Works

• BlockBench Framework
• System Design
• Implementation

• Performance Benchmark
• Macro Benchmarks
• Micro Benchmarks

• Discussion
• Conclusion Acknowledgement: many diagrams are owned by internet users

which we use only for illustration purposes

Outline

• Introduction
• Backgrounds
• Problem Statement
• Related Works

• BlockBench Framework
• System Design
• Implementation

• Performance Benchmark
• Macro Benchmarks
• Micro Benchmarks

• Discussion
• Conclusion

Backgrounds

Bitcoin & the Blockchain

• No central bank
• Transferring coins through

trustless P2P network
• ~1200 USD per Bitcoin

(coinbase.com 10/03/2017)

Cryptocurrency

“Satoshi Nakamoto”
2009

• Blockchain
• Distributed shared ledger
• Cryptograhy (SHA-256, PKI)
• Consensus model
• Smart contracts

Technology

Blockchains are distributed
ledgers – or decentralized
databases – that enable parities
who do not fully trust each
other to form and maintain
consensus about the existence,
status and evolution of a set of
shared facts.

Backgrounds

Blockchains

Backgrounds

Smart Contracts

Programs execute real-world
contract logic that are encrypted
and stored on distributed digital-
ledger systems (blockchains),
ensuring all parities are working off
the same synchronized version,
which cannot be unilaterally altered
or tampered with.

Need for Blockchain and Smart
Contracts

Party D’s Records Bank Records

Auditor Records

Party A’s Records

API-integrations

Hack

Ledger

Party B’s Records

Ledger

Ledger

Ledger

Party C’s Records

Ledger

Ledger

Information & asset exchange in business networks – Separate ledgers

Inefficient, expensive, error sensitive and vulnerable

Need for Blockchain and Smart
Contracts

Information & asset exchange in business networks – Shared ledger

Consistency, efficiency, security and resilience

Party D’s Records Bank records

Party C’s Records Auditor records

Party B Records

Party A’s Records

Ledger

Ledger

Ledger

Ledger
Ledger

Ledger

Need for Blockchain and Smart
Contracts

Real world example #1. R3CEV financial consortium

• A consortium of more
than 70 the world biggest
financial institutions.

• Research and develop
blockchain system in the
financial services.

• Develop and test smart-
contract templates that
simplify legal
documentation.

Need for Blockchain and Smart
Contracts

Real world example #2. Linux Foundation Hyperledger Project

• a cross-industry collaborative project started in December 2015 by
the Linux Foundation.

• Focus on distributed ledger to support global business
transactions, including major technological, financial, and supply
chain companies.

Need for Blockchain and Smart
Contracts

Real world example #3. Microsoft and IBM Blockchain-As-A-Service

• Microsoft Azure cloud platform support many open-source
blockchain platforms, e.g., Etheruem and ErisDB, as well as their
own blockchain named Bletchley.

• IBM Bluemix provide Hyperledger Fabric platform as a service.

Need for Blockchain and Smart
Contracts

More real world examples…

Financial institutions show huge interest in Blockchain by
publishing many research reports

Need for Blockchain and Smart
Contracts

More real world examples…

Need for Blockchain and Smart
Contracts

More real world examples…

Use cases

Need for Blockchain and Smart
Contracts

More real world examples…

• Global trade finance

Need for Blockchain and Smart
Contracts

More real world examples…

• Global trade finance
• Supply chains

Need for Blockchain and Smart
Contracts

More real world examples…

• Global trade finance
• Supply chains
• Post-trading process

Need for Blockchain and Smart
Contracts

More real world examples…

• Global trade finance
• Supply chains
• Post-trading process
• Fintech

4 Key Concepts of Blockchain

Distributed shared ledger Cryptography

Consensus Smart contracts

4 Key Concepts of Blockchain:
Distributed Shared Ledger

• Group of replicated logs/databases
(nodes)

• Transactions packed in blocks
• All nodes hold all transactions
• Parties identified with public key

(= anonymised)
• Resilient for failure of one or more

nodes

4 Key Concepts of Blockchain:
1.Distributed Shared Ledger

4 Key Concepts of Blockchain:
2.Cryptographic (1/2)

Tamper-proof log blocks using hash pointer

4 Key Concepts of Blockchain:
2.Cryptographic (2/2)

Asymmetric cryptography digital signature system

2100f86450888dc01725af78a0e70415… 2626043be7d913ff5d8520b39253eef6240e31d…

Encryption

2100f86450888dc01725af78a0e70415…

Private key PKI management

Hash of transaction to issue

Public key
Hash to be checked with originaldata

Decryption

4 Key Concepts of Blockchain:
3.Consensus

Consensus

Cite: Vukolić, Marko. "The quest for scalable blockchain
fabric: Proof-of-work vs. BFT replication."

Voting-based
Computation-based

• No single point failure
• Byzantine fault tolerance

4 Key Concepts of Blockchain:
4.Smart-Contract

• Business logic that can be assigned to a
transaction on the blockchain

• Acts as a ‘notary’ of blockchain transactions
• Holds conditions under which specific

actions can/must be performed
• Facilitates escrow services
• Can’t be modified without predefined

permissions

Smart contracts

Values of blockchain

Reduction of costs and complexity Shared trusted transactions

Resilience Secure Auditability

Reduction of errors

Potential of blockchain

Financial Services
• Payments
• Securities registration & processing
• Lending

Property
• Real estate
• Intellectual property
• Cars

Governmental services
• Voting
• Registrations (passports, driving license)

• Permits

Identification & Security
• Party/device registration
• Authentication
• Access control

Trade
• Document exchange
• Asset exchange
• Escrow services
• Trade agreements

Internet of Things (IoT)
• Autonomous devices, suchas

• Cars
• Drones

• Robots

Category of blockchains

Public blockchain V.S. Private blockchain

• The majority of financial services firms exploring the use of blockchain are
looking at private or semi-private blockchains, rather than the fully
decentralized public blockchains

• No authoritative permission
required in order to participate

• Participants are not vetted
• Mechanisms for maintaining the

network against attacks and
unwanted parties therefore add
cost and complexity to the network

• Usually use computation-based
consensus protocols

• Participants are known and
identified.

• Legal contracts can help with
system mechanisms.

• Usually use voting-based
consensus protocols

Public blockchains Private blockchains

Problem Statement

Quest for understanding of private blockchain performance

• Design a general benchmark framework to find out to what
extent can blockchain handle data processing workload.

Problem Statement

Quest for understanding of private blockchain performance

• Design a general benchmark framework to find out to what
extent can blockchain handle data processing workload.

Our framework will:

• Help blockchain application developers to assess blockchain’s
potentials in meeting the application needs.

• Help blockchain platform developers to identify and improve
on the performance bottlenecks.

Related Works

• TPC benchmark series
• End-to-end macro-benchmarks
• Focus on relational data model

• Yahoo! Cloud Serving Benchmark (YCSB)
• For NoSQL data storage
• To evaluate performance and scalability

• GridMix, PigMix, TeraSort/GraySort, etc.
• Benchmark for MapReduce-like systems

• BigBench
• Industry standard end-to-end benchmark
• For big data processing systems

No benchmark for private blockchains at the moment

Outline

• Introduction
• Backgrounds
• Problem Statement
• Related Works

• BlockBench Framework
• System Design
• Implementation

• Performance Benchmark
• Macro Benchmarks
• Micro Benchmarks

• Discussion
• Conclusion

Challenges

• Three main challenges

Challenge 1: a blockchain system comprises many parts, we
observe that a wide variety of design choices are made among
different platforms at almost every single detail.

Approach: We extract the common modules of blockchain
platform, and divide the blockchain architecture into three
modular layers and focus our study on them: the consensus
layer, the data model layer and smart-contract execution layer.

Challenges

Consensus Layer (PBFT, PoW, PoS, etc.)

Smart Contract Execution Engine
(Virtual Machine, Docker, etc.)

Data Model Layer
(LevelDB, RocksDB, etc.)

Challenges

• Three main challenges

Challenge 2: there are many different choices of platforms, but
not all of them have reached a mature design, implementation
and an established user base.

Approach: We start designing BlockBench based on three most
mature platforms which support smart-contract funcionality,
namely Hyperledger Fabric, Ethereum and Parity, and the
framework is general to support future platforms.

Challenges

• Three main challenges

Challenge 3: There is lack of a database-oriented workloads
for blockchain.

Approach: We treat blockchain as a key-value storage coupled
with an engine which can realize both transactional and
analytical functionality via smart contracts.
We design and run both transaction and analytics workloads in
our benchmark framework.

Framework Design

Framework Implementation

• New workloads are added
by implementing
IWorkloadConnector interface.

• New blockchain backends
are added by implementing
IBlockchainConnector

Five Key Metrics

• Throughput
• measured as the number of successful transaction per

second

• Latency
• measured as the response time per transaction

• Scalability
• measured as how the throughput and latency change when

increasing number of nodes and number of concurrent
workloads.

• Fault tolerance
• measured as how the throughput and latency change during

node failure, such as fail-stop, network delay and arbitrary
message errors.

• Security
• simulate network partition attacks, measure as stale block

rates

Outline

• Introduction
• Backgrounds
• Problem Statement
• Related Works

• BlockBench Framework
• System Design
• Implementation

• Performance Benchmark
• Macro Benchmarks
• Micro Benchmarks

• Discussion
• Conclusion

Workloads

Macro-Benchmarks

Micro-Benchmarks

Data model

Execution engine

Consensus layer

Storage-oriented

Application-oriented

Performance Benchmark

• We deployed Hyperledger, Ethereum and Parity
• The experiments run on 48-node commodity cluster.

• Intel E5-1650 3.5GHz CPU
• 32GB RAM
• 2TB hard driver

• We collected comparison results in terms of our five
metrics in macro benchmarks.

• We stress tested each individual layer using our micro
benchmarks.

Performance Benchmark

• Hyperledger performs consistently better than Ethereum
and Parity across the benchmarks. But it fails to scale up
to more than 16 nodes.

• Ethereum and Parity are more resilient to node failures,
but they are vulnerable to security attacks that forks the
blockchain.

• The main bottlenecks in Hyperledger and Ethereum are
the consensus protocols, but for Parity the bottleneck is
caused by transaction signing.

Main findings (1/2)

Performance Benchmark

• Ethereum and Parity incur large overhead in
terms of memory and disk usage. Their
execution engine is also less efficient than that
of Hyperledger.

• Hyperledger's data model is low level, but its
exibility enables customized optimization for
analytical queries of the blockchain data.

Main findings (2/2)

Throughput & Latency

Figure: Throughput and latency of 3 systems over
YCSB and SmallBank benchmark

Throughput & Latency

Figure: CPU & network resource utilization of 3 systems
over YCSB benchmark

Throughput & Latency

• The gap between Hyperledger and Ethereum is
because of the difference in consensus protocol.
Hyperledger is communication bound (PBFT) whereas
Ethereum is CPU bound (PoW).

• Parity processes transactions at a constant rate, and
that it enforces a maximum client request rate at
around 80 tx/s. Parity achieves both lower throughput
and latency than other systems.

Observations (1/2)

Throughput & Latency

• In Ethereum and Hyperledger, there is a drop of 10% in
throughput and 20% increase in latency from YCSB to
Smallbank. This suggest that there are non-negligible
costs in the execution layer of blockchains.

Observations (2/2)

Throughput & Latency

Figure: Block generation rate with varying block size

Simply increasing block size does not help:
larger block size means lower block generation rate

Throughput & Latency

Figure: Performance scalability (with the same number of
clients and servers).

Scalability

• Parity's performance remains constant as the network
size and oered load increase, due to the constant
transaction processing rate at the servers.

• Ethereum's throughput and latency degrade almost
linearly beyond 8 servers.

• Hyperledger stops working beyond 16 servers due to
flaws in the implementation of the consensus protocol.

Observations

Throughput & Latency

Figure: Performance scalability (with 8 clients).

Scalability

• The performance becomes worse as there are more
servers, meaning that the systems incur some network
overheads.

• Hyperledger is communication bound, having more
servers means more messages being exchanged and
higher overheads.

• Ethereum consumes a modest amount of network
resources for propagating transactions and blocks to
other nodes.

Observations

Fault-tolerance & Security

Figure: Failing 4 nodes at 250th second (fixed 8 clients)
for 12 and 16 servers. X-12 and X-16 mean running 12 and
16 servers using blockchain X respectively.

Fault-tolerance & Security

Figure: Blockchain forks caused by attacks that partitions
the network in half at 100th second and lasts for 150th

seconds. X-total means the total number of blocks generated
in blockchain X, X-bc means the total number of blocks that
reach consensus in blockchain X.

Fault-tolerance & Security

• Hyperledger is more vulnerable to fail-stop fault.

• Ethereum and Parity fork under network partition, they
are vulnerable to fork attacks.

• Hyperledger has safety property for consensus
because of PBFT protocol.

• Hyperledger uses more time to recovery from network
partition.

Observations

Execution Layer - CPUHeavy

Figure: CPUHeavy workload, ‘X’ indicates Out-of-Memory error.

Execution Layer - CPUHeavy

• Ethereum and Parity use the same execution model
(i.e., EVM), but Parity has more optimized
implementation.

• Hyperledger’s execution engine is more computation
and memory efficient than EVM.

• All three systems fail to make use of the multi-core
architecture.

Observations

Data Model Layer - IOHeavy

Figure: IOHeavy workload, `X' indicates Out-of-Memory error.

Data Model Layer - IOHeavy

• Ethereum and Parity use the same data model but
make different design trade-offs. Parity cache the
whole states in-memory so capped by memory size.
Ethereum uses LRU eviction policy so can handle more
states data but has less efficiency.

• Hyperledger provides lower-level data model which
has less overhead.

Observations

Data Model Layer - Analytics

This workload considers the performance of blockchain
system in answering analytical queries about the historical
data.

Q1: Compute the total transaction values committed
between block i and block j.

Q2: Compute the largest transaction value involving a
given state (account) between block i and block j.

Data Model Layer - Analytics

Figure: Analytics workloads.

Data Model Layer - Analytics

• Main bottleneck for query is RPC round-trip latency.

• It is important to provide customizable query API to
push the computation to the server-side.

Observations

Consensus Layer - DoNothing

Figure: DoNothing workloads.

Consensus Layer - DoNothing

• Consensus layer contributes the most overhead in
Ethereum and Hyperledger.

• For Ethereum 10% increases in throughput as
compared to YCSB, which means that execution of the
YCSB transaction accounts for the 10% overhead.

• No difference in YCSB, SmallBank and DoNothing for
Parity. Performance bottleneck of Parity is the transaction
signing.

Observations

Outline

• Introduction
• Backgrounds
• Problem Statement
• Related Works

• BlockBench Framework
• System Design
• Implementation

• Performance Benchmark
• Macro Benchmarks
• Micro Benchmarks

• Discussion
• Conclusion

Discussion

Bringing database designs into blockchain
Huge performance gap between blockchains and transactional
databases

Figure: Performance of the three blockchain systems
versus H-Store.

Discussion

Bringing database designs into blockchain

• Decouple storage, execution engine and
consensus layer from each other, then optimize
and scale them independently.

* Our system UStore demonstrates that a storage designed
around the blockchain data structure is able to achieve
better performance than existing implementations.

Discussion

Bringing database designs into blockchain

• Embrace new hardware primitives.

* For blockchain, using trusted hardware, the underlying
Byzantine fault tolerance protocols can be modified to
incur fewer network messages.

* Systems like Parity and Ethereum can take advantage of
multi-core CPUs and large memory to improve contract
execution and I/O performance.

Discussion

Bringing database designs into blockchain

• Sharding.

* Existing consistency protocols used in database systems
do not work under Byzantine failure.

* Nevertheless, designs of sharding database systems can
offer insights into realizing a more scalable sharding
protocol for blockchain.

* The main challenge with sharding is to ensure consistency
among multiple shards.

Discussion

Bringing database designs into blockchain

• Support declarative language.

* Having a set of high-level operations that can be
composed in a declarative manner makes it easy to define
complex smart contracts.

* Declarative language also opens up opportunities for low-
level optimizations that speed up contract execution.

Outline

• Introduction
• Backgrounds
• Problem Statement
• Related Works

• BlockBench Framework
• System Design
• Implementation

• Performance Benchmark
• Macro Benchmarks
• Micro Benchmarks

• Discussion
• Conclusion

Conclusion

• BlockBench , to our knowledge, is the first
comprehensive benchmark framework for private
blockchain systems.

• We hope our results will serve as a baseline for
further development of blockchain technologies.

• Further Information:
• Paper: https://arxiv.org/abs/1703.04057 (to appear

in ACM SIGMOD 2017)
• Code+Workloads at project web site:

http://www.comp.nus.edu.sg/~dbsystem/blockbench/

https://arxiv.org/abs/1703.04057

Thanks!

